Orbital equivalence classes of finite coverings of geodesic flows
Classes d'équivalences orbitales de relevés de flots géodésiques
Résumé
Let $M$ be a closed 3-manifold admitting a finite cover of index n along the fibers over the unit tangent bundle of a closed surface.
We prove that if n is odd, there is only one Anosov flow on M up to orbital equivalence, and if n is even, there are two orbital equivalence classes of Anosov flows on M.
Origine | Fichiers produits par l'(les) auteur(s) |
---|