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Abstract

We study the asymptotic Maslov index for surface diffeomorphisms. Roughly speaking,
this quantity is the limit of the average rotational velocity of tangent vectors which evolve
under the action of the differential of the diffeomorphism. For twist maps on the annulus,
we prove that the set of points of zero index has Hausdorff dimension at least one. In the
framework of conservative twist maps, we show that every bounded instability region has a
positive Lebesgue measure set of points with non zero index. Finally, we study such index
in the presence of periodic hyperbolic points with transverse homoclinic intersections,
providing examples of points at which the asymptotic Maslov index does not exist.





Résumé

Nous étudions l’indice de Maslov asymptotique pour de difféomorphismes de surface. En
mots, cette quantité est la limite de la vitesse angulaire moyenne des vecteurs tangents
qui évoluent sous l’action de la différentielle du difféomorphisme. Pour des applications
déviant la verticale de l’anneau, nous montrons que l’ensemble des points d’indice nul
a une dimension d’Hausdorff supérieure ou égale à 1. Dans le cadre des applications
déviant la verticale conservatives, nous prouvons que chaque région d’instabilité bornée a
un ensemble de mesure de Lebesgue positive de points d’indice non nul. Finalement, nous
étudions cet indice en présence de points périodiques hyperboliques avec intersections
homoclines transverses, en donnant des exemples de points auxquels l’indice de Maslov
asymptotique n’existe pas.
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Notations

T : 1-dimensional torus R/Z

T2 : 2-dimensional torus R2/Z2

A : unbounded annulus T× R

p : R → T : universal covering of the 1-dimensional torus

p× Id : R2 → A : universal covering of the annulus

p1, p2 : projections over R2 on the first and second coordinates

p̄1, p̄2 : projections over A on the first and second coordinates

Diff 1(M,N) : set of C1 diffeomorphisms from M to N

R(a, ψ) : rotation in R2 centered at a of angle ψ

τv : translation in R2 of vector v

θ(u, v) : oriented angle between the non zero vectors u, v

I = (ft)t : isotopy joining the identity to f = f1

X : reference continuous vector field to fix the trivialization

v(I)(x, ξ, ·) : oriented angle function between X(ft(x)) and Dft(x)ξ (Def. 1.1.1)

ṽ(I)(x, ξ, ·) : lift of the oriented angle function v(I)(x, ξ, ·)
Torsionn(I, x, ξ) : torsion at finite time n of x with respect to the vector ξ (Def. 1.1.2)

Torsionn(f, x, ξ) : torsion at finite time n of x with respect to the vector ξ when it is
independent from the chosen isotopy

Torsion(I, x) : torsion of the orbit of x (Def. 1.1.3)

Torsion(f, x) : torsion of the orbit of x when it is independent from the chosen isotopy

Torsion(I, µ) : torsion of the f -invariant measure µ (Def. 1.1.4)

Torsion(f, µ) : torsion of the f -invariant measure µ when it is independent from the
chosen isotopy

GL(2,R) : linear group of degree 2 of R

GL+(2,R) : subgroup of GL(2,R) of matrices with positive determinant

H : constant horizontal vector (1, 0)

χ : constant vertical vector (0, 1)

P : R2 → T2 : universal covering of the 2-dimensional torus

CC(U, x) : connected component of U containing x

Es
q , E

u
q : stable and unstable subspaces of a hyperbolic point q

W s(q),W u(q) : stable and unstable manifolds of the point q

i



W s
loc,ε(q),W

u
loc,ε(q) : local stable and unstable manifolds of the point q

O(x, f) : orbit of x with respect to f

Bn
r (x) : n-dimensional ball of radius r and centre x

Bn
r (x) : closure of the n-dimensional ball of radius r and centre x

Linkingn(I, x, y) : linking number at finite time n of the points x, y ∈ R2, x 6= y (Def.
1.2.1)

Linking(I, x, y) : linking number of x, y ∈ R2, x 6= y (Def. 1.2.1)

∆ : diagonal in R4, i.e. {(z1, z2) ∈ R4 : z1 = z2}
dimH(U) : Hausdorff dimension of the set U

IU(·) : characteristic function of the set U

I (f) : union of invariant continuous graphs of conservative twist map f on A (Notation
3.1.2)

N (f) : complement set of I (f) in A (Notation 3.1.2)

Vx : vertical line passing through the point x

V (x) : vertical subspace in TxR2, i.e. ker(Dp1TxR2)

(xn)n∈Z : configuration for F lift of a conservative twist map (Def. 3.2.2)

L ((xn)n∈Z) : Aubry diagram of (xn)n∈Z (Def. 3.2.3)

C(D) : set of configurations (xn)n∈Z such that (xn, xn+1) ∈ D ∀n
M : set of minimizing configurations (Def. 3.2.7)

M (D) : set of minimizing configurations among C(D) (Def. 3.2.7)

ρ((xn)n∈Z) : rotation number of the minimizing configuration (xn)n∈Z (Prop. 3.2.7)

Mρ : set of minimizing configurations with rotation number ρ

q : hyperbolic fixed point for fN = f

p : transverse homoclinic point of q for fN = f

Oε : adapted neighborhood of q for O(p, f) with respect to ε (Def. 4.2.3)

Uε : adapted neighborhood of {q} ∪ O(p, f) with respect to ε (Def. 4.2.4)

H(Uε, j) : fN -invariant horseshoe in Uε for p (Def. 4.3.2)

Λ(Uε) : maximal f -invariant set in Uε (Notation 4.2.3)
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Introduction

Let us consider a symplectic smooth dynamical system. This thesis looks after rela-
tions between some properties of the dynamical system and the possible values of the
so-called asymptotic Maslov index.
Roughly speaking, on surfaces this quantity describes how vectors asymptotically “turn”
under the action of the differential of the dynamical system (see [BB13]).
In higher dimensions, the asymptotic Maslov index is defined in the symplectic framework,
for example for Hamiltonian flows and when looking at action over Lagrangian subspaces
(see [CGIP03] and [AF08]).
Although the notion of Maslov index was first introduced by V. I. Arnold in [Arn67],
the definition of asymptotic Maslov index has first appeared in the work of D. Ruelle in
[Rue85] in 1985.
In this thesis we are interested in asymptotic Maslov indices for surface diffeomorphism.
Different names denote the same notion: asymptotic Maslov index, Ruelle’s rotation num-
ber, Béguin and Boubaker’s torsion, . . . From now on, we refer to it as torsion.

Let S be a parallelizable (not necessarily compact) Riemannian surface, that is a
Riemannian surface whose tangent bundle is trivial. Examples of parallelizables surfaces
are the annulus A = T× R, the annulus with a finite number of holes, the torus T2, the
disk D2 (eventually with a finite number of holes), . . . . Instead, neither the 2-dimensional
sphere S2 nor a compact surface without boundary with genus g ≥ 2 are parallelizable.
Let I = (ft)t∈R be an isotopy in Diff 1(S) joining the identity IdS to f1 = f and such
that f1+t = ft ◦ f . The tangent bundle inherits the dynamics through the differential
Dft : TS → TS. Fix a Riemannian metric, an orientation and let X : S → TS be a non
vanishing continuous vector field.
For x ∈ S and v ∈ TxS \ {0} we consider the continuous oriented angle function

R+ ∋ t 7→ v(I)(x, v, t) := θ(X(ft(x)), Dft(x)v) ∈ T,

where θ(u, v) denotes the oriented angle between the two non zero vectors u and v. Let

R+ ∋ t 7→ ṽ(I)(x, v, t) ∈ R

be a continuous determination of the oriented angle function θ. For n ∈ N the n-finite
time torsion at (x, v) ∈ TS is

Torsionn(I, x, v) =
ṽ(I)(x, v, n)− ṽ(I)(x, v, 0)

n
.

The torsion at the orbit of x, denoted as Torsion(I, x), is the limit

lim
n→+∞

Torsionn(I, x, v),
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whenever it exists. The torsion at the orbit of x does not depend on the vector v ∈ TxS.
Moreover, it is independent of the point of the orbit at which we calculate it. In addition,
when it exists, the torsion does not depend on the chosen Riemannian metric (see Propo-
sition 1.1.4). The torsion a priori depends on the vector field X (see Proposition 1.1.5).
In many cases, the torsion (already at finite time) is independent from the chosen iso-
topy I = (ft)t, see Remark 1.1.3 and Proposition 1.3.2. Whenever it is the case, we
will denote the torsion (respectively finite time torsion) as Torsion(f, x) (respectively
Torsionn(f, x, v)).
If µ is a f -invariant Borel probability measure with compact support, then its torsion is

Torsion(I, µ) =
∫

S

Torsion(I, x) dµ(x).

Ruelle proved that for such a measure µ, for almost every point, the torsion exists. Thus,
the torsion of µ is well-defined.
From now on, when not specified, we will consider a constant reference vector field X.
The notion of torsion of measures has been studied by Gambaudo and Ghys in [GG97]
in the framework of C1 diffeomorphisms on the 2-dimensional disk D2. Let µ be a Borel
probability measure on D2. Gambaudo and Ghys have shown that the torsion of µ is a
homogeneous quasi-morphism on the set of diffeomorphisms of the disk that are the iden-
tity near the boundary ∂D2 and preserve the measure µ (see Proposition 2.8 in [GG97]).
Moreover, they have also proved that the torsion is invariant by topological conjugacy,
assuming that the measures are without atoms (see Theorem 2.11 in [GG97]).
The notion of torsion of f -invariant measures has also been discussed by Conejeros, who
in his PhD thesis (see [Con15]) has compared it to his notion of fibered rotation number.

The set of zero torsion value points is useful to understand certain dynamical behav-
iors.
In [MN02] Matsumoto and Nakayama prove that for every C∞ diffeomorphism f of
T2 isotopic to the identity there exists a f -invariant probability measure µ such that
Torsion(f, µ) is null.
For conservative twist maps on the annulus, the structure of some null torsion sets, called
Aubry-Mather sets, has been studied by Mather (see [Mat82a] and [Mat91]) and Angenent
(see [Ang88]) through a variational approach.
Through a more topological point of view in [Cro03], Crovisier has obtained results for
non-conservative twist maps on A. He has proved that for any rotation number there
exists an Aubry-Mather set of null torsion (see Theorem 1.2 in [Cro03]).

In Chapter 2 we introduce the notion of negative-torsion map on the annulus. We
study the zero torsion set for negative-torsion maps. On the annulus, the torsion does not
depend on the chosen isotopy (see Proposition 1.3.2), so we omit it in the notation. We
consider a constant reference vector field X.

Definition. A negative-torsion (respectively positive-torsion) map f : A → A is a C1

diffeomorphism isotopic to the identity such that for every z ∈ A it holds

Torsion1(f, z, χ) < 0 ( respectively > 0),

where χ is the vertical vector (0, 1).
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The notion of negative-torsion map coincides with the definition of positive tilt map, as
presented in [Hu98] and [GR13]. Moreover, the same negative-torsion maps can be defined
through the notion of positive/negative paths presented in [Her83] and in [LC88].
Examples of negative-torsion maps are positive twist maps. A positive twist map f : A →
A is a C1 diffeomorphism isotopic to the identity such that for any lift F : R2 → R2 of f
and for any x ∈ R the function

y 7→ p1 ◦ F (x, y)
is an increasing diffeomorphism of R, where p1 denotes the projection over the first coor-
dinate.
The interest for twist maps has largely spread all along the literature (see for example
[LC91], [Mat82a], [Mat91] and [Mos86]) and, as mentioned before, several authors have
studied their connection with the notion of torsion.
By the twist property of f , at every point the image of the vertical vector through Df
lies in the right half-plane. At every point the torsion at time 1 with respect to the vector
χ = (0, 1) is negative. This property is already remarked in [Cro03] and in [LC91]. Actu-
ally, a more precise estimation can be given.

Theorem A. Let f : A → A be a positive twist map. For any z ∈ A and for any
n ∈ N, n 6= 0 it holds

Torsionn(f, z, χ) ∈
(
−1

2
, 0

)
.

An immediate outcome is the following

Corollary A. Let f : A → A be a positive twist map. Then for any z ∈ A, where the
torsion exists, it holds

Torsion(f, z) ∈
[
−1

2
, 0

]
.

We will prove that for negative-torsion maps the Hausdorff dimension of the set of zero
torsion points is greater or equal to one. This result follows from the following Theorem,
for which we need the definition of essential curve.

Definition. An essential curve γ : T → A is a C0 embedding such that γ(T) is not homo-
topic to a point.

Theorem B. Let f : A → A be a negative-torsion map. Let γ : T → A be a C1 essential
curve. Then there exists at least one point z ∈ γ(T) such that

Torsion(f, z) = 0.

Corollary B. Let f : A → A be a negative-torsion map. Then

dimH({z ∈ A : Torsion(f, z) = 0}) ≥ 1.

The same results hold also for positive-torsion maps.
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Question: can we give more precise results over the Hausdorff dimension of the set of
zero torsion points?

We obtain as a by-product of the proof of Theorem B a version of Birkhoff’s theorem for
negative-torsion maps.

Theorem C. Let f : A → A be a negative-torsion (respectively positive-torsion) map. Let
γ : T → A be a C1 f -invariant essential curve such that f|γ is non wandering. Then γ(T)
is the graph of a Lipschitz function over T.

What about points of non zero torsion? Béguin and Boubaker in [BB13] have given
conditions to assure the existence of orbits with non zero torsion. In particular, they have
shown that if f is an area-preserving diffeomorphism of the disk with compact support
(which is not the identity), then f has an orbit with non zero torsion (see Theorem A
in [BB13]). Moreover, if f is a diffeomorphism of T2 whose rotation number set has not
empty interior, then f has an orbit with non zero torsion (see Theorem B in [BB13]).
In their work, Béguin and Boubaker use the relation between the linking number and the
torsion of points in the lifted framework.
In the setting of the plane R2, for any x, y ∈ R2, x 6= y the linking number of x and y is
the asymptotic angular velocity of the vector ft(y)− ft(x).
In Chapter 1 we study the link between these two quantities for a C1 diffeomorphism on
R2. We focus on the following question: for a given isotopy, assuming that the linking
number of two points x, y is not zero, does there exist at least a point z on the segment
connecting x and y such that its torsion is also not zero?
We state the following result, where the torsion is calculated with respect to a constant
reference vector field.

Theorem D. Let I = (ft)t∈[0,1] be an isotopy in Diff 1(R2) joining IdR2 to f1 = f . Assume
that there exist two points x, y ∈ R2, x 6= y such that

Linking1(I, x, y) = l ∈ R.

Then there exists a point z ∈ [x, y] so that

Torsion1(I, z, y − x) = l.

Passing to asymptotic quantities, we deduce the following

Corollary C. Let I = (ft)t∈[0,1] be an isotopy in Diff 1(R2) joining IdR2 to f1 = f . Assume
that there exist two points x, y ∈ R2, x 6= y such that

Linking(I, x, y) = l ∈ R.

Suppose that
⋃
n∈N f

n([x, y]) is relatively compact, where [x, y] denotes the segment joining
the two points.
Then there exists a f -invariant Borel probability measure µ so that Torsion(I, µ) = l.

The following question is due to F. Béguin:
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Question: let x0 be a fixed point. Assume that the set of points x such that the asymp-
totic linking number of (x0, x) is not null has positive Lebesgue measure. Does the set of
points with non zero torsion have positive Lebesgue measure?

The link between torsion and linking number, i.e. Theorem D, together with Theorem A
in the framework of positive twist map, enables us to obtain results over linking number
of points for lifts of twist maps.

Corollary D. Let F : R2 → R2 be a lift of a positive twist map and let I = (Ft)t be
the isotopy joining the identity to F , obtained as a lift of an isotopy on A. Let z1, z2 ∈
R2, z1 6= z2 be such that their linking number exists. Then

Linking(I, z1, z2) ∈
[
−1

2
, 0

]
.

This result was already known by Le Calvez for periodic orbits and then, through the
C1 closing Lemma, also for F -invariant measures, but our corollary generalizes it, holding
true for any couple of points for which the (asymptotic) linking number exists.
A similar argument holds also for lifts of negative-torsion (respectively positive-torsion)
maps, that is for any lift of a negative-torsion (respectively positive-torsion) map the link-
ing number of any couple of points (whenever it exists) is non positive (respectively non
negative).

We then consider conservative twist maps, that is

Definition. A twist map f is conservative if f ∗λ− λ is an exact 1-form, where λ = ydx.

In particular, a conservative twist map preserves the Lebesgue measure. Concerning points
with non zero torsion, in the framework of conservative twist maps, we show that bounded
instability regions have sets of positive Lebesgue measure where the torsion is not null.
In particular, in Chapter 3 we analyse the torsion of bounded connected components of
the complementary set of I(f), where I(f) denotes the union of all f -invariant essential
curves of A. We prove the following

Theorem E. Let f : A → A be a conservative (positive) twist map. Then any bounded
connected component of A \I(f) has a positive Lebesgue measure set of points of not zero
torsion.

More precisely, we discuss the two possible types of bounded connected components of
A \ I(f). In particular, for a bounded essential subannulus we prove the following result.

Theorem F. Let f : A → A be a conservative twist map. Let U ⊂ A be a f -invariant
essential subannulus which is the interior of its closure and which is bounded. Then the
torsion is zero for almost every point in U if and only if f|U is C0-integrable.

We say that f|U is C0-integrable if there exists a partition of U into continuous essential
f -invariant curves. We wonder if a similar result could hold true in a different setting: the
following question is due to J.-P. Marco.
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Question: if the torsion is null on a dense Gδ set, is the dynamics C0-integrable?

An analogous result can be obtained also for Tonelli Hamiltonian flows on T ∗Tn as an
outcome of results in [CGIP03] and in [AABZ15].
The discussion for instability periodic disks largely relies on Green bundles techniques, as
presented in [Gre58] and [Arn10].
We can then ask the following

Question: in bounded instability regions we always have not negligible (from a Lebesgue
measure point of view) sets of not zero torsion. Is it a feature of almost every point of
instability bounded regions? That is, is the set of points with non zero torsion of full
Lebesgue measure within instability regions?

Another question concerns unbounded instability regions.

Question: are there examples of an unbounded instability region for a conservative twist
map such that the torsion is zero at Lebesgue-almost every point of the region?

The notion of torsion is given through a limit. Through Ruelle’s result, we have already
remarked that the torsion exists at almost every point. It is so natural asking what about
points at which the torsion does not exist.
In Chapter 4, we consider a C1 diffeomorphism f isotopic to the identity with hyperbolic
periodic points admitting transverse homoclinic intersections (on R2, A or T2). We do
not ask that f is either conservative or a twist map or a negative-torsion map. We are
interested in the associated horseshoe.

Definition. Let f be a C1 diffeomorphism. A horseshoe H is a uniformly hyperbolic set
for fN (for some N > 0) such that the dynamics of fN on the horseshoe is conjugated to
a shift dynamics on {0, 1}Z. The orbit of the horseshoe is

⋃N−1
i=0 f i(H).

After recalling the construction of the horsehsoe dynamics for transverse homoclinic points
of intersections, we prove that the torsion at points of the horseshoe can be calculated
from the symbolic dynamics associated to it.
Denote as (δi(x))i∈Z the sequence in {0, 1}Z associated to a point x in the horseshoe.

Theorem G. There exist a,∆ ∈ R such that for any x in the horseshoe it holds 1

{limit points of (Torsionn(f, x))n∈N} =

{
limit points of

(
a+∆

∑n
i=1 δi(x)

n

)

n∈N

}
.

Interesting outcomes follow when ∆ 6= 0. In particular, we can deduce that:

(i) any value in [a, a+∆] is realized as torsion of some points in the horseshoe. Refer-
ing to [HH86], any irrational value within such an interval is the torsion value of
uncountable many disjoint Cantor sets. Moreover, for any α in [a, a+∆] the set of
points of torsion value α is dense in the horseshoe;

1. In the notation of torsion we do not make explicit the choice of the tangent vector because the
asymptotic torsion does not depend on it and for lightening the notation.
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(ii) the set of points at which the torsion does not exist contains a dense Gδ subset of
the horseshoe;

(iii) any value in [a, a+∆] is the torsion of a f -invariant ergodic measure whose support
is contained in the orbit of the horseshoe.

Using multifractal analysis (see [Pes97] and [BS00]), we can prove that the set of points
of the horseshoe at which the torsion does not exist has positive Hausdorff dimension.
If f is C2, then the condition ∆ 6= 0 is equivalent to the fact that a given finite time
torsion is cohomologous to a constant.
Due to a recent result of Buzzi, Crovisier and Sarig (see [BCS]), for a C∞ diffeomorphism
on A or on R2 the existence of a transverse homoclinic point of intersection always implies
the existence of a horseshoe such that ∆ 6= 0.
The presence of transverse homoclinic intersections leads to the discussion of the topo-
logical entropy of the system. Actually, we can deduce that for a C∞ diffeomorphism on
the bounded annulus or on the compact disc, by using Katok’s result in [Kat80], if the
torsion exists everywhere then the topological entropy has to be null. A natural question
is thus the following.

