A C1 Arnol'd-Liouville theorem
Abstract
In this paper, we prove a version of Arnol'd-Liouville theorem for C 1 commuting Hamiltonians. We show that the Lipschitz regularity of the foliation by invariant Lagrangian tori is crucial to determine the Dynamics on each Lagrangian torus and that the C 1 regularity of the foliation by invariant Lagrangian tori is crucial to prove the continuity of Arnol'd-Liouville coordinates. We also explore various notions of C 0 and Lipschitz integrability.
Origin : Files produced by the author(s)
Loading...