
HAL Id: hal-03657558
https://univ-avignon.hal.science/hal-03657558v2

Preprint submitted on 20 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Public Domain

Orbital equivalence classes of finite coverings of geodesic
flows

Thierry Barbot, Sérgio Fenley

To cite this version:
Thierry Barbot, Sérgio Fenley. Orbital equivalence classes of finite coverings of geodesic flows: Orbital
equivalence classes of finite coverings of geodesic flows. 2024. �hal-03657558v2�

https://univ-avignon.hal.science/hal-03657558v2
https://hal.archives-ouvertes.fr


ORBITAL EQUIVALENCE CLASSES OF FINITE COVERINGS OF GEODESIC
FLOWS

THIERRY BARBOT AND SÉRGIO R. FENLEY

Abstract − Let M be a closed 3-manifold admitting a finite cover of degree n along the fibers over the unit tangent
bundle of a connected closed surface. We prove that if n is odd, there is only one Anosov flow on M up to orbital
equivalence, and if n is even, there are exactly two orbital equivalence classes of Anosov flows on M .
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1. Introduction

Let Σ be a closed connected orientable surface of genus g > 1, equipped with a negatively curved Rie-
mannian metric, and let T 1Σ be the unit tangent bundle. The geodesic flow Φt

0 on T 1Σ is a typical Anosov
flow (see Section 3.1 for a definition of the geodesic flow, and Definition 2.1 for a definition of Anosov
flows).

E. Ghys, in [Gh1], proved that, up to finite covers, geodesic flows are essentially the only possible Anosov
flows on circle bundles over a closed surface. More precisely, if Φt is an Anosov flow on a closed manifold
M admitting a circle fibration over the closed surface Σ, then there is a finite covering q : M → T 1Σ such
that Φt is a reparametrization of the lifting in M by q of the geodesic flow on T 1Σ (see Theorem 3.3).

Observe that the finite covering q is along the fibers (see Section 3.3) − roughly this means that both
fibrations have the same base space Σ. This implies that if M is homeomorphic the unit tangent bundle
T 1Σ itself, then q is a homeomorphism, and that, in this case, Φt is merely orbitally equivalent to the
geodesic flow itself (see Definition 2.3).

This is not true in the general case. More precisely: let M be a closed 3-manifold admitting a circle
fibration over Σ. Ghys’ Theorem implies that in order to support some Anosov flow, M must be a finite
cover of T 1Σ. The degree n of this finite cover is a topological invariant of M : any other finite covering
q : M → T 1Σ has degree n (see beginning of Section 3.3). For a fixed interger n, there are infinitely
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many such finite coverings, providing different Anosov flows on M . Hence a natural question is to ask if
different finite coverings can provide different orbital equivalence classes of Anosov flows? The answer is
given by Theorem 4.5, that we restate here:

Main Theorem : Let q0 : M → T 1(Σ) be a finite covering of degree n along the fibers. Then, if n is odd,
there is only one Anosov flow on M up to orbital equivalence. If n is even, there are exactly two orbital
equivalence classes of Anosov flows.

The proof of the Main Theorem has a dynamical part which is mainly contained in Ghys’ Theorem.
After that the proof is reduced in this article to a study of the action of the (extended) mapping class
group Mod±(Σ) on the set Gn of subgroups of Γ̃ = π1(T

1Σ) corresponding to finite coverings of degree n
along the fibers. More precisely, there is an exact sequence

0 → Z → Γ̃ → π1(Σ) → 1

and elements of Gn are subgroups of Γ̃ of index n such that the projection on π1(Σ) is surjective (see
Definition 3.16).

It is known (and recalled in Section 3.4) that the mapping class group Mod±(Σ) acts naturally on Gn.
In Proposition 3.17 we prove that there is a one-to-one correspondence between orbital equivalence classes
of Anosov flows in M and Mod±(Σ)-orbits in Gn.

Hence, the core of the proof is Proposition 4.4, where we compute explicitly how the Lickorish generators
of Mod(Σ) act on Gn, and which allows us (with a little more work) to compute the number of Mod±(Σ)-
orbits in Gn according to the parity of n.

Our Main Theorem is closely related to Giroux’s classification of universally tight contact structures,
with wrapping number −n, on a circle bundle M ([Gi]). See Remark 4.9 for more details.

In addition, in Section 3.3 we describe the space of isotopy classes of Anosov flows on a given circle
bundle over a closed surface (Corollary 3.15). There are infinitely many, but there is only one up to
vertical Dehn twists as defined in Remark 3.7.

Finally we note the recent work of Barthelme, Mann and collaborators on classifying transitive Anosov
(and pseudo-Anosov) flows up to orbital equivalence using the knowledge of the spectrum [Ba-Ma, BFeM,
BFrM]. The spectrum is the set of free homotopy classes of curves in M which are represented by periodic
orbits of the flow. In particular perhaps it might be possible to prove the orbital equivalence result of
Subsection 3.3 (Proposition 3.17) using the results of Barthelme, Mann and collaborators.

2. Background

2.1. Anosov flows − definitions.

Definition 2.1. (Anosov flow) Let Φt be a non-singular Ck-flow (k ≥ 1) on a closed connected 3-manifold
M , equipped with an auxiliary Riemannian metric. We say that Φt is Anosov if the tangent bundle of M
admits a continuous dΦt - invariant splitting:

TM = RΦ⊕ Ess ⊕ Euu

such that:
- RΦ is the one-dimensional bundle tangent to the orbits of the flow,
- There are two positive real numbers a,C, such that, for every vector vs in Ess (respectively vu in Euu)

and for every t > 0, the following inequalities hold:

∥dΦt(vs)∥ ≤ Ce−at∥vs∥

∥dΦt(vu)∥ ≥ 1

C
eat∥vu∥

The invariant bundles Ess, Euu are called the strong stable and strong unstable bundles, respectively.
They are usually only Hölder continuous, nevertheless they are uniquely integrable, tangent to one-
dimensional foliations Fss and Fuu, called the strong stable and unstable foliations [An, Ha-Ka].

The weak stable and unstable bundles Es := RΦ⊕Ess and Eu := RΦ⊕Euu are uniquely integrable too,
the foliations Fs and Fu they integrate to are the weak stable and unstable foliations. These foliations
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are C1. In fact these foliations are even C1+Zygmund in the case that the flow preserves some volume form
on M and the flow is Ck with k ≥ 3 (Theorem 3.1 of [Hu-Ka]).

Sometimes we will assume that M is orientable and/or the foliations Fs, Fu are transversely orientable.
This can always be achieved in a cover of order at most 4.

The intersection foliation Φ = Fs ∩ Fu is an oriented 1-dimensional foliation, whose leaves are the
orbits of Φt, oriented by the time direction. The weak foliations Fs, Fu only depend on Φ and not on the
parametrization of the flow, contrary to the strong foliations Fss, Fuu.

In this article we will use the following terminology, which may be different from other articles:

Definition 2.2. An Anosov foliation is a foliation Φ = Fs ∩ Fu, oriented by the time direction, where
Fs, Fu are the weak stable and unstable foliations of some Anosov flow.

We also remind the following definition, for the reader’s convenience:

Definition 2.3. A Cr-orbital equivalence between two flows (M,Φt) and (N,Ψs) is a Cr-diffeomorphism
f : M → N mapping oriented orbits onto oriented orbits: there exists a continuous map u : R×M → R,
increasing with the first factor, and such that, for every (t, x) in R×M we have:

f(Φt(x)) = Ψu(t,x)(f(x)).

The flows are then Cr-orbitally equivalent. If moreover the map u satisfies u(t, x) = t, then the orbital
equivalence is a (Cr-)conjugation. Here r could be 0, in which case f is only a homeomorphism.

Observe that the orbital equivalence maps the foliation Φ onto the foliation Ψ. Orbital equivalences
between Anosov flows can therefore be defined as conjugacies between Anosov foliations preserving the
orientation. In this article we will consider orbital equivalences between Anosov flows and therefore omit
the reference to Anosov flows. Orbital equivalences map weak leaves onto weak leaves.

From now on, Φt denotes a Ck-Anosov flow (k ≥ 1) on a closed 3-manifold M .

2.2. Orbit space and leaf spaces of Anosov flows. We denote by π : M̃ → M the universal covering
of M , and by π1(M) the fundamental group of M , considered as the group of deck transformations on
M̃ . The foliations lifted to M̃ are denoted by F̃s, F̃u. If x ∈ M let Fs(x) denote the leaf of Fs containing
x. Similarly one defines Fu(x) and in the universal cover F̃s(x), F̃u(x). If θ is a leaf of Φ, we denote
by Fs(θ), Fu(θ) the weak leaves containing θ. Let also Φ̃

t
be the lifted flow to M̃ . We adopt similar

conventions denoting by F̃s(θ̃), F̃u(θ̃) the weak stable and unstable leaves of θ̃.
We denote by O the orbit space M̃/Φ̃ and by Θ : M̃ → O the quotient map. It is remarkable that

M̃ is always homeomorphic to R3, O diffeomorphic to R2, and that Θ is a π1(M)-equivariant R-principal
fibration ([Ba1], [Fe-Mo] ). We denote by Os, Ou the 1-dimensional foliations induced by F̃s, F̃u on O.
The leaves of these foliations are properly embedded lines.

We denote the leaf spaces M̃/F̃s, M̃/F̃u by respectively Qs, Qu. Observe that they are canonically
identified with the leaf spaces O/Os, O/Ou. A particular case of interest for us is the case of R-covered
Anosov flows, i.e. the case where Qs or Qu is homeomorphic to the real line. In fact if one of them is
homeomorphic to the real line, then both of them are [Ba1]. We fix homeomorphisms of these with R.
This induces total order in Qs, Qu (both homeomorphic to R). If Fs,Fu are transversely oriented this
total order is preserved by deck transformations.

In addition the following is true:

Theorem 2.4. ([Ba2, Théorème 2.10]) Let (M,Φt) be an R-covered Anosov flow. Assume that (M,Φt)
is not orbitally equivalent to the suspension of an Anosov diffeomorphism of the torus. Then, the map
Υ : O → Qs × Qu sending an orbit θ̃ to the pair (F̃s(θ̃), F̃u(θ̃)) is an homeomorphism onto its image,
which is:

Ω := {(x, y) ∈ Qs ×Qu | α(x) < y < β(x)}
where α and β are two homeomorphisms from Qs into Qu satisfying, for every γ in π1(M):

α ◦ γ = γ ◦ α and β ◦ γ = γ ◦ β if γ preserves the orientation of Qs and Qu

α ◦ γ = γ ◦ β and β ◦ γ = γ ◦ α if γ reverses the orientation of Qs and Qu
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Remark 2.5. The R-covered Anosov flows in Theorem 2.4 are called skewed Anosov flow. We refer the
reader to [Ba1, Fen] for a more detailed study of these flows and their properties. For example, it follows
from these papers that for every γ in π1(M), γ preserves the orientation of Qs if anf only if it preserves
the orientation of Qu, so that the two cases considered at the end of Theorem 2.4 indeed cover all the
possible cases.

Here we first stress that α, β are homeomorphims, and not just continuous maps, which is a big part of
the content of the theorem. In particular it follows from Theorem 2.4 that the composition τs = α−1 ◦ β
is a homeomorphism without fixed points of Qs into itself satisfying for every γ in π1(M):

τs ◦ γ = γ ◦ τs if γ preserves the orientation of Qs and Qu

τs ◦ γ = γ ◦ τ−1
s if γ reverses the orientation of Qs and Qu

We can furthermore define a map ζ : O → O which is conjugated by Υ to the map:

(x, y) 7→ (α−1(y), β(x)).

This map ζ satisfies:

ζ ◦ γ = γ ◦ ζ if γ preserves the orientation of Qs and Qu

ζ ◦ γ = γ ◦ ζ−1 if γ reverses the orientation of Qs and Qu

Observe that the map ζ permutes the foliations Os and Ou. By an abuse of notation we will identity
O and Ω by the homeomorphism Υ. This induces an action of ζ on Ω.

