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A C1 ARNOL’D-LIOUVILLE THEOREM

MARIE-CLAUDE ARNAUD†, JINXIN XUE

Abstract. In this paper, we prove a version of Arnol’d-Liouville theorem for C1 commuting
Hamiltonians. We show that the Lipschitz regularity of the foliation by invariant Lagrangian
tori is crucial to determine the Dynamics on each Lagrangian torus and that the C1 regularity
of the foliation by invariant Lagrangian tori is crucial to prove the continuity of Arnol’d-
Liouville coordinates. We also explore various notions of C0 and Lipschitz integrability.

Dedicated to Jean-Christophe Yoccoz

1. Introduction and Main Results.

This article elaborates on the following question.

Question. If a Hamiltonian system has enough commuting integrals1, can we precisely
describe the Hamiltonian Dynamics, even in the case of non C2 integrals?

When the integrals are C2, Arnol’d-Liouville Theorem (see [4]) gives such a dynamical
description. The proof in [4] relies on the Abelian group action generated by the commuting
Hamiltonian flows. Unfortunately, the result is not valid for C1 integrals : in this case, there
is a priori no Hamiltonian flow that we can associate to the C1 integrals, the Abelian group
action does not exist and so the proof in [4] does not work.

Note that in some case, a C0-integrability can be shown without knowing if the integrals
can be chosen smooth: the case of Tonelli Hamiltonians with no conjugate points on T

n × R
n

(see Theorem B.1). C0-integrability for such Hamiltonians is proved in [3] and some partial
results concerning the Dynamics on the invariant graphs are given, but no result similar to
Arnol’d-Liouville Theorem is proved. The only case where a more accurate result is obtained
is when the Tonelli Hamiltonian gives rise to a Riemannian metric after Legendre transform.
Burago & Ivanov proved in [5] that a Riemannian metric with no conjugate points is smoothly
integrable, but this is specific to the Riemannian case and cannot be adapted to the general
Tonelli case.

That is why we consider in this article the case of Lipschitz and C1-integrability, that are
intermediary between C0 and C2 integrability. For a Tonelli Hamiltonian that is C1-integrable,
we will prove

• we can define global continuous Arnol’d-Liouville coordinates, which are defined by
using a symplectic homeomorphism;
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1These notions are precisely described in the rest of the introduction.
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• the Dynamics restricted to every invariant torus is C1-conjugate to a rotation;
• we can even define a flow for the continuous Hamiltonian vectorfields that are associated
to the C1 integrals (see Proposition 4.2).

For a Tonelli Hamiltonian that is Lipschitz integrable, we will prove that the Dynamics re-
stricted to every invariant torus is Lipschitz conjugate to a rotation, but we will obtain no
information concerning the transverse dependence of the conjugation.

In order to state our results, let us now introduce some definitions.

Definition 1.1. A C2 Hamiltonian H : T ∗N → R for a compact Riemannian manifold N is
Tonelli if the following two assumptions are satisfied.

• H has super-linear growth, i.e. H(q,p)
‖p‖ → ∞ as ‖p‖ → ∞.

• H is convex in the fiber, i.e. ∂2H
∂p2 (q, p) is positive definite for all q, p.

For example, a mechanical Hamiltonian H : T ∗
T
n → R given by H(q, p) = 1

2‖p‖2 + V (q) is
Tonelli.

Notations.

• If H is a C1 Hamiltonian defined on a symplectic manifold (M (2n), ω), we denote by
XH the Hamiltonian vectorfield, that is defined by

∀ x ∈M, ∀ v ∈ TxM, ω(XH(x), v) = dH(x) · v.
If moreover H is C2, the Hamiltonian flow associated to H , that is the flow of XH , is
denoted by (ϕH

t ).
• If H and K are two C1 Hamiltonians that are defined on M , their Poisson bracket is

{H,K}(x) = DH(x) ·XK(x) = ω(XH(x), XK(x)).

Definition 1.2. Let U ⊂M be an open subset and let H :M → R be a C2 Hamiltonian. Then
H is Ck completely integrable for k ≥ 1 in U if

• U is invariant by the Hamiltonian flow of H;
• there exist n Ck functions H1, H2, . . . , Hn : U → R so that

– for every x ∈ U , the maps t 7→ Hi ◦ (ϕH
t (x)) are constant ;

– at every x ∈ U , the family dH1(x), . . . , dHn(x) is independent;
– for every i, j, we have {Hi, Hj} = 0 and {Hi, H} = 0.

Remarks.

(1) We cannot always take H1 = H . At the critical points of H , dH(x) = 0 and a Tonelli
Hamiltonian has always critical points. However, if we consider only the part of phase
space without critical points, we can indeed take H = H1.

(2) Observe that when k = 1, the C1 Hamiltonians H1, . . . , Hn don’t necessarily define
a flow because the corresponding vector field is just continuous. Hence the proof of
Arnol’d-Liouville theorem (see for example [4]) cannot be used to determine what the
Dynamics is on the invariant Lagrangian submanifold {H1 = c1, . . . , Hn = cn}. That
is why the results we give in Theorem 1.1 and 1.3 below are non-trivial.
In fact, in the setting of next definition for k = 1 and when the Hamiltonian is Tonelli,
we will prove in Proposition 4.2 a posteriori that each Hi surprisingly defines a flow.
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Definition 1.3. Let H : U → R be a C2 Hamiltonian and let T be an invariant Ck, (k ≥ 1)
Lagrangian torus contained in U . We say that H is locally Ck completely integrable at T if
there exists a neighborhood U ⊂ U of T such that

• H is Ck completely integrable in U ;
• T is one leaf of the foliation given by level sets of the n integrals.

We will sometimes need the following narrower definition of Ck integrability.

Definition 1.4. A C2 Hamiltonian H : V → R that is defined on some open subset V ⊂ T ∗N

is called G-Ck completely integrable on some open subset U ⊂ V,
• if it is Ck completely integrable and
• if, with the same notations as in the definition of Ck complete integrability, every

Lagrangian submanifold {H1 = c1, . . . , Hn = cn} is the graph of a Ck map.

Remarks.

(1) Observe that for any k ≥ 1, G-Ck integrability is equivalent to the existence of an
invariant Ck foliation into Lagrangian graphs. The direct implication is a consequence
of the fact that the Hi are commuting in the Poisson sense (i.e. {Hi, Hj} = 0). For the
reverse implication, denote the invariant Ck foliation by (ηa)a∈U where a is in some
open subset of Rn. Then we define a Ck map A = (A1, . . . , An) by

A(q, p) = a⇐⇒ p = ηa(q).

Observe that each Lagrangian graph Ta of ηa is in the energy level {Ai = ai}. Hence
XAi

(q, p) ∈ T(q,p)TA(q,p) and thus

{Ai, Aj}(q, p) = ω(XAi
(q, p), XAj

(q, p)) = 0

because all the Ta are Lagrangian. In a similar way, {H,Ai} = 0.
(2) When k ≥ 2, U = T ∗N and H is a Tonelli Hamiltonian, Ck-integrability implies G-Ck

integrability and that M = T
n. Let us give briefly the arguments: in this case the set

of fixed points of the Hamiltonian flow N = {∂H
∂p

= 0} is an invariant submanifold that

is a graph. Hence N is one of the invariant tori given by Arnol’d-Liouville theorem.
Therefore M = T

n and all the invariant tori of the foliation are also graphs : this is
true for those that are close to N , and in this case there is a uniform Lipschitz constant
because the Hamiltonian is Tonelli. Using this Lipschitz constant, we can extend the
neighborhood where they are graphs to the whole T ∗

T
n.

It was a fundamental result of Gromov [12] and Eliashberg [8] in symplectic geometry that
the group of symplectomorphisms on a symplectic manifold is C0-closed in the group of diffeo-
morphisms.

Definition 1.5. Following [20], we call a homeomorphism a symplectic homeomorphism if its
restriction to every relatively compact open subset is a uniform limit for the C0-topology of a
sequence of symplectic C∞ diffeomorphisms.

Theorem 1.1. Suppose that H : T ∗
T
n → R is a Tonelli Hamiltonian that is G-C1 completely

integrable in some open set U ⊂ T ∗
T
n. Then there exists a neighborhood U of 0 in R

n and a
symplectic homeomorphism φ : T

n × U → U that is C1 in the direction of Tn such that

• ∀ c ∈ U , φ−1 ◦ ϕH
t ◦ φ(Tn × {c}) = T

n × {c};
• ∀ c ∈ U , φ−1 ◦ ϕH

t ◦ φ|Tn×{c} = Rtρ(c);
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where ρ : U → R
n is a homeomorphism onto ρ(U), and Rtρ(c) : T

n → T
n is given by

Rtρ(c)(x) := x+ tρ(c) mod Z
n.

This gives some symplectic Arnol’d-Liouville coordinates in the C0 sense (see Chapter 10 of
[4]) and describes precisely the Dynamics on the leaves of the foliation.

Remark. Observe that the conjugacy φ that we obtain has the same regularity as the foliation
in the direction of the leaves but is just C0 in the transverse direction. If we replace the C1-
integrability by a Lipschitz integrability, we loose any transverse regularity and we just obtain
some results along the leaves. Let us explain this.