Question: does the converse hold true? Can we characterise the positiveness of the topo-
logical entropy in terms of non existence of the torsion at some points?

Further natural questions concern the study of asymptotic Maslov index for (confor-
mally) symplectic dynamics in higher dimensions. For example, can we obtain results over
the Hausdorff dimension of zero torsion set in higher dimensions? What about asymptotic
Maslov index and horseshoes in higher dimensions?
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Introduction

Nous allons considérer un système dynamique symplectique lisse. Cette thèse s’inté-
resse aux relations entre les propriétés du système dynamique et les possibles valeurs de
l’indice de Maslov asymptotique.
Grosso modo sur une surface, l’indice de Maslov asymptotique décrit comment les vec-
teurs “tournent” sous l’action du système dynamique différentiel (voir [BB13]).
En dimension supérieure, l’indice de Maslov asymptotique est défini dans le cadre sym-
plectique, par exemple pour des flots hamiltoniens et pour l’action sur des sous-espaces
lagrangiens (voir [CGIP03] et [AF08]).
Bien que la notion d’indice de Maslov ait été introduite par V. I. Arnold in [Arn67], la
définition d’indice de Maslov asymptotique est apparue pour la première fois dans le tra-
vail de D. Ruelle en [Rue85] en 1985.
Dans cette thèse on s’intéresse à l’indice de Maslov asymptotique pour des difféomor-
phismes de surfaces. Plusieurs noms indiquent la même notion : indice de Maslov asymp-
totique, nombre de rotation de Ruelle, torsion de Béguin et Boubaker,. . . Dorénavant, on
l’appellera torsion.

Soit S une surface riemannienne parallélisable (pas forcément compacte), c’est-à-dire
une surface riemannienne dont le fibré tangent est trivial. Par exemple, l’anneau A = T×R
(éventuellement avec un nombre fini de trous), le tore T2, le disque (éventuellement avec
un nombre fini de trous) sont des surfaces parallélisables. Par contre, ni la sphère S2 ni
aucune surface compacte sans bord de genre g ≥ 2 ne sont parallélisables. Soit f un
difféomorphisme de S de classe C1 isotope à l’identité. Soit I = (ft)t∈R une isotopie sur
Diff 1(S) qui joint IdS à f1 = f et telle que f1+t = ft ◦ f . Le fibré tangent hérite de la
dynamique grâce à la différentielle Dft : TS → TS. Fixons une métrique riemannienne
et une orientation sur S. Soit X : S → TS un champ de vecteurs continu qui ne s’annule
jamais.
Soit x ∈ S et v ∈ TxS \ {0}. On considére la fonction d’angle orienté continue

R+ ∋ t 7→ v(I)(x, v, t) := θ(X(ft(x)), Dft(x)v) ∈ T,

où θ(u, v) est l’angle orienté entre les deux vecteurs non nuls u et v. Soit

R+ ∋ t 7→ ṽ(I)(x, v, t) ∈ R

une détermination continue de la fonction d’angle orienté θ. Pour n ∈ N la torsion au
temps fini n de (x, v) ∈ TS est

Torsionn(I, x, v) =
ṽ(I)(x, v, n)− ṽ(I)(x, v, 0)

n
.

La torsion de l’orbite de x, notée Torsion(I, x), est la limite

lim
n→+∞

Torsionn(I, x, v),
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lorsqu’elle existe. La torsion de l’orbite de x ne dépend pas ni du vecteur v ∈ TxS ni
du point de l’orbite où elle est calculée. De plus, lorsqu’elle existe, la torsion ne dépend
pas de la métrique riemannienne choisie (voir Proposition 1.1.4). La torsion ne dépend à
priori que du champ de vecteur X (voir Proposition 1.1.5).
Dans de nombreux cas, la torsion (déjà en temps fini) est indépendante de l’isotopie
choisie I = (ft)t, voir Remarque 1.1.3 et Proposition 1.3.2. Chaque fois que c’est le cas,
nous notons la torsion (la torsion en temps fini) comme Torsion(f, x) (Torsionn(f, x, v)).
Si µ est une mesure de Borel f -invariante avec support compact, alors sa torsion est

Torsion(I, µ) =
∫

S

Torsion(I, x) dµ(x).

Ruelle a montré que pour cette mesure µ et pour presque tous les points, la torsion existe.
Donc, la torsion de µ est bien définie.
Dorénavant, on fixe un champ de vecteur de référence X constant.
La notion de torsion des mesures a été étudiée par Gambaudo et Ghys en [GG97] pour des
difféomorphismes C1 du disque 2-dimensionnel D2. Soit µ une mesure borélienne de proba-
bilité de D2. Gambaudo et Ghys ont montré que la torsion de µ est un quasi-morphisme
homogène sur l’ensemble des difféomorphismes du disque qui sont l’identité proche du
bord ∂D2 et préservent la mesure µ (voir Proposition 2.8 en [GG97]). De plus, ils ont
aussi prouvé que la torsion est invariante par conjugaison topologique, en supposant que
les mesures sont sans atomes (vois Théorème 2.11 en [GG97]).
La notion de torsion des mesures f -invariantes a été discuté par Conejeros qui, dans sa
thèse (voir [Con15]), l’a comparé à sa notion de nombre de rotation fibré.

L’ensemble des points de torsion nulle est utile pour comprendre certaines caractéristiques
dynamiques.
Matsumoto et Nakayama (voir [MN02]) montrent que pour tout difféomorphisme de classe
C∞ f de T2 isotope à l’identité, il existe une mesure de probabilité f -invariante µ telle
que Torsion(f, µ) = 0.
Pour des applications conservatives déviant la verticale de l’anneau, les ensembles de tor-
sion nulle, appelés ensembles d’Aubry-Mather, ont été étudiés par Mather (voir [Mat82a]
et [Mat91]) et par Angenent (voir [Ang88]) en utilisant une méthode variationelle.
Grâce à un point de vue topologique en [Cro03], Crovisier a obtenu des résultats pour
des applications non conservatives déviant la verticale. Il a montré que pour tout nombre
de rotation, il existe un ensemble d’Aubry-Mather de torsion nulle (voir Théorème 1.2 en
[Cro03]).

Dans le chapitre 2 on introduit la notion d’application de torsion négative dans l’an-
neau. On étudie l’ensemble de torsion nulle des applications de torsion négative. Sur
l’anneau, la torsion ne dépend pas de l’isotopie choisie (voir Proposition 1.3.2), donc nous
l’omettons dans la notation. Rappelons que nous considérons un champ de vecteur de
référence X constant.

Définition. Une application de torsion négative (positive) f : A → A est un difféomor-
phisme C1 isotope à l’identité telle que pour tout z ∈ A

Torsion1(f, z, χ) < 0 (> 0) ,

où χ est le vecteur vertical (0, 1).
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La notion d’application de torsion négative correspond à celle d’application tilt positive
(voir [Hu98] et [GZ04]). De plus, les applications de torsion négative peuvent être définies
avec la notion de chemin positif/négatif présente en [Her83] et [LC88].
Des exemples d’applications de torsion négative sont les applications déviant la verticale
à droite. Une application déviant la verticale à droite f : A → A est un difféomorphisme
C1 isotope à l’identité telle que pour tout relevé F : R2 → R2 de f et pour tous x ∈ R la
fonction

y 7→ p1 ◦ F (x, y)
est un difféomorphisme croissant de R, où p1 est la projection sur la première coordonnée.
L’intérêt pour les applications déviant la verticale s’est développé en littérature (voir
[LC91], [Mat82a], [Mat91] et [Mos86]) et, comme mentionné ci-dessus, plusieurs auteurs
ont étudié leurs connections avec la notion de torsion.
Pour la propriété déviant la verticale de f , en chaque point l’image du vecteur vertical
par Df est dans le demi-plan à droite. En chaque point la torsion au temps 1 par rapport
au vecteur χ = (0, 1) est négative. Cette propriété a déjà été remarquée en [Cro03] et
[LC91]. À vrai dire, cela donne une estimation plus précise.

Théorème A. Soit f : A → A une application déviant la verticale à droite. Pour tout
z ∈ A et pour tout n ∈ N, n 6= 0 on a

Torsionn(f, z, χ) ∈
(
−1

2
, 0

)
.

Une conséquence immédiate est

Corollaire A. Soit f : A → A une application déviant la verticale à droite. Alors pour
tout z ∈ A, quand elle est définie, on a

Torsion(f, z) ∈
[
−1

2
, 0

]
.

On montre que pour une application de torsion négative la dimension de Hausdorff de
l’ensemble des points de torsion nulle est supérieure ou égale à 1. Ce résultat vient du
théorème suivant pour lequel on introduit la définition de courbe essentielle.

Définition. Une courbe essentielle γ : T → A est un plongement de classe C0 tel que
γ(T) n’est pas homotope à un point.

Théorème B. Soit f : A → A une application de torsion négative. Soit γ : T → A une
courbe essentielle C1. Alors il existe au moins un point z ∈ γ(T) tel que

Torsion(f, z) = 0.

Corollaire B. Soit f : A → A une application de torsion négative. Alors

dimH({z ∈ A : Torsion(f, z) = 0}) ≥ 1.
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Le même résultat est valable pour des applications de torsion positive.

Question : peut-on donner des résultats plus précis sur la dimension de Hausdorff de
l’ensemble des points de torsion nulle ?

Comme sous-produit de la preuve du Théorème B on obtient une version du théorème de
Birkhoff pour des applications de torsion négative.

Théorème C. Soit f : A → A une application de torsion négative (de torsion positive).
Soit γ : T → A une courbe essentielle C1 invariante par f et telle que f|γ est non errante.
Alors γ(T) est le graph d’une fonction lipschitzienne sur T.

Que peut-on dire des points de torsion non nulle ? Béguin et Boubaker en [BB13] ont
donné des conditions pour assurer l’existence des orbites de torsion non nulle. Ils ont
montré que si f est un difféomorphisme du disque à support compact qui préserve l’aire
(qui n’est pas l’identité), alors (f,D2) a une orbite de torsion non nulle (voir Théorème A
in [BB13]). De plus, si f est un difféomorphisme de T2 tel que son ensemble de nombre
de rotation a un intérieur non vide, alors (f,T2) a une orbite avec torsion non nulle (voir
Théorème B en [BB13]). Dans leur travail, Béguin et Boubaker utilisent la relation entre
le nombre d’enlacement et la torsion des points dans le cadre du relevé.
Dans R2, pour tous x, y ∈ R2, x 6= y le nombre d’enlacement de x et y est la vitesse
rotationnelle asymptotique du vecteur ft(y)− ft(x).
Dans le chapitre 1 on étudie le lien entre ces deux quantités pour un difféomorphisme C1

de R2. On considère la question suivante : pour une certaine isotopie et supposant que le
nombre d’enlacement des deux points x, y est non nul, existe-t-il au moins un point z sur
le segment qui joint x et y tel que sa torsion soit aussi non nulle ?
Rappelons que la torsion est calculée par rapport à un champ de vecteur de référence X
constant.

Théorème D. Soit I = (ft)t∈[0,1] une isotopie dans Diff 1(R2) qui joint IdR2 à f1 = f .
Supposons qu’il existe deux points x, y ∈ R2, x 6= y tels que

Linking1(I, x, y) = l ∈ R.

Alors il existe un point z ∈ [x, y] tel que

Torsion1(I, z, y − x) = l.

En considérant les quantités asymptotiques, on montre le corollaire suivant.

Corollaire C. Soit I = (ft)t∈[0,1] une isotopie dans Diff 1(R2) qui joint IdR2 à f1 = f .
Supposons qu’il existe deux points x, y ∈ R2, x 6= y tels que

Linking(I, x, y) = l ∈ R.

Supposons que
⋃
n∈N f

n([x, y]) est relativement compact où [x, y] est le segment qui joint
les deux points. Alors il existe une mesure boréllienne de probabilité f -invariante µ telle
que Torsion(I, µ) = l.
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La question suivante est due à F. Béguin :

Question : soit x0 un point fixe. Supposons que l’ensemble des points x tels que le
nombre d’enlacement asymptotique de (x0, x) est non nul, possède une mesure de Le-
besgue positive. Est-ce que l’ensemble des points de torsion non nulle possède une mesure
de Lebesgue positive ?

Le lien entre torsion et nombre d’enlacement, i.e. le théorème D et le théorème A dans
le cadre des applications déviant la verticale à droite, nous permet d’obtenir le résultat
suivant.

Corollaire D. Soit F : R2 → R2 un relevé d’une application déviant la verticale à droite
et soit I = (Ft)t une isotopie qui joint l’identité à F , obtenue comme relevé d’une isotopie
sur A. Soient z1, z2 ∈ R2, z1 6= z2 tels que leur nombre d’enlacement existe. Alors

Linking(I, z1, z2) ∈
[
−1

2
, 0

]
.

Ce résultat était déjà connu par Le Calvez pour des orbites périodiques et donc, grâce au
C1 closing lemma, aussi connu pour des mesures F -invariantes. Notre corollaire est bien
une généralisation car il est valable pour tout couples de points pour lesquels le nombre
d’enlacement (asymptotique) existe.
Un résultat similaire est vrai pour des relevés d’applications de torsion négative (de tor-
sion positive), c’est-à-dire pour un relevé d’une application de torsion négative (positive)
le nombre d’enlacement de tout couple de points (où il existe) est non positif (non negatif).

Nous considérons des applications déviant la verticale conservatives, c’est-à-dire

Définition. Une application déviant la verticale f est conservative si f ∗λ − λ est une
1-forme exacte où λ = ydx.

En particulier, une application déviant la verticale conservative préserve la mesure de Le-
besgue. Concernant les points de torsion non nulle, dans le cadre des applications conser-
vatives déviant la verticale, on montre que les régions d’instabilité bornées ont un ensemble
de mesure de Lebesgue positive où la torsion est non nulle.
Dans le chapitre 3 on étudie la torsion des composantes connexes bornées du complemen-
taire de I (f), où I (f) est l’union de toutes les courbes essentielles f -invariantes sur A.

Théorème E. Soit f : A → A une application déviant la verticale (à droite) conserva-
tive. Alors chaque composante connexe bornée de A \ I (f) a un ensemble de mesure de
Lebesgue positive de points de torsion non nulle.

Plus précisément, on discute les deux types de composantes connexes bornées possibles de
A\I (f). En particulier, pour un sous-anneau essentiel borné on prouve le résultat suivant.

Théorème F. Soit f : A → A une application déviant la verticale conservative. Soit
U ⊂ A un sous-anneau essentiel f -invariant qui est l’intérieur de son adhérence et qui
est borné. Alors la torsion est nulle presque partout sur U si et seulement si f|U est C0-
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intégrable.

On dit que f|U est C0-intégrable s’il existe une partition de U en courbes essentielles
continues f -invariantes. Nous nous demandons si un résultat similaire est valable dans un
cadre différent. La question suivante est due à J.-P. Marco.

Question : si la torsion est nulle sur un ensemble Gδ dense, est-ce que la dynamique est
C0-intégrable ?

Un résultat similaire est valable pour des flots hamiltoniens Tonelli sur T ∗Tn comme
conséquence des résultats en [CGIP03] et [AABZ15].
La preuve pour des disques d’instabilité périodiques s’inspire des fibrés de Green (voir
[Gre58] et [Arn10]).

Question : le Théorème E affirme que dans toute région d’instabilité bornée, l’ensemble
des points de torsion non nulle est Lebesgue-non négligeable. Sa mesure de Lebesgue est-
elle égale à celle de toute la région d’instabilité bornée ?

Une autre question concerne les régions d’instabilité non bornées.

Question : y a-t-il des exemples de région d’instabilité non bornée pour une application
déviant la verticale conservative telle que la torsion est nulle pour Lebesgue-presque tout
point de la région ?

La notion de torsion est donnée par une limite. Grâce au résultat de Ruelle, on a déjà
remarqué que la torsion existe presque partout. Il est donc naturel de se demander ce
qu’on peut dire des points où la torsion n’existe pas.
Dans le chapitre 4, on considère un difféomorphisme f de classe C1 isotope à l’identité
avec des points périodiques hyperboliques qui ont des intersections homoclines transverses
(sur R2,A ou T2). On ne suppose pas que f est conservative ou une application de torsion
négative. Nous nous intéressons au fer à cheval associé.

Définition. Soit f un difféomorphisme de classe C1. Un fer à cheval H est un ensemble
uniformément hyperbolique pour fN (pour quelque N > 0) tel que la dynamique de fN

restreinte au fer à cheval est conjuguée à la dynamique du décalage sur {0, 1}Z. L’orbite
du fer à cheval est

⋃N−1
i=0 f i(H).

Après avoir rappelé la construction d’un fer à cheval pour des points d’intersection ho-
mocline transverse, on montre comment calculer la torsion des points du fer à cheval en
utilisant la dynamique symbolique associée.
Notons (δi(x))i∈Z la suite en {0, 1}Z associée au point x du fer à cheval.

Théorème G. Il existe a,∆ ∈ R tels que pour tout x dans le fer à cheval on a

{valeurs d’adhérence de (Torsionn(f, x))n∈N} =
{

valeurs d’adhérence de

(
a+ δ

∑n
i=1 δi(x)

n

)

n∈N

}
.

Il y a des conséquences intéressantes quand ∆ 6= 0. En particulier, on en déduit que :
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(i) chaque valeur en [a, a + ∆] est réalisée comme torsion de certains points du fer à
cheval. Grâce à [HH86], chaque valeur irrationnelle de cet intervalle est la torsion
d’une famille non dénombrable d’ensembles de Cantor disjoints. En plus, pour tout
α ∈ [a, a+∆] l’ensemble des points de torsion α est dense dans le fer à cheval ;

(ii) l’ensemble des points où la torsion n’existe pas contient un Gδ dense du fer à cheval ;

(iii) chaque valeur dans [a, a+∆] est la torsion d’une mesure ergodique f -invariante dont
le support est contenu dans l’orbite du fer à cheval.

Grâce à l’analyse multifractale (voir [Pes97] et [BS00]), on peut montrer que l’ensemble
des points du fer à cheval où la torsion n’existe pas, a une dimension de Hausdorff positive.
Si f est de classe C2, alors ∆ = 0 mais si et seulement si une certaine torsion en temps
fini est cohomologue à une constante.
En utilisant un résultat récent de Buzzi, Crovisier et Sarig (voir [BCS]), pour un difféo-
morphisme de classe C∞ de A ou de R2 l’existence d’un point d’intersection homocline
transverse implique toujours l’existence d’un fer à cheval tel que ∆ 6= 0.
La présence des intersections homoclines transverses nous amène à parler de l’entropie
topologique du système. En fait, on peut montrer pour un difféomorphisme de classe C∞

de l’anneau borné ou du disque compact, grâce à un résultat de Katok (voir [Kat80]), que
si la torsion existe partout alors l’entropie topologique est nulle.

Question : est-ce que l’inverse est vrai ? Est-ce qu’on peut caractériser l’entropie topo-
logique positive par le fait qu’il y ait des points où la torsion n’existe pas ?

