Filter your results
- 12
- 9
- 11
- 6
- 3
- 1
- 21
- 1
- 1
- 1
- 3
- 2
- 3
- 2
- 2
- 5
- 1
- 21
- 15
- 5
- 2
- 1
- 1
- 1
- 6
- 13
- 2
- 2
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
- 1
|
|
sorted by
|
|
Boundaries of instability zones for symplectic twist mapsJ. Inst. Math. Jussieu, 2014, 13 (1), pp.19-41
Journal articles
hal-00691483v1
|
||
|
On the $C^1$ and $C^2$-convergence to weak K.A.M. solutionsCommunications in Mathematical Physics, In press
Journal articles
hal-02025882v1
|
||
Greeen bundles and invariant curves for symplectic twist maps.Hamiltonian perturbation theory: separatrix splitting, theory and applications, May 2014, Pisa, Italy
Conference papers
hal-01327092v1
|
|||
|
A non-differentiable essential irrational invariant curve for a $C^1$ symplectic twist mapJournal of modern dynamics, 2011, 5 (3), pp.583-591. ⟨10.3934/jmd.2011.5.583⟩
Journal articles
hal-00588781v1
|
||
|
A multidimensional birkhoff theorem for time-dependent tonelli hamiltoniansCalc. Var. Partial Differential Equations, 2017, 56 (4), pp.122
Journal articles
hal-01309652v2
|
||
|
A notion of Denjoy sub-system2017
Preprints, Working Papers, ...
hal-01567649v1
|
||
Green bundles and related topics.Dynamical Optimization in PDE and Geometry Applications to Hamilton-Jacobi Ergodic Optimization, Weak KAM , Dec 2011, Bordeaux, France
Conference papers
hal-01327105v1
|
|||
|
Lyapunov exponents of minimizing measures for globally positive diffeomorphisms in all dimensionsCommunications in Mathematical Physics, 2016, 343 (3), pp.783-810
Journal articles
hal-01065120v1
|
||
|
C^1-generic billiard tables have a dense set of periodic pointsRegular and Chaotic Dynamics, 2013, 18 (6), pp.697-702
Journal articles
hal-01065123v1
|
||
|
When are the invariant submanifolds of symplectic dynamics Lagrangian?MR3124714 Reviewed Arnaud, Marie-Claude When are the invariant submanifolds of symplectic dynamics Lagrangian? Discrete Contin. Dyn. Syst., 2014, 34 (5), pp.1811-1827
Journal articles
hal-01065122v1
|
||
|
Lower and upper bounds for the Lyapunov exponents of twisting dynamics: a relationship between the exponents and the angle of the Oseledet's splittingErgodic Theory and Dynamical Systems, 2012, pp.1-20. ⟨10.1017/S0143385712000065⟩
Journal articles
hal-00572334v2
|
||
Irregularity and regularity of invariant curves for symplectic twist maps.Nanjing Conference on Hamiltonian Dynamics, Aug 2011, Nanjing, China
Conference papers
hal-01327106v1
|
|||
Invariant Lagrangian manifolds for Tonelli Hamiltonians.Calibrations and Laminations, Jun 2011, Freiburg, Germany
Conference papers
hal-01327108v1
|
|||
Irregular invariant curves for symplectic twist maps.Conference on Holomorphic and Hamitonian Dynamical Systems, May 2011, Porquerolles, France
Conference papers
hal-01327110v1
|
|||
|
Dynamiques symplectiques génériquesErgodic Theory and Dynamical Systems, 2005, 25 (5), pp.1401-1436. ⟨10.1017/S0143385704000975⟩
Journal articles
hal-00538131v1
|
||
|
On the transversal dependence of weak K.A.M. solutions for symplectic twist maps2018
Preprints, Working Papers, ...
hal-01871436v1
|
||
|
Lyapunov exponents for conservative twisting dynamics: a surveyAssani, Idris. Ergodic Theory: Advances in Dynamical Systems, Walter de Gruyter, pp.108-133, 2016
Book sections
hal-01072161v2
|
||
Poincaré Birkhoff theorem.Henri Poincaré - Colloque scientifique international, Nov 2012, Paris, France
Conference papers
hal-01327099v1
|
|||
|
A C1 Arnol'd-Liouville theoremAsterisque, 2020, Quelques aspects de la théorie des systèmes dynamiques: un hommage à Jean-Christophe Yoccoz.II, 416, pp.1-31
Journal articles
hal-01422530v2
|
||
|
A multidimensional Birkhoff Theorem for time-dependent Tonelli HamiltoniansCalculus of Variations and Partial Differential, 2017
Journal articles
hal-03538093v1
|
||
|
Tonelli Hamiltonians without conjugate points and $C^0$ integrability2013
Preprints, Working Papers, ...
hal-00865723v1
|