Definition 1.6. A C2 Hamiltonian H : V → R that is defined on some open subset V ⊂ T ∗N

is called G-Lipschitz completely integrable on some open subset U ⊂ V if U admits a Lipschitz
foliation by invariant Lipschitz Lagrangian graphs.

Let us recall that a Lipschitz graph L admits Lebesgue almost everywhere a tangent subspace
by Rademacher theorem (see [9], Theorem 2, page 81). Such a graph is Lagrangian if and only
if these tangent subspaces are Lagrangian. This is equivalent to asking that L is the graph of
c+ du where c is a closed smooth 1-form and u :M → R is C1,1.

Theorem 1.2. Suppose that the Hamiltonian H : T ∗
T
n → R is Tonelli and is G-Lipschitz

completely integrable. Then restricted to each leaf, the Hamiltonian flow has a unique well-
defined rotation vector, and is bi-Lipschitz conjugate to a translation flow by the rotation vector
on T

n. Moreover, all the leaves are in fact C1.

Remark. Observe that we do not know if the conjugacies are C1.

Theorem 1.1 is global but ask a little more that C1 integrability. If we have just C1 integra-
bility (instead of G-C1 integrability), we obtain a local result.

Definition 1.7. Let T ⊂ M be a C1 Lagrangian torus in a symplectic manifold (M (2n), ω)
and let H :M → R be a C2 Hamiltonian. We say that H has positive torsion along T if there
exist

• a neighbourhood U of T in M ;
• a neigbourhood V of the zero section in T ∗

T
n;

• a C2 symplectic diffeomorphism φ : U → V such that φ(T ) is the graph of a C1map
and

∀ (q, p) ∈ V ; ∂
2(H ◦ φ−1)

∂p2
(q, p) is positive definite.

Remark. It is proved in [23], Extension Theorem in Lecture 5, as well as the proof of Theorem
in Lecture 6 (see also Theorem 3.33 of [19]), that a small neighborhood of a Lagrangian Ck,
k ≥ 1, submanifold T is always Ck symplectomorphic to a neighborhood of the zero section in
T ∗T .

So the two important things in the definition are that

• we can choose C2 coordinates even if T is just C1: it is possible just by perturbing a
C1 symplectic diffeomorphism into a C2 one;

• in the new coordinates, H has to be strictly convex in the fiber direction.
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Theorem 1.3. Let H :M → R be a C2 Hamiltonian that has an invariant Lagrangian torus T .
Then, if H has positive torsion along T and is locally C1 completely integrable at T , there exists
a neighborhood U of T in M , a open set U containing 0 in R

n and a symplectic homeomorphism
φ : Tn × U → U that is C1 in the direction of Tn and such that:

• ∀ c ∈ U , φ−1 ◦ ϕH
t ◦ φ(Tn × {c}) = T

n × {c};
• ∀ c ∈ U , φ−1 ◦ ϕH

t ◦ φ|Tn×{c} = Rtρ(c);

where ρ : U → R
n is a homeomorphism onto ρ(U), and Rtρ(c) : T

n → T
n is given by

Rtρ(c)(x) := x+ tρ(c) mod Z
n.

Corollary 1.1. Any Tonelli Hamiltonian that is G-C1 completely integrable lies in the C1

closure of the set of smooth completely integrable (in the usual Arnol’d-Liouville sense) Hamil-
tonians. More precisely, if H : T ∗

T
n → R is G-C1 completely integrable on some set {H < K}

or the whole T ∗
T
n, there exists a sequence (Hi) of C

∞ Hamiltonians that are G-C∞ completely
integrable on a {H < K − ε} or the whole T ∗

T
n such that

• the sequence Hi uniformly converges on any compact set to H for the C1 topology;
• the invariant foliation for the Hi uniformly converges on any compact subset to the

invariant foliation for H for the C1 topology;
• the Hamiltonian flows (ϕHi

t ), t ∈ [−1, 1] uniformly converge to (ϕH
t ) on any compact

subset for the C0 topology.

Remarks.

(1) By the continuous dependence on parameter of solutions of ODEs, the last point is a
consequence of the first one : if a sequence on Lipschitz vectorfields (Xi) converge in
C0 topology to a Lipschitz vectorfield X , the the sequence of flows of the Xi converge
in C0 topology to the flow of X .

(2) We don’t know if we can choose the Hi being Tonelli, we are just able to prove that
they are symplectically smoothly conjugate to some Tonelli Hamiltonians.

Corollary 1.2. Let H : M → R be a C2 Hamiltonian that has an invariant Lagrangian
torus T . Then, if H has positive torsion along T and is locally C1 completely integrable at
T , there exists a neighborhood U of T in M and a sequence (Hi) of C∞ completely integrable
Hamiltonians Hi : U → R such that

• the sequence Hi uniformly converges on any compact set to H for the C1 topology;
• the invariant foliation for the Hi uniformly converges on any compact subset to the

invariant foliation for H for the C1 topology;
• the Hamiltonian flows (ϕHi

t ), t ∈ [−1, 1] uniformly converge to (ϕH
t ) on any compact

subset for the C0 topology.

Structure of the proofs and comments.

• In section 2, we will use Herman’s results concerning the conjugation of torus homeo-
morphisms to rotations (see [14]) and even extend some of them to describe the Dy-
namics on the tori that carry a minimal Dynamics (i.e. all the orbits are dense) in the
case of Lipschitz or C1 complete integrability;

• in section 3, we will introduce a new condition, called A-non degeneracy, that implies
the density of the union of the minimal tori; this condition is satisfied by Tonelli Hamil-
tonians and Hamiltonians with positive torsion. It would be nice to have non-trivial
other examples of Hamiltonians that satisfy this condition;
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• in section 4, we will prove that C1 complete integrability and A-non degeneracy imply
the existence of Arnol’d-Liouville coordinates; this proves Theorems 1.1 and 1.3; this
is done by using generating functions and Hamilton-Jacobi equations; In Section 4.4,
we will prove the corollaries.

Finally we include three appendices exploring possible relaxations of the assumption of the C1

integrability in the main body of the paper.

• Appendix A is devoted to the study of different possible definitions of C0 complete
integrability.

• Appendix B recalls some known results concerning C0 completely integrable Tonelli
Hamiltonians.

• Appendix C contains the proof of Theorem 1.2.

2. G-C1 complete integrability determines the Dynamics on each minimal torus

The goal of this section is to prove Theorem 2.1 that tells us that if H is G-Lipschitz
integrable:

• we can define on every invariant Lagrangian torus of the foliation a rotation vector;
• on every such torus with a rotation vector that is completely irrational, the Dynamics
is bi-Lipschitz conjugate to a minimal flow of rotations with a Lipschitz constant that
is uniform.

Theorem 2.1. Let V ⊂ T ∗
T
n be an open set. Assume that H : V → R is G-Lipschitz

completely integrable. We denote a Lipschitz constant of the foliation by K, i.e.

∀ q ∈ T
n, ∀ a, a′, 1

K
‖a− a′‖ ≤ ‖ηa(q)− ηa′(q)‖ ≤ K‖a′ − a‖.

where we use the notations of definition 1.2 for the integrals and denote by Ta = {(H1, . . . , Hn) =
(a1, . . . , an)} = {(q, ηa(q)); q ∈ T

n} the tori of the invariant foliation.Then the flow (ϕH
t )

restricted-projected to every Lagrangian torus Ta, which is denoted by (fa
t ) and is defined on

T
n by ϕH

t (q, ηa(q)) = (fa
t (q), ηa(f

a
t (q))) satisfies

(1) if (F a
t ) is the lift of (fa

t ) to R
n, then

Fa
t (x)−x

t
uniformly converges with respect to (a, x)

to a constant ρ(a) ∈ R
n as t → ∞. Therefore the rotation vector ρ(a) ∈ R

n is well-
defined and continuously depends on a;

(2) if Rρ(a) is minimal, there exists a homeomorphism ha : Tn → T
n such that

ha ◦ fa
t = Rtρ(a) ◦ ha.

(3) ha is Kn-bi-Lipschitz.

Remark. Observe that we don’t ask in this section that the Hamiltonian is Tonelli: the results
are valid even if the Hamiltonian is very degenerate. But observe that when H is constant (the
very degenerate case), then there is no torus where the Dynamics is minimal and so in this
case Theorem 2.1 is almost empty. This theorem will be useful when we are sure that such tori
exist.
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Using the following proposition, we could easily deduce a analogue of Theorem 2.1 in a local
C1-integrable setting.

Proposition 2.1. Let H : M → R be a C2 Hamiltonian that has an invariant Lagrangian
torus T . Then, if H is locally C1 integrable at T , there exists an invariant open neighborhood
U of T in M , an open subset U of Rn and a symplectic C2 diffeomorphism ψ : Tn × U → U
such that H ◦ ψ is G-C1 integrable.

In the remaining part of this section, we will give and prove three propositions and a corollary
that will imply Theorem 2.1. Then we will prove Proposition 2.1.