D’autres questions concernant l’étude de l’indice de Maslov asymptotique pour des
dynamiques (conformément) symplectiques en dimension supérieure se posent. Peut-on
retrouver le résultat sur la dimension d’Hausdorff en dimension supérieure ? Que peut-on
dire de l’indice de Maslov asymptotique des fers à cheval en dimension supérieure ?

xvii



xviii



Contents

Notation i

Introduction (in english) iii

Introduction (en français) xi

1 Torsion and linking number 1
1.1 Definition of torsion and first properties . . . . . . . . . . . . . . . . . . . 2
1.2 Notion of linking number . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.3 On torsion of C1 diffeomorphism of A . . . . . . . . . . . . . . . . . . . . . 16

1.3.1 Independence of the torsion from the choice of the isotopy on A . . 16
1.3.2 Invariance under C1 conjugacy . . . . . . . . . . . . . . . . . . . . . 19

1.4 Link between torsion and linking number . . . . . . . . . . . . . . . . . . . 21
1.4.1 Some consequences for the torus T2 . . . . . . . . . . . . . . . . . . 24
1.4.2 Proof of case (i) of Theorem 1.4.1 . . . . . . . . . . . . . . . . . . . 26

1.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.6 Appendix of Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2 Results on negative-torsion maps 51
2.1 Torsion for twist maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.1.1 Limitedness of torsion for twist maps . . . . . . . . . . . . . . . . . 52
2.1.2 Properties of linking number for lifts of twist maps . . . . . . . . . 55
2.1.3 Crovisier’s torsion for twist maps: definition and comparison . . . . 57

2.2 Set of points of zero torsion for negative-torsion maps . . . . . . . . . . . . 59
2.2.1 Points of zero torsion on simple circle curves . . . . . . . . . . . . . 60
2.2.2 Angle variation along γ along a C1 essential curve . . . . . . . . . . 62
2.2.3 Points of zero torsion on C1 essential curves . . . . . . . . . . . . . 67

2.3 Torsion for tilt maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
2.3.1 Tilt maps on the bounded annulus . . . . . . . . . . . . . . . . . . 72
2.3.2 Tilt maps on the unbounded annulus . . . . . . . . . . . . . . . . . 76

2.4 Birkhoff Theorem through torsion . . . . . . . . . . . . . . . . . . . . . . . 81
2.4.1 An upper bound of N -finite time torsion: proof of Lemma 2.4.3 . . 85
2.4.2 Finite-time torsion as angle variation along γ: proof of Lemma 2.4.4 87

2.5 Appendix of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3 Points of zero torsion for conservative twist maps 93
3.1 Conservative twist maps and instability zones . . . . . . . . . . . . . . . . 93
3.2 C0-integrability of bounded sub-annuli . . . . . . . . . . . . . . . . . . . . 95

3.2.1 Proof of Proposition 3.2.1 . . . . . . . . . . . . . . . . . . . . . . . 98

xix



3.2.2 Proof of Proposition 3.2.2 . . . . . . . . . . . . . . . . . . . . . . . 104
3.3 Torsion of instability discs . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

3.3.1 Zero-torsion set and over-conjugate points . . . . . . . . . . . . . . 120
3.3.2 About instability discs: proof of Proposition 3.1.3 . . . . . . . . . . 125

3.4 Appendix of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
3.4.1 About tridiagonal symmetric positive definite matrices . . . . . . . 147
3.4.2 Extension theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4 Torsion of horseshoes 151
4.1 Statement of the main results . . . . . . . . . . . . . . . . . . . . . . . . . 152
4.2 Choice of an adapted neighborhood for transverse homoclinic intersections 155

4.2.1 Choice of an adapted neighborhood of q . . . . . . . . . . . . . . . 155
4.2.2 Choice of an adapted neighborhood of {q} ∪ O(p) . . . . . . . . . . 164

4.3 Construction of the horseshoe . . . . . . . . . . . . . . . . . . . . . . . . . 169
4.4 Symbolic dynamics and torsion . . . . . . . . . . . . . . . . . . . . . . . . 183

4.4.1 Torsion at finite-time (2nu + j)N for h(x)1 = 0 . . . . . . . . . . . 185
4.4.2 Torsion at finite-time (2nu + j)N for h(x)1 = 1 . . . . . . . . . . . 187
4.4.3 On asymptotic torsion of points of H(Uε, j) . . . . . . . . . . . . . 196

4.5 On triviality and non triviality of the torsion . . . . . . . . . . . . . . . . . 198
4.5.1 Sufficient conditions for the non triviality of torsion . . . . . . . . . 202

4.6 Results on torsion in the non trivial case . . . . . . . . . . . . . . . . . . . 207
4.6.1 Consequences for torsion of invariant measures of the horseshoe . . 216

A Reminders on hyperbolic sets and stable/unstable manifolds 225

B Extension of the Cone Field Property 233

C Geometric Markov partition 239

Bibliography 259

xx



Chapter 1

Torsion and linking number

Denote as T the quotient space R/Z and as

p : R → T

x 7→ x mod 1

the universal covering of the 1-dimensional torus T.
We use the notation A for the product space T× R and

p× Id : R2 → A

(x, y) 7→ (x mod 1, y)

for the universal covering of the annulus A. In the case of some possible ambiguity, a point
of the annulus is denoted by z̄ = (x̄, y) ∈ A, while z = (x, y) ∈ R2 refers to a lift of z̄ over
R2.
The functions

p̄1 : A → T, (x̄, y) 7→ x̄ (1.1)

p̄2 : A → R, (x̄, y) 7→ y (1.2)

are the projections over the first and the second coordinates, respectively; the coordinate
projections of R2 are denoted as p1, p2.
The 2-dimensional torus is the quotient space

T2 := R2/Z2.

All along the work, the counterclockwise orientation of the plane is chosen.
Once provided a Riemannian metric 1 and an orientation, the oriented angle between two
non-zero vectors u, v ∈ R2 is well defined as an element of T. A measure of the angle is
an element of R whose image through p coincides with the oriented angle.
The notation R(a, ψ) refers to the rotation of the plane R2 of center a ∈ R2 and angle ψ,
while τv denotes the translation on the plane by the vector v ∈ R2.
A fundamental notion will be that of isotopy :

Definition 1.0.1. Let M,N be differential manifolds and let f, g : M → N be in
Diff 1(M,N).
An isotopy (ψt)t∈[0,1] joining f to g is an arc in Diff 1(M,N) such that ψ0 = f, ψ1 = g and
which is continuous with respect to the weak or compact-open C1 topology on Diff 1(M,N).

1. If not specified we are endowing R2 with the standard Riemannian metric.
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Definition 1.0.2. Let I ⊆ R be an interval. A continuous determination of an angle
function θ : I → T is a continuous lift of θ, i.e. a continuous function θ̃ : I → R such that
θ̃(s) is a measure of the oriented angle θ(s) for any s ∈ I.

We remark that a necessary and sufficient condition for the existence of a continuous
determination is the continuity of its angle function.

1.1 Definition of torsion and first properties

Let S be a connected Riemannian parallelizable surface, i.e. a connected Riemannian sur-
face whose tangent bundle is trivial. Denote as TS∗ the set {(x, ξ) : x ∈ S, ξ ∈ TxS\{0}}.
We fix an orientation and we endow S with a Riemannian metric: the notion of oriented
angle between two non zero vectors of the same tangent space is well-defined. The nota-
tion T 1S refers to the unitary tangent bundle.

Remark 1.1.1. The choice of an orientation and of a reference continuous vector field X
over S that never vanishes is equivalent to that of a trivialization diffeomorphism. Indeed,
on every tangent space we define the endomorphism J

J : TxS → TxS

as a rotation of angle 1
4

according to the fixed orientation. It holds that J2 = −Id.
For any x ∈ S, (X(x), JX(x)) provides a direct basis of the tangent space. A trivialization
diffeomorphism is so given by

TS ∋ (x;αX(x) + βJX(x))
φ7→ (x;α, β) ∈ S × R2

where α, β ∈ R are the coordinates with respect to the basis (X(x), JX(x)).

Let I = (ft)t∈[0,1] be an isotopy joining the identity to f1 = f . We then extend the
isotopy for any positive time in the following way: let t ∈ R+, then the C1 diffeomorphism
ft : S → S is defined as

ft := f{t} ◦ f ⌊t⌋

where {·}, ⌊·⌋ denote the fractionary and integer part of t, respectively.

Notation 1.1.1. With an abuse of notation, we also denote the extended isotopy as
I = (ft)t.
In addition, we fix a reference vector field X that never vanishes (see Remark 1.1.1).
Suppose that X(x) has unitary norm for any x ∈ S. We will make explicit the choice of
X when needed. We recall the notation θ(u, v) for the oriented angle between two non
zero vectors v and u.

Our definition of torsion, the one given by Béguin and Boubaker in [BB13], actually co-
incides with Ruelle’s notion of rotation number (see [Rue85]).

Definition 1.1.1. Let S be a parallelizable surface and let I = (ft)t∈[0,1] be an isotopy in
Diff 1(S) joining the identity IdS to f1 = f . Then, we define the function v(I) as follows:

v(I) :TS∗ × R → T

(x, ξ, t) 7→ θ (X(ft(x)), Dft(x)ξ) .
(1.3)
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Fix then (x, ξ) ∈ TS∗ and, since the angle function v(I)(x, ξ, ·) is continuous, consider a
continuous determination ṽ(I)(x, ξ, ·) : R → R of it.

Definition 1.1.2. Let S and f be as above. Let x ∈ S and ξ ∈ TxS \ {0}. Consider
v(I)(x, ξ, ·) and ṽ(I)(x, ξ, ·) as in Definition 1.1.1. Then, for any n ∈ N, n 6= 0 the torsion
at finite time n is

Torsionn(I, x, ξ) :=
1

n
(ṽ(I)(x, ξ, n)− ṽ(I))(x, ξ, 0)) . (1.4)

Definition 1.1.3. Let S and f be as above. Let x ∈ S. Assume that the quantity
Torsionn(I, x, ξ) converges as n → +∞ for some ξ ∈ TxS \ {0}. The torsion of the orbit
of x is then

Torsion(I, x) := lim
n→+∞

Torsionn(I, x, ξ). (1.5)

Whenever the limit exists, the previous quantity does not depend on the chosen lift of
the angle function (see Proposition 1.1.1) or on the non zero vector of the tangent space
(see Proposition 1.1.3). Moreover, it does not depend on the point of the orbit at which
we calculate it.

Definition 1.1.4. Let S and f be as above. Let µ be an f -invariant Borel probability
measure on S. Assume that µ or I = (ft)t has compact support 2. Then, the torsion of
the measure µ is

Torsion(I, µ) :=
∫

S

Torsion(I, x)dµ(x). (1.6)

Remark 1.1.2. This integral is well defined. Indeed

Torsion(I, x) = lim
n→+∞

Torsionn(I, x, ξ)

and

Torsionn(I, x, ξ) =
1

n

n−1∑

i=0

Torsion1

(
I, f i(x), Df i(x)ξ

)
=

=
1

n

n−1∑

i=0

Torsion1(I, ·, ·) ◦ f i∗(x, ξ)

where we set

f∗ :T
1S → T 1S

(x, ξ) 7→
(
f(x),

Df(x)ξ

‖Df(x)ξ‖

)
.

(1.7)

Lift µ to µ∗, a f∗-invariant Borel probability measure on T 1S as follows. Denote as Leb
the normalized Lebesgue measure on S1. Define for n ∈ N

µn =
1

n

n−1∑

i=0

(f i∗)
∗(µ× Leb).

2. By asking that I = (ft)t has compact support, we demand that for any t ∈ [0, 1] the support of ft
is in a compact set, independent of t.
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Each µn is a probability measure on T 1S whose projection on S is µ. By the compact
hypothesis on the support of µ or of the isotopy, we can extract a subsequence (µnk

)k∈N
converging to µ∗. Then µ∗ is a f∗-invariant Borel probability measure on T 1S.
Notice that

Torsion1(I, ·, ·) ∈ L1(µ∗)

thanks to the assumption on the support of µ or of I = (ft)t. We deduce by Birkhoff’s
Ergodic Theorem that the function Torsion(I, ·) is defined µ-a.e. and in L1(µ).

The following propositions highlight some interesting properties of torsion concerning
the choice of the continuous determination, of the tangent vector and of the isotopy.

Proposition 1.1.1. For any (x, ξ) ∈ TS∗ the quantities

Torsionn(I, x, ξ) ∀n ∈ N, n 6= 0

Torsion(I, x) = lim
n→+∞

Torsionn(I, x, ξ) when it exists

do not depend on the choice of the continuous determination of the angle function v(I)(x, ξ, ·).
Let I ′ = (gt)t be another isotopy joining the identity to f . There exists an integer k ∈ Z
independent of x ∈ S and ξ ∈ TxS \ {0} so that

Torsionn(I, x, ξ) = Torsionn(I
′, x, ξ) + k ∀n ∈ N, n 6= 0

Torsion(I, x) = Torsion(I ′, x) + k.

The proof is an immediate consequence of the continuity of the involved functions and
the property of f of being isotopic to the identity.

Remark 1.1.3. In many cases the torsion (already at finite time) does not depend on the
chosen isotopy. If S = R2 and f has compact support, up to consider compact-supported
isotopies, the torsion does not depend on the chosen I = (ft)t, see Remark 1.3.2 or
[BB13]. Actually, it is an outcome of the fact that the group of C1 diffeomorphisms of
R2 homotopic to the identity with compact support is simply connected, see [Sma59],
[Hir76] and [Kup19]. Also if S = T2 or S = A, then the torsion is independent from
the chosen isotopy (see [BB13] or Proposition 1.3.2 and Remark 1.3.1). In the framework
of C∞ diffeomorphisms, if S is a compact connected Riemannian parallelizable surface,
eventually with boundary, which is neither the disk nor the bounded annulus nor the
torus, then the torsion does not depend on the chosen isotopy. This is an outcome of
Gramain’s results in [Gra73]. With these hypothesis the group of C∞ diffeomorphisms
that are homotopic to the identity is contractible. Therefore there is only one homotopy
class of isotopies.

Proposition 1.1.2. Fix x ∈ S and define the following functions

Π : R → TxS

s 7→ cos(2πs)X(x) + sin(2πs)JX(x) (1.8)

and

w(I, x) : R× R → T

(s, t) 7→ θ (X(ft(x)), Dft(x)Π(s)) .
(1.9)

Then, there exists a unique continuous determination of w(I, x), denoted as W : R×R →
R, such that W (0, 0) = 0. Moreover
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(i) W (·, 0) = IdR(·).
(ii) For any t ∈ R, W (·, t) is an increasing homeomorphism of R.

(iii) For any s, t ∈ R, W (s+ 1
2
, t) = W (s, t) + 1

2
.

Proof. By the continuity of the isotopy with respect to the compact-open C1 topology,
the function w(I, x) is continuous. There is a unique continuous determination W such
that W (0, 0) = 0, since by fixing the value of W in a point we are selecting the lift.

R× R W
//

w
��
❃❃

❃❃
❃❃

❃ R

p
��✠
✠
✠
✠
✠
✠

T

Notice that

W (·, 0) : R → R

s 7→ W (s, 0)

is a lift of R ∋ s 7→ w(I, x)(s, 0) = θ(X(x),Π(s)) = p(s). Since W (0, 0) = 0, W (·, 0) is the
identity of R.
Let us introduce the following function

Π̄ : T → TxS

ξ 7→ cos(2πξ)X(x) + sin(2πξ)JX(x).

For any fixed t ∈ R, the function W (·, t) : R → R is a continuous lift of the angle function

m(·, t) : T → T

ξ 7→ θ
(
X(ft(x)), Dft(x)Π̄(ξ)

)
.

As Dft(x) is linear and preserves the orientation, m(·, t) is an orientation preserving circle
homeomorphism such that m(ξ+ 1

2
, t) = m(ξ, t)+ 1

2
. Hence, its lift W (·, t) is an increasing

homeomorphism of R.
The functions (s, t) 7→ W (s, t) + 1

2
and (s, t) 7→ W (s + 1

2
, t) are two lifts of (s, t) 7→

m(s, t) + 1
2

that coincide for (s, t) = (0, 0), hence W (s + 1
2
, t) = W (s, t) + 1

2
, i.e. W (·, t)

commutes with the translation of 1
2

for any t ∈ R.

From Proposition 1.1.2 we deduce the following

Lemma 1.1.1. Let f : S → S be a C1 diffeomorphism isotopic to the identity. Let x ∈ S
and ξ1, ξ2 ∈ TxS \ {0}. Let ṽ(I)(x, ξ1, ·), ṽ(I)(x, ξ2, ·) be continuous determinations of the
angle functions v(I)(x, ξ1, ·), v(I)(x, ξ2, ·), respectively.
If

ṽ(I)(x, ξ1, 0) > ṽ(I)(x, ξ2, 0),

then for any t ∈ R

ṽ(I)(x, ξ1, t) > ṽ(I)(x, ξ2, t).
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Proof. The definitions of ṽ(I)(x, ξ1, ·) and ṽ(I)(x, ξ2, ·) only depend on the vector direc-
tions. Consequently, we consider T 1

xS, the set of unitary tangent vectors at x, and assume
ξ1, ξ2 are vectors of unitary norms.
Consider the function Π defined in (1.8) and the oriented angle function w(I, x) de-
fined in (1.9) in Proposition 1.1.2. Observe that for any s, t ∈ R we have w(I, x)(s, t) =
v(I)(x,Π(s), t). Let W : R×R → R be the continuous determination of w(I, x) given by
Proposition 1.1.2.
Let s1, s2 ∈ R be such that Π(s1) = ξ1,Π(s2) = ξ2 and

ṽ(I)(x, ξ1, 0) = s1 and ṽ(I)(x, ξ2, 0) = s2.

The continuous functions t 7→ ṽ(I)(x, ξ1, t) and t 7→ W (s1, t) are equal because they are
lifts of the same angle function and coincide at t = 0 from point (i) of Proposition 1.1.2.
Similarly, the continuous functions t 7→ ṽ(I)(x, ξ2, t) and t 7→ W (s2, t) coincide. From
point (ii) of Proposition 1.1.2, since by hypothesis

ṽ(I)(x, ξ1, 0) = s1 > s2 = ṽ(I)(x, ξ2, 0)

and since

W (s1, 0) = ṽ(I)(x, ξ1, 0) and W (s2, 0) = ṽ(I)(x, ξ2, 0),

we conclude that for any t ∈ R it holds

ṽ(I)(x, ξ1, t) = W (s1, t) > W (s2, t) = ṽ(I)(x, ξ2, t).

Proposition 1.1.3. Let x ∈ S. Assume that for some ξ ∈ TxS \ {0} the quantity
Torsionn(I, x, ξ) converges as n → +∞. Then, the torsion of the orbit of x does not
depend on the choice of the tangent vector. In other words, for any vector δ ∈ TxS \ {0}
it holds

Torsion(I, x) = lim
n→+∞

Torsionn(I, x, ξ) = lim
n→+∞

Torsionn(I, x, δ).

Proof. Consider ξ, δ ∈ TxS \ {0} and assume that limn→+∞ Torsionn(I, x, ξ) exists. Then,
we are going to prove that also limn→+∞ Torsionn(I, x, δ) exists and it coincides with the
previous one.
The result easily follows once we prove that

lim
n→+∞

|Torsionn(I, x, ξ)− Torsionn(I, x, δ)| = 0.

Lemma 1.1.2. Fix x ∈ S. For n ∈ N, n 6= 0 and for ξ, δ ∈ TxS \ {0} it holds

|Torsionn(I, x, ξ)− Torsionn(I, x, δ)| <
1

2n
. (1.10)

Proof. The quantity
|Torsionn(I, x, ξ)− Torsionn(I, x, δ)|

can be written as

1

n
|(ṽ(I)(x, ξ, n)− ṽ(I)(x, δ, n))− (ṽ(I)(x, ξ, 0)− ṽ(I)(x, δ, 0))|.
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These quantities do not depend on the chosen determination of the angle function v.
Concerning the relative position of the vectors ξ, δ, four cases can occur:

ṽ(I)(x, ξ, 0)− ṽ(I)(x, δ, 0)





= k if ξ, δ are positively colinear

= 1
2
+ k if ξ, δ are negatively colinear

∈
(
0, 1

2

)
+ k if (ξ, δ) is a direct basis

∈
(
1
2
, 1
)
+ k if (ξ, δ) is an indirect basis.

At any time, the same four cases can occur and

ṽ(I)(x, ξ, t)− ṽ(I)(x, δ, t)





= k if ξ, δ are positively colinear

= 1
2
+ k if ξ, δ are negatively colinear

∈
(
0, 1

2

)
+ k if (ξ, δ) is a direct basis

∈
(
1
2
, 1
)
+ k if (ξ, δ) is an indirect basis,

where the integer k ∈ Z is the same for any t.
This holds in particular for t = n and, checking all the possible cases, we obtain

1

n
|(ṽ(I)(x, ξ, n)− ṽ(I)(x, δ, n))− (ṽ(I)(x, ξ, 0)− ṽ(I)(x, δ, 0))| < 1

2n
.

From Lemma 1.1.2 we conclude since

0 ≤ lim
n→+∞

|Torsionn(I, x, ξ)− Torsionn(I, x, δ)| ≤ lim
n→+∞

1

2n
= 0.

We discuss now the independence of the torsion from the choice of the Riemannian
metric.

Notation 1.1.2. Fix an orientation of S and a reference continuous vector field X : S →
TS which never vanishes.
Let g be a Riemannian metric on S and on every tangent space denote as

Jg(x) : TxS → TxS

the rotation of angle 1
4

with respect to the given Riemannian metric.
For any x ∈ S, denote as Torsion(g)(I, x) (Torsionn(g)(I, x, ξ)) the torsion at x for I =
(ft)t (the n finite-time torsion at (x, ξ) for I = (ft)t) with respect to the metric g.

Proposition 1.1.4. Let g1, g2 be two Riemannian metrics on S. Let x ∈ S and assume
that Torsion(g1)(I, x) exists. Then

Torsion(g1)(I, x) = Torsion(g2)(I, x).

The proof of Proposition 1.1.4 follows immediately from the following

Lemma 1.1.3. Let g1, g2 be two Riemannian metrics on S. For any (x, ξ) ∈ TS, ξ 6= 0
we have for any n ∈ N∗

|Torsionn(g1)(I, x, ξ)− Torsionn(g2)(I, x, ξ)| <
1

n
.
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Proof of Lemma 1.1.3. Fix (x, ξ) ∈ TS, ξ 6= 0. For any t ∈ R+ consider the basis of vectors

(X(ft(x)), Jg1X(ft(x))) and (X(ft(x)), Jg2X(ft(x))).