Remark 2.6. The homeomorphisms ζ, τs, α and β are Hölder continuous (see [Ba3, Proposition 2.1]).

Remark 2.7. The image under Υ of a stable leaf Os(θ̃) is a vertical segment contained in Ω that we will
call later a stable leaf in Ω. Similarly, images under Υ of unstable leaves Ou(θ̃) will be horizontal segments
that we will call later unstable leaves in Ω.

Corollary 2.8. Let (M,Φt) be a skewed R-covered Anosov flow. Then, the only homeomorphisms from
O into itself commuting with the action of π1(M) are the powers ζk (k ∈ Z) of ζ. If the homeomorphism
is induced by a self orbit equivalence of Φ, then it is of the form ζ2k, where k ∈ Z.

Proof. Let us consider some homeomorphism f : O → O commuting with the action of π1(M). We will
abuse notation and also denote by f the action induced on Ω by its conjugate under Υ.

Let γ be a non-trivial element of π1(M) fixing a point (x, y) of Ω. Then, the other fixed points of γ are
the elements of the orbits of (x, y) under ζ. Therefore, there is some integer k such that:

f(x, y) = ζk(x, y)

Hence, (x, y) is a fixed point of ζ−k ◦ f .
Let (x1, y1) fixed by some γ1 non trivial and (x1, y1) sufficiently close to (x, y), so that (x1, y) and

(x, y1) are in Ω, and in addition ζ−k ◦ f(x1, y1) is very close to (x1, y1) also. The previous paragraph
implies that there is j so that ζ−j ◦ f(x1, y1) = (x1, y1). Hence the stable leaf of ζ−k(x1, y1) intersects
the unstable leaf of ζ−j(x1, y1) and vice versa. This immediately implies that j = k. In particular the
arbitrarily near is uniform, that is there is ϵ > 0 so that if the orbit of (x, y) and the orbit of (x1, y1) are
ϵ close at some point then the above happens.

Since Φ is R-covered, it is topologically transitive [Ba1], and therefore the union of periodic orbits are
dense in M . It means that fixed points of non trivial elements of π1(M) are dense in Ω. It follows that
elements of Ω with non-trivial π1(M)-stabilizers can be connected by a finite sequence of elements with
non-trivial π1(M)-stabilizers such that two successive elements of the sequence are sufficiently close one
to the other in the preceding meaning.

As a conclusion, the integer k at elements of Ω with non-trivial π1(M)-stabilizer is the same at each of
them. In other words, there is an integer k such that ζ−k ◦f preserves every element of Ω with non-trivial
π1(M)-stabilizer. Since the union of these elements is dense in Ω, the equality f = ζk holds everywhere.
This proves the first statement of the corollary.



ORBITAL EQUIVALENCE CLASSES OF FINITE COVERINGS OF GEODESIC FLOWS 5

To prove the second statement notice that if the homeomorphism f comes from an orbit equivalence,
then it sends the weak stable foliation to itself and likewise for the weak unstable foliation. By Remark
2.5, it now follows that f must be an even power of ζ. The corollary follows. □

We remark that more generally one can consider orientation reversing orbit equivalences as well: they
are “weak” orbit equivalences which reverse the direction of the flow.

2.3. Recovering the Anosov flow from the orbit space. In this Section, we see how, from the data
of the orbit space O and the π1(M)-action on it, to recover the Anosov flow itself up to orbital equivalence.
The flow (M,Φt) is not assumed to be R-covered, nor topologically transitive.

Theorem 2.9. ([Ba1, Théorème 3.4]) Let (M,Φt) and (N,Ψs) be two Ck-Anosov flows on closed connected
3-manifolds (k ≥ 1). Assume that there exists an isomorphism ρ : π1(M) → π1(N) and an equivariant
Cr-diffeomorphism f̄ : O → QΨ between the orbit spaces (1 ≤ r ≤ k). Then, f̄ lifts to an equivariant
Cr-diffeomorphism between the universal coverings. In other words, either (M,Φt) is orbitally equivalent
to (N,Ψs), or (M,Φt) is orbitally equivalent to (N,Ψ−s) (i.e. the second flow with the time direction
reversed). If moreover f̄ maps the stable foliation Os(Φ) onto the stable foliation Os(Ψ), then the first
case occurs, i.e. (M,Φt) is orbitally equivalent to (N,Ψs).

It follows in particular that, according to Remark 2.5, an R-covered Anosov flow admitting no global
cross-section is weak orbitally equivalent to its own inverse: the map ζ defined in Remark 2.5 lifts to some
weak orbital equivalence F0 : M → M between Φ and its inverse. Moreover, F0 is isotopic to the identity.

Observe also the following consequence of Corollary 2.8:

Corollary 2.10. Let (M,Φt) be a skewed R-covered Anosov flow. Let F : M → M be an orbital equiv-
alence between Φ and itself. Assume that F is isotopic to the identity. Then, F is isotopic along Φ to
some power F 2k

0 of F0.

This follows because the orbital equivalence has a lift to M̃ which commutes with all deck translations.

3. Classification of finite coverings of geodesic flows up to isotopy and orbital equiv-
alence

3.1. Geodesic flows. In this Section, Σ is a closed connected oriented surface of genus g > 1, we denote
by Γ̄ its fundamental group, and by p0 : M1(Σ) → Σ the positive projective tangent bundle of Σ, i.e. the
quotient of the tangent bundle with the zero section removed by the relation identifying two vectors if they
are proportional up to a positive real number. This definition avoids the choice of a peculiar Riemannian
metric, but M1(Σ) clearly identifies with the unit tangent bundle for any Riemannian metric on Σ.

According to [An], the geodesic flow of any negatively curved metric on Σ is an Anosov flow on M1(Σ).
Moreover, since the Teichmüller space Teich(Σ) is connected, and since the space of negatively curved
metrics in a given conformal class is connected, any pair of negatively curved metrics on Σ can be joined
by a path of negatively curved metrics. It follows from structural stability of Anosov flows that Anosov
geodesic flows on M1(Σ) are isotopic one to the other. Hence, we can speak of the Anosov geodesic flow
of Σ.

Let us review alternative ways to define geodesic flows for hyperbolic metrics, each of them being useful
in the rest of the paper:

3.1.1. Geodesic flows as algebraic flows. Let P̃SL(2,R) be the universal covering of PSL(2,R), and let Γ̃

be the full preimage in P̃SL(2,R) of the uniform lattice Γ̄. Then, M1(Σ) is diffeomorphic to the quotient
Γ̃\P̃SL(2,R), and the geodesic flow is the flow induced by the action on the right of the 1-dimensional Lie
subgroup whose projection in PSL(2,R) is the subgroup D represented by diagonal matrices of the form:(

et 0
0 e−t

)
More generally, every finite covering of the geodesic flow has a similar description, where Γ̃ is replaced

by some finite index subgroup of itself.
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3.1.2. Geodesic flow on the space of triples. This construction is described by M. Gromov in [Gro] and
therein attributed to M. Morse. Realize Γ̄ as a torsion-free uniform lattice in PSL(2,R), hence as a discrete
group of projective transformations of the (oriented) circle RP 1. For now and future use let

X = { (x, y, z) ∈ (RP 1)3, x ̸= y ̸= z ̸= x, x < y < z for the cyclic order of RP 1 }
For every (x, y, z) in X let p be the unique point in the hyperbolic plane H2 lying in the geodesic (xy) of
extremities x and y such that the geodesic ray starting from p and going to z is orthogonal to (xy), and let
v be the unit vector tangent to (xy) at p pointing towards x. The map (x, y, z) 7→ (p, v) identifies X with
the unit tangent bundle of the hyperbolic plane T 1H2. It follows that the diagonal action of π1(M) on
X is free and properly discontinuous, and that the quotient space is homeomorphic to M1(Σ). Moreover,
the geodesic flow on M1(Σ) corresponds to the flow on X preserving x and y and moving z from y to x.
Another choice of realization of Γ̄ as an uniform lattice in PSL(2,R) leads to the same action on RP 1 up
to topological conjugacy, hence to the same flow up to orbital equivalence.

3.1.3. Geodesic flows on the projectived tangent bundle over the band. Let us consider once more the
universal covering P̃SL(2,R) and the uniform lattice Γ̃. Observe that Γ̃ acts naturally on the (oriented)
universal covering R̃P

1
of RP 1. The center of P̃SL(2,R) is the group of deck transformations of the

universal covering P̃SL(2,R) → PSL(2,R); it is a cyclic group generated by an increasing map δ : R̃P
1
→

R̃P
1
.

The identification between X (of the previous subsection) and T 1H2 makes clear that the lifting in X
of the weak stable leaves are the level sets of the projection map (x, y, z) 7→ x. Therefore, the leaf space
of this weak stable foliation is RP 1. Hence, the leaf spaces Qs

0 and Qu
0 for the geodesic flow are both

Γ̃-equivariantly isomorphic to R̃P
1
, and the image of the map υ : O0 → Qs

0 ×Qu
0 appearing in Theorem

2.4 is Γ̃-equivariantly isomorphic to the region in R̃P
1
× R̃P

1
between the graphs of the identity map of

R̃P
1

and the map δ.

Remark 3.1. Let p0∗ : Γ̃ → Γ̄ be the projection map. Let γ̄ be a non-trivial element of Γ̄. It fixes two
points in RP 1, hence it admits a lift γ̃ in Γ̃ that admits fixed points in R̃P

1
. More precisely, γ̄ admits

an attracting fixed point, and a repelling fixed point. Therefore, γ̃ admits a δ-orbit of attracting fixed
points, and a δ-orbit of repelling fixed points. Other elements of (p0∗)−1(γ̄) are elements of Γ̃ of the form
γ̃δk for some integer k. It follows that γ̃ is the unique element (p0∗)

−1(γ̄) admitting fixed points in R̃P
1
.

We thus have defined a canonical section σ0 : Γ̄ → Γ̃, the one associating to every element γ̄ the unique
element in its preimage by p0∗ fixing at least one point in R̃P

1
. This map is not a group homomorphism.

Actually, it defines a cocycle c : Γ̄× Γ̄ → Z, where c(γ̄1, γ̄2) is the unique integer k satisfying:

σ0(γ̄1γ̄2) = δkσ0(γ̄1)σ0(γ̄2)

This cocycle represents a cohomology class in H2(Γ̄,Z) which is the Euler class. This cocycle is not trivial,
meaning it is not a coboundary. As we will also see later, this will not be the case for its projection in
Z/nZ, when n divides 2g − 2. Actually, as proved in Lemma 3.2, this cocycle takes value in {−1, 0,+1},
meaning that it represents a bounded cohomology class, which is the bounded Euler class (see [Gh2]).

The following lemma will be extremely useful:

Lemma 3.2. Choose an arbitrary hyperbolic metric on Σ, so that Γ̄ is realized as a uniform lattice in
PSL(2,R). Let γ̄1 and γ̄2 be two elements of Γ̄, and let ∆1, ∆2 be their oriented axis in H2 as hyperbolic
isometries of the hyperbolic plane. If ∆1 and ∆2 intersect transversely, or if they do not intersect but have
the same direction, then c(γ̄1, γ̄2) = 0.

Proof. By “same direction" we mean that the attracting fixed points of γ̄1, γ̄2 do not separate in RP 1 the
repelling fixed points of these elements.

Since Γ̄ is realized as a uniform lattice in PSL(2,R), the group Γ̃ is realized as a lattice in P̃SL(2,R).
Let x1, x2 be the attracting fixed point in RP 1 of γ̄1,γ̄2, respectively, and let y1, y2 be their repelling

fixed points.