Notations. For a vector v ∈ R
n, we use ‖v‖ to denote its Euclidean norm. For a matrix

M ∈ R
n×n, we define its norm by

‖M‖ = sup
‖v‖=1

‖Mv‖,

and its conorm by m(M) := inf‖v‖=1 ‖Mv‖.
For a vector α ∈ R

n, we denote Rα the rigid rotation by α on T
n, i.e.

Rα : T
n → T

n, Rα(x) = x+ α, mod Z
n.

For a point (q, p) ∈ T
n × R

n, we introduce two projections π1(q, p) = q ∈ T
n and π2(q, p) =

p ∈ R
n.

2.1. Uniform rate for the flow on the invariant tori.

Proposition 2.2. Assume that H is G-Lipschitz completely integrable on some open subset
U ⊂ T ∗

T
n. Then there exists a constant K > 0 such that, restricted on each Lagrangian torus

Ta = {(H1, . . . , Hn) = (a1, . . . , an)}, the flow (fa
t ) satisfies the following Lipschitz estimate at

Lebesgue almost every point q ∈ Ta

(1) ∀ v ∈ R
n, ∀ t ∈ R,

‖v‖
K

≤ ‖Dfa
t (q)v‖ ≤ K‖v‖.

Proof. We denote by ηa : Tn → R
n the map such that the graph of ηa is the invariant subman-

ifold Ta. Then N : (q, a) 7→ (q, ηa(q)) is a bi-Lipschitz-homeomorphism, because (ηa) defines a
Lipschitz foliation.

Because of Rademacher Theorem, the set D(N) where N is differentiable has full Lebesgue
measure. Moreover, D(N) is invariant by (ϕH

t ) because the foliation is invariant. Using the
notation of Theorem 2.1 we have

ϕH
t (q, ηa(q)) = (fa

t (q), ηa(f
a
t (q))) .

Differentiating this equation, we obtain for every (q, a) ∈ D(N):

(2) DϕH
t (q, ηa(q))

(

0
∂ηa

∂a
(q)

)

=
∂fa

t

∂a
(q).

(

1
∂ηa

∂q
(fa

t (q))

)

+

(

0
∂ηa

∂a
(fa

t (q))

)

(3) DϕH
t (q, ηa(q))

(

1
∂ηa

∂q
(q)

)

=
∂fa

t

∂q
(q).

(

1
∂ηa

∂q
(fa

t (q))

)
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Then we use along every orbit in D(N) a symplectic change of bases with matrix in the usual
coordinates at (a, ηa(q)):

P(q,a) =

(

1 0
∂ηa

∂q
(q) 1

)

We deduce from (2) and (3) that the matrix of DϕH
t (q, ηa(q)) in the new coordinates is

(4)

(

∂fa
t

∂q
(q) bt(q, a)

0 dt(q, a)

)

where bt(q, a)
∂ηa

∂a
(q) =

∂fa
t

∂a
(q) and dt(q, a)

∂ηa

∂a
(q) = ∂ηa

∂a
(fa

t (q)).
Because the foliation is biLipschitz, there exists a constant K such that, for every (q, a) ∈

D(N), we have
∥

∥

∥

∥

∂ηa

∂a
(q)

∥

∥

∥

∥

≤
√
K and

∥

∥

∥

∥

∥

(

∂ηa

∂a
(q)

)−1
∥

∥

∥

∥

∥

≤
√
K.

As dt(q, a) =
∂ηa

∂a
(fa

t (q))
(

∂ηa

∂a
(q)
)−1

, we deduce that

‖dt(q, a)‖ ≤ K and ‖dt(q, a)−1‖ ≤ K.

the matrix in (2.1) being symplectic, we deduce that
∥

∥

∥

∥

∂fa
t

∂q
(q)

∥

∥

∥

∥

=
∥

∥dt(q, a)
−t
∥

∥ ≤ K

and
∥

∥

∥

∥

∥

(

∂fa
t

∂q
(q)

)−1
∥

∥

∥

∥

∥

=
∥

∥dt(q, a)
t
∥

∥ ≤ K

The proof is not completely finished because the result that we obtain is valid only for (a, q) ∈
D(N). As D(N) has total Lebesgue measure, by Fubini theorem, the set of a for which N

is differentiable Lebesgue almost everywhere in Ta has full Lebesgue measure in R
n. Hence,

we obtain local Lipschitz estimates along a dense set of graphs. In other words, there exists a
dense set B of parameters a such that

∀ t ∈ R, ∀ a ∈ B, ∀ q, q′ ∈ T
n,

1

K
d(q, q′) ≤ d(fa

t (q), f
a
t (q

′)) ≤ Kd(q, q′).

Approximating any parameter by a sequence of parameters in B and taking the limit, we obtain
the same estimates for any parameter and then the wanted result (1) by differentiation. �

Corollary 2.1. Assume that H is G-C1 completely integrable on some open subset U ⊂ T ∗
T
n.

Then for every compact subset K ⊂ U , there exists a constant K > 0 such that, restricted on
each Lagrangian torus Ta = {(H1, . . . , Hn) = (a1, . . . , an)} with Ta∩K 6= ∅, the flow fa

t satisfies
the following Lipschitz estimate

(1) ∀ v ∈ R
n, ∀ t ∈ R, ∀q ∈ Ta

‖v‖
K

≤ ‖Dfa
t (q)v‖ ≤ K‖v‖.

Proof. We explain how to deduce Corollary 2.1 from Proposition 2.2. We assume that H is
G-C1-integrable on some open subset U ⊂ T ∗

T
n and that K ⊂ U is compact and connected.

Observe that K0 = {a; Ta ∩ K 6= ∅} is compact. Hence the map (a, q) ∈ K0 × T
n 7→ (a, ηa(q))

restricted to K0, which is C1, is bi-Lipschitz when restricted to the compact K0 ×T
n and then

Corollary 2.1 can be deduced from Proposition 2.2. �
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2.2. Uniform rate and completely irrational rotation vector imply uniform Lipschitz

conjugation to a flow of rotations.

Next, we restrict our attention to one Lagrangian torus Ta and the associated restricted-
projected flow fa

t . Let (F
a
t ) be the flow that is a lift of (fa

t ) to R
n.

Proposition 2.3. Assume equation (1) for the flow fa
t . Then

(A) The family
Fa

t (q)−q

t
uniformly converges with respect to (a, q) to a constant ρ(a) ∈ R

n

when t→ +∞. Therefore the rotation vector ρ(a) ∈ R
n is well-defined and continuously

depends on a;
(B) if Rρ(a) : T

n → T
n is minimal, there exists a homeomorphism ha : Tn → T

n such that

ha ◦ fa
t = Rtρ(a) ◦ ha.

(C) The conjugacy ha is K-Lipschitz.

Proof. We first prove part (A). The proof is similar to Proposition 3.1, ch 13 in [14] with small
modifications adapted to the flow instead of the map.

We consider the following family of functions {F a
t (q)− q − F a

t (0) | t ∈ R}. It is known that
this family is equicontinuous by Inequality (1). Next, For each t, the function F a

t (q)−q−F a
t (0)

is zero at q = 0, and is Zn-periodic. Again by (1), using F a
t (q)− F a

t (0) =
∫ 1

0
DF a

t (sq)q ds, we
get that

(5) sup
t

max
q

‖F a
t (q)− q − F a

t (0)‖ ≤ K + 1.

We next pick any invariant Borel probability measure µ of fa
n and pick a µ-generic point q∗ for

which the Birkhoff ergodic theorem holds, we get

F a
n (q

∗)− q∗

n
=

∑n−1
i=0 (F

a
i+1(q

∗)− F a
i (q

∗))

n
→
∫

TN

(F a
1 (q)− q) dµ(q)

Next for t ∈ R, we have

F a
t (q

∗)− q∗

t
=

(

F a
[t](q

∗)− q∗

[t]
+

(F a
t−[t] − IdRn) ◦ F a

[t](q
∗)

[t]

)

[t]

t
.

This shows that
F a
t (q

∗)− q∗

t
→
∫

TN

(F a
1 (q)− q) dµ(q) as t→ ∞,

since (F a
t−[t](q)− q) is uniformly bounded for all q, t. By (5), we get that the convergence

F a
t (q)− q

t
→ ρ(a) =

∫

TN

(F a
1 (q)− q) dµ(q)

is uniform on T
n. Using Equation (5) and Proposition XIII 1.6. page177 of [14], we deduce

also

(6) sup
t

max
q

‖F a
t (q)− q − tρ(a))‖ ≤ 2(K + 1).

This implies that the convergence to ρ(a) is uniform in (q, a).
We next work on part (B). We assume the rotation vector ρ(a) is completely irrational and

apply Proposition 3.1, page 181, in ch 13 of [14] to the map fa
1 : T

n → T
n to get that there is a

homeomorphism ha : T
n → T

n such that ha ◦ fa
1 (q) = ha(q) + ρ(a). Iterating this formula, we
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get ha ◦ fa
n(q) = ha(q) +nρ(a) for all n ∈ Z. It remains to show that ha ◦ fa

t (q) = ha(q) + tρ(a)
for all t ∈ R.