Denote Jg2X(ft(x)) = α(t)X(ft(x)) + β(t)Jg1X(ft(x)). For any t ∈ R+ the value β(t) is
positive because the two basis determine the same orientation. Consider now

Dft(x)ξ = u1(t)X(ft(x)) + u2(t)Jg1X(ft(x)) = v1(t)X(ft(x)) + v2(t)Jg2X(ft(x)),

that is express the vector Dft(x)ξ in the two highlighted basis. In particular

u1(t) = v1(t) + v2(t)α(t),

u2(t) = v2(t)β(t).
(1.11)

The oriented angle between X(ft(x)) and Dft(x)ξ with respect to the metric g1 is

θ(t) = arg(u1(t) + iu2(t)),

while the oriented angle between X(ft(x)) and Dft(x)ξ with respect to the metric g2 is

Θ(t) = arg(v1(t) + iv2(t)).

Let R+ ∋ t 7→ θ̃(t) ∈ R be the lift of the oriented angle function R+ ∋ t 7→ θ(t) ∈ T such

that θ̃(0) ∈
(
− 1

2
, 1
2

]
. Let R+ ∋ t 7→ Θ̃(t) ∈ R be the lift of the oriented angle function

R+ ∋ t 7→ Θ(t) ∈ T such that Θ̃(0) ∈
(
− 1

2
, 1
2

]
.

Observe that for any n ∈ N∗ it holds

nTorsionn(g1)(I, x, ξ) = θ̃(n)− θ̃(0)

and

nTorsionn(g2)(I, x, ξ) = Θ̃(n)− Θ̃(0).

Let us discuss the possible cases.

(i) Assume that θ̃(0) = 0. That is, ξ = X(x). Consequently, we also have Θ̃(0) = 0.
From a similar argument we deduce that θ̃(0) = 1

2
if and only if Θ̃(0) = 1

2
, because

ξ = −X(ft(x)).

(ii) Assume that θ̃(0) ∈
(
0, 1

2

)
, that is (X(x), ξ) determines a positive orientation. Then,

since the two basis determine the same orientation, also Θ̃(0) ∈
(
0, 1

2

)
. From a similar

argument we deduce that θ̃(0) ∈
(
−1

2
, 0
)

if and only if Θ̃(0) ∈
(
−1

2
, 0
)
.

In particular, it holds ∣∣∣θ̃(0)− Θ̃(0)
∣∣∣ < 1

2
. (1.12)

Claim 1.1.1. For the choice of the lifts such that (1.12) holds, for any t ∈ R+ we have

∣∣∣θ̃(t)− Θ̃(t)
∣∣∣ < 1

2
.
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Proof. Argue by contradiction and assume there exists t ∈ R+ such that
∣∣∣θ̃(t)− Θ̃(t)

∣∣∣ = 1
2
.

Without loss of generality suppose that Θ̃(t) = θ̃(t) + 1
2
. The case Θ̃(t) = θ̃(t)− 1

2
can be

treated similarly. Recall that

Dft(x)ξ = u1(t)X(ft(x)) + u2(t)Jg1X(ft(x)) = v1(t)X(ft(x)) + v2(t)Jg2X(ft(x))

and
u1(t) + iu2(t) = r(t) e2πiθ̃(t) and v1(t) + iv2(t) = R(t) e2πiΘ̃(t),

where r(t), R(t) > 0. From the absurd hypothesis and from (1.11) we have

v1(t)+iv2(t) = R(t) e2πiΘ̃(t) = −R(t) e2πiθ̃(t) = −R(t)
r(t)

r(t) e2πiθ̃(t) = −R(t)
r(t)

(u1(t) + iu2(t)) =

= −R(t)
r(t)

(v1(t) + v2(t)α(t) + iv2(t)β(t)) .

Equivalently

v2(t) = −R(t)
r(t)

v2(t)β(t) and v1(t) = −R(t)
r(t)

(v1(t) + v2(t)α(t)) .

Since r(t), R(t) and β(t) are all positive, we deduce that v2(t) = 0 and we obtain v1(t) =
−R(t)

r(t)
v1(t), which is the required contradiction.

We then conclude because

|nTorsionn(g1)(I, x, ξ)− nTorsionn(g2)(I, x, ξ)| ≤

≤
∣∣∣θ̃(n)− Θ̃(n)

∣∣∣+
∣∣∣θ̃(0)− Θ̃(0)

∣∣∣ < 1.

Let us discuss now the dependance from the choice of the trivialization. Recall that a
trivialization on a parallelizable surface S is a diffeomorphism φ : TS → S × R2 which
allows us to fix a coordinate system on the tangent bundle.

Definition 1.1.5. Let φ1, φ2 be two trivializations. The two trivializations φ1, φ2 are
homotopic if there exists an homotopy (Ht)t∈[0,1] such that H0 = φ1, H1 = φ2 and Ht is a
trivialization for any t ∈ [0, 1].

Fact 1.1.1. Let φ1, φ2 be two homotopic trivializations. For i = 1, 2 denote as Xi the
vector field such that Xi(x) = φ−1

i (x; 1, 0) for any x ∈ S. Then for any loop γ : [0, 1] → S,
γ(0) = γ(1) it holds that

θ̃(X1(γ(1)), X2(γ(1))− θ̃(X1(γ(0)), X2(γ(0)) = 0,

where θ̃ is a continuous determination of the oriented angle function

[0, 1] ∋ t 7→ θ(X1(γ(t)), X2(γ(t)) ∈ T.
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Proposition 1.1.5. Let f : S → S be a C1 diffeomorphism isotopic to the identity. Let
I = (ft)t be an isotopy joining the identity to f . Assume that I = (ft)t has compact
support. Denote as Torsion(φ1)(I, ·),Torsion(φ2)(I, ·) the torsion of I = (ft)t with respect
to the trivializations φ1, φ2 respectively. Let x ∈ S and assume that Torsion(φ1)(I, x)
exists. If the trivializations φ1, φ2 are homotopic, then

Torsion(φ1)(I, x) = Torsion(φ2)(I, x).

Proof. Fix 0 < ε < 1
2
. For x ∈ Supp((ft)t) = Supp(I) consider a neighborhood Ux of x

such that for any y ∈ Ux it holds that

θ(X1(x), X2(x))− θ(X1(y), X2(y)) ∈ T

admits a measure in
(
− ε

2
, ε
2

)
.

Since Supp(I) is compact by hypothesis, we can extract a finite open covering of such
neighborhoods

Supp(I) ⊂
N⋃

i=1

Uxi .

Consider then y ∈ Supp(I). Let v ∈ TyS, v 6= 0. Recall that the torsion does not depend
on the choice of the tangent vector (see Proposition 1.1.3). Look now at the oriented angle
function

R+ ∋ t 7→ θ(X1(ft(y)), Dft(y)v)− θ(X2(ft(y)), Dft(y)v) = θ(X1(ft(y)), X2(ft(y))) ∈ T.

Let t 7→ θ̃(X1(ft(y)), X2(ft(y)) be a continuous determination of such angle function. Fix
n ∈ N. Then

|nTorsionn(X1)(I, y, v)− nTorsionn(X2)(I, y, v)| =

=
∣∣∣θ̃(X1(f

n(y)), X2(f
n(y)))− θ̃(X1(y), X2(y))

∣∣∣. (1.13)

Since the cover
⋃N
i=1 Uxi is finite, there exist ī ∈ J1, NK such that f j1(y), fn−j2(y) ∈ Uxī

for some j1, j2 ∈ J1, NK.
Consider then the loop l obtained by concatenating (ft(y))t∈[j1,n−j2] and a path γ from
γ(0) = fn−j2(y) to γ(1) = f j1(y) contained in Uxī .
Since the trivializations determined by X1, X2 are homotopic, the variation of the angle
between X1 and X2 along the loop l is null (see Fact 1.1.1). Such angle variation is

(
θ̃(X1(f

n−j2(y)), X2(f
n−j2(y)))− θ̃(X1(f

j1(y)), X2(f
j1(y)))

)
+

+
(
θ̃(X1(γ(1)), X2(γ(1)))− θ̃(X1(γ(0)), X2(γ(0)))

)
.

Since the path γ is contained in Uxī and since for any x ∈ Uxī we have that θ(X1(xī), X2(xī))−
θ(X1(x), X2(x)) admits a measure in

(
− ε

2
, ε
2

)
, we deduce that

∣∣∣θ̃(X1(γ(1)), X2(γ(1)))− θ̃(X1(γ(0)), X2(γ(0)))
∣∣∣ =

=
∣∣∣θ̃(X1(γ(1)), X2(γ(1)))−θ̃(X1(xī)), X2(xī)+θ̃(X1(xī), X2(xī))−θ̃(X1(γ(0)), X2(γ(0)))

∣∣∣ <
< ε.
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Consequently
∣∣∣ ((n− j2)Torsionn−j2(X1)(I, y, v)− j1 Torsionj1(X1)(I, y, v))−

− ((n− j2)Torsionn−j2(X2)(I, y, v)− j1 Torsionj1(X2)(I, y, v))
∣∣∣ =

=
∣∣∣θ̃(X1(f

n−j2(y)), X2(f
n−j2(y)))− θ̃(X1(f

j1(y)), X2(f
j1(y)))

∣∣∣ < ε. (1.14)

Thus, from (1.13), we have that

|nTorsionn(X1)(I, y, v)− nTorsionn(X2)(I, y, v)| ≤

≤
∣∣∣θ̃(X1(f

n−j2(y)), X2(f
n−j2(y)))− θ̃(X1(f

j1(y)), X2(f
j1(y)))

∣∣∣+

+|j1 Torsionj1(X1)(I, y, v)− j1 Torsionj1(X2)(I, y, v)|+
+
∣∣j2 Torsionj2(X1)(I, f

n−j2(y), Dfn−j2(y)v)− j2 Torsionj2(X2)(I, f
n−j2(y), Dfn−j2(y)v)

∣∣.
Since I = (ft)t has compact support by hypothesis and since j1, j2 ≤ N , we have that
there exists a constant C > 0 such that

|j1 Torsionj1(X1)(I, y, v)− j1 Torsionj1(X2)(I, y, v)| ≤ C

and
∣∣j2 Torsionj2(X1)(I, f

n−j2(y), Dfn−j2(y)v)− j2 Torsionj2(X2)(I, f
n−j2(y), Dfn−j2(y)v)

∣∣ ≤ C.

Consequently, from (1.14) we deduce that

|Torsionn(X1)(I, y, v)− Torsionn(X2)(I, y, v)| <
ε

n
+

2C

n
.

Passing to the limit for n→ +∞ we deduce that the limit limn→+∞ Torsionn(X1)(I, y, v)
exists if and only if the limit limn→+∞ Torsionn(X2)(I, y, v) exists and in particular

Torsion(X1)(I, y) = Torsion(X2)(I, y).

The argument can be repeated for any y ∈ Supp(I) and we conclude.

Proposition 1.1.5 enables us to give some conditions to assure invariance of the torsion
for C1 conjugacy.
Let us fix a Riemannian metric, an orientation and a never vanishing vector field X.

Proposition 1.1.6. Let f : S → S be a C1 diffeomorphism isotopic to the identity. Let
I = (ft)t be an isotopy joining the identity to f with compact support. Let h : S → S be
a C1 diffeomorphism with compact support such that the trivializations φ1, φ2 so that for
any x ∈ S

φ−1
1 (x; 1, 0) = (x,Dh(x)X(x)) and φ−1

2 (x; 1, 0) = (x,X(h(x)))

are homotopic. Denote as H = (h◦ft ◦h−1)t the isotopy joining the identity to h◦f ◦h−1.
Let x ∈ S and assume that Torsion(I, x) exists. Then:

11



(i) Torsion(I, x) = Torsion(H, h(x)), if h is orientation preserving;

(ii) Torsion(I, x) = −Torsion(H, h(x)) if h is orientation reversing.

Proof. Let x ∈ Supp(I) and let v ∈ TxS, v 6= 0. Denote as R+ ∋ t 7→ θ̃(t) ∈ R a continuous
determination of the oriented angle function

R+ ∋ t 7→ θ(X(ft(x)), Dft(x)v) ∈ T. (1.15)

(i) If h is orientation preserving there exists a continuous determination R+ ∋ t 7→
Θ̃(t) ∈ R of the oriented angle function

R+ ∋ t 7→ θ(Dh(ft(x))X(ft(x)), Dh(ft(x))Dft(x)v) ∈ T (1.16)

such that for any t ∈ R+ it holds

∣∣∣θ̃(t)− Θ̃(t)
∣∣∣ < 1

2
.

We refer to Proposition 1.4.1 and Appendix 1.6 for a detailed proof of the last
statement.
Consequently, for any n ∈ N it holds

∣∣∣nTorsionn(I, x, v)−
(
Θ̃(n)− Θ̃(0)

)∣∣∣ =
∣∣∣
(
θ̃(n)− θ̃(0)

)
−
(
Θ̃(n)− Θ̃(0)

)∣∣∣ < 1.

Equivalently, Torsion(I, x) exists if and only if the limit limn→+∞
Θ̃(n)−Θ̃(0)

n
exists

and in particular

Torsion(I, x) = lim
n→+∞

Θ̃(n)− Θ̃(0)

n
. (1.17)

(ii) If h is orientation reversing there exists a continuous determination R+ ∋ t 7→
Θ̃(t) ∈ R of the oriented angle function

R+ ∋ t 7→ θ(Dh(ft(x))X(ft(x)), Dh(ft(x))Dft(x)v) ∈ T

such that for any t ∈ R+ it holds

∣∣∣θ̃(t) + Θ̃(t)
∣∣∣ < 1

2
.

For the proof of this last inequality we refer to Proposition 1.6.1 in Appendix 1.6.
Consequently, for any n ∈ N it holds

∣∣∣nTorsionn(I, x, v) +
(
Θ̃(n)− Θ̃(0)

)∣∣∣ =
∣∣∣
(
θ̃(n)− θ̃(0)

)
+
(
Θ̃(n)− Θ̃(0)

)∣∣∣ < 1.

Thus, Torsion(I, x) exists if and only if the limit limn→+∞
Θ̃(n)−Θ̃(0)

n
exists and

Torsion(I, x) = − lim
n→+∞

Θ̃(n)− Θ̃(0)

n
. (1.18)
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We can so calculate the variation of the angle function

t 7→ θ(Dh(ft(x))X(ft(x)), Dh(ft(x))Dft(x)v). (1.19)

Denote as y = h(x), ξ = Dh(x)v. Then the angle function in (1.19) is

t 7→ θ(Dh(ft ◦ h−1(y))X(ft ◦ h−1(y)), D(h ◦ ft ◦ h−1)(y)ξ).

By hypothesis the trivializations determined by DhX and X ◦ h are homotopic and f, h
have compact support. Arguing as in Proposition 1.1.5 we can show that, whenever the
limit exists,

lim
n→+∞

Θ̃(n)− Θ̃(0)

n
= lim

n→+∞
Torsionn(H, y, ξ), (1.20)

where H = (h ◦ ft ◦ h−1)t. Indeed, let us fix n ∈ N. It holds
∣∣∣
(
Θ̃(n)− Θ̃(0)

)
− nTorsionn(H, y, ξ)

∣∣∣ =

=
∣∣∣ψ̃(Dh(fn ◦ h−1(y))X(fn ◦ h−1(y)), X(h ◦ fn ◦ h−1(y)))− ψ̃(Dh(h−1(y))X(h−1(y)), X(y))

∣∣∣,

where ψ̃ denotes a continuous determination of the oriented angle function

t 7→ θ(Dh(ft ◦ h−1(y))X(ft ◦ h−1(y)), X(h ◦ ft ◦ h−1(y))).

Since Supp(I)∪ Supp(h) is compact, we can proceed as in the proof of Proposition 1.1.5.
Follow the path ft ◦ h−1(y) for t ∈ [0, n] and then close it up in a suitable way. By the
fact that the involved trivializations are homotopic (see Definition 1.1.5 and Fact 1.1.1),
passing to the limit for n→ +∞ we derive then equality (1.20).
Finally, from (1.17), (1.18) and (1.20), we conclude that

Torsion(I, x, v) =





Torsion(H, h(x)) if h is orientation preserving,

−Torsion(H, h(x)) if h is orientation reversing.

Remark 1.1.4. The following remark is due to P. Le Calvez. In the sequel we largely
refer to [Sch57].
Let S be a connected parallelizable Riemannian surface. Any continuous function φ :
TS∗ → T determines a cohomology class α ∈ H1(TS∗,Z) as follows. Recall that (see
for example [God71] or [Hat02]) the first cohomology group H1(TS∗,Z) is isomorphic to
Hom(H1(TS∗),Z) which is isomorphic to Hom(π1(TS∗),Z).
Think so at α as the following homomorphism on the first fundamental group of TS∗. Let
γ be a loop in TS∗ and let [γ] ∈ π1(TS∗) be its homotopic class. Let F : [0, 1] → R be a
continuous lift of

[0, 1] ∋ t 7→ φ ◦ γ(t) ∈ T.

Then α([γ]) = F(1) − F(0) ∈ Z. Observe that it does not depend on the choice of the
element γ in the homotopic class [γ].
Two continuous functions φ, φ′ of TS∗ in T are cohomologous if φ− φ′ : TS∗ → T admits
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a real-valued continuous lift. If two functions φ, φ′ are homotopic then they are also co-
homologous (see [God71]).

Let us come back to the framework of the torsion. Given a Riemannian metric g on S
and a non singular vector field X on S, we define a continuous function

φg,X : TS∗ → T

(x, ξ) 7→ θg(X(x), ξ),

where θg(u, v) is the oriented angle (with respect to the metric g) between the non-zero
vectors u and v. Remark that if g, g′ are Riemannian metric on S and if X,X ′ are homo-
topic non singular vector fields on S, then φg,X and φg′,X′ are homotopic and, consequently,
cohomologous.
Let f : S → S be a C1 diffeomorphism isotopic to the identity and let I = (ft)t∈R+ be an
isotopy joining IdS to f . Assume that I has compact support and denote I the support
of the isotopy.
Let φg,X , φg′,X′ be cohomologous. Denote the torsion calculated with respect to φg,X as
Torsion(g,X) and with respect to φg′,X′ as Torsion(g′, X ′). Then, whenever the torsion
exists, Torsion(g,X)(I, x) and Torsion(g′, X ′)(I, x) will be the same. Indeed, the contin-
uous function φg,X − φg′,X′ has a real-valued continuous lift F : TI∗ → R. In particular,
F is bounded. Consequently

|Torsion(g,X)(I, x)− Torsion(g′, X ′)(I, x)| = lim
n→+∞

1

n

∣∣∣F (fn(x), Dfn(x)ξ)−F(x, ξ)
∣∣∣ = 0.

For a deeper discussion, we recall that we have shown that the torsion does not depend
on the Riemannian metric g on S (see Proposition 1.1.4). Proposition 1.1.5 shows that,
for compact-supported isotopies, the torsion depends only on the homotopy class of the
non singular vector field X.

If we drop the compactness assumption, then the torsion does not depend only on the
cohomology class of the function φg,X , as shown by the next example.
Let f : R2 → R2 be (x, y) 7→ f(x, y) = (x, y + 1) and consider the isotopy I = (ft)t∈R+

such that for any t it holds ft(x, y) = (x, y+ t). Fix the standard Riemannian metric and
the standard orientation. Let X1(x, y) = (1, 0) and X2(x, y) = (cos(2πy), sin(2πy)). Then

φX1 : T
1R2 → T, ((x, y), ξ) 7→ θ((1, 0), ξ)

and
φX2 : T

1R2 → T, ((x, y), ξ) 7→ θ((cos(2πy), sin(2πy)), ξ)

are cohomologous, but for any (x, y) ∈ R2 the torsion calculated with respect to X1 at
(x, y) is null, while the torsion with respect to X2 at (x, y) is −1.
In the sequel we will be interested also in non compact-supported isotopies.
Finally, we remark that on T2 the torsion depends only on the cohomology class associated
to φg,X . On T2 the choice of the standard trivialization corresponds to the choice of the
cohomology class (0, dξ), where we denote as ((x, y), ξ) a point in T 1T2, where we are
identifying T 1T2 with T2 × S1.
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1.2 Notion of linking number

In the setting of R2 we refer to [BB13] to introduce the notion of linking number.

Notation 1.2.1. The counterclockwise orientation of R2 is considered. Moreover, we fix
the constant vector field X = (1, 0) and we denote it as H.