ORBITAL EQUIVALENCE CLASSES OF FINITE COVERINGS OF GEODESIC FLOWS 7

Let now γi = σ0(γ̄i). Let us fix one attracting fixed point x̃1 for γ1 in R̃P
1
. Then the interval ]x̃1, δx̃1[

contains one and only one repelling fixed point ỹ1 for γ1, and only two fixed points x̃2, ỹ2 of γ2, respectively
attracting and repelling.

We have, for the cyclic order on RP 1, only four possibilities:
(1) x1 < x2 < y1 < y2, or
(2) x1 < y2 < y1 < x2, or
(3) x1 < x2 < y2 < y1, or
(4) x1 < y1 < y2 < x2.

In all these cases, there is a closed interval in RP 1 whose endpoints are x1 and x2, and whose interior
does not contain y1 and y2. This interval lifts to a closed interval I0 in R̃P

1
bounded by two attracting

fixed points of γ1, γ2, and containing no other fixed point of γ1, γ2. It follows that both γ1 and γ2 send
the interval I0 into itself. It follows that:

γ1γ2(I0) ⊂ I0

.
Therefore, γ1γ2 admits a fixed point in I0, and γ1γ2 is σ0(γ̄1γ̄2). The Lemma is proved. □

3.2. Anosov flows on the unit tangent bundle over a closed surface. A fundamental theorem is
that the geodesic flow is essentially the unique Anosov flow on circle bundles - and our purpose here is to
discuss what exactly the term “essentially” means.

Theorem 3.3 ([Gh1]). Let Φt be an Anosov flow on a closed orientable manifold M admitting a circle
fibration over a closed connected oriented surface Σ of genus g > 1. Then, there is a finite covering
p : M → M1(Σ) such that Φt is a reparametrization of the lifting in M by p of the Anosov geodesic flow
of Σ.

In the rest of this Section, we study what are the isotopy classes of Anosov flows on the unit tangent
bundle M1(Σ) itself. Let us introduce some notations:

– Equip p0 : M1(Σ) → Σ with a structure of principal S1-bundle (for example, select a metric on Σ and
then have the action to be rotation by an angle in S1 − this uses that Σ is oriented).

– Let I1 be the set of isotopy classes of Anosov flows on M1(Σ).
– The fundamental group of Σ has a presentation:

Γ̄ = ⟨āi, b̄i (i = 1, ..., g) | [ā1, b̄1][ā2, b̄2]...[āg, b̄g] = 1⟩ (1)

– The map p0 : M1(Σ) → Σ is a fibration by circles of Euler class 2g−2. In particular, the fundamental
group Γ̃ of M1(Σ) has a presentation:

Γ̃ = ⟨h, ai, bi (i = 1, ..., g) | [a1, b1][a2, b2]...[ag, bg] = h2g−2⟩ (2)

where the projections of the ai’s and bi’s are generators āi and b̄i of Γ̄, and h is represented by the oriented
fibers of p.

– Let p0∗ : Γ̃ → Γ̄ be the map induced as the fundamental group level by p0 : M1(Σ) → Σ.
– Let Mod(Σ) be the mapping class group of Σ, i.e. the group of orientation-preserving homeomorphisms

of Σ up to isotopy.
– Let Mod±(Σ) be the extended mapping class group of Σ, i.e. the group of homeomorphisms of Σ up

to isotopy.
– Let Mod(M1(Σ)) be the extended mapping class group of M1(Σ), i.e. the group of homeomorphisms

of M1(Σ) up to isotopy. We will see in Remark 3.9 that homeomorphisms of M1(Σ) are all orientation-
preserving.

– Note that ker p0∗ is generated by h, and of course we require āi = p0∗(ai) and b̄i = p0∗(bi).

Remark 3.4. All the manifolds we consider are surfaces or irreducible Haken 3-manifolds. Therefore,
homeomorphisms are isotopic if and only if they are homotopically equivalent ([Wald]).

Remark 3.5. In this context, the homeomorphism of O induced by h is ζ2, where ζ is the homeomorphism
defined in Remark 2.5. Therefore, in this context, Corollary 2.10 becomes:
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Corollary 3.6. Let F : M1(Σ) → M1(Σ) be an orbital equivalence between the geodesic flow Φ0 and itself.
Assume that F is isotopic to the identity. Then, F is an isotopy along the orbits of Φ0.

This is because ζ2 sends any orbit to a deck translate of it.

According to Baer-Dehn-Nielsen Theorem [Fa-Ma], Mod±(Σ) is isomorphic to Out(Γ̄), i.e. the quotient
of the group Aut(Γ̄) of automorphisms of Γ̄ by the normal subgroup comprising inner automorphisms.
The mapping class group Mod(Σ) is isomorphic to Out+(Γ̄), i.e. the quotient by inner automorphisms of
the group of automorphism of Γ̄ preserving the fundamental class, see Theorem 8.1 of [Fa-Ma].

Since Σ has higher genus, every homeomorphism of M1(Σ) is isotopic to a homeomorphism preserving
the fibers of p0 : M1(Σ) → Σ. Therefore, there is a well-defined exact sequence:

1 → K1 → Mod(M1(Σ)) → Mod±(Σ) → 1 (3)

where K1 is the subgroup comprising isotopy classes of homeomorphisms preserving every fiber of p0 :
M1(Σ) → Σ.

Let us fix a principal S1-bundle structure on p0 : M1(Σ) → Σ. For every f in K1, and every x in Σ, the
restriction of f to the fiber over x is a homeomorphism fx, and the principal S1-bundle structure provides
an identification of fx as an element of Homeo(S1), well-defined up to conjugation by rotation.

Observe that every fx preserves the orientation of the fiber. Indeed, if it was not the case, all fx would
be orientation reversing, and would admit 2 fixed points in every fiber. It would provide a section (maybe
2-multivalued) of p0, that is, a contradiction.

Therefore, every fx lies in Homeo+(S1). In [Gh3, Proposition 4.2] E. Ghys defined a continuous retrac-
tion R from Homeo+(S1) into S1, constant along classes of conjugation by rotation as follows: any element
f of Homeo+(S1) lifts as a homeomorphism f̃ of the real line R commuting with the translation y 7→ y+1.
Then R(f) is simply the integral

∫ 1
0 (f̃(y) − y)dx mod 1. This map is a homotopy equivalence. Observe

that R(f) commutes with the composition by rotations, hence invariant by conjugation by a rotation. It
therefore provides a well-defined map x 7→ R(fx) that is continuous in x. The map f is homotopically
equivalent to the homeomorphism of M that acts by rotation of angle R(fx) in each fiber [p0]−1(x), and
since in closed Haken 3-manifolds homotopically equivalent homeomorphisms are isotopic ([Wald]), this
homotopic equivalence is homotopic to an isotopy.

It follows that K1 is the group of homotopy classes of maps from Σ into S1, which is notoriously
isomorphic to H1(Σ,Z). The exact sequence (3) becomes:

1 → H1(Σ,Z) → Mod(M1(Σ)) → Mod±(Σ) → 1 (4)

Remark 3.7. The way H1(Σ,Z) acts on M1(Σ) can described as follows. For every α in H1(Σ,Z), let
ω be a closed 1-form representing α. Since α lies in H1(Σ,Z), the periods

∫
c ω for closed loops c are all

integers. Select a point base x0 in Σ, and for every x in Σ, let R(x) be the element
∫
c ω modulo Z of

R/Z ≈ S1, where c is any path from x0 to x. Then let fω : M1(Σ) → M1(Σ) be the map rotating every
fiber p−1(x) by R(x). The isotopy class of fω only depends on the cohomology class of ω, and represents
the element α ∈ H1(Σ,Z) ⊂ Mod(M1(Σ)).

The induced action of H1(Σ,Z) on Γ̃ is described as follows: the action of α ∈ H1(Σ,Z) on Γ̃ is simply
the map sending every γ of Γ̃ to γhα(γ̄), where γ̄ = p0∗(γ). Here we use the canonical identification
H1(Σ,Z) ≈ H1(Γ̄,Z).

A particular interesting case is the case of vertical Dehn twists over a simple closed curve: Let c be
a simple closed oriented curve in Σ, and let U be a small collar neighborhood of c. The open domain
p−1(U) is a tubular neighborhood of the torus T := p−1(c). Let ωc be a closed 1-form in Σ, with support
in U , and representing the cohomology class dual to the homology class of c: for every loop c′, the integral∫
c′ ωc is the algebraic intersection number between c and c′. Then, the map fωc is a vertical Dehn twist:

it is the identity map outside p−1(U), and inside U , it rotates the fibers, more and more when we go
from the left to the right of c, so that it adds to every homotopy class of curves crossing (positively) c a
h-component.
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Since cohomology classes dual to simple closed curves generate H1(Σ,Z), vertical Dehn twists generate
the kernel of the projection of Mod(M1(Σ)) onto Mod±(Σ). Actually, vertical Dehn twists over the
generators āi and b̄i of Γ̄ are enough to generate this kernel.

Remark 3.8. The sequence (4) is split. Indeed, consider an element of Mod±(Σ), represented by a
homeomorphism f . Let f̃ be a lift of f in H2 ≈ Σ̃. This lift is well-defined up to composition by an
element of Γ̄. It extends to the conformal boundary ∂H2 ≈ RP 1 as a homeomorphism ∂f .

Let us first consider the case where f preserves the orientation, then its action on RP 1 preserves the
cyclic order, and there induces an action on the space X of triples x < y < z introduced in Section 3.1.2.
The induced action on the quotient of X by Γ̄ does not depend on the choice of the lift f̃ . Since this
quotient is homeomorphic to M1(Σ), this process defines a morphism from Mod(Σ) into Mod(M1(Σ)).
We denote by Mod(Σ)o the image of this morphism. Observe that as it is defined, Mod(Σ)o is a set of
isotopy classes of homeomorphisms of M1(Σ), but actually we have realized it as a subgroup of genuine
homeomorphisms of M1(Σ), in other words, we have selected an element in each isotopy class in a coherent
way with respect to the group structure.

This construction does not apply when f is orientation reversing, since then for every element (x, y, z)
of X the triple (∂f(x), ∂f(y), ∂f(z)) does not belong to X since ∂f(x) > ∂f(y) > ∂f(z). But it suffices
to define the action of ∂f on X as given by:

∂f.(x, y, z) = (∂f(y), ∂f(x), ∂f(z))

Once again, the induced action on Γ̄\X does not depend on the choice of the lift f̃ , and this process
defines a group homomorphism from Mod±(Σ) into Mod(M1(Σ)), which is a section of the projection
Mod(M1(Σ)) → Mod±(Σ). We denote by Mod±(Σ)o the image of this section.

Again observe that as it is defined, Mod±(Σ)o is a set of isotopy classes of homeomorphisms of M1(Σ),
but actually we have realized it as a subgroup of genuine homeomorphisms of M1(Σ), in other words, we
have selected an element in each isotopy class in a coherent way with respect to the group structure.

Remark 3.9. Observe that the homeomorphisms defined in Remark 3.8 preserve the orientation of X, in
the case where f is orientation-preserving, but also in the case where it is orientation reversing. Indeed,
in the last case, the homeomorphism is the restriction to X of the composition of the orientation reversing
map (x, y, z) 7→ (∂f(x), ∂f(y), ∂f(z)) and the orientation reversing map (x, y, z) 7→ (y, x, z). On the other
hand, the description in Remark 3.7 makes it clear that elements of K1 are also orientation-preserving.

In view of the sequence (4), it follows that every element of Mod(M1(Σ)) is orientation-preserving.

Remark 3.10. This construction is closely related to the Baer-Dehn-Nielsen Theorem mentioned above.
Actually, the circle S1 is naturally identified with the Gromov boundary ∂Γ̄; hence the group of auto-
morphisms Aut(Γ̄) acts on S1, and therefore on the space X of distinct triple of points in S1 satisfying
x < y < z, if one performs as in Remark 3.8 in the orientation reversing case.