Equation (6) tells us that

|F a
t (q)− q − tρ(a)| ≤ 2(K + 1)

uniformly for all q and t. In the expression

1

t

(
∫ t

0

(F a
s (q)− sρ(a)) ds

)

,

we have just established the uniform boundedness for all t ∈ R \ {0} and q in a fundamental
domain, and the equicontinuity follows from (1). By Arzela-Ascoli, we can extract uniformly
convergent subsequence as tk → ∞. Denote by g(q) the limit

g(q) = lim
k

1

tk

(
∫ tk

0

(F a
s (q)− sρ(a)) ds

)

.

Next, we consider
(7)

g(F a
t (q)) = lim

k

1

tk

(
∫ tk

0

(F a
s (F

a
t (q))− sρ(a)) ds

)

= lim
k

1

tk

(
∫ tk

0

(F a
s+t(q)− (s+ t)ρ(a)) ds

)

+ tρ(a)

= lim
k

1

tk

(
∫ tk

0

(F a
s (q)− sρ(a)) ds

)

+ lim
k

1

tk

((
∫ tk+t

tk

−
∫ t

0

)

(F a
s (q)− sρ(a)) ds

)

+ tρ(a)

= g(q) + tρ(a).

Choosing t = 1, we get g(F a
1 (q)) = g(q) + ρ(a). Then taking difference with the equation

ha(F
a
1 (q)) = ha(q)+ρ(a), we get g(F

a
1 (q))−ha(F a

1 (q)) = g(q)−ha(q). By assumption we have
that Rρ(a) is minimal, so is fa

1 , therefore we get that g(q)− ha(q) =const. This shows that g is
a homeomorphism as ha is.

Moreover, Proposition 3.1, page 181, in ch 13 of [14] implies that we can choose for ha:

ha(q)− q = lim
k→+∞

k−1
∑

j=0

F a
j (q)− jρ(a)

k
.

Hence ha is K-Lipschitz because all the F a
j are K-Lipschitz. �

2.3. Lipschitz conjugation to a completely irrational rotation implies bi-Lipschitz

conjugation.

The main goal of this section is to prove:

Proposition 2.4. Let g : Tn → T
n be a bi-Lipschitz homeomorphism such that the family

(gk)k∈Z is K-equi-Lipschitz. If the rotation vector α of g is such that Rα is ergodic, then g is
bi-Lipschitz-conjugated to Rα by some conjugation h in Homeo(Tn). Moreover, if h◦g = Rα◦h,
then the conjugation h is K-Lipschitz and its inverse h−1 is Kn-Lipschitz.

Remarks.

• Observe that in the proof of Proposition 3.2, page 182, in ch 13 of [14], M. Herman
raised the question of the Lipschitzian property of such h−1 and that we give here a
positive answer.
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• Observe too that with the notations of section 2.2, Proposition 2.4 implies that every
h−1
a is Kn-Lipschitz.

Proof. We know from Proposition 3.2, page 182, in ch 13 of [14] that if the rotation vector α
of g is such that Rα is minimal, and if

(8) h ◦ g = Rα ◦ h,
then h is K-Lipschitz. Let us prove that h−1 is Kn-Lipschitz.

Lemma 2.1. Let g : Tn → T
n be a bi-Lipschitz homeomorphism so that supk∈Z

‖Dgk‖C0 =
K < +∞. Then g has an invariant Borel probability measure µ so that for all Borel subset
A ⊂ T

n, we have
1

Kn
Leb(A) ≤ µ(A) ≤ KnLeb(A).

In particular, µ is equivalent to Leb.

Proof. We apply Krylov–Bogolyubov process (see [16]) to the Lebesgue measure. In other
words, for every k ≥ 1, we define

µk =
1

k

k−1
∑

j=0

gk∗Leb.

Observe that for every open set A, we have

gk∗Leb(A) =

∫

A

d(gk∗Leb) =

∫

A

|detDgk|dLeb ∈
[

1

Kn
Leb(A),KnLeb(A)

]

.

We deduce that µk(A) ∈
[

1
KnLeb(A),K

nLeb(A)
]

. Let now µ be a limit point of the sequence
(µk). Then µ is invariant by g and satisfies

1

Kn
Leb(A) ≤ µ(A) ≤ KnLeb(A).

�

By Rademacher theorem, g is Lebesgue almost everywhere differentiable. Because g is bi-
Lipschitz, we deduce that the set Z of the points q ∈ T

n such that g is differentiable at every
gk(q) for k ∈ Z has full Lebesgue measure. We will use the following lemma that is easy to
prove by using the definition of the differential and the Lipschitz property.

Lemma 2.2. Let G : Tn → T
n a bi-Lipschitz homeomorphism. Assume that G is differentiable

at some q0 ∈ T
n. Then G−1 is differentiable at G(q0) and

DG−1(G(q0)) = (DG(q0))
−1
.

By Rademacher theorem, h is Lebesgue almost everywhere differentiable and we have ‖Dh‖ ≤
K.
As we have h = Rα◦h◦g−1 and Lemma 2.2, the set E of the points of Z where h is differentiable
is invariant under g. Moreover, we know that Leb(E) = 1, i.e. Leb(Tn\E) = 0. By Lemma
2.1, this implies that µ(Tn\E) = 0 and then µ(E) = 1. Moreover, we have on E:

(Dh) ◦ g = Dh · (Dg)−1.
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Let us now prove that for µ-almost every x ∈ E and every unit vector v ∈ TxT
n, we have

‖Dh(x)v‖ ≥ 1
Kn ‖v‖. If not, there exist ε > 0 and a subset E′ ⊂ E with non-zero µ-measure such

that for every x ∈ E′, there is a unit vector v ∈ TxT
n such that ‖Dh(x)v‖ ≤ 1−ε

Kn ‖v‖ < 1
Kn ‖v‖.

Because of Equation (8), we have for every k ∈ N

Dh(gkx) ·Dgk(x) = Dh(x).

Hence if we denote by wk ∈ TgkxT
n the unit vector wk = 1

‖Dgk(x)v‖
Dgk(x)v, then we deduce

from ‖(Dgk)−1‖ ≤ K that

‖Dh(gkx)wk‖ =
1

‖Dgk(x)v‖‖Dh(x)v‖ ≤ (1− ε)
‖wk‖

Kn‖Dgk(x)v‖ ≤ (1− ε)
‖wk‖
Kn−1

.

If now we compute |det(Dh(gkx))| in some orthonormal basis with the first vector equal to wk,
we obtain because ‖Dh‖ ≤ K that

|det(Dh(gkx))| ≤ 1− ε

Kn−1
.Kn−1 = 1− ε.

Hence we have proved that |det(Dh)| ≤ 1− ε on the set

E =
⋃

k∈N

gk(E′).

As µ is ergodic and µ(E′) 6= 0, we have µ(E) = 1 and then Leb(E) = 1. Integrating and using
a change of variables, we finally obtain

1 =

∫

Tn

dLeb =

∫

Tn

|detDh(x)| dLeb(x) ≤ 1− ε.

Hence we have proved that for Lebesgue almost every x ∈ T
n, we have ‖Dh−1(x)‖ ≤ Kn.

This implies in particular that h−1 is Kn-Lipschitz. �

This ends the proof of Theorem 2.1.

2.4. Proof of Proposition 2.1. We assume that H is locally C1 completely integrable at T .
Hence there exists an invariant open neighborhood U of T and n C1 functions H1, H2, . . . , Hn :
U → R so that

• the Hi are constant on T ;
• at every x ∈ U , the family dH1(x), . . . , dHn(x) is independent;
• for every i, j, we have {Hi, Hj} = 0 and {Hi, H} = 0;
• T = {H1 = a1, . . . , Hn = an}.

Then if we take a smaller U , H = (H1, . . . , Hn) : U → R
n is a C1 submersion that gives an

invariant by (ϕH
t ) Lagrangian foliation and (see [23], Extension Theorem in Lecture 5, as well

as the proof of Theorem in Lecture 6) there exists a C1 symplectic embedding φ : U → T
n×R

n

that maps T onto T
n × {0} and then the foliation onto a foliation into C1 graphs. Perturbing

φ, we can assume that φ is smooth and symplectic and that the foliation is into graphs (but of
course φ(T ), which is a graph, cannot be the zero section). The diffeomorphism ψ of Proposition
2.1 is the given by ψ = φ−1. �
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3. The A-non-degeneracy condition

In section 2, we succeeded in describing the Dynamics on the invariant tori having a com-
pletely irrational rotation vector. If we want to extend this to all the tori, we need to know that
the union of these tori is dense in the set where the Hamiltonian is completely integrable. That
is why we introduce a new notion of non-degeneracy that implies this density. We will prove
in Proposition 3.3 that when the Hamiltonian is Tonelli or with positive torsion, this condition
is always satisfied.

Definition 3.1. Assume that H is G-C1 completely integrable and denote by

(Ta)a∈U = ({(q, ηa(q)) : q ∈ T
n})

the invariant foliation.
The function c : U → R

n is defined by c(a) =
∫

Tn ηa(q)dq.

We will prove the following proposition in Section 4.2.

Proposition 3.1. Assume that (q, a) ∈ T
n × U 7→ (q, ηa(q)) ∈ U is a C1 foliation of an open

subset U of Tn ×R
n into Lagrangian graphs. The function c : U → R

n is a C1 diffeomorphism
from U onto its image.