Definition 1.2.1. Let I = (Ft)t be an isotopy in Diff 1(R2) joining the identity to F1 = F .
Let us denote ∆ := {(z1, z2) ∈ R4 : z1 = z2} and define the function

u(I) :(R4 \∆)× R → T

(z1, z2, t) 7→ θ (H, Ft(z2)− Ft(z1)) .
(1.21)

Fix (z1, z2) ∈ R4 \∆ and consider ũ(I)(z1, z2, ·) : R → R, a continuous determination of
the angle function u(I)(z1, z2, ·).
For any n ∈ N, n 6= 0, the linking number of z1 and z2 at finite time n is

Linkingn(I, z1, z2) :=
1

n
(ũ(I)(z1, z2, n)− ũ(I)(z1, z2, 0)) . (1.22)

The linking number of z1 and z2 is

Linking(I, z1, z2) := lim
n→+∞

Linkingn(I, z1, z2) (1.23)

whenever the limit exists.

Remark 1.2.1. Let F be as in Definition 1.2.1. Let µ be a F -invariant Borel probability
measure on R2 with compact support. Then, for µ-almost every x ∈ R2, the linking
number Linking(I, x, y) exists for µ-almost every y ∈ R2 \ {x}. Indeed

Linking(I, x, y) = lim
n→+∞

1

n

n−1∑

i=0

Linking1(I, F
i(x), F i(y)) =

= lim
n→+∞

1

n

n−1∑

i=0

Linking1(I, ·, ·) ◦ F i
∗(x, y)

where
F∗ : R

4 \∆ → R4 \∆
(x, y) 7→ (F (x), F (y)).

Considering the product measure µ× µ on R4 \∆, which is F∗-invariant, observe that

Linking1(I, ·, ·) ∈ L1(µ× µ)

since µ has compact support. Then, Birkhoff’s Ergodic Theorem tells us that the function
Linking(I, ·, ·) is defined µ × µ-almost everywhere and it is in L1(µ × µ). By Fubini’s
theorem, for µ-almost every x ∈ R2 the function Linking(I, x, ·) is defined µ-almost ev-
erywhere.

Properties analogous of those described in Proposition 1.1.3 for the torsion hold true
for the linking number.
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Proposition 1.2.1. Let I = (Ft)t∈R be an isotopy in Diff 1(R2) joining the identity
F0 = IdR2 to F1 = F . For any points z1, z2 ∈ R2, z1 6= z2 the quantities

Linkingn(I, z1, z2) ∀n ∈ N, n 6= 0

Linking(I, z1, z2) when it exists

do not depend on the choice of the continuous determination of the angle function u(I)(z1, z2, ·).
Let I ′ = (Gt)t be another isotopy joining the identity to F . Then, there exists an integer
k ∈ Z independent of the points z1, z2 ∈ R2 so that

Linkingn(I, z1, z2) = Linkingn(I
′, z1, z2) + k ∀n ∈ N, n 6= 0

Linking(I, z1, z2) = Linking(I ′, z1, z2) + k.

As for Proposition 1.1.3, the results of Proposition 1.2.1 follow from the continuity of
the involved functions and from the property of F of being isotopic to the identity.

1.3 On torsion of C1 diffeomorphism of A

1.3.1 Independence of the torsion from the choice of the isotopy

on A

In [BB13], Béguin and Boubaker show that the torsion is independent of the choice of
the isotopy both for an isotopy with compact support and for a diffeomorphism on the
2-dimensional torus T2. In this Section, we prove the independence of the torsion from
the isotopy for a C1 diffeomorphism over the annulus (with no further hypothesis on its
support).

Notation 1.3.1. Consider the unbounded annulus A = T×R. Let I = (ft)t be an isotopy
in Diff 1(A) joining IdA to f1 = f . Let us fix the counterclockwise orientation and consider
as continuous never-vanishing vector field X the constant one H = (1, 0).
Let Ĩ = (Ft)t be the isotopy obtained as the lift of I = (ft)t such that F0 = IdR2 . It joins
the identity IdR2 to F , where F : R2 → R2 is a lift of f . We then remark that for any
time t and for any z = (x, y) ∈ R2 it holds

Ft(x+ 1, y) = Ft(x, y) + (1, 0). (1.24)

As an intermediate step, we first show that the linking number in the lifted setting does
not depend on the choice of the annulus isotopy.

Proposition 1.3.1. Let I = (ft)t, I
′ = (gt)t be two different isotopies in Diff 1(A) joining

IdA to f1 = g1 = f . Let Ĩ = (Ft)t, Ĩ
′ = (Gt)t in Diff 1(R2) be lifts of the isotopies

I = (ft)t, I
′ = (gt)t such that F0 = G0 = IdR2.

Then for any z1, z2 ∈ R2, z1 6= z2 it holds

Linking1(Ĩ , z1, z2) = Linking1(Ĩ
′, z1, z2)

and hence, whenever the limit exists, Linking(Ĩ , z1, z2) = Linking(Ĩ ′, z1, z2).
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Proof. Recalling the definition of the diagonal in R4, that is

∆ := {((x, y), (x′, y′)) ∈ R4 : (x, y) = (x′, y′)},

we define the following functions

Linking1(Ĩ) :(R
2 × R2) \∆ → R

(z, z′) 7→ Linking1(Ĩ , z, z
′)

and

Linking1(Ĩ
′) :(R2 × R2) \∆ → R

(z, z′) 7→ Linking1(Ĩ
′, z, z′).

Both these functions are continuous ones. Moreover, for any (z, z′) ∈ (R2 ×R2) \∆ there
exists k = kz,z′ ∈ Z such that

Linking1(Ĩ , z, z
′) = Linking1(Ĩ

′, z, z′) + k.

Since (R2 ×R2) \∆ is connected, the integer k ∈ Z does not depend on the points (z, z′)
of (R2 × R2) \∆.

Consider then points z 6= z′ such that z′ = z + (1, 0). To fix the ideas, let us choose
z = (0, 0), z′ = (1, 0). Because of (1.24), it holds that

Linking1(Ĩ , z, z
′) = Linking1(Ĩ

′, z, z′) = 0. (1.25)

By this observation, we conclude that k = 0, i.e. the linking number does not depend on
the chosen isotopy.

The next proposition proves that the definition of torsion for a C1 diffeomorphism
f : A → A isotopic to the identity is independent of the choice of the isotopy.

Proposition 1.3.2. Let I = (ft)t, I
′ = (gt)t be two different isotopies in Diff 1(A) joining

the identity IdA to f1 = g1 = f and let consider the standard trivialization.
Then for any z̄ ∈ A and for any ξ ∈ Tz̄A \ {0}

Torsion1(I, z̄, ξ) = Torsion1(I
′, z̄, ξ). (1.26)

Moreover
Torsion(I, z̄) = Torsion(I ′, z̄) (1.27)

whenever the limit exists.

Proof. Let Ĩ = (Ft)t and Ĩ ′ = (Gt)t be the corresponding lifts of the isotopies I = (ft)t
and I ′ = (gt)t to the plane R2 such that F0 = G0 = IdR2 . Let z ∈ R2 and ξ ∈ TzR2 \{0} ∼=
Tz̄A \ {0}. Thanks to the choice of the trivialization, denoting as z̄ ∈ A the projection of
z on the annulus, it holds

Torsion1(Ĩ , z, ξ) = Torsion1(I, z̄, ξ)

and
Torsion1(Ĩ

′, z, ξ) = Torsion1(I
′, z̄, ξ).
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By Proposition 1.1.1 it holds

Torsion1(Ĩ , z, ξ) = Torsion1(Ĩ
′, z, ξ) + k (1.28)

where k ∈ Z does not depend on the point or on the vector since R2 is connected.
Recall the functions v, u, used in Definitions 1.1.1 and 1.2.1:

v(Ĩ)(z, ξ, ·) :[0, 1] → T

t 7→ θ (H, DFt(z)ξ)

and

u(Ĩ)(z, z′, ·) :[0, 1] → T

t 7→ θ (H, Ft(z′)− Ft(z)) ,

where H = (1, 0). Let us look at z′ = z + ξ. Parametrize the segment [z, z + ξ] by setting
for any s ∈ [0, 1]

z(s) := z + sξ.

Modify now the definitions of functions u, v in the following way:

u(Ĩ) :[0, 1]× [0, 1] → T

(s, t) 7→ θ (H, Ft(z(s))− Ft(z)) s 6= 0

(0, t) 7→ θ (H, DFt(z)ξ)
(1.29)

and

v(Ĩ) :[0, 1]× [0, 1] → T

(s, t) 7→ θ (H, DFt(z(s))ξ) .
(1.30)

Observe that both v(s, t) and u(s, t) are continuous functions, by the continuity of the
isotopy with respect to the weak C1 topology in Diff 1(R2).
Since the definition of u(Ĩ) coincides with that of v(Ĩ) for s = 0 and since u(Ĩ) is contin-
uous, for any time t we have that v(Ĩ)(0, t) = u(Ĩ)(0, t) = lims→0+ u(Ĩ)(s, t).
The definitions of torsion and linking number do not depend on the chosen lift. So we
select continuous determinations ṽ(Ĩ) and ũ(Ĩ) such that ṽ(Ĩ)(0, t) = ũ(Ĩ)(0, t) for any
time t and similarly ṽ(Ĩ ′)(0, t) = ũ(Ĩ ′)(0, t).

By Proposition 1.3.1 for any s ∈ [0, 1] it holds

ũ(Ĩ)(s, 1)− ũ(Ĩ)(s, 0) = ũ(Ĩ ′)(s, 1)− ũ(Ĩ ′)(s, 0).

Passing to the limit for s going to 0+, we obtain

ṽ(Ĩ)(0, 1)− ṽ(Ĩ)(0, 0) = ṽ(Ĩ ′)(0, 1)− ṽ(Ĩ ′)(0, 0),

that is
Torsion1(Ĩ , z, ξ) = Torsion1(Ĩ

′, z, ξ).

We conclude that the integer k in (1.28) is null.
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Remark 1.3.1. With the same techniques, it can be shown that also for a C1 diffeomor-
phism over the torus T2 isotopic to the identity the torsion is independent of the choice
of the isotopy. Actually, this independence has been already remarked by Béguin and
Boubaker in Section 2 in [BB13].

Remark 1.3.2. Using the same strategy of the proofs of Proposition 1.3.1 and Proposition
1.3.2, we can show that both the torsion and the linking number (already at finite time)
for a C1 diffeomorphism of R2 with compact support do not depend on the choice of the
isotopy, up to consider compact-supported isotopies. Indeed, for z1, z2 ∈ R2, z1 6= z2 not
belonging to the support of the isotopy, the linking number (already at finite-time) of
(z1, z2) is zero with respect to any compact-supported isotopy.

1.3.2 Invariance under C1 conjugacy

The following result concerns the invariance of the torsion for conjugation through C1 dif-
feomorphisms of the annulus isotopic to the identity with compact support. With respect
to Proposition 1.1.6, this result does not require that I = (ft)t has compact support,
but it holds for an isotopic-to-identity C1 conjugation h with compact support. See also
Section 2.9 in [Bou12]. Because of Proposition 1.3.2, the torsion does not depend on the
chosen isotopy on the annulus. Therefore, in the following, we will omit the isotopy in the
notation.

Proposition 1.3.3. Let f, h : A → A be C1 diffeomorphisms isotopic to the identity.
Assume that h has compact support. Let z̄ ∈ A and assume that Torsion(f, h−1(z̄)) exists.
Then

Torsion(h ◦ f ◦ h−1, z̄) = Torsion(f, h−1(z̄)).

We start by proving the following lemma which will be used in the proof of Proposition
1.3.3.

Lemma 1.3.1. Let h : A → A be a C1 diffeomorphism isotopic to the identity. Then for
any z̄ ∈ A and any ξ ∈ Tz̄A it holds

Torsion1(h
−1, z̄, ξ) = −Torsion1(h, h

−1(z̄), Dh−1(z̄)ξ).

Proof. By Proposition 1.3.2, the time-one torsion of h−1 does not depend on the choice of
the isotopy. Therefore, let H = (ht)t be an isotopy joining the identity to h and consider
the isotopy H−1 = (h−1

t )t∈[0,1] where

h−1
t = h1−t ◦ h−1 ∀t ∈ [0, 1].

The isotopy H−1 = (h−1
t )t joins the identity to h−1. Fix z̄ ∈ A and ξ ∈ Tz̄A.

The function t 7→ ṽ(H−1)(z̄, ξ, t) is a continuous determination of the oriented angle
function

t 7→ θ(X(h−1
t (z̄)), Dh−1

t (z̄)ξ) = θ(X(h1−t(h
−1(z))), Dh1−t(h

−1(z̄))Dh−1(z̄)ξ).

This last oriented angle function is t 7→ v(H)(h−1(z̄), Dh−1(z̄)ξ, 1− t). Choosing a contin-
uous determination such that ṽ(H−1)(z̄, ξ, 0) = ṽ(H)(h−1(z̄), Dh−1(z̄)ξ, 1), we conclude
that for any t ∈ [0, 1] it holds

ṽ(H−1)(z̄, ξ, t) = ṽ(H)(h−1(z̄), Dh−1(z̄)ξ, 1− t).
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Consequently
Torsion1(h

−1, z̄, ξ) =

= ṽ(H−1)(z̄, ξ, 1)− ṽ(H−1)(z̄, ξ, 0) =

= ṽ(H)(h−1(z̄), Dh−1(z̄)ξ, 0)− ṽ(H)(h−1(z̄), Dh−1(z̄)ξ, 1) =

= −Torsion1(h, h
−1(z̄), Dh−1(z̄)ξ).

Proof of Proposition 1.3.3. Let H = (ht)t, I = (ft)t be isotopies joining the identity to h, f
respectively. Denote as H−1 = (h1−t ◦ h−1)t∈[0,1]. To calculate the torsion for h ◦ f ◦ h−1,
thanks to Proposition 1.3.2, we can use the following isotopy G = (gt)t∈[0,1] joining the
identity to h ◦ f ◦ h−1:

gt :=





h1−3t ◦ h−1 for t ∈
[
0, 1

3

]

f3t−1 ◦ h−1 for t ∈
[
1
3
, 2
3

]

h3t−2 ◦ f ◦ h−1 for t ∈
[
2
3
, 1
]
.

Fix now z̄ ∈ A and ξ ∈ Tz̄A. We have

Torsion1(h ◦ f ◦ h−1, z̄, ξ) = ṽ(G)(z̄, ξ, 1)− ṽ(G)(z̄, ξ, 0) =

= ṽ(H)(f ◦ h−1(z̄), D(f ◦ h−1)(z̄)ξ, 1)− ṽ(H)(f ◦ h−1(z̄), D(f ◦ h−1)(z̄)ξ, 0)+

+ṽ(I)(h−1(z̄), Dh−1(z̄)ξ, 1)− ṽ(I)(h−1(z̄), Dh−1(z̄)ξ, 0)+

+ṽ(H−1)(z̄, ξ, 1)− ṽ(H−1)(z̄, ξ, 0).

Since ṽ(H−1)(z̄, ξ, 1)− ṽ(H−1)(z̄, ξ, 0) = Torsion1(h
−1, z̄, ξ), using Lemma 1.3.1, we obtain

Torsion1(h ◦ f ◦ h−1, z̄, ξ) = Torsion1(h, f ◦ h−1(z̄), D(f ◦ h−1)(z̄)ξ)+

+ Torsion1(f, h
−1(z̄), Dh−1(z̄)ξ)− Torsion1(h, h

−1(z̄), Dh−1(z̄)ξ). (1.31)

Consequently for n ∈ N

Torsionn(h ◦ f ◦h−1, z̄, ξ) =
1

n

n−1∑

i=0

Torsion1(h ◦ f ◦h−1, h ◦ f i ◦h−1(z̄), D(h ◦ f i ◦h−1)(z̄)ξ).

Using (1.31) and erasing the corresponding terms, we have

Torsionn(h ◦ f ◦ h−1, z̄, ξ) =
1

n

n−1∑

i=0

Torsion1(f, f
i ◦ h−1(z̄), D(f i ◦ h−1)(z̄)ξ)+

+
1

n

(
Torsion1(h, f

n ◦ h−1(z̄), Dfn(h−1(z̄))Dh−1(z̄)ξ)− Torsion1(h, h
−1(z̄), Dh−1(z̄)ξ)

)
.

Since x 7→ Torsion1(h, x, v) is continuous, since the support of h is compact and since
outside its support the time-one torsion of h is null, we deduce that

Torsion1(h, f
n ◦ h−1(z̄), Dfn(h−1(z̄))Dh−1(z̄)ξ)− Torsion1(h, h

−1(z̄), Dh−1(z̄)ξ)
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is bounded (uniformly in n). Passing to the limit for n→ +∞, we conclude that

Torsion(h ◦ f ◦ h−1, z̄) = lim
n→+∞

Torsionn(h ◦ f ◦ h−1, z̄, ξ) =

lim
n→+∞

Torsionn(f, h
−1(z̄), Dh−1(z̄)ξ)+

+ lim
n→+∞

1

n

(
Torsion1(h, f

n ◦ h−1(z̄), Dfn(h−1(z̄))Dh−1(z̄)ξ)− Torsion1(h, h
−1(z̄), Dh−1(z̄)ξ)

)
=

= Torsion(f, h−1(z̄)).

1.4 Link between torsion and linking number

In [BB13], the authors provide conditions for which the existence of two points with
non-zero linking number implies the existence of a point with non-zero torsion. However,
the value and even the sign of the linking number and of the torsion can be different.
Let x, y ∈ R2 be points with linking value l. In Theorem 1.4.1, we claim the existence of
a point with torsion value exactly l. In addition we locate such a point on the segment
joining x and y. We remark that this result can be applied also to the zero value case,
since it does not depend on the value of the linking number. Throughout the section, we
consider torsion with respect to a constant reference vector field (i.e. with respect to the
standard trivialization).

Theorem 1.4.1. Let I = (Ft)t∈[0,1] be an isotopy in Diff 1(R2) joining IdR2 to F1 = F .
Assume that there exist two points x, y ∈ R2, x 6= y such that

Linking1(I, x, y) = l ∈ R.

Then there exists a point z ∈ [x, y] so that

Torsion1 (I, z, y − x) = l.

At first sight, this result could recall a mean value theorem but the arguments and the
strategies needed in the proof are much more sophisticated and subtle.
First of all, through continuous modifications of the isotopy, we bring ourselves in a
rotation frame of reference, reducing then the discussion to the case l = 0.
In order to avoid self-intersections of the curve, a passage to the universal covering of the
punctured plane is required: the strategy in doing so is using a polar coordinate frame,
with respect to which one of the endpoints of the segment coincides with the singularity.
Finally, we carefully study the behavior of points in a neighborhood of the singularity x,
the point previously blown up which corresponds to the origin of the polar coordinate
framework. We then apply the Turning Tangent Theorem (see [DC76], Chapter 4, Section
5).

Notation 1.4.1. Consider an isotopy I = (Ft)t : [0, 1] → Diff 1(R2) joining the identity
to F1 = F . With the notation I = (Ft)t we refer also to the extended isotopy. We refer
to the setting presented in Notation 1.2.1: we fix the counterclockwise orientation and we
are going to measure angles with respect to the vector field H = (1, 0).
Given two points x, y ∈ R2, x 6= y, the notation [x, y] refers to the segment joining the
points.
Denote a point of the segment as z(s) := sy + (1− s)x for s ∈ [0, 1].
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Sketch of the proof of Theorem 1.4.1. By contradiction, we assume that there is no point
z ∈ [x, y] such that Torsion1(I, z, y − x) = l. Then, by the continuity of the function
z 7→ Torsion1(I, z, y − x) and by the connectedness of the segment, one of the following
cases occur:

(i) for any z ∈ [x, y] it holds Torsion1(I, z, y − x) < l;

(ii) for any z ∈ [x, y] it holds Torsion1(I, z, y − x) > l.

In Subsection 1.4.2 we show that case (i) leads to a contradiction. Similarly, case (ii)
cannot even occur.

A modification of the involved isotopy and the use of Theorem 1.4.1 easily adapt this
result for any finite time n ∈ N. We keep the same notation of Theorem 1.4.1.

Corollary 1.4.1. Assume that there exist n ∈ N, n 6= 0 and x, y ∈ R2, x 6= y, such that
Linkingn(I, x, y) = l ∈ R.
Then there exists a point z ∈ [x, y] such that

Torsionn (I, z, y − x) = l. (1.32)

Proof. We are interested in the time interval [0, n]. Define the isotopy In = (Gt)t∈[0,1] :=
(Fnt)t∈[0,1].
Hence, we are time-reparametrizing the initial isotopy. It holds

u(In, x, y)(t) = u(I, x, y)(nt).

Then, ũ(In, x, y)(t) and ũ(I, x, y)(nt) denote continuous determinations of the same angle
function. Since the (finite time) linking number is independent of the choice of the lift
(see Proposition 1.2.1), we refer to ũ(In, x, y)(t).
The hypothesis Linkingn(I, x, y) = l is then equivalent to ask that Linking1(I

n, x, y) = nl.
By Theorem (1.4.1), there exists z ∈ [x, y] such that Torsion1(I

n, z, y− x) = nl. For such
a z it also holds

Torsionn (I, z, y − x) = l (1.33)

and this concludes the proof.