This action induces an action of Out(Γ̄) on the quotient of X by Γ̄, i.e. a morphism from Out(Γ̄) into
Mod(M1(Σ)). Composing this morphism with the projection induces a morphism Out(Γ̄) → Mod±(Σ)
which is precisely the Baer-Dehn-Nielsen isomorphism. Observe that there is an obvious inverse of this
map: the one associating to an element of Mod±(Σ) its induced action on the fundamental group Γ̄.

Recall that I1 is the set of isotopy classes of Anosov flows on M1(Σ). The modular group Mod(M1(Σ))
acts clearly on I1 since every element of Mod(M1(Σ)) admits a smooth representative (but there is no
way to choose simultaneously such representatives for every element of Mod(M1(Σ)), see [Sou]).

Proposition 3.11. The action of Mod(M1(Σ)) on I1 is transitive, and the stabilizer of the isotopy class
of the geodesic flow Φ0 is the subgroup Mod±(Σ)o defined in Remark 3.8.

Proof. The transitivity property of the action comes from Theorem 3.3: this theorem gives us a finite cover
p : M1(Σ) 7→ M1(Σ) satisfying the conclusion of Theorem 3.3. Using the Euler class of the bundle M1(Σ)
it follows that the cover is of degree one, hence a homeomorphism, so p is in Mod(M1(Σ)). Transitivity
follows.

We now analyze the stabilizer. Denote by [Φ0] the isotopy class of the geodesic flow on M1(Σ), and
by Φ0 the representative of [Φ0] induced by an arbitrary but fixed hyperbolic metric g0 on Σ. We fix Φ0

throughout the proof.
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Let now η be an element of Mod±(Σ). Consider as in Remark 3.8 the action ∂f on the circle ∂H2 ≈ RP 1

of some lift f̃ of a representative f of η (hence η = [f ]). Remark 3.8 is based on the observation that the
transformation

(x, y, z) 7→ (∂f(x), ∂f(y), ∂f(z))

when f is orientation-preserving, and

(x, y, z) 7→ (∂f(y), ∂f(x), ∂f(z))

when f is orientation reversing, is Γ̄-equivariant on X. Therefore this transformation induces a homeo-
morphism F on Γ̄\X ≈ M1(Σ). This homeomorphism F preserves the non-oriented foliation x = Cte,
y = Cte. As explained at the end of Section 3.1, this foliation is a representative of the non-oriented
foliation induced by the geodesic flow. Therefore, F∗Φ0 is isotopic to the geodesic flow or to its inverse.
But the geodesic flow is isotopic to its own inverse, see the observation just after Theorem 2.9. Hence, in
all cases, F∗Φ0 is isotopic to the geodesic flow. We conclude that Mod±(Σ)o is contained in the stabilizer
of [Φ0].

Since the sequence (4) is split it follows that the group H1(Σ,Z) ≈ Mod(M1(Σ))/Mod±(Σ)o acts
transitively on I1. In order to conclude, we just have to show that non-trivial elements of H1(Σ,Z) do
not belong to the stabilizer of [Φ0].

Let α be an element of H1(Σ,Z), and let γ̄ be a non-trivial element of Γ̄. The action of Γ̄ on H2 ≈ Σ̃
preserves a unique geodesic (xy) in H2, with x, y ∈ ∂H2, so that γ̄ acts on this geodesic as a translation
from y towards x. The vectors in T 1H2 tangent to this geodesic and pointing in the direction of x form
an orbit of the geodesic flow of H2.

This geodesic lifts in the universal covering of M1(Σ) to infinitely many orbits of Φ̃t
0 that are permuted

under the action of the fiber h, and there is one and only one element γ = σ0(γ̄) of (p0∗)−1(γ̄) preserving
each of these lifted geodesics (see Remark 3.1): all other elements of (p0∗)

−1(Γ̄) have the form γhk for
some integer k, and when k ̸= 0, γhk preserves no orbit of Φ̃t

0.
Now apply the element α ∈ H1(Σ,Z) ⊂ Mod(M1(Σ)) to the geodesic flow Φt

0, and assume that α∗Φ
t
0

is isotopic to Φt
0. The homotopy class γ is mapped under α to the homotopy class γhα(γ̄). Since α∗Φ

t
0 is

isotopic to Φt
0, this homotopy class must preserve an orbit of Φ̃t

0, hence we must have α(γ̄) = 0. Therefore,
since γ̄ is arbitrary, α is trivial. The proposition follows. □

In summary, there are infinitely many isotopy classes of Anosov flows on M1(Σ) parametrized by
Mod±(M1(Σ))/Mod±(Σ)0 ≈ H1(Σ,Z) ≈ Z2g. It follows that isotopy classes can be distinguished accord-
ing to periodic orbits over the generators āi and b̄i of Γ̄: if two Anosov flows on M1(Σ) have the property
that the periodic orbits “above the generators āi and b̄i”, for all i, are freely homotopic for the two flows,
then the two flows are isotopic.

3.3. Isotopy classes of Anosov flows on circle bundles over closed surfaces. In all this subsection,
M is an oriented 3-manifold, admitting a fibration by circles p : M → Σ over a closed, connected, oriented
hyperbolic surface Σ. We will denote by Θ0 the foliation whose leaves are the fibers of p. Observe that
this foliation is oriented, is a foliation by circles, and is unique up to isotopy.

This section is devoted to the study of isotopy classes of Anosov flows on M . In the next subsection
we will study orbit equivalence classes of Anosov flows. In the next section we prove the main theorem of
this paper (Theorem 4.5).

According to Theorem 3.3, up to reparametrization, every Anosov flow on M is the pull-back of the
geodesic flow Φt

0 by a finite covering q : M → M1(Σ). Moreover, M1(Σ) is precisely the unit tangent
bundle over the surface Σ over which M is assumed to be fibering. It implies that the finite covering
q : M → M1(Σ) is a covering along the fibers, meaning that p is isotopic to the composition p0 ◦ q. In
other words, the pull-back by q of the fibration p0 is isotopic to the fibration induced by p. This again is
because the Seifert fibration in M is unique up to isotopy. Modifying q by this isotopy (notice that this
does not modify the isotopy class of the Anosov foliation in M), one can always assume that the equality
p = p0 ◦ q holds.
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In other words, a covering N → M1(Σ) is not along the fibers if the base surface of the Seifert fibering
of N is not homeomorphic to Σ, or, alternatively, if the preimages of fibers of M1(Σ) by the covering map
are not connected.

All these finite coverings q : M → M1(Σ) have the same degree n: it is the quotient (2g− 2)/|d|, where
|d| is the absolute value of the Euler class d of p : M → Σ.

This remark makes also clear that all the finite covers M1(Σ) of degree n along fibers are all homeo-
morphic one to the others: there are all circle bundles over Σ of Euler class (2g − 2)/n.

We propose now a useful alternative definition of finite coverings along the fibers. Every leaf of Θ0,
i.e. every fiber of p, is an oriented circle. One can therefore define the homeomorphism g0 mapping every
x in M to the next element of the leaf of Θ0 that maps to the same point as x by p, according to the
orientation of this fiber. This homeomorphism has order n and induces a free action of Z/nZ on M.

More generally, let Θ be an oriented foliation of M by circles, and let g be a homeomorphism of M of
order n, preserving every leaf of Θ and such that the action of Z/nZ on M induced by g is free. Then,
we say that g is Θ-increasing if:

– either n = 1 or 2,
– or n ≥ 2 and for every x in M the triple (x, g(x), g2(x)) is positive for the cyclic order of the (oriented)

leaf of Θ containing x.

Lemma 3.12. There is an one-to-one correspondence between:
• Finite coverings q : M → M1(Σ) of degree n along the fibers,
• The data of an oriented foliation Θ of M by circles, a Θ-increasing homeomorphism g of M of

order n without fixed points preserving every leaf of Θ, and an homeomorphism between M1(Σ)
and the orbit space of the Z/nZ-action in M .

The proof of this Lemma is quite straightforward, once observed that the only foliations of M by circles
are the ones induced by circle fibrations of M over Σ. This is because any foliation by circles in M is a
Seifert fibration [Ep], then Seifert fibrations in M are unique up to isotopy, and finally there is a circle
fibration of M over Σ. We just point out that given the free Z/nZ-action and the homeomorphism Ψ
between the orbit space N of the Z/nZ-action and M1(Σ), the finite covering is simply Ψ ◦ ϱ, where
ϱ : M → N is the projection to the quotient space. The other direction is straightforward.

After all these preliminaries, we go back to the problem of the study of isotopy classes of Anosov flows
on M . Once again, according to Theorem 3.3, it leads to the study of the set Cov±n of finite coverings of
degree n along the fibers up to the following equivalence relation: two such covering maps q1 : M → M1(Σ)
and q2 : M → M1(Σ) are isotopic if there exists a homotopically trivial homeomorphism F : M → M
such that q2 = q1 ◦F . Indeed, if q1 and q2 are isotopic in this sense, then the Anosov flows q∗1Φ0 and q∗2Φ0

are isotopic in M .
Any homotopically trivial homeomorphism of M1(Σ) lifts to a homotopically trivial homeomorphism

of M , therefore the mapping class group Mod(M1(Σ)) acts on Cov±n by composition on the left. The ±
refers to covers preserving or reversing orientation.

Proposition 3.13. The action of Mod(M1(Σ)) on Cov±n is simply transitive.

Proof. First observe that this action is free. Indeed: letf be a homeomorphism of M1(Σ) and q1 : M →
M1(Σ) be a finite covering such that there is a homotopically trivial homeomorphism F of M such that
f ◦ q1 = q1 ◦ F . Then, f must be homotopically trivial too, and therefore trivial in Mod(M1(Σ)).

Let now q0 : M → M1(Σ) and q : M → M1(Σ) be two covering maps of degree n along the fibers.
We want to show that q is isotopic to a finite covering of the form f ◦ q0 for some homeomorphism f of
M1(Σ).

According to Lemma 3.12, one can interpret q0 and q as the data of two foliations by circles Θ0 and
Θ on M , two free actions of Z/nZ induced by increasing homeomorphisms g0 and g on M , the first
preserving Θ0 leafwise and the second preserving Θ leafwise, and identifications f0 : N0 → M1(Σ) and
f : N → M1(Σ), where N0 is the orbit space of the first Z/nZ-action, and N the orbit space of the second
Z/nZ-action.

Up to isotopy, one can assume that the circle foliations Θ0 and Θ coincide. Then, in every leaf of
Θ = Θ0, the two Z/nZ-actions are both conjugated (through a homeomorphism isotopic to the identity)
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to the same action by rotations, meaning that they are conjugated one to the other. These conjugacies
in all the leaves of Θ can be combined to some continuous conjugacy F between the two Z/nZ-actions
preserving every leaf of Θ0. This conjugacy is not necessarily isotopic to the identity.

Let us fix a principal R/Z-structure on p0 : M1(Σ) → Σ. The pull-back of principal R/Z-structure by
the finite covering q0 is a principal R/nZ-structure on p : M → Σ. Then, for every x in M and every
a ∈ R the image by q0 of a.x is equal to a.q0(x). There is a map f : Σ → Homeo+(R/nZ) such that, for
every x in M , the image F (x) is the image of x under f(p(x)) ∈ Homeo+(R/nZ).

We apply Ghys’ argument as we did just after Corollary 3.6: up to isotopy on F , one can assume that
every f(x) for x in Σ is a rotation. In other words, for every x in M we have F (x) = f(p(x)).x, where
f(p(x)) in an element of R/nZ − here we are now identifying the rotation number with the rotation
homeomorphism associated with that rotation number. Let [f(p(x)] be the projection of f(p(x)) ∈ R/nZ
in R/Z. Then, the map x 7→ [f(p(x)] defines a vertical Dehn twist fω as described in Remark 3.7.