Definition 3.2. Assume that H is G-C1 completely integrable with invariant foliation

(Ta)a∈U = ({(q, ηa(q)), q ∈ T
n}).

We define the A-function A : c(U) → R by A(c) = H(0, η
c
−1(c)(0)). Observe that we have

∀ q ∈ T
n, ∀ c ∈ c(U), H(q, η

c
−1(c)(q)) = A(c).

Remarks.

(1) When H is a Tonelli Hamiltonian, the A function is exactly the α-function of Mather
(see [18]).

(2) Observe that the A-function is C1.

Definition 3.3. Let H : U → R be a G-C1 completely integrable Hamiltonian with the invariant
foliation described in the above definition. We say that H is A-non-degenerate if for every non-
empty open subset V ⊂ c(U), ∇A(V ) is contained in no resonant hyperplane of Rn

k1x1 + . . . knxn = 0

with (k1, . . . , kn) ∈ Z
n\{(0, . . . , 0)} .

We will use later the following result.

Proposition 3.2. Assume that H is G-C1 completely integrable and A-non-degenerate and
denote by (Ta)a∈U = ({(q, ηa(q)), q ∈ T

n}) the invariant foliation. Then for every non-empty
open subset V ⊂ c(U), the set ∇A(V ) contains a completely irrational α = (α1, . . . , αn) i.e. α
that doesn’t belong to any resonant hyperplane.

Proof. Assume that V ⊂ c(U) is a non-empty open subset of c(U) such that ∇A(V ) contains
no completely irrational number. Then V is contained in the countable union of the backward
images by the continuous map ∇A of all the closed resonant hyperplanes. As V is Baire,
there exists a non-empty open subset W of V such that ∇A(W ) is contained in some resonant
hyperplane. This contradicts the definition of A-non-degeneracy.

�
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Proposition 3.3. Assume that H is G-C1 completely integrable and strictly convex in the
momentum variable, i.e.

∀ (q, p) 6= (q, p′) ∈ U , ∀ λ ∈ (0, 1), (q, λp+ (1− λ)p′) ∈ U

⇒ H(q, λp+ (1− λ)p′) < λH(q, p) + (1− λ)H(q, p′).

Then H is A-non-degenerate and even ∇A is a homeomorphism onto ∇A(c(U)).

Proof. We recall that if F : V → R is a C1 function that is strictly convex, then DF is an
homeomorphism from V onto its image (see theorem 1.4.5. in [10]).

Hence we just have to prove that A is strictly convex. Let us fix two distinct c1, c1 in c(U)
and λ ∈ (0, 1).
Because H is strictly convex in the fiber direction, we have for every q ∈ T

n,

H(q, λη
c
−1(c1)(q) + (1 − λ)η

c
−1(c2)(q)) < λH(q, η

c
−1(c1)(q)) + (1− λ)H(q, η

c
−1(c2)(q)).

As H(q, η
c
−1(c)(q)) = A(c), we have

(9) H(q, λη
c
−1(c1)(q) + (1 − λ)η

c
−1(c2)(q)) < λA(c1) + (1− λ)A(c2).

Observe that λc1 + (1− λ)c2 is equal to
∫

Tn

(λη
c
−1(c1)(q) + (1− λ)η

c
−1(c2)(q))dq =

∫

Tn

η
c
−1(λc1+(1−λ)c2)(q)dq.

Hence the 1-form λη
c
−1(c1) + (1 − λ)η

c
−1(c2) − η

c
−1(λc1+(1−λ)c2) is exact and so there exists a

q0 ∈ T
n so that

λη
c
−1(c1)(q0) + (1− λ)η

c
−1(c2)(q0) = η

c
−1(λc1+(1−λ)c2)(q0).

Replacing in Equation (9), we obtain

H(q0, ηc−1(λc1+(1−λ)c2)(q0)) < λA(c1) + (1 − λ)A(c2),

i.e.

A(λc1 + (1 − λ)c2) < λA(c1) + (1 − λ)A(c2).

�

4. The symplectic homeomorphism in the case of C1 complete integrability

The goal of this section is to prove the following theorem, which, joint with Proposition 3.3,
implies Theorem 1.1 and Theorem 1.3.

Theorem 4.1. Suppose H : U ⊂ T ∗
T
n → R is a G-C1 completely integrable Hamilton-

ian that is A-non-degenerate.Then there exist a neighborhood U of 0 in R
n and a symplectic

homeomorphism φ : T
n × U → U that is C1 in the direction of Tn such that

• ∀ c ∈ U , φ−1 ◦ ϕH
t ◦ φ(Tn × {c}) = T

n × {c};
• ∀ c ∈ U , φ−1 ◦ ϕH

t ◦ φ|Tn×{c} = Rtρ(c);

where ρ : U → R
n is a homeomorphism onto ρ(U).
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4.1. A generating function for the Lagrangian foliation.

Proposition 4.1. Assume that (q, a) ∈ T
n × U → (q, ηa(q)) ∈ U is a C1 foliation of an open

subset U of Tn ×R
n into Lagrangian graphs. Then there exists a C1 map S : U → R such that

• ∂S
∂q

(q, a) = ηa(q)− c(a);

• ∂S
∂q

is C1 in the two variables (q, a);

• ∂S
∂a

is C1 in the variable q.

Proof. As the graph of ηa is Lagrangian, there exist a C2 function ua : Tn → R such that

ηa = c(a) +
∂ua

∂q
.

Observe that ua is unique up to the addition of some constant. We then define:

S(q, a) = ua(q)− ua(0).

Then S has a derivative with respect to q that is ∂S
∂q

(q, a) = ηa(q)− c(a) = ∂ua

∂q
(q), which is

C1 in the two variables (q, a).
Moreover,

S(q, a) =

∫ 1

0

∂S

∂q
(γq(t), a)γ̇q(t)dt =

∫ 1

0

(η(q)− c(a)) γ̇q(t)dt

where γq : [0, 1] → T
n is any C1 arc joining 0 to q. This implies that S is C1 in the variable a

and that

(10)
∂S

∂a
(q, a) =

∫ 1

0

∂2S

∂a∂q
(γq(t), a)γ̇q(t)dt =

∫ 1

0

(

∂ηa

∂a
(γq(t), a)−

∂c

∂a
(a)

)

γ̇q(t)dt.

We deduce that S has partial derivatives with respect to a and q that continuously depend on
(q, a). This implies that S is in fact C1.

Moreover, we deduce from Equation (10) that for every ν ∈ R and δq ∈ R
n, we have

∂S

∂a
(q + νδq, a)− ∂S

∂a
(q, a) =

(
∫ ν

0

∂ηa

∂a
(q + tδq)δqdt

)

− ν
∂c

∂a
(a)δq.

This implies that ∂S
∂a

has a partial derivative with respect to q in the direction δq that is:

∂2S

∂q∂a
(q, a) · δq =

(

∂ηa

∂a
(q)− ∂c

∂a
(a)

)

δq.

Because the foliation is C1, then all these partial derivatives continuously depend on q. This
implies that ∂S

∂a
is C1 in the q variable. �

4.2. The C1 property of the conjugation. Now we will prove Proposition 3.1 that we
rewrite by using the generating function.

Proposition. 3.1 Assume that (q, a) ∈ T
n × U 7→ (q, c(a) + ∂S

∂q
(q, a)) ∈ U is a C1 foliation

of an open subset U of Tn × R
n into Lagrangian graphs. The function c : U → R

n is a C1

diffeomorphism from U onto its image.
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Proof. Observe that c is injective. If a 6= a′, then Ta ∩ Ta′ = ∅ because we have a foliation.
Assume that c(a) = c(a′). Let q0 be a critical point of S(·, a) − S(·, a′). Then we have
∂S
∂q

(q0, a)− ∂S
∂q

(q0, a
′) = 0 and

c(a) +
∂S

∂q
(q0, a) = c(a′) +

∂S

∂q
(q0, a

′),

which contradicts that Ta ∩ Ta′ = ∅.
Hence c is C1 and injective. To prove the lemma, we just have to prove that Dc(a) is

invertible at every point of U .
If not, let us choose a ∈ U and a non-zero vector v ∈ R

n such that Dc(a)v = 0. Now, we choose
q0 ∈ T

n such that q 7→ ∂S
∂a

(q, a)v attains its maximum at q0. Then we have

∂ηa

∂a
(q0)v = Dc(a)v +

∂2S

∂q∂a
(q0, a)v = 0.

This contradicts the fact that (ηa) defines a C
1-foliation. �

Let us recall the notation that we introduced in the statement of Theorem 2.1:

Notation. The flow (ϕH
t ) restricted-projected to every Lagrangian torus Ta, which is denoted

by (fa
t ), is defined on T

n by ϕH
t (q, ηa(q)) = (fa

t (q), ηa(f
a
t (q))).