We wonder if any such relation is satisfied between asymptotic torsion and asymptotic
linking number: can any results as above hold true even when considering (1.5) in Defini-
tion 1.1.3 and (1.23) in Definition (1.2.1)?
The answer is positive looking at torsion of F -invariant measures, instead of orbits. Pass-
ing to asymptotic quantities, we are going to prove the existence of f -invariant Borel
probability measures µ whose torsion, i.e.

∫
S

Torsion((ft)t, x)dµ(x), equals l ∈ R, where
now l is the asymptotic linking number of two points.

Corollary 1.4.2. Assume that there exist two points x, y ∈ R2, x 6= y such that

Linking(I, x, y) = l ∈ R.

Suppose that
⋃
n∈N F

n([x, y]) is relatively compact.
Then there exists a F -invariant probability measure µ such that

Torsion(I, µ) = l.

Moreover, there exist points with torsion greater or equal l and also points with torsion
smaller or equal l.
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Remark 1.4.1. If F has compact support, then
⋃
n∈N F

n([x, y]) is always relatively com-
pact.

Proof. From our hypothesis

l = Linking(I, x, y) = lim
n→+∞

Linkingn(I, x, y)

For any fixed n ∈ N, denote ln := Linkingn(I, x, y). By Corollary (1.4.1) there exists
zn ∈ [x, y] such that

Torsionn (I, zn, y − x) = ln.

The notation ξ refers to the vector y− x. Consider the following probability measures on
the unitary tangent bundle T 1R2:

µ̃n :=
1

n

n−1∑

i=0

δ(
F i(zn),

DFi(zn)ξ

‖DFi(zn)ξ‖

) (1.34)

where δ(x,v) denotes the Dirac measure centered on (x, v) in T 1R2. All the supports of
these measures µ̃n are contained in the same set

T 1
KR

2

where
K :=

⋃

i∈N
F i([x, y]).

From the hypothesis, K is compact and so is T 1
KR

2.
Up to subsequences, the sequence (µ̃n)n converges to a probability measure µ̃ on T 1R2

which is invariant with respect to the dynamics on the unitary tangent bundle inherited
from F . The projection µ of µ̃ on R2 is F -invariant as well.
Finally, refering to Definition (1.1.4) with respect to µ, we have

Torsion(I, µ) =
∫

R2

Torsion(I, x)dµ(x) =
∫

T 1R2

Torsion(I, x)dµ̃(x, v)
∗
=

∫

T 1R2

Torsion1(I, x, v)dµ̃(x, v) =

= lim
n→+∞

∫

T 1R2

Torsion1(I, x, v)dµ̃n(x, v) =

= lim
n→+∞

1

n

n−1∑

i=0

Torsion1

(
I, F i(zn),

DF i(zn)ξ

‖DF i(zn)ξ‖

)
=

= lim
n→+∞

Torsionn(I, zn, ξ) = lim
n→+∞

ln = l.

Equality ∗ is a consequence of Birkhoff’s Ergodic Theorem applied to the framework
where

F ∗ : (T 1R2, µ̃) → (T 1R2, µ̃)

(x, ξ) 7→ F ∗(x, ξ) =

(
F (x),

DF (x)ξ

‖DF (x)ξ‖

)

is a measure-preserving transformation and Torsion1(I, ·, ·) ∈ L1(T 1R2, µ̃). The time av-
erage Torsion(I, ·) does not depend on the choice of the tangent vector (see Proposition
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1.1.3) and, by Birkhoff’s Ergodic Theorem (see Theorem 4.1.2 in [KH95]), it exists µ̃-a.e.,
is measurable, F ∗-invariant and such that

∫

T 1R2

Torsion(I, x)dµ̃(x, v) =
∫

T 1R2

Torsion1(I, x, v)dµ̃(x, v).

As an outcome, there exist points with torsion greater or equal l and also points with
torsion smaller or equal l.
Arguing by contradiction, suppose that every x ∈ R2 has Torsion(I, x) strictly greater
than l. Then

l = Torsion(I, µ) =
∫

R2

Torsion(I, x)dµ(x) >
∫

R2

l dµ(x) = l.

This provides the required contradiction. Analogous argument holds assuming that every
point has torsion strictly less than l.

1.4.1 Some consequences for the torus T2

Any diffeomorphism of the torus has an invariant measure with zero torsion: this result
was already known by Matsumoto and Nakayama for C∞ diffeomorphisms. We present
here a simpler proof which works also with C1 diffeomorphisms. Therefore, we weaken the
hypothesis required in [MN02].

Notation 1.4.2. Let
P : R2 → T2

(x, y) 7→ P(x, y) = (x mod 1, y mod 1)

be the universal covering of T2. Denote as P(T2) the set of Borel probability measures
over the torus T2. Fix the counterclockwise orientation and consider as reference vector
field X the constant one H.

Let us start by observing that in the case of torus diffeomorphisms the hypothesis of
Corollary 1.4.2 are too strong. Therefore, we state the following

Corollary 1.4.3. Let I = (ft)t be an isotopy in Diff 1(T2) joining IdT2 to f1 = f . Let
Ĩ = (Ft)t in Diff 1(R2) be the lift of the isotopy I = (ft)t such that F0 = IdR2. Assume
that there exist two points x, y ∈ R2, x 6= y such that Linking(Ĩ , x, y) = l ∈ R. Then there
exists a f -invariant probability measure µ ∈ P(T2) such that Torsion(I, µ) = l. Moreover,
there exist points in T2 with torsion greater or equal l and also points with torsion smaller
or equal l.

The proof of Corollary 1.4.3 retraces the ideas of the proof of Corollary 1.4.2.

Proof. As in the proof of Corollary 1.4.2, denote ln = Linkingn(Ĩ , x, y) and by hypothesis
it holds limn→+∞ ln = l = Linking(Ĩ , x, y). By Corollary 1.4.1 for any n ∈ N, n 6= 0 there
exists zn ∈ [x, y] such that Torsionn(Ĩ , zn, y − x) = ln.
Thanks to the choice of the trivialization we have that

Torsionn(I,P(zn), y − x) = Torsionn(Ĩ , zn, y − x) = ln.
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For simplicity denote P(zn) as ẑn. Consider now the probability measures on the unitary
tangent bundle T 1T2:

µ̃n :=
1

n

n−1∑

i=0

δ(
f i(ẑn),

Dfi(ẑn)(y−x)

‖Dfi(ẑn)(y−x)‖

).

Being T 1T2 compact, up to subsequences, (µ̃n)n converges to µ̃ which is a probability
measure on T 1T2. The measure µ̃ is invariant with respect to the dynamics on T 1T2 and
its projection on T2 µ ∈ P(T2) is f -invariant.
Repeating the ideas in the proof of Corollary 1.4.2, we have

Torsion(I, µ) =
∫

T2

Torsion(I, x) dµ(x) =
∫

T 1T2

Torsion1(I, x, v) dµ̃(x, v) =

= lim
n→+∞

1

n

n−1∑

i=0

Torsion1

(
I, f i(ẑn),

Df i(ẑn)(y − x)

‖Df i(ẑn)(y − x)‖

)
=

= lim
n→+∞

Torsionn(I, ẑn, y − x) = l.

We easily deduce the existence of points in T2 with torsion greater or equal l (respectively
smaller or equal l).

We then deduce as a corollary the result by Matsumoto and Nakayama discussed above.

Corollary 1.4.4. Let f : T2 → T2 be a C1 diffeomorphism isotopic to the identity. Then,
there exists a f -invariant Borel probability measure µ ∈ P(T2) of null torsion.

Proof. Let I = (ft)t be an isotopy in Diff 1(T2) joining the identity to f . Recall that on
T2 the torsion does not depend on the chosen isotopy, see Remark 1.3.1. Let Ĩ = (Ft)t
be the isotopy obtained as the lift of the isotopy I = (ft)t such that F0 = IdR2 . For any
point (x, y) ∈ R2

Ft(x+ k1, y + k2) = Ft(x, y) + (k1, k2) ∀(k1, k2) ∈ Z2, ∀t ∈ R+. (1.35)

Consider now the points z1 = (0, 0), z2 = (1, 0) ∈ R2. For a fixed n ∈ N, n 6= 0 look at

Linkingn(Ĩ , z1, z2) =
1

n

(
ũ(Ĩ)(z1, z2, n)− ũ(Ĩ)(z1, z2, 0))

)
.

Since (1.35) holds for every t ≥ 0, the vector Ft((1, 0)) − Ft((0, 0)) (in whose direction
we are interested) remains horizontal and so Linkingn(Ĩ , z1, z2) ≡ 0

n
. By the arbitrari-

ness of n ∈ N we deduce that Linking(Ĩ , z1, z2) = 0. Applying Corollary 1.4.3 to the
points z1, z2, we conclude that there exists µ ∈ P(T2) which is f -invariant and such that
Torsion(I, µ) = 3Torsion(f, µ) = 0.

3. Recall that on T2 the torsion does not depend on the chosen isotopy (see Remark 1.3.1).
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1.4.2 Proof of case (i) of Theorem 1.4.1

In this section we assume that case (i) of the sketch of the proof of Theorem 1.4.1
(presented in Section 1.4) holds, that is for any z ∈ [x, y] we have

Torsion1(I, z, y − x) < l = Linking1(I, x, y).

We are going to find a contradiction, deducing that this case cannot occur and concluding
so the proof of Theorem 1.4.1.
By continuity of the function and by compactness of the segment, we assume that there
exists ε > 0 such that for any point in [x, y]

Torsion1 (I, z, y − x) < l − ε.

Notation 1.4.3. Denote
ξ := y − x

and parametrize the segment [x, y] as follows:

[0, 1] ∋ s 7→ z(s) := sy + (1− s)x ∈ [x, y] ⊂ R2.

Notation 1.4.4. We use the notation introduced in (1.29) and (1.30) in order to modify
the angle functions u, v. From these, we define linking number and torsion just along
points of the segment [x, y].
Since u, v are continuous and for any t it holds u(0, t) = v(0, t), there exist continuous
lifts ũ, ṽ of the functions u, v, respectively, such that ũ(0, t) = ṽ(0, t).

By hypothesis for any s ∈ [0, 1]

Torsion1(I, z(s), ξ) < l − ε = Linking1(I, x, y)− ε. (1.36)

Refering to definitions (1.29) and (1.30), inequality (1.36) becomes

ṽ(s, 1)− ṽ(s, 0) < ũ(1, 1)− ũ(1, 0)− ε (1.37)

for any s ∈ [0, 1].

Modification of the isotopy I = (Ft)t

First, we modify the given isotopy (Ft)t to obtain an isotopy H = (Ht)t such that:

— the point x is fixed for H = (Ht)t, that is Ht(x) = x for any t;

— the linking number of x, y with respect to H is positive, while the torsion of any
point of [x, y] with respect to H is negative.

In other words, we want to pass in a rotated and translated frame.

Lemma 1.4.1. Let (Ft)t∈[0,1] be an isotopy in Diff 1(R2) joining IdR2 to F1 = F . Consider
x, y ∈ R2, x 6= y such that, for a fixed ε > 0, for any s ∈ [0, 1]

Torsion1((Ft)t, z(s), ξ) < Linking1((Ft)t, x, y)− ε. (1.38)

Then, there exists an isotopy H = (Ht)t∈[0,1] in Diff 1(R2), such that:
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— H0 = IdR2 and H := H1;

— for any s ∈ [0, 1]

Torsion1(H, z(s), ξ) ≤ −ε
2
< 0 <

ε

2
≤ Linking1(H, x, y);

— Ht(x) = x for any t ∈ [0, 1].

Proof. Define the following continuous function

Θ : [0, 1] → R

Θ(t) := sup
s∈[0,1]

(ṽ(s, t)− ṽ(s, 0)) = max
s∈[0,1]

(ṽ(s, t)− ṽ(s, 0)) (1.39)

We remark that Θ(0) = 0. The new isotopy is then obtained as follows:

H = (Ht)t∈[0,1] := R
(
x,−Θ(t)− t

ε

2

)
◦ τx−Ft(x) ◦ (Ft)t

where R (x, ψ) denotes the rotation of angle ψ centered at x and τv denotes the translation
of vector v.
The point x is fixed for the isotopy H = (Ht)t. Denote as U, V the functions defined in
(1.29) and (1.30) with respect to H, that is

U : [0, 1]× R → T

(s, t) 7→ θ (H, Ht(z(s))−Ht(x)) = θ (H, Ht(z(s))− x) for s 6= 0, (1.40)

(0, t) 7→ θ (H, DHt(x)ξ) (1.41)

and
V : [0, 1]× R → T

(s, t) 7→ θ (H, DHt(z(s))ξ) (1.42)

where θ denotes the oriented angle between the two vectors.
Observe that U, V are continuous and that, for any t, U(0, t) = V (0, t).
Define then the quantities Ũ, Ṽ from ũ, ṽ as:

Ũ(s, t) = ũ(s, t)−Θ(t)− t
ε

2
(1.43)

Ṽ (s, t) = ṽ(s, t)−Θ(t)− t
ε

2
. (1.44)

These functions are continuous determinations of the angle functions U and V , respec-
tively.

From the definition of Θ in (1.39), for every s ∈ [0, 1] and for every t ∈ (0, 1], it follows

Ṽ (s, t)− Ṽ (s, 0) ≤ −tε
2
< 0.

On the other hand, by hypothesis (1.37), for any s ∈ [0, 1] it holds

Ṽ (s, 1)− Ṽ (s, 0) ≤ Ũ(1, 1)− Ũ(1, 0)− ε. (1.45)
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Let S ∈ [0, 1] be a point at which the maximum Θ(1) is achieved (see (1.39)), i.e.

Θ(1) = ṽ(S, 1)− ṽ(S, 0).

For such S we have Ṽ (S, 1)− Ṽ (S, 0) = − ε
2

and (1.45) still holds true. Therefore

−ε
2
≤ Ũ(1, 1)− Ũ(1, 0)− ε ⇒ Ũ(1, 1)− Ũ(1, 0) ≥ ε

2
> 0.

Hence, for any s ∈ [0, 1]

Ṽ (s, 1)− Ṽ (s, 0) ≤ −ε
2
< 0 <

ε

2
≤ Ũ(1, 1)− Ũ(1, 0). (1.46)

Notation 1.4.5. We will conserve this notation of U, V, Ũ, Ṽ throughout the whole sub-
section, until the conclusion of the proof.

Sign concordance of Linking and Torsion for small s

Lemma 1.4.2. Let Ũ and Ṽ be the functions introduced in (1.43) and (1.44). There exists
s0 ∈ (0, 1) such that for all s ∈ [0, s0] it holds

Ũ(s, 1)− Ũ(s, 0) ≤ −ε
4
< 0 < Ũ(1, 1)− Ũ(1, 0). (1.47)

Proof. By definition of Ũ, Ṽ (see (1.43) and (1.44)) it holds

Ũ(0, 1)− Ũ(0, 0) = Ṽ (0, 1)− Ṽ (0, 0).

Recalling the first inequality of (1.46), we have

Ṽ (0, 1)− Ṽ (0, 0) ≤ −ε
2
.

By the continuity of the function s 7→ Ũ(s, 1) − Ũ(s, 0), we conclude that there exists
s0 ∈ (0, 1) small enough such that

Ũ(s, 1)− Ũ(s, 0) ≤ −ε
4

for any s ∈ [0, s0].

Contradiction by using the Turning Tangent Theorem

To sum up, we are considering an isotopy H = (Ht)t∈[0,1] in Diff 1(R2) such that:

— H0 = IdR2 and H1 = H;

— the point x ∈ R2 is fixed with respect to H = (Ht)t∈[0,1];

— for any s ∈ [0, 1],

Ṽ (s, 1)− Ṽ (s, 0) < 0 < Ũ(1, 1)− Ũ(1, 0); (1.48)
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— for any s < s0,

Ũ(s, 1)− Ũ(s, 0) < −ε
4
< 0 < Ũ(1, 1)− Ũ(1, 0). (1.49)

By eventually changing the reference system on the plane, assume that x is the origin and
that the first vector of the canonical basis coincides with ξ = y − x.
Denote

s̄ := min
s∈(0,1)

{s : Ũ(s, 1)− Ũ(s, 0) = 0}. (1.50)

The corresponding z(s̄) ∈ [x, y] is the first point of the segment for which the lift of the
angle associated to H1(z(s)) is zero, i.e. Ũ(s̄, 1)− Ũ(s̄, 0) = 0.
Such s̄ exists by inequality (1.49) and by continuity of Ũ .
Recall that Ũ(s, 1)−Ũ(s, 0) does not depend on the chosen lift. It is important considering
s̄ as the first point of intersection of the image of the segment at time t = 1 with the first
coordinate axis (which is the segment at time t = 0). Otherwise, we could have no control
on the image of the tangent vector through the isotopy.

The proof is divided into 3 cases: starting with the simpler one, we then move on to
the most general case.

Figure 1.1 – The first case.

First case: As a first simpler case, consider the situation presented in Figure (1.1). That is to
say, suppose that

— α0 = Ũ(0, 1)− Ũ(0, 0) = Ṽ (0, 1)− Ṽ (0, 0) ∈ (−1, 0);

— the curve made up of H(z(s))|[0,s̄] and the segment [z(s̄), x] is a simple, closed,
piecewise regular, parametrized curve.

Denote
γ(s) = H(z(s))s∈[0,s̄].

According to this notation, the quantity Ṽ (s, 1)− Ṽ (s, 0) is a measure of the angle
between the first coordinate axis direction vector and γ′(s).
By hypothesis -the first inequality of (1.48)- for any s ∈ [0, 1] we have

Ṽ (s, 1)− Ṽ (s, 0) < 0. (1.51)
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The angle V (s̄, 1)−V (s̄, 0) admits a measure β0 ∈ [0, 1
2
]. Indeed, in a neighborhood

of z(s̄), for s < s̄, the curve γ(s) crosses the first coordinate axis from the bottom
up. So, the tangent vector γ′(s̄) has a non negative second coordinate and lies in
the upper half-plane.
Look at the continuous determination Ṽ (s̄, 1)− Ṽ (s̄, 0): we have

Ṽ (s̄, 1)− Ṽ (s̄, 0) = β0 + k k ∈ Z. (1.52)

By inequality (1.51), necessarily
k ≤ −1. (1.53)

Since the curve made up of γ(s) and [z(s̄), x] is simple, closed and piecewise regular,
we can apply the Turning Tangent Theorem on it (see Chapter 4, Section 5 in
[DC76]). We obtain

(
(Ṽ (s̄, 1)− Ṽ (s̄, 0))− (Ṽ (0, 1)− Ṽ (0, 0))

)
+

+

(
1

2
− β0

)
+

(
α0 +

1

2

)
= 1

that is

β0 + k − α0 +
1

2
− β0 + α0 +

1

2
= 1 + k = 1.

This last equality implies k = 0 and contradicts (1.53).

Figure 1.2 – The second case.

Second case: Consider the case presented in Figure (1.2). We allow the curve made up of γ(s) :=
H(z(s))|[0,s̄] and the segment [z(s̄), x] to have self-intersections, but we require some
regularity conditions at the origin. 4

Define the function Γ : [0, s̄] → R+ × R as

Γ(s) = (Γ1(s),Γ2(s)) =
(
r(s), Ũ(s, 1)− Ũ(s, 0)

)
(1.54)

4. These conditions will be precised later.
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where r(s) = ‖H(z(s))− x‖ ∈ R+.
Denote

P : R+ × R → R2

(r, θ) 7→ (r cos(2πθ), r sin(2πθ)).

Notice that P|R+
∗ ×R is the universal covering of R2 \{(0, 0)}. Since P ◦Γ = γ, then Γ

is a lift of γ through P . Identifying the plane R2 with the complex one C, we have

γ(s) = Γ1(s)e
i2πΓ2(s).

In other words, (Γ1(s),Γ2(s)) provide some polar “coordinates”. By hypothesis (1.49)
and by definition of s̄ in (1.50), it holds

Ũ(s, 1)− Ũ(s, 0) = Γ2(s) ≤ 0 ∀s ∈ [0, s̄]. (1.55)

Therefore, the curve Γ lies on the low quarter of the half-plane R+ × R. Precisely

Γ1(s) > 0, Γ2(s) < 0 ∀s ∈ (0, s̄),

Γ1(0) = 0, Γ2(0) < 0,

Γ1(s̄) = ‖z(s̄)− x‖, Γ2(s̄) = 0.

Assumption 1.4.1. Throughout this second case, assume that Γ is sufficiently
regular at the origin, that is there exists

Γ′(0) := lim
s→0+

Γ′(s) 6= 0.

Figure 1.3 – The function Γ(s) in the second case.