Therefore, up to replacing q0 by fω ◦ q0 where fω ∈ K1 ⊂ Mod(M1(Σ)), one can assume that both
Z/nZ-actions coincide.

Therefore, the orbit spaces N and N0 do coincide, and the projection maps ϱ0 : M → N0 and ϱ : M → N
as well.

The last step is to observe that the homeomorphisms f0 : N0 → M1(Σ) and f : N0 → M1(Σ) do not
necessarily coincide, even if N = N0. However, it means that q coincides with g ◦ q0, where g = f ◦ f−1

0 ,
meaning as required that the isotopy class of q is the image of the isotopy class of q0 under [g]. The
Proposition is proved. □

Remark 3.14. Since every element of Mod±(M1(Σ)) = Mod(M1(Σ)) is orientation-preserving (Remark
3.9) it follows from Proposition 3.13 that every finite covering over M1(Σ) is orientation-preserving, i.e.
that Cov±n = Covn.

Let In be the space of isotopy classes of Anosov flows in M . According to Theorem 3.3, every Anosov
foliation on M is the pull-back q∗Φ0 of the geodesic foliation Φ0 by a finite covering q : M → M1(Σ). It
means that the map # : Covn → In associating to (the isotopy class of) a finite covering q : M → M1(Σ)
the (the isotopy class of the) pull-back q∗Φ0 of the geodesic flow is surjective.

Corollary 3.15. The fibers of the map # : Covn → In are precisely the Mod±(Σ)0-orbits. In particular,
there is a one-to-one correspondence between In and K1 ≈ H1(Γ̄,Z).

Proof. We use Proposition 3.13. Since Mod±(Σ)0 is the stabilizer of [Φ0], the map # : Covn → In is
constant along Mod±(Σ)0-orbits. Since the exact sequence (4) is split, it follows that the restriction of #
to any K1-orbit is still surjective. The Corollary will be proved if we show that this restriction to some
K1-orbit is injective. We will show it by using the same argument as in the end of the proof of Proposition
3.11.

More precisely: let us consider the K1-orbit of the preferred finite covering q0 : M → M1(Σ) we have
selected. Let α be a non trivial element of K1 ≈ H1(Γ̄,Z). Let q be the finite covering obtained by
composing the vertical twist associated to α and q0. Assume that q∗0Φ0 and q∗Φ0 are isotopic in M . But
since q = α ◦ q0 then q∗ = q∗0 ◦ α∗.

Now consider Φ0 and Φ1 = α∗(Φ0). Since α is in K1 it follows that Φ0 and Φ1 are not isotopic in M1(Σ).
In fact, according to the discussion at the end of Section 3.2, there is some simple closed geodesic θ in
Σ representing some non-trivial element γ̄ of Γ̄ such that the periodic orbits θ0, θ1 of Φ0,Φ1 respectively
above θ are not isotopic in M1(Σ). It follows that the periodic orbits of q∗0Φ0 and q∗0Φ1 above θ are not
isotopic. But

q∗0Φ1 = (α ◦ q0)∗Φ0 = q∗Φ0.

By hypothesis q∗0Φ0 and q∗Φ0 are isotopic flows. Hence these periodic orbits should all be isotopic to
each other, since the periodic orbits in the the torus above θ are all isotopic to each other. This is a
contradiction.

The corollary is proved. □

3.4. Anosov flows on circle bundles over closed surfaces up to orbital equivalence. In this
subsection, we still denote by M a fixed closed orientable circle bundle, which admits a finite covering of



ORBITAL EQUIVALENCE CLASSES OF FINITE COVERINGS OF GEODESIC FLOWS 13

degree n along the fibers over M1(Σ). We will study orbital equivalences of Anosovflows on M , i.e. finite
coverings of geodesic flows. For this purpose, we change our point of view and consider the geodesic flow
as an algebraic flow (cf. Section 3.1.1). Hence finite coverings can be described as quotients of P̃SL(2,R)
by a subgroup Γ of index n in the lattice Γ̃.

Definition 3.16. Let Gn be the set of subgroups Γ of Γ̃ such that:
– the restriction of p0∗ : Γ̃ → Γ̄ to Γ is surjective,
– Γ has finite index n in Γ̃

In other words, Gn is the set of subgroups of Γ̃ corresponding to finite coverings of degree n along the
fibers. Observe that for any element Γ of Gn, the center Z(Γ) is the intersection between Γ and the center
of Γ̃. More precisely, if h denotes a generator of the center of Γ̃ (corresponding to fibers of M1(Σ)), the
center is generated by hn. Therefore, the first condition in Definition 3.16 means that the quotient group
Γ/Z(Γ) is isomorphic to Γ̄.

According to Ghys’s Theorem, any Anosov flow on M is orbitally equivalent to the flow on Γ\P̃SL(2,R)
induced by the right action of the diagonal group D for some element Γ of Gn (see subsection 3.1.1). We
will denote by ΦΓ this flow.

The key observation we want to start with is that Mod(M1(Σ)) acts naturally on Gn. Indeed: let [F ]
be a element of Mod(M1(Σ)), represented by some homeomorphism F on M1(Σ). Let F∗ be the action
on π1(M1(Σ)) ≈ Γ̃. This automorphism of Γ̃ is defined up to inner automorphism, but we claim that for
any element Γ of Gn, the subgroup F∗(Γ) does not depend on this choice.

Indeed: let γ̃ be any element of Γ̃. Then, according to the first property in Definition 3.16, there is an
element γ of Γ and an integer k such that γ̃ = γhk. Then, since h lies in the center of Γ̃, the conjugate
of Γ under γ̃ is equal to its conjugate by γ, and therefore itself since γ lies in Γ. The claim is proved.

Moreover, since F∗ must preserves the kernel of p0∗ (because it is the center of Γ̃), the image F∗(Γ) is
still an element of Gn. We have proved our first key observation.

Therefore, the subgroup Mod±(Σ)0 acts naturally on Gn.
More precisely, let φ be an automorphism of Γ̄, representing an element [φ] of Out(Γ̄) ≈ Mod±(Σ),

therefore an element of Mod±(Σ)0. As explained in Remarks 3.8, 3.9, φ induces an homeomorphism F
in M1(Σ), which is an self orbital equivalence of the geodesic flow. Therefore, φ maps every element Γ of
Gn to the subgroup F∗(Γ). Now, for every element γ of Γ let f∗(γ) be the image under p0∗ of F∗(γ). If
γ′ is another element of Γ admitting the same projection in Γ̄ than γ, there is some integer k such that
γ′ = hkγ. Then:

F∗(γ
′) = F∗(γ)F∗(h)

k = F∗(γ)h
±k.

Therefore, f∗(γ′) = f∗(γ), and actually since the projection by p0∗ restricted to Γ and F∗(Γ) as well is
surjective, f∗ defines an automorphism of Γ̄ into itself, well-defined up to inner automorphims. Actually,
it follows from our construction that this automorphism, up to some inner automorphism, coincides with
the initial automorphism φ.

We can now state the main result of this subsection:
Proposition 3.17. Let Γ, Γ′ be two elements of Gn. Then, ΦΓ and ΦΓ′ are orbitally equivalent if and
only if Γ and Γ′ lie in the same orbit under the action of Mod±(Σ)0 on Gn.
Proof. Since the homeomorphisms of M1(Σ) send a geodesic flow foliation to a geodesic flow foliation, it
is quite clear that if Γ and Γ′ lie on the same Mod±(Σ)0-orbit, the associated Anosov flows are orbitally
equivalent - there is a homeomorphism between Γ\M̃ and Γ′\M̃ mapping the first finite covering of the
geodesic flow to a flow isotopic to the second finite covering of the geodesic flow.

Assume now that the Anosov flows associated to Γ and Γ′ are orbitally equivalent. It means that there
is an orbital equivalence between Φ̃ (which is the lift to the universal cover of the geodesic flow on the
surface) and itself. This induces a homeomorphism F : O → O on the orbit space.

Furthermore, this orbital equivalence preserves the stable and unstable foliations, and therefore induces
homeomorphisms F s and F u of the leaf spaces Qs and Qu, respectively.

The orbital equivalence induces a morphism F∗ : Γ → Γ′, such that, for every element γ of Γ:

F ◦ γ = F∗(γ) ◦ F (5)
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Here we are abusing notation and also denoting by F a lift of the orbital equivalence in question.
Similarly:

F s ◦ γ = F∗(γ) ◦ F s

F u ◦ γ = F∗(γ) ◦ F u

According to the discussion just before the statement of Proposition 3.17, if we replace Γ′ by some
element of its Mod±(Σ)0-orbit, one can assume that F∗ induces a trivial element of Out(Γ̄). Therefore,
there exists an element γ0 of Γ and a map α : Γ → Z such that:

∀γ ∈ Γ F∗(γ) = hα(γ)γ0γγ
−1
0 .

Replace F by F ◦ γ−1
0 , which is still an orbital equivalence between Φ̃ and itself. Then:

∀γ ∈ Γ F∗(γ) = hα(γ)γ.

It follows that α : Γ → Z is a group homomorphism.
Recall (Section 3.1.3) that in the case of the geodesic flow there is an identification between O and the

region Ω0 of R̃P
1
× R̃P

1
between the graphs of the identity map and the graph of δ, where δ generates

the center of P̃SL(2,R). Then, there is some homeomorphism F̄ : R̃P
1
→ R̃P

1
(corresponding to F s

or F u when Qs or Qu is identified with R̃P
1
) so that F corresponds to the map (x, y) 7→ (F̄ (x), F̄ (y)).

Here we are using the identification of Qu with Qs via the map β−1, see Remark 2.5. Since this diagonal
map must preserve Ω0, it follows that for every x in R̃P

1
we have (F̄ (x), F̄ (δx)) = (F̄ (x), δF̄ (x)), hence

F̄ ◦ δ = δ ◦ F̄ .
It follows that F̄ induces a map g on RP 1. Equation (5) and the equation F∗(γ) = hα(γ)γ above imply

that the induced map g in RP 1 commutes with the action of Γ̄ on RP 1. Since fixed points of elements of
Γ̄ in RP 1 are dense, such a map g is necessarily the identity map of RP 1. It follows that F̄ is equal to
some power δk. In other words, the map F coincides with the action on O of some power hk. Equation
(5) implies that F∗ is trivial, that is F∗ is the identity map. Hence the morphism α is trivial, and Γ′

coincides with Γ.
The Proposition is proved. □

4. Counting the number of orbits of the action of the modular group on the set of
finite index subgroups

It follows from Proposition 3.17 that the description of orbital equivalence classes of Anosov foliations in
M reduces to the description of the action of Mod±(Σ)0 ≈ Mod±(Σ) on Gn. For that purpose, in this
section, we provide a convenient parametrization of Gn by H1(Γ̄,Z/nZ), so that the action of the modular
group appears as preserving the natural affine structure of H1(Γ̄,Z/nZ).

Let Γ, Γ′ be two elements of Gn. The restrictions of p0∗ : Γ̃ → Γ̄ to Γ and Γ′ are both surjective, with
kernel the subgroup nZ generated by hn of the center Z of Γ̃. For every element γ of Γ, there is some
integer α(γ) such that hα(γ)γ lies in Γ′. More precisely, two elements of Γ′ (or Γ) project on the same
element of Γ̄ if and only if their “difference” is an iterate of hn.

Therefore, the integer α(γ) is unique modulo n, and only depends on the projection p0∗(γ). It defines
an application

ᾱ : Γ̄ → Z/nZ
and it is easy to check that this application is a morphism. This element of H1(Γ̄,Z/nZ) can be seen as
the difference between the two elements Γ and Γ′.