Theorem 4.2. Suppose H : U ⊂ T ∗
T
n → R is a G-C1 completely integrable Hamiltonian that

is A-non-degenerate and let (q, a) ∈ T
n × U → (q, c(a) + ∂S

∂q
(q, a)) ∈ U be the invariant C1

foliation. Then

ga(q) := q +Dc(a)−1 ∂S

∂a
(q, a)

is a C1 diffeomorphism conjugating (fa
t ) to Rtρ(a) where ρ was defined in Proposition 2.3 and

in fact ρ = (∇A) ◦ c.
Hence, when ∇A(c(a)) is completely irrational, we have ga = ha up to an additive constant
where ha is the conjugacy associated to the torus Ta given by Theorem 2.1.

Proof. Write ηa(q) = c(a) + ∂S
∂q

(q, a). We have

(11) H

(

q, c(a) +
∂S

∂q
(q, a)

)

= A(c(a))

where c(a) =
∫

Tn ηa(q)dq C
1 depends on a and A is the A-function. Differentiating Equation

(11) with respect to a, we deduce that if t 7→ (q(t), p(t)) = ϕH
t (q, p) is contained in Ta, we have

Dc(a) · q̇(t) + ∂2S

∂q∂a
(q(t), a)q̇(t) = Dc(a) · ∇A(c(a))

and then

Dc(a) (q(t) − q(0)− t∇A(c(a))) + ∂S

∂a
(q(t), a)− ∂S

∂a
(q(0), a) = 0.

We deduce

fa
t (q) +Dc(a)−1 ∂S

∂a
(fa

t (q), a) = q +Dc(a)−1 ∂S

∂a
(q, a) + t∇A(c(a)).

If we define ga(q) = q +Dc(a)−1 ∂S
∂a

(q, a), we have proved that

ga(f
a
t (q)) = ga(q) + t∇A(c(a)).
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Hence ga is a semi-conjugation between (fa
t ) and (Rt∇A(c(a))).

Lemma 4.1. Let f : Tn → T
n be a homeomorphism. Assume that g, h ∈ C0(Tn,Tn) are

homotopic to identity and such that g ◦ f = g+ α and h ◦ f = h+ β for some α, β ∈ T
n. Then

β = α.

Proof. From g ◦ f = g + α and h ◦ f = h+ β, we deduce that

(12) (g − h) ◦ f = g − h+ α− β.

Because g and h are homotopic to identity, there exists a continuous map G : Tn → R
n such

that the class of G(q) modulo Z
n is (g − h)(q). Then Equation (12) and the continuity of G

implies that G ◦ f −G is a constant B ∈ R
n whose class modulo Z

n is α − β. If µ is a Borel
probability measure that is invariant by f , we then obtain by integrating

∫

Gdµ =

∫

Gdµ+B.

Hence B = 0 and α = β mod Z
n. �

We denote by A the set of a ∈ U such that ρ(a) is completely irrational. We deduce from
Lemma 4.1 that for a ∈ A, we have ρ(a) = ∇A(c(a)) and then ga(f

a
t (q)) = ga(q) + tρ(a). We

deduce from ga(f
a
t (q)) = ga(q) + tρ(a) and ha(f

a
t (q)) = ha(q) + tρ(a) that (ga − ha) ◦ fa

t =
(ga − ha). Hence ga − ha is constant Lebesgue almost everywhere and then by continuity
constant. Hence ga itself is a conjugation between (fa

t ) and (Rtρ(a)).

As H is G-C1 completely integrable and A-non-degenerate, we deduce from Proposition 3.2
that A is dense in U . If now a ∈ U , let K be a compact neighborhood of Ta in U . We deduce
from Theorem 2.1 that there exists a constant K such that for every a ∈ A, if Ta ∩K 6= ∅, then
ha is K-bi-Lipschitz.
Then we choose a sequence (ai) in A such that

• every Tai
meets K;

• (ai) converges to a.

Every gan
is a K-bi-Lipschitz homeomorphism and the sequence (gan

) C0 converges to ga. We
deduce that ga is a K-bi-Lipschitz homeomorphism too and then a C0 conjugation between
(fa

t ) and (Rt∇A(c(a))). This implies that ∇A(c(a)) = ρ(a).

Moreover, all the gas are C1. Observe that a C1 homeomorphism that is bi-Lipschitz is a
C1 diffeomorphism. Hence all the gas are C

1 diffeomorphisms. �

Proposition 4.2. Each continuous vectorfield XHi
generates a flow.

Proof. Note that if we define for every a ∈ U and every i ∈ {1, . . . , n} γai by

γai = Dga(q)
∂Hi

∂p
(q, ηa(q)),

then the flow defined on T
n × U by

ϕHi

t (q, ηa(q)) = (g−1
a ◦Rtγa

i
◦ ga(q), ηa(g−1

a ◦Rtγa
i
◦ ga(q)))

preserves the foliation in ηa, is continuous and C
1 along the Ta and such that

∂ϕHi

t

∂t |t=0
(x) = XHi

(x).

�
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Remark. We don’t affirm that the vectorfields XHi
are uniquely integrable.

4.3. The symplectic homeomorphism. With the notations used in the previous part, if we
define

φ0(q, a) = (g−1
a (q), ηa(g

−1
a (q))),

then φ0 satisfies all the conclusions of Theorem 4.1 except the fact that it is not symplectic.
Let C : Tn ×U → T

n × c(U) be the C1 diffeomorphism that is defined by C(q, a) = (q, c(a)).
Then we define the homeomorphism φ : Tn × c(U) → U by

φ = φ0 ◦ C−1.

Then φ is a homeomorphism that is C1 in the direction of Tn and such that:

• ∀c ∈ c(U), φ−1 ◦ ϕH
t ◦ φ(Tn × {c}) = T

n × {c};
• ∀c ∈ c(U), φ−1 ◦ ϕH

t ◦ φ|Tn×{c} = Rtρ◦c−1(c).

To see that φ is a homeomorphism, we note that φ = f0 ◦ ψ−1
0 is a composition of a C1

diffeomorphism given by the foliation

f0 : (q, c) 7→ (q, c+
∂S

∂q
(q, c−1(c))),

and the inverse function of the conjugation preserving the standard foliation (by the T
n ×{c})

ψ0 : (q, c) 7→ (g
c
−1(c)(q), c).

Note that ψ0 is C1 in the q direction but not C1 in the c direction.
Observe that if S(q, a) is the function that we introduced in Proposition 4.1, the function

(q, c) 7→ S(q, c) = S(q, c−1(c)) is a generating function for φ in the sense that if φ(x, c) = (q, p),
then we have

{

p = c+ ∂S
∂q

(q, c),

x = q + ∂S
∂c

(q, c).

Now we prove that φ can be approximated in C0 topology by smooth symplectomorphisms
φǫ as ǫ→ 0. We introduce

Sǫ(q, c) = S(q, c) ∗ ϕǫ(c) ∗ ϕǫ(q)

where ϕǫ is a C∞ approximating Dirac-δ function as ǫ → 0 and ∗ is the convolution. We get
that Sǫ(q, c) is C

∞ in both variables and is a well-defined function on T ∗
T
n (Zn periodic in q).

Moreover, when ǫ tends to 0, (Sǫ) tends to S in C1 topology uniformly on compact subsets and
(∂Sǫ

∂q
) tends to ∂S

∂q
in C1 topology uniformly on compact subsets.

Hence, if V is relatively compact, for ǫ small enough, fǫ(q, p) = (q, c+ ∂Sǫ

∂q
(q, c)) is a smooth

map that is C1 close to the diffeomorphism that gives the initial foliation (q, c) 7→ (q, c+ ∂S
∂q

(q, c))

and thus is a smooth diffeomorphism when restricted to V . Observe too that the approximating
foliations are smooth and C1 converge to the initial one.

Let W be a compact subset of Tn × R
n. We now define ψǫ : (q, c) 7→ (q + ∂Sǫ

∂c
(q, c), c). Let

us recall that for every c, the map g
c
−1(c) : q 7→ q + ∂S

∂c
(q, c) is a C1 diffeomorphism of Tn.

Moreover, the maps q 7→ q + ∂Sǫ

∂c
(q, c) and q 7→ 1 + ∂2Sǫ

∂q∂c
(q, c) uniformly converge on W to

q 7→ q + ∂S
∂c

(q, c) and q 7→ 1 + ∂2S
∂q∂c

(q, c) respectively. We deduce that the restriction of ψǫ to

W is also a smooth diffeomorphism for ǫ small enough.
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If W is relatively compact, we can now define φǫ by φǫ = fǫ ◦ψ−1
ǫ on W for ǫ small enough.

Then Sǫ(q, c) is a generating function of the smooth symplectic diffeomorphim φǫ(x, c) = (q, p)
i.e.

{

p = c+ ∂Sǫ

∂q
(q, c),

x = q + ∂Sǫ

∂c
(q, c).

Hence φǫ is symplectic and φǫ tends to φ = f0 ◦ψ−1
0 in C0 topology on every compact set when

ε tends to 0. �

4.4. The smooth approximation. The goal of this section is to prove Corollaries 1.1 and
1.2. We will use some notations from Section 4.3.

The Hamilton-Jacobi equation H(q, c+ ∂S
∂q

(q, c)) = A(c) can be rewritten as

H(q, p) = A ◦ π2 ◦ f−1
0 (q, p)

where f0 : (q, c) 7→ (q, c+ ∂S
∂q

(q, c)) is the C1 map that defines the foliation.