Notation 1.4.6. Consider the curve in R+ × R, made up of
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(i) Γ(s) for s ∈ [0, s̄];

(ii) the horizontal segment {0} × [r(s̄), 0], followed with decreasing radius;

(iii) the vertical segment [0, Ũ(0, 1)− Ũ(0, 0)]× {0}, followed downward.

This curve, thanks to Assumption 1.4.1 and thanks to the definition of s̄ in (1.50),
is a simple, closed, piecewise regular curve (see Figure 1.3).

The vector Γ′(0) is oriented to the right in the plane R+×R. Hence, the angle between
the first coordinate axis direction vector and Γ′(0) admits a measure η0 ∈ [−1

4
, 1
4
].

Denote as σ0 the measure contained in the interval [0, 1
2
] of the angle between the

first coordinate axis direction vector and Γ′(s̄). Such a measure exists since in a
neighborhood of Γ(s̄) the curve Γ crosses the first coordinate axis from the bottom
up and so the tangent vector Γ′(s̄) lies then in the upper half-plane.

Notation 1.4.7. Denote as

≺ (Γ′) : [0, s̄] → T

the oriented angle function between the first coordinate axis direction vector and
the vector Γ′(s).
The notation ≺̃(Γ′) : [0, s̄] → R refers to the continuous determination of the angle
function ≺ (Γ′) such that ≺̃(Γ′(0)) = η0 ∈ [−1

4
, 1
4
].

Since σ0 and ≺̃(Γ′(s̄)) are lifts of the same oriented angle, we have

≺̃(Γ′(s̄)) = σ0 + j j ∈ Z.

Apply now the Turning Tangent Theorem to the closed curve highlighted in Notation
1.4.6. We obtain

(σ0 + j − η0) +

(
1

2
− σ0

)
+

1

4
+

(
η0 +

1

4

)
= 1

and so
1 + j = 1 ⇔ j = 0. (1.56)

Hence
≺̃(Γ′(s̄)) = σ0. (1.57)

Let us look now at the relation between the tangent vectors of Γ(·) and the tangent
ones of γ(·) = H(z(·)).
By hypothesis (1.48), it holds

Ṽ (s, 1)− Ṽ (s, 0) < 0 ∀s ∈ [0, s̄] (1.58)

where Ṽ (s, 1)− Ṽ (s, 0) is a continuous determination of the angle function between
the first coordinate axis direction vector and γ′(s).
Denote

Ṽ (s̄, 1)− Ṽ (s̄, 0) = β0 + k for some k ∈ Z (1.59)
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where β0 is the measure of the angle V (s̄, 1)−V (s̄, 0) in [0, 1
2
]. Such a measure exists

since in a neighborhood of z(s̄) the curve γ crosses the first coordinate axis from
the bottom up. Hence, the vector γ′(s̄) has non negative second coordinate.
From (1.58), it holds then

k ≤ −1. (1.60)

We need now the following:

Proposition 1.4.1. Let I ⊂ R be an interval and let M,N be two 2-dimensional
oriented Riemannian manifolds. Denote the tangent projections as πM : TM →M ,
πN : TN → N . Let f : M → N be a local diffeomorphism which preserves the
orientation and let J1 : I → TM , J2 : I → TM be continuous functions such that

πM ◦ J1 = πM ◦ J2. (1.61)

Suppose that, for any t ∈ I, Ji(t) 6= 0, i = 1, 2 and let θ : I → R be a continuous
determination of the angle function between the image vectors J1, J2.
Then, there exists a continuous determination Θ : I → R of the angle function
between the image vectors Df ◦ J1, Df ◦ J2 such that

|θ(s)−Θ(s)| < 1

2
∀s ∈ I (1.62)

We postpone the proof of this Proposition to Appendix 1.6.

We apply Proposition 1.4.1 to I = (0, s̄] ⊂ R, M = (R+ \ {0}) × R, N = R2 \ {0}
and

f : (R+ \ {0})× R → R2 \ {0}
(r, θ) 7→ (r cos(2πθ), r sin(2πθ)).

Observe that the determinant of Df(r, θ) is equal to r and so always positive: this
assures us that f is a local diffeomorphism which preserves the orientation. Consider

J1 : (0, s̄] → TM = (R+ \ {0})× R× R2

s 7→(Γ(s), (1, 0))

and

J2 : (0, s̄] → TM = (R+ \ {0})× R× R2

s 7→(Γ(s),Γ′(s)).

Then

Df ◦ J1 : (0, s̄] → TN = (R2 \ {0})× R2

s 7→
(
γ(s),

γ(s)

‖γ(s)‖

)

and

Df ◦ J2 : (0, s̄] → TN = (R2 \ {0})× R2

s 7→ (γ(s), γ′(s)).
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The function ≺̃(Γ′) introduced in Notation 1.4.7 is a continuous determination of
the angle function between J1(s) and J2(s). By Assumption 1.4.1, the function ≺̃(Γ′)
is continuous at s = 0.
Remind that, by our choice

≺̃(Γ′(0)) = η0 ∈
[
−1

4
,
1

4

]
. (1.63)

Observe that s 7→
(
Ṽ (s, 1)− Ṽ (s, 0)

)
−
(
Ũ(s, 1)− Ũ(s, 0)

)
is a continuous deter-

mination of the angle function between Df ◦ J1(s) and Df ◦ J2(s). By our choice of
Ṽ, Ũ , for any t we have Ṽ (0, t) = Ũ(0, t) and in particular

(
Ṽ (0, 1)− Ṽ (0, 0)

)
−
(
Ũ(0, 1)− Ũ(0, 0)

)
= 0. (1.64)

From (1.63), (1.64) and the continuity of the involved functions, there exists S > 0
small enough such that

∣∣∣≺̃(Γ′(S))−
((
Ṽ (S, 1)− Ṽ (S, 0)

)
−
(
Ũ(S, 1)− Ũ(S, 0)

))∣∣∣ < 1

2
.

By Proposition 1.4.1, we deduce that for any s ∈ (0, s̄]

∣∣∣≺̃(Γ′(s))−
((
Ṽ (s, 1)− Ṽ (s, 0)

)
−
(
Ũ(s, 1)− Ũ(s, 0)

))∣∣∣ < 1

2
.

In particular, at s = s̄ by (1.57), (1.59) and (1.50)

∣∣∣≺̃(Γ′(s̄))−
(
(Ṽ (s̄, 1)− Ṽ (s̄, 0))− (Ũ(s̄, 1)− Ũ(s̄, 0))

)∣∣∣ =

= |σ0 − β0 − k| < 1

2
. (1.65)

Claim 1.4.1. The quantity σ0 − β0 is in the open interval
(
−1

2
, 1
2

)
.

Proof of the claim. Because σ0, β0 ∈ [0, 1
2
], the difference σ0 − β0 is in [−1

2
, 1
2
]. Argu-

ing by contradiction, suppose that σ0 − β0 =
1
2
, that is σ0 = 1

2
, β0 = 0. The measure

σ0 is a lift of the angle between H and Γ′(s̄), while β0 is a lift of the angle between
γ(s̄)/‖γ(s̄)‖ and γ′(s̄), which are the vectors Df(Γ(s̄))H and Df(Γ(s̄))Γ′(s̄). Since
Df(Γ(s̄)) is a linear function and by inequality (1.65), this case cannot occur. Sim-
ilarly, the case σ0 − β0 = −1

2
is excluded.

Since σ0 − β0 ∈ (−1
2
, 1
2
) and by (1.65), we deduce that k = 0. This inequality con-

tradicts condition (1.60) and we conclude.
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Figure 1.4 – The most general case.

Third case: Finally, consider the most general case, presented in Figure (1.4). We allow now the
vector Γ′(0) not to exist or to be null.
The Turning Tangent Theorem can no more be applied on the curve used in the
second case.
Fix ρ ∈ (0,Γ1(s̄)) and consider the vertical line r ≡ ρ in R+ × R.
The notations Γ1(·),Γ2(·) refer to the first and second coordinates, respectively, of
the curve Γ in R+ × R. Define then

sρ := max
s∈[0,s̄]

{s : Γ1(s) = ρ}. (1.66)

This is a maximum since Γ1 is a continuous function considered on a compact
interval [0, s̄] where Γ1(0) = 0 and Γ1(s̄) > ρ.
Observe that

lim
ρ→0

sρ = 0

by the continuity of the function Γ1(·), the compactness of the interval involved and
the fact that s = 0 is the only point for which the first coordinate projection of the
curve vanishes.
Denote as η0 the measure of the angle between the first coordinate axis direction
vector and Γ′(sρ) in the interval [−1

4
, 1
4
]. This choice is possible since by definition

of sρ the vector Γ′(sρ) is oriented to the right.
Let

≺ (Γ′) : [sρ, s̄] → T

denote the oriented angle between the first coordinate axis direction vector and the
vector Γ′(s) and denote

≺̃(Γ′) : [sρ, s̄] → R

the continuous determination of the angle function such that ≺̃(Γ′(sρ)) = η0 ∈
[−1

4
, 1
4
].
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Figure 1.5 – The function Γ(s) in the general case.

Claim 1.4.2. If ρ is small enough, for any s ∈ [sρ, s̄]

∣∣∣≺̃(Γ′(s))−
((
Ṽ (s, 1)− Ṽ (s, 0)

)
−
(
Ũ(s, 1)− Ũ(s, 0)

))∣∣∣ < 1

2
. (1.67)

Proof of the claim. Recall that limρ→0+ sρ = 0 and functions Ṽ, Ũ are continuous.
Moreover, since Ṽ (0, t) = Ũ(0, t) for any t,

(
Ṽ (0, 1)− Ṽ (0, 0)

)
−
(
Ũ(0, 1)− Ũ(0, 0)

)
= 0.

Then, for any ε > 0, there exists ρ > 0 small enough such that
∣∣∣
(
Ṽ (sρ, 1)− Ṽ (sρ, 0)

)
−
(
Ũ(sρ, 1)− Ũ(sρ, 0)

)∣∣∣ < ε.

So, it holds
∣∣∣≺̃(Γ′(sρ))−

((
Ṽ (sρ, 1)− Ṽ (sρ, 0)

)
−
(
Ũ(sρ, 1)− Ũ(sρ, 0)

))∣∣∣ < 1

4
+ ε.

By selecting ε > 0 small enough such that 1
4
+ ε < 1

2
, we have

∣∣∣≺̃(Γ′(sρ))−
((
Ṽ (sρ, 1)− Ṽ (sρ, 0)

)
−
(
Ũ(sρ, 1)− Ũ(sρ, 0)

))∣∣∣ < 1

2
.

By applying Proposition 1.4.1, inequality (1.67) holds for any s ∈ [sρ, s̄].

Denote as σ0 the measure contained in [0, 1
2
] of the angle ≺ (Γ′(s̄)): again, this is

possible because in a neighborhood of Γ(s̄), the curve Γ crosses the first coordinate
axis from the bottom up.
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Let β0 be the measure of the angle V (s̄, 1)− V (s̄, 0) contained in [0, 1
2
].

Since σ0 and ≺̃(Γ′(s̄)) are continuous lifts of the angle ≺ (Γ′(s̄)), we have

≺̃(Γ′(s̄)) = σ0 + l for some l ∈ Z,

Ṽ (s̄, 1)− Ṽ (s̄, 0) = 5
(
Ṽ (s̄, 1)− Ṽ (s̄, 0)

)
−
(
Ũ(s̄, 1)− Ũ(s̄, 0)

)
=

= β0 + j for some j ∈ Z.

By inequality (1.67) it holds

∣∣∣≺̃(Γ′(s̄))−
(
(Ṽ (s̄, 1)− Ṽ (s̄, 0))− (Ũ(s̄, 1)− Ũ(s̄, 0))

)∣∣∣ =

= |σ0 + l − β0 − j| < 1

2
. (1.68)

By hypothesis (1.48), j ≤ −1.

Claim 1.4.3. The quantity σ0 − β0 is in the open interval (−1
2
, 1
2
).

The argument is the same as Claim 1.4.1 in the second case.
Therefore l = j and so

l ≤ −1. (1.69)

Let us now consider the curve made up of

(i) Γ|[sρ,s̄], positively oriented;

(ii) the horizontal segment {0}× {r : ρ ≤ r ≤ ‖z(s̄)− x‖}, followed with decreas-
ing radius;

(iii) the vertical segment [Γ2(sρ), 0]× {r ≡ ρ}, followed downward.

This curve is a simple, closed, piecewise regular, parametrized one thanks to the
regularity of the polar coordinates away from the origin and to the absence of self-
intersections by the definition of sρ (see Figure 1.5).
Apply the Turning Tangent Theorem to this curve. We obtain then

(σ0 + l − η0) +

(
1

2
− σ0

)
+

1

4
+

(
η0 +

1

4

)
= 1,

that is

1 + l = 1.

This implies l = 0, contradicting inequality (1.69).

5. By definition of s̄, Ũ(s̄, 1)− Ũ(s̄, 0) is null.
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1.5 Examples

Example 1.5.1 (Time-one flow of pendulum). Fix the standard Riemannian metric and
the standard trivialization on A. Let H = (1, 0) be the reference constant vector field.
Consider the dynamical system of the simple pendulum obtained from the Hamiltonian

H : A → R

(ψ, r) 7→ H(ψ, r) =
r2

2
− cos(2πψ)

4π2
.

Let φ : A × R → A be the associated flow (see Figure 1.6). We calculate the torsion of
the time-one flow of the pendulum, i.e. f = φ(·, 1) = φ1. We consider as isotopy the flow
itself I = (φt)t = (φ(·, t))t. Recall that from Proposition 1.3.2, the torsion (already at
finite-time) does not depend on the choice of the isotopy.
At the fixed point (1

2
, 0) for any t the vector (1,−1) is an eigenvector of Dφt

(
1
2
, 0
)

with
respect to a real positive eigenvalue. That is, the half-line R+(1,−1) is preserved by
Dφt

(
1
2
, 0
)

for any t. Therefore, recalling that the torsion does not depend on the chosen
vector (see Proposition 1.1.3), we have

Torsion

(
φ1,

(
1

2
, 0

))
= lim

n→+∞
Torsionn

(
φ1,

(
1

2
, 0

)
, (1,−1)

)
= 0.

At the elliptic fixed point (0, 0), the differential Dφt(0, 0) is a clockwise rotation of angle
t. Therefore, for any vector v ∈ T(0,0)A,

Torsion(φ1, (0, 0)) = lim
n→+∞

Torsionn(φ1, (0, 0), v) = −1.

For any other point z̄ of A we are going to calculate the finite-time torsion with respect to

XH(z̄) =
(
∂
∂r
H(z̄),− ∂

∂ψ
H(z̄)

)
, where XH denotes the Hamiltonian vector field. Denote

as U the open region contained between the two separatices of the pendulum system.
Let z̄ /∈ U . Denote as φt(z̄) = (ψ(t), r(t)). Observe that for any t ∈ R the coordinate r(t)
never changes sign. Equivalently, the vector

XH(φt(z̄)) =

(
r(t),−sin(2πψ(t))

2π

)

is always contained either in the right half-plane (if r(t) is positive) or in the left half-plane
(if r(t) is negative). In particular, for any t we have

ṽ(I)(z̄, XH(z̄), t)− ṽ(I)(z̄, XH(z̄), 0) ∈
(
−1

2
,
1

2

)
.

Since the angle variation is bounded for any t, we conclude that for any z̄ /∈ U

Torsion(φ1, z̄) = 0.

Let z̄ ∈ U \ {(0, 0)}. The point z̄ is periodic and we denote as T (z̄) the period of z̄.
Observe that the vector XH(φt(z̄)) is turning clockwisely once over a time interval of
length T (z̄). Therefore

ṽ(I)(z̄, XH(z̄), T (z̄))− ṽ(I)(z̄, XH(z̄), 0) = −1
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Figure 1.6 – The dynamical system of the pendulum of Example 1.5.1.

and for any n ∈ N∗

ṽ(I)(z̄, XH(z̄), nT (z̄))− ṽ(I)(z̄, XH(z̄), 0) = −n.

By the compactness of the orbit of z̄ and of the interval [0, T (z̄)], we conclude that

Torsion(φ1, z̄) = lim
n→+∞

Torsionn(φ1, z̄, XH(z̄)) =

= lim
n→+∞

1

n

(
ṽ(I)

(
z̄, XH(z̄),

⌊ n

T (z̄)

⌋
T (z̄

)
− ṽ(I)(z̄, XH(z̄), T (z̄))

)
= − 1

T (z̄)
.

Example 1.5.2 (Example 2 in [MS17]). We discuss the example of the dissipative pen-
dulum presented in [MS17]. That is, the system is obtained by adding a dissipative term
to the classical pendulum system. Its flow is denoted as φ : A × R → A, (t, ψ0, r0) 7→
φ(t;ψ0, r0) = (ψ(t), r(t)) and it is defined by





d

dt
ψ(t) = r(t)

d

dt
r(t) = −sin(2πψ(t))

2π
− λr(t)

for λ > 0. DenoteXH(ψ(t), r(t)) the vector
(
r(t),− sin(2πψ(t))

2π
− λr(t)

)
belonging to T(ψ(t),r(t))A.

We ask that λ < 2 to assure that Dφ1(0, 0) is conjugated to a rotation (see the discussion
at the point (0, 0) below).
The phase portrait is sketched in Figure 1.7. As in Example 1.5.1, we are going to discuss
the torsion of the time-one flow f = φ1.
At the fixed point (1

2
, 0) there exists a vector v such that for any t it is an eigenvector of

Dφt(
1
2
, 0) with respect to a real positive eigenvalue. Therefore

Torsion

(
φ1,

(
1

2
, 0

))
= lim

n→+∞
Torsionn

(
φ1,

(
1

2
, 0

)
, v

)
= 0.
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At the fixed point (0, 0), the differential Dφt(0, 0) is conjugated to the matrix

(
e−

λ
2
t 0

0 e−
λ
2
t

)
R
(
(0, 0),−t

√
4− λ2

2

)
, (1.70)

that is to the composition of a contraction and a rotation. We consider a C1 diffeomor-
phism h isotopic to the identity with compact support U such that in a neighborhood of
(0, 0) it is a change of coordinates so that:

— h(0, 0) = (0, 0);

— for any t it holds that D(h ◦ φt ◦ h−1)((0, 0)) is the matrix in (1.70).

Consequently, we have for any v ∈ T(0,0)A

Torsion1(h ◦ φ1 ◦ h−1, (0, 0), v) = −
√
4− λ2

2

and so

Torsion(h ◦ φ1 ◦ h−1, (0, 0)) = −
√
4− λ2

2
.

From Proposition 1.3.3 (i.e. the invariance of the torsion for diffeomorphisms isotopic to
the identity with compact support on the unbounded annulus), we conclude that

Torsion(φ1, (0, 0)) = Torsion(h ◦ φ1 ◦ h−1, (0, 0)) = −
√
4− λ2

2
.

Denote as α the value −
√
4−λ2
2

.

Figure 1.7 – The dynamical system of the dissipative pendulum of Example 1.5.2.

Let us consider now a point x̄ ∈ A \ {(0, 0), (1
2
, 0)}. Let x̄ belong to the stable manifold

of (0, 0), i.e.
W s((0, 0)) = {x̄ ∈ A : lim

t→+∞
φt(x̄) = (0, 0)}.

Recall that U denotes the neighborhood of (0, 0) which is the support of the change of
coordinates h introduced above. The time-one torsion of h ◦ φ1 ◦ h−1 is continuous with
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respect to the point in A where we calculate the time-one torsion. Fix ε > 0. Let V be a
neighborhood of (0, 0) contained in U such that for any x ∈ V for any v ∈ T 1

xA it holds 6

∣∣Torsion1(h ◦ φ1 ◦ h−1, x, v)− Torsion1(h ◦ φ1 ◦ h−1, (0, 0), v)
∣∣ < ε. (1.71)

Recall that Torsion1(h ◦ φ1 ◦ h−1, (0, 0), v) = α for any v ∈ T 1
(0,0)A.

Denote as z̄ = h(x̄). Observe that

lim
n→+∞

h ◦ φn ◦ h−1(z̄) = lim
n→+∞

h ◦ φn(x̄) = h((0, 0)) = (0, 0).

Hence, the point z̄ belongs to the stable manifold of (0, 0) with respect to h ◦ φ1 ◦ h−1.
Consequently, there exists N ∈ N such that for any n ≥ N it holds

(h ◦ φ1 ◦ h−1)n(z̄) = (h ◦ φn ◦ h−1)(z̄) ∈ V. (1.72)

Denote as ȳ = h ◦ φN ◦ h−1(z̄) ∈ V .

Claim 1.5.1. For n ∈ N we have

Torsionn(h ◦ φ1 ◦ h−1, ȳ, v) ∈ (α− ε, α + ε) .