Now fix Γ and let Γ′ vary in Gn. Each Γ′ in Gn has an associated morphism ᾱ, which for simplicity of
notation we omit the dependence of ᾱ on Γ′. We study the association Γ′ → ᾱ. For any Γ′ in Gn, and for
any γ′1, γ

′
2 ∈ Γ′ with p0∗(γ

′
1) = p0∗(γ

′
2) then γ′2 = hniγ′1 for some i integer, and for any i integer, such γ′2 is

in Γ′. It follows that Γ′ is determined by ᾱ, that is, the association Γ′ to its ᾱ function is injective. On
the other hand given a morphism ᾱ : Γ̄ → Z/nZ, one builds a subset Γ′ of Γ̃ as follows: for each γ̄ in Γ̄

choose γ in Γ with p0∗(γ) = γ̄ and consider all γ′ ∈ Γ̃ so that γ′ = ha+niγ, where i is any integer and a
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is a fixed integer so that a = ᾱ(γ̄) mod n. It is easy to see that Γ′ is a subgroup of Γ̃ (using that ᾱ is a
morphism), that it has index n, and that p0∗(Γ

′) = Γ̄. It follows that the association Γ′ to ᾱ is surjective,
so in fact this association is a bijection.

As a corollary, it is easy to see that Gn is an affine space with underlying Z/nZ-module H1(Γ̄,Z/nZ)
(which is a genuine vector space when n is prime for example), and it follows from the discussion just
before Proposition 3.17 that the action of Mod±(Σ)0 on Gn preserves this affine structure. It is an affine
structure because there is no obvious origin − recall that we picked an element Γ ∈ Gn to start with.

Remark 4.1. There is another way to express this identification between Gn and H1(Γ̄,Z/nZ). Let Γ̂n

be the quotient of Γ̃ by the normal subgroup generated by hn. There is an exact sequence:

0 → Z/nZ → Γ̂n → Γ̄ → 1 (6)

which now is split since n divides the Euler class. Then, the projection in Γ̂n of an element Γ of Gn is a
subgroup whose projection to Γ̄ is an isomorphism. Hence, it provides a splitting of (6), and this provides
a one-to-one correspondance between Gn and the set of splittings of (6). This last one is notoriously
H1(Γ̄,Z/nZ).

We start with still another way to describe elements of Gn, but this time well-suited for describing the
action of Mod±(Σ) on Gn.

Consider the section σ0 : Γ̄ → Γ̃ defined in Remark 3.1. We recall that it is the map associating to
every element of γ̄ in Γ̄ the element γ̃ in (p0∗)

−1(γ̄) preserving an orbit of the lifted geodesic flow. For this,
it is good to realize Γ̄ as an uniform lattice in PSL(2,R), and Γ̃ as a lattice in P̃SL(2,R), acting on R̃P

1
.

For every γ̄ in Γ̄, σ0(γ̄) is the unique element in Γ̃ above γ̄ admitting a fixed point in R̃P
1
.

The section σ0 is not a morphism, recall Remark 3.1 (the difference between h and δ is simply that the
first generates the center of Γ̃ whereas δ generates the center of P̃SL(2,R); they coincide once Γ̃ identified
as a lattice in P̃SL(2,R)). Therefore

σ0(γ̄1γ̄2) = hc(γ̄1,γ̄2)σ0(γ̄1)σ0(γ̄2) (7)

where c is the Euler cocycle.
For every γ̄ in Γ̄ the element σ0(γ̄)

−1 preserves the same orbit than σ0(γ̄), hence:

σ0(γ̄
−1) = σ0(γ̄)

−1 (8)

Moreover, σ0 is equivariant with respect to inner automorphisms: for every γ0 in Γ̃ we have:

σ0(γ̄0γ̄γ̄
−1
0 ) = γ0σ0(γ̄)γ

−1
0 (9)

where γ̄0 = p0∗(γ0). Indeed, the conjugate γ0σ0(γ̄)γ
−1
0 preserves the image under γ0 of the orbit preserved

by σ0(γ̄).
Let us now see how to parametrize Gn. Let σ : Γ̄ → Γ̂n be a morphism representing an element of Gn

(cf. Remark 4.1). Then, there is a map ν : Γ̄ → Z/nZ defined by:

σ(γ̄) = σ̄0(γ̄)h̄
ν(γ̄)

where σ̄0(γ̄) and h̄ are the projections in Γ̂n of σ0(γ̄) and h.
As was the case for the map ᾱ it follows that the association Γ′ ∈ Gn to ν is injective. The map ν is

more complicated than the map ᾱ in the following ways:
First, the map ν is not a morphism, but must satisfy the following equation, for every pair (γ̄1, γ̄2) of

elements of Γ̄:
ν(γ̄1γ̄2) = ν(γ̄1) + ν(γ̄2)− c(γ̄1, γ̄2), (10)

where the equation should be understood in Z/nZ. In other words, we are equating c(γ̄1, γ̄2) which is an
integer, with its projection in Z/nZ. The equation above means that the coboundary of the 1-cochain ν is
the 2-cocycle c: the Euler class of the surface with coefficients in Z/nZ is indeed trivial, i.e. a coboundary.

We see once again the affine space structure of Gn over H1(Γ̄,Z/nZ) since the difference of such cochains
are morphisms.

It follows from (8) that we have:
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ν(γ̄−1) = −ν(γ̄) (11)

Moreover, for any γ0 in Γ̃, we have σ0(γ̄0) = γ0h
k for some k, where as usual γ̄0 = p0∗(γ0). Therefore,

we have the equality γ0σ0(γ̄)γ
−1
0 = σ0(γ̄0)σ0(γ̄)(σ0(γ̄0))

−1. So by equation (9) we have

σ0(γ̄0γ̄γ̄
−1) = γ0σ0(γ̄)γ

−1
0 = σ(γ̄0)σ0(γ̄)(σ(γ̄0))

−1

and this implies that

ν(γ̄0γ̄γ̄
−1
0 ) = ν(γ̄) (12)

The next step is now to describe the affine action of Mod±(Σ) ≈ Out(Γ̄) on Gn in the ν-coordinates.We
will do it by describing the action of any automorphism of Γ̄.

Let f̄ be a diffeomorphism of Σ, and we denote by [f̄ ] its isotopy class, i.e. the element of Mod±(Σ) ≈
Out(Γ̄) it represents. Let [f̄ ]∗ denote one automorphism of Γ̄ representing the action of [f̄ ] on Γ̄.

Lemma 4.2. The action of the element [f̄ ] of Mod±(Σ) on Gn, in terms of the maps ν : Γ̄ → Z/nZ
above, is:

[f̄ ] ∗ ν = ±ν ◦ [f̄ ]−1
∗

The ± depends on whether the element [f̄ ] is orientation preserving or not, i.e. in Mod(Σ) (the sign is
+), or in Mod−(Σ) (the sign is −).

Observe that, due to equation (12) the term ν ◦ [f̄ ]−1
∗ is well-defined despite of the fact that [f̄ ]∗ is

well-defined only up to inner automorphisms.

Proof. According to Remark 3.8 the diagonal action of the selected representative of [f̄ ]∗ on the set of
triples X defines an homeomorphism f of M1(Σ) that maps the geodesic flow Φ0 onto itself. It lifts to
a map f̃ : M̃ → M̃ permuting the orbits of Φ̃0. There is an automorphism [f ]∗ : Γ̃ → Γ̃ so that f̃ is
[f ]∗-equivariant. Given τ in Γ̃ then [f ]∗(τ) is the only element of Γ̃ so that for any x ∈ M̃ , then

f̃(τ(x)) = [f ]∗(τ)(f̃(x)).

Once again, [f ]∗ is well-defined only up to inner automorphisms; we select one representative. If necessary,
we change our previous choice of [f̄ ]∗ so that it coincides with the automorphism of Γ̄ induced by [f ]∗.

For any element γ̄ of Γ̄, by definition, σ0(γ̄) is the only element of Γ̃ above γ̄ preserving some orbit θ̃

of Φ̃0. Then, [f ]∗(σ0(γ̄)) is an element of Γ̃ above [f̄ ]∗(γ̄) preserving some orbit of Φ̃0, namely f̃(θ̃). This
follows from the definition of [f ]∗. Therefore:

σ0([f̄ ]∗(γ̄)) = [f ]∗(σ0(γ̄)) (13)
Let us now consider an element of Gn. We have seen two ways to describe it:
– either by some morphism σ : Γ̄ → Γ̂n,
– or a map ν : Γ̄ → Z/nZ.
The link between the two is given by the formula defining ν:

∀γ̄ ∈ Γ̄ σ(γ̄) = σ̄0(γ̄)h̄
ν(γ̄)

The morphism map [f ]∗ : Γ̃ → Γ̃ preserves the normal subgroup generated by hn, therefore induces a
morphism [f ]∗n : Γ̂n → Γ̂n.

For any element Γ of Gn, the image under [f̄ ] of Γ is the subgroup [f ]∗(Γ). It follows that if Γ
corresponds to the morphism σ, then [f ]∗(Γ) corresponds to the morphism σ′ = [f ]∗n ◦ σ ◦ [f̄ ]−1

∗ : First let
ℓ : Γ̃ → Γ̂n be the projection. We have that σ(Γ̄) = ℓ(Γ). In addition [f ]∗(Γ) = Γ′. So it would be natural
to consider the map [f ]∗n ◦ σ to be the morphism associated to Γ′. However if we compose [f ]∗n ◦ σ with
the projection from Γ̂n to Γ̄ we do not get the identity, we get [f̄ ]∗. Therefore precomposition with [f̄ ]−1

∗
has this property and is the map associated with Γ′.

On the other hand, let denote by ν ′ the map from Γ̄ to Z/nZ corresponding to [f ]∗(Γ). For any element
γ̄ of Γ̄:
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Figure 1: A collection of oriented loops (ā1, b̄1, . . . , āg, b̄g) forming a symplectic basis in homology, here for g = 4.
The surface is considered has the boundary of an handlebody in R3 and the orientation of the surface is given by
the normal vector pointing out the handlebody.

σ̄0(γ̄)h̄
ν′(γ̄) = σ′(γ̄)

= [f ]∗n(σ([f̄ ]
−1
∗ (γ̄)))

= [f ]∗n(σ̄0([f̄ ]
−1
∗ (γ̄))h̄ν([f̄ ]

−1
∗ (γ̄)))

= [f ]∗n(σ̄0([f̄ ]
−1
∗ (γ̄)))h̄±ν([f̄ ]−1

∗ (γ)) since [f ]∗n is a morphism preserving < h̄ >

= σ̄0(γ̄)h̄
±ν([f̄ ]−1

∗ (γ̄)) according to (13)

If f̄ preserves orientation in Σ then f∗ preserves h̄, if h̄ reverses orientation then f∗ sends h̄ to its inverse.
Therefore, the sign in ±ν([f̄ ]−1

∗ (γ̄)) is given by the fact that f̄ preserves orientation or not. The Lemma
is proved. □

Let us now fix a generator system of Γ̄ satisfying the usual presentation:

Γ̄ = ⟨āi, b̄i (i = 1, ..., g) | [ā1, b̄1][ā2, b̄2]...[āg, b̄g] = 1⟩

More precisely, we select a base point x0, and take such a generator system so that every āi and b̄i
is represented by a loop, such that the homology classes [āi] and [b̄j ] form a symplectic basis for the
intersection form (i.e. the intersection numbers [āi].[āj ] and [b̄i].[b̄j ] all vanish, and [āi].[b̄j ] as well except
in the case i = j where we have [āi].[b̄i] = +1). We furthermore require that the only intersection between
any two such loops is the base point x0, and another single intersection point between the i-th loops āi
and b̄i. See Figure 1, for a collection of loops isotopic to one satisfying these properties. Denote by ai and
bi the images of āi and b̄i by σ0, respectively.

Lemma 4.2 describes the way that Mod±(Σ) acts on Gn, and we will now do the actual computation
of this action. For this, we use the explicit generating system for Mod(Σ) provided by the Lickorish
Theorem. Let Ai, Bi and Cj the simple closed curves depicted in Figure 2 (1 ≤ i ≤ g, 1 ≤ j ≤ g − 1).
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Figure 2: According to Lickorish’s Theorem, Dehn twists along these simple closed curves generate the mapping
class group.

a3-1-1.png

Figure 3: Definition of ā′2, ā′3, c̄′2.