The corollaries then follow by approximating A by a sequence of C∞ functions {Aǫ = A∗ϕǫ}
of only c ∈ R

n and approximating f0 by the sequence of C∞ diffeomorphisms {fǫ} constructed
in the proof of Theorems 1.1 and 1.3. We denote

Hǫ(q, p) = Aǫ ◦ π2 ◦ f−1
ǫ (q, p).

By the construction of Aǫ, we get that

‖Aǫ −A‖K,C1 → 0

on every compact subset K and that every Aǫ has positive definite Hessian. In the proof of
Theorems 1.1 and 1.3, we proved that on every compact subset K, we have

‖fǫ − f0‖K,C1 → 0.

This implies that

‖Hǫ −H‖K,C1 → 0.

This proves the first and third bullet points in Corollaries 1.1 and 1.2. The second bullet point
follows from ‖fǫ − f0‖K,C1 → 0.

Appendix A. C0 integrability and C0 Lagrangian submanifolds

In this appendix, we study various notions of C0 integrability and prove a result on the
relations between two notions of C0 integrability.

A.1. Different notions of C0 integrability. There are different notions of C0 integrability
existing in literature. We give a list here.

The following definition of C0 Lagrangian submanifold was first introduced in [15] by Her-
man.

Definition A.1 (C0 Lagrangian submanifold #1). Suppose that a n-dimensional C0 subman-
ifold of T ∗N is the graph of a one-form p(q)dq. We say that this manifold is C0 Lagrangian
in the sense #1 if the one-form p(q) dq is closed in the distribution sense.

Remarks.

(1) It can be proved that p(q) dq is closed in the distribution sense if and only if its integral
along every closed homotopic to a point loop is zero (see Proposition A.1).
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(2) Observe that it is proved in [10] (Theorem 4.11.5) that every C0-Lagrangian graph in
the sense #1 that is invariant by a Tonelli flow is in fact a Lipschitz Lagrangian graph.
Hence it has a tangent space Lebesgue almost everywhere and this tangent space is
Lagrangian.

Proposition A.1. Suppose N = T
n. If the graph T of p(q) dq is C0 Lagrangian in the sense

#1, then there exists a unique c ∈ R
n and a unique C1 function u : Tn → R such that p = c+du.

Then c is called the cohomology class of T .

Proof. We define the cohomology class for the torus T .
Suppose T = {(q, p(q)), q ∈ T

n}. Then we pick cycles γj ⊂ T
n with homology class

ej := (0, . . . , 0, 1, 0, . . . , 0) ∈ H1(T
n,Z) where 1 is in the j-th entry. Then the cohomology class

c ∈ H1(Tn,R) of T is a vector in R
n determined by the equation

(13) 〈c, ej〉 =
∫

γj

p(q) dq.

To see that the cohomology class is well-defined, we pick another cycle ηj homologous to γj , so
the difference γj − ηj of two cycles can be realized as the boundary of a piece of surface Sj . We
next smoothen p(q) to pǫ(q) by convoluting each of the components of p(q) = (p1, . . . , pn) by
the same C∞ approximating Dirac-δ function. The components of pǫ(q) satisfy ∂qjpi,ǫ = ∂qipj,ǫ
since pdq is closed in the distribution sense. This implies that pǫdq is a smooth closed one-form.

So we get
∫

γj−ηj

p(q) dq = lim
ǫ→0

∫

∂Sj

pǫ(q) dq = lim
ǫ→0

∫

Sj

d(pǫ(q) dq) = 0.

Next, we get that (p(q)−c) dq is exact. To see this, we pick any C∞ curve γq : [0, 1] → T
n with

γq(0) = 0 and γq(1) = q and define uc(q) =
∫ 1

0 (p(γq)−c) · γ̇q dt. This function uc is well-defined
and C1 by the closedness of pdq and the definition of the cohomology class c. �

The following definition of C0 Lagrangian submanifold was introduced in [13] motivated by
the C0 closedness of the symplectomorphism group of Gromov-Eliashberg.

Definition A.2 (C0 Lagrangian submanifold #2). We say a C0 submanifold of a symplectic
manifold is C0 Lagrangian in the sense #2, if it is symplectically homeomorphic to a smooth
Lagrangian submanifold via a symplectic homeomorphism (see Definition 1.5).

It is proved in Proposition 26 of [13] that a C0 Lagrangian graph in the sense #1 is necessary
a C0 Lagrangian submanifold in the sense #2. However, the other direction of implication for
a submanifold that is a graph is not clear.

Using the above two notions of C0 Lagrangian submanifold, we get two notions of C0 inte-
grability.

Definition A.3 (C0 integrability #1). We say that a Tonelli Hamiltonian H : T ∗
T
n → R is

C0 integrable in the sense #1 if there exists a continuous foliation of T ∗
T
n by invariant and

C0 Lagrangian graphs in the sense #1.

This definition of C0 integrability was given by Arcostanzo-Arnaud-Bolle-Zavidovique in [3].
Similarly, we have the following.
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Definition A.4 (C0 integrability #2). We say a Tonelli Hamiltonian H : T ∗
T
n → R is C0

integrable in the sense #2 if there exists a continuous foliation of T ∗
T
n by invariant and C0

Lagrangian graphs in the sense #2.

Our next notion of C0 integrability is based on the following remarkable C0 rigidity result
of Poisson bracket discovered by Cardin-Viterbo in [7]: if M is a symplectic manifold and
Fn, Gn, F,G are in C∞(M), if (Fn, Gn) C

0 converges to (F,G) and

lim
n→∞

‖{Fn, Gn}‖C0 = 0,

then {F,G} = 0.
With this result, it is natural to define the Poisson commutativity for C0 Hamiltonians (

this definition with a different name was introduced in in [7], see also Chapter 2.1 of [21]).

Definition A.5 (C0 Poisson commutativity). For two C0 functions F and G on a symplectic
manifold M , we say that F and G Poisson commute, i.e. {F,G} = 0, if there exist two

sequences {Fn}, {Gn} with Fn, Gn ∈ C∞(M) satisfying (Fn, Gn)
C0

−−→ (F,G) and

lim
n→∞

‖{Fn, Gn}‖C0 = 0.

Next, we define the third version of C0-integrability, which can be considered as a C0 version
of Arnol’d-Liouville integrability.

Definition A.6 (C0-integrability #3). Suppose that U ⊂ T ∗
T
n is open. We say that a C0

Hamiltonian H : T ∗
T
n → R is C0 integrable in U in the sense #3, if there is a sequence of

C2 n-uples

Hi(q, p) := (H1,i(q, p), . . . , Hn,i(q, p)) : U → R
n,

satisfying

(1) (Poisson commutativity) Hi → H := (H1, . . . , Hn), in the C0 norm as i→ ∞ and
‖{Hj,i, Hk,i}‖C0 → 0 for all j, k, as i→ ∞. We assume that H1 = H.

(2) (Non-degeneracy 1)The matrix Mi formed by ∂pHj,i, j = 1, . . . , n as rows is invertible

and the inverse M−1
i is uniformly bounded on U and in i;

(3) (Non-degeneracy 2) the limiting tuple H(q, .) := (H1, . . . , Hn) : U → R
n, for each fixed

q ∈ T
n as a function of p is an homeomorphism onto its image and this image U does

not depend on q.

Remark.

(1) In item (1) of Definition A.6, the Poisson commutativity of the Hamiltonians Hj , j =
1, . . . , n for n > 2 is narrower than applying Definition A.5 directly to each pair. Indeed,
by Definition A.5, the sequence of {Hi,n} defining {Hi, Hj} = 0 might be different from
that used to defining {Hi, Hk} = 0 for j 6= k. We stick to the narrower definition here
for simplicity. It is not clear to us how to recover Theorem A.1 below using the broader
definition.

(2) Since we do not need to talk about flow invariant objects in Definition A.6, different
from Definition A.3 and A.4, we assume the Hamiltonian to be C0 only, instead of C2

as in Definition A.3 and A.4.
(3) We need the non-degeneracy 1 hypothesis to prove Theorem A.1. This hypothesis tells

us that the map H(q, .)−1 is uniformly Lipschitz with respect to the variable p. It can



22 MARIE-CLAUDE ARNAUD†, JINXIN XUE

be slightly weakened to allow ‖M−1
i ‖2

C0 to blow up to infinity slowly as i→ ∞ provided
the following limit holds

(14) max
j,k

‖{Hj,i, Hk,i}‖C0‖M−1
i ‖2C0 → 0, as i→ ∞.

(4) Observe that the non-degeneracy 1 hypothesis implies that the function H defined in
point (3) of Definition A.6 is a local bi-Lipschitz homeomorphism for each fixed q, which
is a part of the non-degeneracy 2 hypothesis.

In our C1 Arnol’d-Liouville theorem, we rely crucially on the C1 or Lipschitz assumption to
conjugate the Dynamics on each Lagrangian torus

Ta := {(q, p) ∈ U | (H1, . . . , Hn) = a ∈ R
n}

to a translation on T
n by ρ(a), from both the side of Herman theory and the side of generating

functions. When we drop the C1 or Lipschitz assumption, we lose control of the Dynamics and
we do not know how to get a conjugacy. However, we still have the following theorem on the
topological structure of the phase space.