Theorem 4.3 (Lickorish [Lic]). Let (A1, B1, ..., Ag, Bg, C1, . . . , Cg−1) the system of simple closed curves
depicted in figure 2. Then, the Dehn twists along these curves generate Mod(Σ).

Slightly abusively, we will also denote by Ai, Bi and Cj the Dehn twists along these curves, and by
[Ai]∗, [Bi]∗, [Cj ]∗ the induced automorphisms of Γ̄ ≈ π1(Σ, x0).

It follows from Figure 2 that for every i between 1 and g that [Ai]∗ maps every generator āj and b̄j
onto itself, except b̄i for which we have:

[Ai]∗(b̄i) = āib̄i.

Therefore:
[Ai]

−1
∗ (b̄i) = ā−1

i b̄i. (14)
Similarly [Bi]∗ maps every generator onto itself except āi for which we have:

[Bi]∗(āi) = āib̄
−1
i .

Hence:
[Bi]

−1
∗ (āi) = āib̄i. (15)

The computation of the action of [Ci]∗ (1 ≤ i ≤ g − 1) is more intricate. Let c̄i be the element of
Γ̄ defined by the loop describing first the initial part of āi until it reaches Ci, then following Ci in the
direction depicted in Figure 2, then going back to x0 by the path it uses to reach Ci. Then, [Ci]∗ acts
trivially on every āj for j ̸= i, and also on every b̄j , except for j = i and j = i+ 1. Furthermore:

[Ci]∗(āi) = c̄iāic̄
−1
i
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[Ci]∗(b̄i) = c̄ib̄i

[Ci]∗(b̄i+1) = b̄i+1c̄
−1
i

Therefore, the inverse of [Ci]∗ satisfies:

[Ci]
−1
∗ (āi) = c̄−1

i āic̄i, [Ci]
−1
∗ (b̄i) = c̄−1

i b̄i, [Ci]
−1
∗ (b̄i+1) = b̄i+1c̄i. (16)

Now we claim the following equality:

c̄i = āib̄
−1
i+1ā

−1
i+1b̄i+1 (17)

Indeed: introduce a new base point x1 as depicted in Figure 3, and paths a′i, a
′
i+1 and c′i. Let ā′i be the

loop based at x1 following first a′i, then turning around Ai, and going back to x1 along a′i. Define similarly
ā′i+1 and c̄′i. For simplicity we omit the dependence of x1 on i.

It follows from this picture that we have c̄′i = ā′i(ā
′
i+1)

−1.
Consider now the path ℓ going from x0 to x1 going along āi until reaching Ci, and then reaching x1

along c′i. We isotope c′i so that it intersects Ci at the same point that āi does. Let ā′′i , ā
′′
i+1 and c̄′′i be

the loops starting from x0, following ℓ, turning along ā′i, ā
′
i+1 and c̄′i respectively before going back to x0

along ℓ. Clearly, ā′′i is homotopic to āi, and c̄′′i is homotopic to c̄i. Therefore, up to homotopy (based at
x0):

c̄i ≈ āi(ā
′′
i+1)

−1

But the same figure shows that āi+1 is homotopic to b̄i+1ā
′′
i+1b̄

−1
i+1.

The equality (17) follows.
We can now compute how the generators Ai, Bi, Ci acts on Gn.

Proposition 4.4. Let i be an integer between 1 and g. The action of the element [Ai] of Mod(Σ)
represented by the Dehn twist Ai on Gn is given by:

[Ai] ∗ ν(āj) = ν(āj) ∀j, [Ai] ∗ ν(b̄j) = ν(b̄j) ∀j ̸= i, [Ai] ∗ ν(b̄i) = −ν(āi) + ν(b̄i).

The action of the element [Bi] of Mod(Σ) represented by Bi is:

[Bi] ∗ ν(b̄j) = ν(b̄j) ∀j, [Bi] ∗ ν(āj) = ν(āj) ∀j ̸= i, [Bi] ∗ ν(āi) = ν(āi) + ν(b̄i).

Finally, for i between 1 and g − 1, the action of the element [Ci] of Mod(Σ) represented by Ci is:

[Ci] ∗ ν(āj) = ν(āj) ∀j, [Ci] ∗ ν(b̄j) = ν(b̄j) ∀j ̸= i, i+ 1,

and
[Ci] ∗ ν(b̄i) = ν(b̄i)− ν(āi) + ν(āi+1) + 1, [Ci] ∗ ν(b̄i+1) = ν(b̄i+1) + ν(āi)− ν(āi+1)− 1

Proof. Recall that according to Lemma 4.2, for every element [f̄ ] of Mod(Σ) we have:

[f̄ ] ∗ ν = ν ◦ [f̄ ]−1
∗ .

Most formulae in the statement of the Proposition immediatly follow. The only cases we have to consider
are:

[Ai] ∗ ν(b̄i) = ν(ā−1
i b̄i) (because of Equation (14) )

= −ν(āi) + ν(b̄i)− c(ā−1
i , b̄i) (because of Equation (10) )

= −ν(āi) + ν(b̄i) (because of Lemma 3.2 )

The formula for [Bi] ∗ ν(āi) is similar.
The remaining computations we have to do are for [Ci]∗β(āi), [Ci]∗β(b̄i), and [Ci]∗β(b̄i+1). Concerning

the first, we have:
[Ci] ∗ ν(āi) = ν(c̄−1

i āic̄i) = ν(āi)

Thanks to Equations (16), (10) one gets:

[Ci] ∗ ν(b̄i) = ν(b̄i)− ν(c̄i)− c(c̄−1
i , b̄i), [Ci] ∗ ν(b̄i+1) = ν(b̄i+1) + ν(c̄i)− c(b̄i+1, c̄i).

But it follows from Lemma 3.2 that c(c̄−1
i , b̄i) and c(b̄i+1, c̄i) vanishes. Therefore:

[Ci] ∗ ν(b̄i) = ν(b̄i)− ν(c̄i), [Ci] ∗ ν(b̄i+1) = ν(b̄i+1) + ν(c̄i) (18)
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Figure 4: ∆, ∆i and ∆i+1 are preserved by respectively c̄−1, āi and (ā′′i+1)
−1. The attracting fixed point of (ā′′i+1)

−1

is x1, and the attracting fixed point of āi is x2.

Hence, the key point is to compute ν(c̄i). Since c̄i = āi(ā
′′
i+1)

−1, we have:

ν(c̄i) = ν(āi)− ν(ā′′i+1)− c(āi, (ā
′′
i+1)

−1)

Hence, we have to compute c(āi, (ā
′′
i+1)

−1). Observe that the closed simple curves Ai, Ci and Ai+1 form
the boundary of a pair of pants. If we realize it as closed geodesics for the hyperbolic metric, we see that
they are the projections of the axis of respectively āi, c̄i and (ā′′i+1)

−1 (recall Figure 3). It follows that
the axis of these elements in H2 have the configuration illustrated in Figure 4:

Consider now the lifted action in R̃P
1

is as in Figure 5. Here ai and a′′i+1 are the lifts of āi and ā′′i+1

with fixed points in R̃P
1
. Here x2, y2 are fixed by āi with x2 the attracting fixed point. This generates ai

fixing x̃2, ỹ2 (and infinitely many other pairs). Similarly (ā′′i+1)
−1 fixes x1, y1 and so on.

Claim: for every x̃ in R̃P
1

we have ai(a
′′
i+1)

−1(x̃) > x̃.

Let us prove this claim. It is enough to prove it for every x̃ in the interval [ỹ1, h(ỹ1)].
• If x̃ lies in [ỹ1, x̃2]: Then, we have (a′′i+1)

−1(x̃) > x̃. If (a′′i+1)
−1(x̃) lies in [ỹ1, x̃2], then its image

by ai increases it, so the final image is bigger than x̃. If not, then (a′′i+1)
−1(x̃) ≥ x̃2, and therefore

ai(a
′′
i+1)

−1(x̃) remains bigger or equal than x̃. The Claim is true in this case.
• If x̃ lies in [x̃2, ỹ2]: The interval [x̃2, ỹ2] is contained in the attracting region of h(x̃1) under
(a′′i+1)

−1 we therefore have (a′′i+1)
−1(x̃2) > x̃2 and (a′′i+1)

−1(ỹ2) > ỹ2. But since ∆i is the lifting of a
simple closed geodesic, ỹ2 cannot be between ai(x̃2) and ai(ỹ2). Therefore, we have (a′′i+1)

−1(x̃2) >

ỹ2: the interval (a′′i+1)
−1([x̃2, ỹ2]) is contained in the region [ỹ2, h(x̃1))] where we have ai(x̃) > x̃.

Therefore, the Claim is still true there.
• If x̃ lies in [ỹ2, h(x̃1)]: then (a′′i+1)

−1(x̃) lies in [x̃, h(x̃1)], and ai is increasing there, so the Claim
is true in this case too.

• If x̃ lies in [h(x̃1), h(ỹ1)]: Then, (a′′i+1)
−1(x̃) remains in this interval. Therefore, its image under ai

is bigger than x̃. Notice that ai is increasing in the interval [h(x̃1, h(ỹ1)]. As in the second case we
cannot have crossing of geodesics, so in fact for every x̃ in [h(x̃1, h(ỹ1] then ai(a

′′
i+1)

−1(x̃) > h(ỹ1).
The Claim follows once more.

The Claim is proved.

According to the Claim, the cocycle c(āi, (ā
′′
i+1)

−1) is positive. In addition ai(x̃1) < h(x̃1), hence
c(āi, (ā

′′
i+1)

−1) ≤ 1. It follows c(āi, (ā
′′
i+1)

−1) = 1.
Therefore:

ν(c̄i) = ν(āi)− ν(ā′′i+1)− 1
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Figure 5: Liftings in R̃P
1
. We have depicted two attracting fixed points x̃1 and h(x̃1) of (a′′i+1)

−1, and two attracting
fixed points x̃2 and h−1(x̃2) of ai.

and since ā′′i+1 is conjugated to āi+1, we get:

ν(c̄i) = ν(āi)− ν(āi+1)− 1

Equations (18) become:

[Ci] ∗ ν(b̄i) = ν(b̄i)− ν(āi) + ν(āi+1) + 1, [Ci] ∗ ν(b̄i+1) = ν(b̄i+1) + ν(āi)− ν(āi+1)− 1

Proposition 4.4 is proved. □

Equation (10) implies that the map ν : Γ̄ → Z/nZ describing an element of Gn is characterized by the
values it takes on the generating set āi, b̄i (i = 1, ..., g). In other words, one can parametrize Gn by the
n-tuples (α1, β1, . . . , αg, βg) in (Z/nZ)2g where αi is the value taken by ν at āi, and βi the value it takes
at b̄i. Observe that all morphisms are possible since one can add to any ν any morphism from Γ̄ into
Z/nZ. In particular, all the αi and βi can vanish, this corresponds to the base group Γ.