Theorem A.1. Suppose H is a C0-integrable Hamiltonian defined on U in the sense #3, then
the level sets Ta := {(q, p) ∈ U | (H1, . . . , Hn) = a} for a ∈ U define a C0 foliation of U by
Lagrangian graphs in the sense #1 (i.e. in the sense of distribution).

Proof. Hypothesis of non-degeneracy 2 implies that every level set Ta for a ∈ U is a continuous
graph and that the foliation (Ta) is continuous.

Hypothesis of non-degeneracy 1 and the usual implicit function theorem imply that if a ∈ U ,
then for i large enough the set

Ti,a := {(q, p) ∈ U | (H1,i, . . . , Hn,i) = a}
is the graph of some C2 function pi : T

n → U .
The C0 convergence of Hi to H implies that pi C

0-converges to p if Ta is the graph of p.

We now think each vector
∂Hj,i

∂q
and

∂Hj,i

∂p
as a row vector. We compute

∂Hj,i

∂q
+
∂Hj,i

∂p
· ∂pi
∂q

= 0.

This gives

∂Hj,i

∂q
·
(

∂Hk,i

∂p

)t

+
∂Hj,i

∂p
· ∂pi
∂q

·
(

∂Hk,i

∂p

)t

= 0.

Permuting the subscripts k and j, we get

∂Hk,i

∂q
·
(

∂Hj,i

∂p

)t

+
∂Hk,i

∂p
· ∂pi
∂q

·
(

∂Hj,i

∂p

)t

= 0.

Taking difference, this implies that

{Hj,i, Hk,i}+
∂Hj,i

∂p
·
(

∂pi

∂q
−
(

∂pi

∂q

)t
)

·
(

∂Hk,i

∂p

)t

= 0.
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We denote by Pi the matrix ({Hj,i, Hk,i})j,k and Mi the matrix with
∂Hj,i

∂p
, j = 1, . . . , n as

rows. We get the following abbreviation

Mi

(

∂pi

∂q
−
(

∂pi

∂q

)t
)

M t
i = −Pi.

By assumption Mi is nondegenerate and ‖M−1
i ‖ is uniformly bounded in i and Pi → 0 in the

C0 topology. So we get in the C0 topology
(

∂pi

∂q
−
(

∂pi

∂q

)t
)

= −M−1
i PiM

−t
i → 0.

By integrating against a C∞ test function ψ : T
n → R, we see that the limiting one-form p(q)dq

is closed in the distribution sense. The proof also goes through if we assume (14) instead.
�

Remark. If H is a Tonelli Hamiltonian, Theorem A.1 tells us that C0 complete integrability
in the sense #3 implies C0 complete integrability in the sense #1. Open questions remain that
we list now.

Problem A.1. Is a Tonelli Hamiltonian that is C0 completely integrable in the sense #1 or
#2 C0 completely integrable in the sense #3?

Problem A.2. Is a graph that is C0 Lagrangian in the sense #2 necessarily C0 Lagrangian
in the sense #1?

Problem A.3. Does there exist any Tonelli Hamiltonian that is C0 integrable (in the sense
#1 or #2) but not C1 integrable? not Lipschitz integrable?

When H is Tonelli and C0 integrable, a lot of questions concerning the Dynamics restricted
to the leaves remain open. We will explain in next section what is known and what is unknown.

Appendix B. Smooth Hamiltonian That are C0 completely integrable

The Hamiltonian that we use in Definition A.6 and Theorem A.1 is assumed to be C0 only,
thus there is a priori no Dynamics. In this section, we discuss existing dynamical results if we
assume more regularity for the Hamiltonian. More precisely, we assume that the Hamiltonian
H : T ∗

T
n → R is Tonelli and C0 integrable in the sense #1.

The following results are proved in [1],[2] and [3], .

Theorem B.1. For a Tonelli Hamiltonian H : T ∗
T
n → R, the following assertions are

equivalent

• H has no conjugate points;
• H is C0 integrable in the sense #1;
• H admits a continuous foliation into Lipschitz invariant Lagrangian graphs.

In this case, a lot of leaves are in fact C1.

Theorem B.2. Suppose that H : T ∗N → R is Tonelli, where N is a compact manifold, and
is C0 integrable in the sense #1. Then there exists a flow invariant Gδ subset G of T ∗N such
that each leaf in G is C1.
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If we ask a little more regularity of the Hamiltonian, it can be shown that the Dynamics is
non-hyperbolic.

Theorem B.3. Suppose that H : T ∗
T
n → R is a C3 Tonelli Hamiltonian and is C0 integrable

in the sense #1, then all the Lyapunov exponents of the Hamiltonian flow are zero, with respect
to any invariant Borel probability measure.

If H is C∞ and is C0 integrable in the sense #1, some K.A.M. theorems can be proved close
to the completely periodic tori (see [3]) that have a lot a nice consequences that we give now.

Theorem B.4. Suppose that H : T ∗
T
n → R is a C∞ Tonelli Hamiltonian and is C0 integrable

in the sense #1, then

(1) there exists a dense subset of T ∗
T
n with Lebesgue positive measure that is foliated by

smooth invariant Lagrangian graphs on which the Dynamics is conjugate to a Diophan-
tine rotation;

(2) there exists an dense subset of T ∗
T
n that is foliated by smooth invariant Lagrangian

graphs on which the Dynamics is conjugate to a rational rotation;
(3) there exists a dense Gδ subset of T ∗

T
n that is foliated by invariant Lagrangian graphs

on which the Dynamics is strictly ergodic.

We recall that a dynamical system is strictly ergodic if it is uniquely ergodic and if the unique
invariant Borel probability measure has full support.

The following problem was posed in [3] for the first case of C0 integrability.

Problem B.1. Suppose H is Tonelli and C0 integrable in the sense #1, #2 or #3. Can an
invariant torus of the Hamiltonian flow carry two invariant measures with different rotation
vectors?

Appendix C. Smooth Hamiltonian that are Lipschitz completely integrable

In this section, we assume further that H is a G-Lipschitz completely integrable Hamiltonian.
We assume here more regularity, in particular in the transverse direction, than the C0

integrabilities in Appendix A or B, but slightly less regularity than the C1 integrability.
We begin by proving Theorem 1.2 that we recall.

Theorem C.1. Suppose that the Hamiltonian H : T ∗
T
n → R is Tonelli and is G-Lipschitz

completely integrable. Then restricted to each leaf, the Hamiltonian flow has a unique well-
defined rotation vector, and is bi-Lipschitz conjugate to a translation flow by the rotation vector.
Moreover, all the leaves are in fact C1.

Proof. First, we deduce from propositions 2.2, 2.3 and 2.4 that restricted to each leaf Ta, the
Hamiltonian flow has a unique well-defined rotation vector ρ(a), and if the rotation vector is
completely irrational, then there exists a bi-Lipschitz conjugacy conjugating the flow on the
leaf Ta to the rigid translation by tρ(a). Observe too that ρ(a) continuously depends on a: this
is a consequence of point(A) of Proposition 2.3.

Let us prove that ρ is injective. We will use some results due to J. N. Mather concerning the
minimizing measures (see [17] and [18]). We assume that a 6= a′ satisfy ρ(a) = ρ(a′). Observe
that any minimizing measure with cohomology class c(a) (resp. c(a′), see Definition 3.1 for the
definition of c) is supported in Ta (resp Ta′). Moreover, every minimizing measure supported
in Ta (resp Ta′) has ρ(a) (resp. ρ(a′)) for rotation vector. We deduce that every minimizing
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measure with rotation vector ρ(a) = ρ(a′) is minimizing with cohomology class c(a) and c(a′),
and then its support in in Ta ∩ Ta′ = ∅. We obtain then a contradiction.

Hence a 7→ ρ(a) is a continuous and injective map. By the invariance of domain theorem
(see for example [11], Theorem 18.9, page 110), ρ is a homeomorphism and then for a dense set
A of a, ρ(a) is completely irrational. Hence every a can be approximated by a sequence (an)
such that every ρ(an) is completely irrational. Then there exists a K bi-Lipschitz conjugation
hk : Tn → T

n such that fak

t = h−1
k ◦ Rtρ(ak) ◦ hk. By Arzela-Ascoli, we can extract from (hk)

a converging subsequence to some h : Tn → T
n that is K-bi-Lipschitz and such that

fa
t = h−1 ◦Rtα ◦ h

for some α. Then necessarily α = ρ(a) and we obtained the wanted bi-Lipschitz conjugation.
To conclude that the leaves are C1, we use the following result.

Theorem C.2 (Theorem 2 of [2]). Suppose H : T ∗
T
n → R is Tonelli, and that G is a C0

Lagrangian graph in the sense #1 which is invariant under the Hamiltonian flow. Suppose the
time-1 map of the Hamiltonian flow on G is bi-Lipschitz conjugate to a rotation, then the graph
G is C1.

�

So in this case, Problem B.1 is answered negatively.
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