Let us decompose Gn as a sum V1 ⊕ . . . ⊕ Vg where every Vi is made of elements with coordinates
(α1, β1, . . . , αg, βg) (where αi, βi ∈ Z/nZ) satisfying αj = βj = 0 for all j ̸= i. According to Proposition
4.4, this decomposition is invariant by the subgroup G of Mod(Σ) generated by the [Ai]’s and the [Bi]’s.
More precisely, in every Vi, the actions of [Ai] and [Bi] are given by the matrices:(

1 0
−1 1

) (
1 1
0 1

)
In particular, the action of G preserves (0, ..., 0): it is linear. Moreover, these two matrices generate

the entire SL(2,Z/nZ), therefore, any element of SL(2,Z/nZ)g is realized by an element of G.
On the other hand, Proposition 4.4 shows that for every i between 1 and g − 1, the action of [Ci] is

trivial on Vj for j ̸= i, i+ 1, and that on Vi ⊕ Vi+1 this action is given by:
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
1 0 0 0 |0
−1 1 1 0 |1
0 0 1 0 |0
1 0 −1 1 | − 1


This action is not linear, and its translation part τ([Ci]∗) in the coordinate system (α1, β1, . . . , αg, βg)

is the vector satisfying βi = −βi+1 = 1 for all i, with all other coordinates vanishing.
We can now prove our Main Theorem:

Theorem 4.5. Let q0 : M → M1(Σ) be a finite covering of degree n along the fibers. Then, if n is odd,
there is only one Anosov flow on M up to orbital equivalence. If n is even, there are exactly two orbital
equivalence classes of Anosov flows.

Remark 4.6. We thank J. Bowden who had indicated to us that this Theorem is closely related to
Theorem 2.9 in [Rand], but we point out that our result concerns the case where Σ is a closed surface,
whereas Randal-Williams only considers the case of compact surfaces with non-empty boundary.

Proof. The elements of Gn are parametrized by 2g tuples (α1, β1, ..., αg, βg), with entries in Z/nZ. We
first show that any Mod(Σ) orbit contains an element of the form (0, 0, ...., 0, β) for some β in Z/nZ. From
this, we show its orbit also has the element (0, 0, ...., 0, β + 2). This reduces the number of orbits to 2.
Then we analyze separately the cases of n odd and n even, with n even being trickier.

Since any element of SL(2,Z/nZ)g is realized by an element of G, every element of Gn admits in its
G-orbit an element of the form:

(0, β1, 0, β2, . . . , 0, βg) (19)
Let us now consider the subgroup H generated by the g−1 elements C1, . . . , Cg−1. Since all the curves

c̄i are disjoint, it is an abelian group. The action of some element Ck1
1 Ck2

2 . . . C
kg−1

g−1 is:

αi → αi

βi → βi + kiαi+1 − (ki + ki−1)αi + ki−1αi−1 + ki − ki−1

where we adopt the convention k0 = kg = 0. This action does not change the value of each αi, and
moreover one can check that the sum

∑g
i=1 βi is constant along the orbits of H. We do not do an explicit

computation here, which is fairly simple. Anyway, we see that by applying a well-suited element of H, we
can transform the element of the form (19) to another one where all the αi’s and βi’s vanish, except βg,
since every αi remains null and every βi is changed by adding ki − ki−1. In other words, every element of
Gn admits in its Mod(Σ)-orbit an element of the form:

(0, 0, . . . , 0, 0, 0, β) (20)

Let us go back, applying Cg−1, we get:

(0, 0, . . . , 0, 1, 0, β − 1)

Now use an element of G mapping this element to:

(0, 0, . . . , 0, 1, β − 1, 0)

Apply Cg−1: we now get:

(0, 0, . . . , 0, β + 1, β − 1,−β)

Since β − 1 and −β are relatively prime, applying an element of G, composition of Ag’s and Bg’s, we
obtain:

(0, 0, . . . , 0, β + 1, 0, 1)

and by applying C−1−β
g−1 , we get:

(0, 0, . . . , 0, 0, 0, β + 2)
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In summary, any element of Gn admits in its Mod(Σ)-orbit an element of the form (0, 0, . . . , 0, 0, 0, β),
and admits also all the elements of the form (0, 0, . . . , 0, 0, 0, β + 2k) where k is any integer.

It follows that when n is odd, in which case 2 is a generator of Z/nZ, that every Mod(Σ)-orbit in Gn

contains (0, 0, . . . , 0, 0, 0, 0). In other words, there is only one Mod(Σ)-orbit; hence only one Mod±(Σ)-
orbit. The theorem follows in this case from Proposition 3.17.

Let us now assume that n is even. The same argument as above shows that there are at most two
Mod(Σ)-orbits in Gn: the orbit of (0, 0, . . . , 0, 0, 0, 0) and the orbit of (0, 0, . . . , 0, 0, 0, 1). The proof of the
Theorem will be finished if we prove that these two orbits are disjoint.

Since n is even, every αi and βi, which is an integer modulo n, defines an element ᾱi and β̄i of Z/2Z.
In other words, there is a well-defined morphism Gn → G2. This morphism is Mod±(Σ)-equivariant −
this follows from Proposition 4.4 which shows that the action in G2 is obtained from taking the action
on Gn and projecting it to modulo 2. Therefore, if the Mod±(Σ)-orbits of (0, 0, . . . , 0, 0, 0, 0) and of
(0, 0, . . . , 0, 0, 0, 1) are different in G2, they are also different in Gn.

Hence, in order to achieve the proof of the Theorem, we just have to consider the case n = 2.
For every element of G2 = V1 ⊕ . . . ⊕ Vg, let us call vanishing number the number of indices i for

which the components in Vi are zero. More precisely, the vanishing number is this integer modulo 2. For
example, the vanishing number for (0, 0, . . . , 0, 0, 0, 0) is the class modulo 2 of 0, whereas the vanishing
number for (0, 0, . . . , 0, 0, 0, 1) is the class modulo 2 of 1: they are different.

Claim: The vanishing number is constant along Mod(Σ)-orbits.

Let us prove the claim: clearly, the vanishing number does not change under the action of Ai or Bi,
since they act in Vi as elements of SL(2,Z/2Z).

Let us consider Ci (1 ≤ i ≤ g − 1). It acts trivially on every Vj except maybe Vi and Vi+1. We refer to
the explicit formula for the action of Ci on (αi, βi, αi+1, βi+1) given in the beginning of the proof of this
theorem.

– If αi = αi+1 = 1, the components in Vi and Vi+1 are nonzero, and the same is true after applying Ci

since we still have after the action αi = αi+1 = 1: the vanishing number remains the same.
– If αi ̸= αi+1, then, since we are in Z/2Z, we have αi+1 − αi + 1 = 0, and it follows that Ci acts

trivially on such an element: the vanishing number remains the same in this case too.
– If αi = αi+1 = 0: then we have:

Ci(0, βi, 0, βi+1) = (0, βi + 1, 0, βi+1 + 1)

Hence, if βi = βi+1 = 0, or if βi = βi+1 = 1, the vanishing number before and after Ci differ by 2, hence
is the same modulo 2. If βi ̸= βi+1, one component vanishes and not the other, and the same is true after
applying Ci.

We have proved the Claim. Since the vanishing numbers of (0, 0, . . . , 0, 0, 0, 0) and (0, 0, . . . , 0, 0, 0, 1)
are different, they cannot be in the same Mod(Σ)-orbit.

The only remaining step is to show that the vanishing number is also preserved by orientation reversing
elements of Mod±(Σ). For this, we just have to prove that it is true for one of them. Let us consider
the horizontal plane P such that the surface is symetric relatively to the symetry s in P . We can isotop
every Bi such that they are all contained in P , hence preserved by s (including their orientation), and
such that every Ai is orthogonal to P and preserved by s, but with the reversed orientation. We refer to
figure 2: we can choose s so that it preserves the loops Ai, Bi in figure 2. One can assume, and we do,
that the base point x0 is in P , hence fixed by s, and that for every i, the portion âi (respectively b̂i) of
the loop āi (respectively b̄i) joining x0 to Ai (respectively Bi) lies above P , and, in addition, in the case
of āi, this portion reaches Ai at its intersection with P.

Then, the composition of âi (respectively b̂i) with its image under s provides a loop âsi (respectively b̂si )
based at x0. It follows from these choices that b̄i (respectively āi) is conjugated by b̂si (respectively âsi ) to
itself (respctively to its inverse).

Therefore, according to Lemma 4.2, and since s is orientation reversing, the action of [s] on G2 (or Gn)
is given by, for all j:
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DD.png

Figure 6: g − 1 non separating curves on the surface.

[s] ∗ ν(aj) = ν(aj)

[s] ∗ ν(b̄j) = −ν(b̄j)

This obviously preserves the vanishing number. Thus concludes the proof of Theorem 4.5. □

We end this Section with a proposition showing that the image in Aff(Gn) of Mod(Σ) is isomorphic to
Sp(2g,Z/nZ).

Proposition 4.7. The Torelli group acts trivially on Gn.

Proof. By definition, an element of the Torelli group is an element of Mod±(Σ) which acts trivially in
homology. In particular it is orientation preserving. It also follows that its linear part is the identity.
But it could still act on Gn as a translation. However, by a Theorem of Johnson ([Joh]) combined with a
Theorem of Powell in the case g = 2 ([Pow]), the Torelli group is generated by:

– Dehn twists along separating non-homotopically trivial simple closed curves in the case g = 2,
– compositions T1T

−1
2 where T1 and T2 are left Dehn twists along simple closed curves that are boundary

of a compact surface of genus 1 embedded in Σ (in the case g ≥ 3).
Consider the red simple closed curves D1, . . . , Dg−1 depicted in Figure 6. In the case g = 2, there is

only one such a curve D1, and every separating, homotopically non-trivial simple closed curve in Σ is
the image of D1 under some homeomorphism. Therefore, it follows that in this case the Torelli group is
generated by the conjugates of T1.

In the case g ≥ 3 any pair of simple closed curves bounding a genus 1 surface embedded in Σ is the image
under some homeomorphism of the region of Σ between two successive loops Di and Di+1. Therefore, the
Torelli group is generated by conjugates of one of the TiT

−1
i+1.

Therefore, in order to prove the proposition we just have to show that every Ti acts trivially on Gn.
But every Di are disjoint from the loops Ai and Bi. Therefore the Dehn twists along Di preserves the

conjugacy classes of āi and b̄i. It follows that every Ti acts trivially on Gn.
□

Remark 4.8. According to proposition 4.7, the action of Mod(Σ) on Gn induces a (faithful) affine
action of Sp(2g,Z/nZ) on the torus Gn ≈ (Z/nZ)2g whose linear part is the canonical representation of
Sp(2g,Z/nZ). But this action is affine and admits a non-trivial translation part [τ ], that represents a
non-trivial element of H1(Sp(2g,Z/nZ), (Z/nZ)2g).

This feature is in contrast with the fact that H1(Sp(2g,Z), (Z)2g) vanishes.

Remark 4.9. In [Gi], E. Giroux considered a related problem: the classification of contact structures on
the circle bundle M up to isotopy and up to conjugation by a diffeomorphism. A case of interest for us is
the case of universally tight contact structures, with wrapping number −n. E. Giroux shows that they are
all isotopic to the pull-back q∗α0 by some finite covering q : M → M1(Σ) along the fibers, where α0 is the
contact 1-form on M1(Σ) whose Reeb flow is the geodesic flow (for some hyperbolic Riemannian metric).
According to Ghys’ Theorem (see Theorem 3.3), Anosov flows on M are always isotopic to the Reeb flow
of such a structure. Clearly, an isotopy between contact structures provides an isotopy between their
Reeb flows, i.e. Anosov flows, and vice-versa. Similarly, there is a one-to-one correspondence between
conjugacy classes of these contact structures and orbital equivalence classes of Anosov foliations.

As a matter of fact, Giroux obtains a classification of isotopy classes similar as we do here: the action
of K1 on these contact structures is simply transitive. Actually, it follows from Giroux’s work and the
results in the present paper that these two classification problems are equivalent.
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Giroux furthermore claims to have classified conjugacy classes, and to show that the number of con-
jugacy classes of these contact structures is the number φ(n) of divisors of n ([Gi, Theorem 3.1 and
Proposition 3.10]). Hence, this statement is in contradiction with our Theorem 4.5.

The point is that Giroux’s proof is not completely correct at its concluding step: in the proof of
Proposition 3.10, he implicitly assumes that the action of Mod(Σ) on the space Gn of index n subgroups
along the fiber is linear, whereas this action is genuinely affine, as shown in the present article.
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