Proof. For n = 1 the claim holds because ȳ ∈ V and from (1.71). Assume the statement
holds true for n− 1. Then

nTorsionn(h ◦ φ1 ◦ h−1, ȳ, v) = (n− 1)Torsionn−1(h ◦ φ1 ◦ h−1, ȳ, v)+

Torsion1(h ◦ φ1 ◦ h−1, h ◦ φn−1 ◦ h−1(ȳ), D(h ◦ φn−1 ◦ h−1)(ȳ)v).

From inductive hypothesis it holds

(n− 1)Torsionn−1(h ◦ φ1 ◦ h−1, ȳ, v) ∈ ((n− 1)(α− ε), (n− 1)(α + ε)). (1.73)

Because of (1.72), the point h ◦ φn−1 ◦ h−1(ȳ) belongs to V . From (1.71), it holds (up to
renormalize the vector)

Torsion1(h ◦ φ1 ◦ h−1, h ◦ φn−1 ◦ h−1(ȳ), D(h ◦ φn−1 ◦ h−1)(ȳ)v) ∈ (α− ε, α + ε) . (1.74)

Consequently, from (1.73) and (1.74),

nTorsionn(h ◦ φ1 ◦ h−1, ȳ, v) ∈ (nα− nε, nα + nε)

and so
Torsionn(h ◦ φ1 ◦ h−1, ȳ, v) ∈ (α− ε, α + ε) .

We so deduce that
Torsion(h ◦ φ1 ◦ h−1, ȳ) ∈ (α− ε, α + ε).

By the arbitrariness of ε and from the invariance of the torsion along the orbit of z̄, it
holds

Torsion(h ◦ φ1 ◦ h−1, z̄) = Torsion(h ◦ φ1 ◦ h−1, ȳ) = α.

6. We are identifying the unitary tangent spaces T 1
xA and T 1

(0,0)A through the standard trivialization.
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Thanks to the invariance of the torsion for C1 conjugation isotopic to the identity with
compact support on the annulus (see Proposition 1.3.3), we conclude that

Torsion(φ1, x̄) = Torsion(h ◦ φ1 ◦ h−1, z̄) = α.

Let x̄ ∈ A \ {(0, 0), (1
2
, 0)} be a point of the stable manifold of (1

2
, 0), i.e. limt→+∞ φt(x̄) =

(1
2
, 0). Recall that a vector v of the stable subspace of (1

2
, 0) is an eigenvector with respect

to a positive eigenvalue of Dφt(12 , 0) for any t. Hence

Torsion1

(
φ1,

(
1

2
, 0

)
, v

)
= 0.

Fix ε > 0. By the continuity of the torsion at finite-time and by the local stable manifold
theorem, there exists a neighborhood U of (1

2
, 0) such that for any x belonging to the

connected component of U ∩W s(1
2
, 0) containing (1

2
, 0) (i.e. the local stable manifold) it

holds
|Torsion1 (φ1, x, wx)| < ε, (1.75)

where wx ∈ TxW
s(1

2
, 0). There exists n = n(x̄) ∈ N such that for any m ≥ n we have that

φm(x̄) belongs to the local stable manifold. Hence, by (1.75), for any l > 0

∣∣Torsionl(φ1, φn(x̄), wφn(x̄))
∣∣ < ε.

That is

−ε < lim inf
l→+∞

Torsionl(φ1, φn(x̄), wφn(x̄)) = lim inf
l→+∞

Torsionl(φ1, x̄, wx̄) ≤

≤ lim sup
l→+∞

Torsionl(φ1, x̄, wx̄) = lim sup
l→+∞

Torsionl(φ1, φn(x̄), wφn(x̄)) < ε.

By the arbitrariness of ε, we conclude that the torsion at x̄ exists and Torsion(φ1, x̄) = 0.

Remark 1.5.1. Looking at the dynamical system of Example 1.5.2 with reversed time,
we obtain an example where the torsion exists everywhere, the point (0, 0) has torsion
value α, while all the other points have null torsion.
Indeed, if a point x belongs to the stable manifold (for φ−1

t ) of (1
2
, 0), then we can show that

Torsion(φ−1
1 , x) = 0. The details are the same as those of the torsion of points belonging

to the stable manifold of (1
2
, 0) for φ1.

Let x = (ψ(0), r(0)) have unbounded orbit. We calculate the torsion with respect to the
vector field

XH(φ−t(x)) =

(
r(−t),−sin(2πψ(−t))

2π
− λr(−t)

)
,

where for any s ∈ R we denote φs(x) = (ψ(s), r(s)). There exists T ≥ 0 such that for
any t ≥ T the point φ−t(x) has positive (respectively negative) second coordinate r(−t).
Hence, the vector XH(φ−t(x)) is contained in the right half-plane (respectively left half-
plane) for any t ≥ T . Consequently, its angle variation is bounded and we conclude that
Torsion(φ−1

1 , x) = 0.

Example 1.5.3 (Morse-Smale diffeomorphisms). We are going to calculate the torsion
for a Morse-Smale diffeomorphism on the 2-dimensional torus T2. We start by recalling
the definition of Morse-Smale diffeomorphism on T2 and we refer to [Pal68].
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Definition 1.5.1. A diffeomorphism f : T2 → T2 is called Morse-Smale if:

(1) the non-wandering set Ω(f) is finite (this implies that Ω(f) = Per(f) where Per(f)
is the set of periodic points for f);

(2) all points in Per(f) are hyperbolic;

(3) for any couple of points x, y ∈ Per(f) the stable manifold of x W s(x) intersects
transversally the unstable manifold of y W u(y).

Proposition 1.5.1. Let f : T2 → T2 be a C1 Morse-Smale diffeomorphism isotopic to
the identity. Then, the torsion exists at every point and the set {Torsion(f, z) : z ∈ T2}
is finite.

Denote as Ω(f) = Per(f) = {P1, . . . , Pm}. We first calculate the torsion at periodic
points.

Lemma 1.5.1. Let Pi ∈ Per(f) have period Ni ∈ N. If DfNi(Pi) has real eigenvalues,
then there exists k ∈ Z such that

Torsion(f, Pi) =
k

2Ni

.

Proof. Let v ∈ TPi
T2 be an eigenvector of DfNi(Pi). Since its eigenvalue is real, the

subspace Rv is invariant by DfNi(Pi). Consequently, there exists k ∈ Z such that

Ni TorsionNi
(f, Pi, v) =

k

2
.

Observe that k ∈ 2Z if the corresponding eigenvalue is positive, while k ∈ 2Z + 1 if the
corresponding eigenvalue is negative. We conclude that

Torsion(f, Pi) = lim
n→+∞

TorsionnNi
(f, Pi, v) = lim

n→+∞

nk

2nNi

=
k

2Ni

.

Lemma 1.5.2. Let Pi ∈ Per(f) have period Ni ∈ N. If DfNi(Pi) has eigenvalues λ, λ̄ ∈
C \ R, then there exists k ∈ Z such that

Torsion(f, Pi) =
α + k

Ni

,

where α = ± arg(λ).

Proof. Consider a linear change of coordinates h isotopic to the identity so that the point
Pi = h(Pi) andD(h◦fNi◦h−1)(Pi) is the composition of either a dilatation or a contraction
and a rotation centered at the origin of angle α = ± arg(λ). In such a framework for any
v ∈ TPi

T2 it holds

Ni TorsionNi
(h ◦ f ◦ h−1, Pi, v) = Torsion1(h ◦ fNi ◦ h−1, Pi, v) = α + k,

for some k ∈ Z. From the invariance of the torsion by conjugation of C1 diffeomorphisms
orientation preserving (see Proposition 1.1.6), we conclude that

Torsion(f, Pi) =
1

Ni

Torsion(fNi , Pi) =
1

Ni

Torsion(h ◦ fNi ◦ h−1, Pi) =
α + k

Ni

.
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Actually, we are going to show that

{Torsion(f, z) : z ∈ T2} = {Torsion(f, Pi) : Pi ∈ Per(f)}.

Since the set of periodic points is finite from the definition of Morse-Smale diffeomor-
phisms, we deduce that the set of torsion values is finite too. For a Morse-Smale diffeo-
morphism we have (see Theorem 2.3 in [Sma67])

T2 =
m⋃

i=1

W s(Pi),

which is a disjoint union.
We are going to discuss two possible cases.

(i) x belongs to the stable manifold of a periodic point Pi such that Pi is a saddle point
(with respect to fNi). In particular, DfNi(Pi) has real eigenvalues λ1, λ2 such that
|λ1| < 1 < |λ2|.

(ii) x belongs to the stable manifold of a periodic point Pi such that Pi is a sink (with
respect to fNi).

Lemma 1.5.3. Let x ∈ T2. Assume that x ∈ W s(Pi) for some Ni-periodic hyperbolic
point Pi such that Pi is a saddle point. Then

Torsion(f, x) = Torsion(f, Pi) =
k

2Ni

.

Proof. Since Pi is a saddle fixed point for fNi , the tangent space TPi
T2 admits a hyperbolic

splitting Es ⊕ Eu. In particular, Es(Pi) denotes the stable subspace and it is DfNi-
invariant. Let k ∈ Z be such that

TorsionNi
(f, Pi, v) =

k

2
,

where v ∈ Es(Pi) (see Lemma 1.5.1). Let φ : U → R2 be a chart so that Pi ∈ U . From
the stable manifold theorem we find a neighborhood U ′ ⊂ U such that the connected
component of U ′ ∩W s(Pi) containing Pi, denoted as W s

loc(Pi), is a C1 submanifold, it is
fNi-forward invariant and TPi

W s
loc(Pi) = Es(Pi).

Fix ε > 0. By the continuity of the torsion at finite time Ni and by the continuity of

W s
loc(Pi) ∋ x 7→ TxW

s(Pi),

there exists a neighborhood U ′′ ⊂ U ′ such that for any x ∈ W s
loc(Pi) ∩ U ′′ we have

∣∣∣∣TorsionNi
(f, x, w)− k

2

∣∣∣∣ < ε, (1.76)

where w ∈ TxW
s(Pi).

Let x ∈ W s(Pi). There exists n̄ ∈ N such that for any n ≥ n̄ the image fNin(x) belongs
to U ′′ ∩W s

loc(Pi). Denote as z = fNin̄(x).
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Claim 1.5.2. For any n ∈ N it holds
∣∣∣∣TorsionNin(f, z, w)−

k

2

∣∣∣∣ < ε,

where w ∈ TzW
s(Pi).

Proof. Let us argue by induction. The case n = 1 is given by condition (1.76). Assume
the claim holds for n− 1, that is

∣∣∣∣Ni(n− 1)TorsionNi(n−1)(f, z, w)−
Ni(n− 1)k

2

∣∣∣∣ < Ni(n− 1)ε.

Then
∣∣∣∣NinTorsionNin(f, z, w)−

Nink

2

∣∣∣∣ ≤
∣∣∣∣Ni(n− 1)TorsionNi(n−1)(f, z, w)−

Ni(n− 1)k

2

∣∣∣∣+

+

∣∣∣∣Ni TorsionNi
(f, fNi(n−1)(z), DfNi(n−1)(z)w)− Nik

2

∣∣∣∣ <

< Ni(n− 1)ε+

∣∣∣∣Ni TorsionNi
(f, fNi(n−1)(z), DfNi(n−1)(z)w)− Nik

2

∣∣∣∣.

Since fNi(n−1)(z) belongs to U ′′∩W s
loc(Pi) and sinceDfNi(n−1)(z)w belongs to TfNi(n−1)(z)W

s(Pi),
we apply hypothesis (1.76) and deduce that

∣∣∣∣Ni TorsionNi
(f, fNi(n−1)(z), DfNi(n−1)(z)w)− Nik

2

∣∣∣∣ < Niε.

We conclude that ∣∣∣∣TorsionNin(f, z, w)−
k

2

∣∣∣∣ < ε,

as desired.

From Claim 1.5.2 and from the invariance of the torsion along the orbit of a point, we
have ∣∣∣∣Torsion(f, z)− k

2

∣∣∣∣ =
∣∣∣∣Torsion(f, x)− k

2

∣∣∣∣ < ε.

By the arbitrariness of ε > 0, we conclude that Torsion(f, x) = Torsion(f, Pi) = k
2
.

Lemma 1.5.4. Let x ∈ T2. Assume that x ∈ W s(Pi) for some Ni-periodic point Pi such
that Pi is a sink. Then

Torsion(f, x) = Torsion(f, Pi).

In order to prove Lemma 1.5.4, it is more convenient using Ruelle’s definition of torsion
and then recall that Béguin and Boubaker’s notion is equivalent. In the sequel we then
refer to [Rue85].
Consider a diffeomorphism on T2 where we fix the standard Riemannian metric and the
standard trivialization. The arguments can be adapted for a parallelizable Riemannian
surface.
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Notation 1.5.1. Denote as GL+(2,R) the subgroup of GL(2,R) of matrices with positive
determinant.
For any A ∈ GL+(2,R) we consider its polar decomposition and we refer to it as

A = U(θ(A))S(A),

where U(θ(A)) is the rotation of angle θ(A) ∈ T and S(A) is a symmetric positive definite
matrix.

Definition 1.5.2. Let f : T2 → T2 be a C1 diffeomorphism isotopic to the identity and
let I = (ft)t be an isotopy joining the identity to f . For x ∈ T2 consider the continuous
angle function

R+ ∋ t 7→ θ(Dft(x)) ∈ T,

where
Dft(x) = U(θ(Dft(x)))S(Dft(x)).

Denote as R+ ∋ t 7→ θ̃(Dft(x)) ∈ R a continuous determination of this angle function.
Ruelle’s torsion at x is, whenever it exists, the limit

ωI(x) := lim
n→+∞

θ̃(Dfn(x))− θ̃(Id)
n

.

As remarked by Ruelle in [Rue85], for a f -invariant probability measure µ (on T2), Ru-
elle’s torsion exists µ-almost everywhere. Moreover, as for Béguin and Boubaker’s torsion,
it does not depend on the choice of the continuous determination.

Claim 1.5.3. Let x ∈ T2. Ruelle’s torsion ωI(x) exists if and only if Torsion(I, x) exists
and , when they exist, ωI(x) = Torsion(I, x).

Proof. Fix x ∈ T2. Let v ∈ TxT2 \{0}: recall that the asymptotic torsion does not depend
on the choice of the tangent vector (see Proposition 1.1.3). For any t ∈ R+ we have that
θ̃(Dft(x)) is a measure of the oriented angle between the fixed reference vector field X
and the vector

U(θ(Dft(x)))v = Dft(x)S(Dft(x))
−1v

since U(θ(DFt(x))) is a rotation of angle θ(Dft(x)). Consider then the oriented angle
function

R+ ∋ t 7→ θ(Dft(x)S(Dft(x))
−1v,Dft(x)v) ∈ T

and denote as R+ ∋ t 7→ Θ̃(t) ∈ R a continuous determination of it. Consequently (refering
to the notations used to introduce Ruelle’s torsion and Béguin and Boubaker’s torsion),
for any n ∈ N we have that

∣∣∣
(
θ̃(Dfn(x))− θ̃(Id)

)
− (ṽ(I)(x, v, n)− ṽ(I)(x, v, 0))

∣∣∣ =
∣∣∣Θ̃(n)− Θ̃(0)

∣∣∣. (1.77)

We are going now to show that

∣∣∣Θ̃(t)− Θ̃(0)
∣∣∣ < 1

2
(1.78)

for any t ∈ R+.

Argue by contradiction and assume there exists t̄ ∈ R+ such that
∣∣∣Θ̃(t̄)− Θ̃(0)

∣∣∣ = 1
2
.
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Observe that Θ̃(0) ∈ Z. Thus, by contradiction hypothesis, we are assuming that the ori-
ented angle θ(Dft̄(x)S(Dft̄(x))−1v,Dft̄(x)v) admits a measure equal to 1

2
. Equivalently,

the vectors Dft̄(x)S(Dft̄(x))−1v and Dft̄(x)v are negatively colinear. Since ft̄ is invert-
ible, it holds that S(Dft̄(x))−1v and v are negatively colinear too. This contradicts the
fact that the matrix S(Dft̄(x))−1 is positive definite and we conclude the proof of (1.78).

From (1.77) and (1.78) we conclude that for any n ∈ N
∣∣∣∣∣
θ̃(Dfn(x))− θ̃(Id)

n
− ṽ(I)(x, v, n)− ṽ(I)(x, v, 0)

n

∣∣∣∣∣ =
1

n

∣∣∣Θ̃(n)− Θ̃(0)
∣∣∣ < 1

2n
.

Passing to the limit for n→ +∞ we obtain the claimed result.

Proof of Lemma 1.5.4. Consider a compact neighborhood U of Pi that is a basin of
attraction of Pi for fNi . In particular the omega-limit set (with respect to fNi) ω(U) =
{Pi}. The restricted dynamical system fNi : U → U is uniquely ergodic. The unique
ergodic fNi-invariant measure is the Dirac’s delta measure δPi

concentrated at the point
Pi.
Thus, for every φ ∈ C(U), the limit of the Birkhoff sum of φ converges for every point to
the constant ∫

U

φ(x) d δPi
(x) = φ(Pi),

see Theorem 6.19 in [Wal82].
Let x ∈ W s(Pi). There exists n̄ ∈ N such that for any n ≥ n̄ the point fNin(x) belongs
to U . Denote as z = fNin̄(x). According to Notation 1.5.1 and to Claim 1.77, in order to
calculate the torsion at z we can consider Ruelle’s torsion

lim
n→+∞

θ̃(DfNin(z))− θ̃(Id)
n

.

In order to simplify the notation, up to replace f with fNi , assume that Pi is a fixed point
for f .
Retracing the proof of Ruelle in [Rue85], we observe that for any A,B ∈ GL+(2,R) it

holds that
∣∣∣θ̃(BA)− θ̃(B)− θ̃(A)

∣∣∣ < 1
2
, where θ̃ denotes the universal covering of the

angle obtained from the polar decomposition. Fix now m > 0 and write n = km + r for
k > 0, 0 ≤ r < m. Observe that

∣∣∣θ̃(Dfn(z))− θ̃(Dfm(z))− · · · − θ̃(Dfm(fm(k−1)(z)))− θ̃(Df r(fmk(z)))
∣∣∣ < k

2
.

In particular, applying Birkhoff’s Ergodic Theorem and since f|U is uniquely ergodic, we
deduce that for every z ∈ U

lim
n→+∞

θ̃(Df r(z))− θ̃(Id)
n

= 0. (1.79)

Again because of Birkhoff’s Ergodic Theorem and because of the unique ergodicity of the
system, for every z ∈ U we also have that (we are using Claim 1.5.3 at Pi)

lim
k→+∞

∑k−1
i=0 θ̃(Df

m(fmi(z)))

km
− θ̃(Id)

m
=
θ̃(Dfm(Pi))− θ̃(Id)

m
=
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= Torsionm(f, Pi, w) = Torsion(f, Pi), (1.80)

where w ∈ TPi
T2.

From (1.79) and (1.80), showing that the sequence
(
θ̃(Dfn(z))−θ̃(Id)

n

)
n∈N

is a Cauchy se-

quence, we conclude that
(
θ̃(Dfn(z))−θ̃(Id)

n

)
n∈N

converges for every z ∈ U (thanks to the

unique ergodicity) to the same limit as (1.80). That is

ωf (z) = Torsion(f, z) = Torsion(f, Pi) =
k

2
.

By the invariance of the torsion along the orbit of a point, we finally conclude that for
every x ∈ W s(Pi) (assuming that Pi is a fixed point for f) it holds

Torsion(f, x) = Torsion(f, z) = Torsion(f, Pi) =
k

2
.

From Lemmas 1.5.3 and 1.5.4 we conclude that the torsion exists at every point and that
the set of torsion values is finite and coincides with the set of torsion values of periodic
points.

1.6 Appendix of Chapter 1

We now present the proof of the technical Proposition 1.4.1, used in the discussion
of case (i) of Theorem 1.4.1 (see Subsection 1.4.2). Consider J1(s), J2(s) for s ∈ I. By
hypothesis πM ◦ J1 = πM ◦ J2, so they lie on the same tangent space.
Four different cases can occur:

(1) J1(s), J2(s) are positively colinear, i.e. J1(s) = λJ2(s) for some λ > 0. Hence, the
associated angle function satisfies θ̄(s) = 0 mod 1 and any continuous determination
θ verifies θ(s) = k for some k ∈ Z.

(2) J1(s), J2(s) are negatively colinear, i.e. J1(s) = λJ2(s) for some λ < 0. Hence, the
associated angle function satisfies θ̄(s) = 1

2
mod 1 and any continuous determination

θ verifies θ(s) = 1
2
+ k for some k ∈ Z.

(3) J1(s), J2(s) are linearly independent and (J1(s), J2(s)) is a direct basis. Therefore,
the associated angle function satisfies θ̄(s) ∈ (0, 1

2
) mod 1 and any continuous deter-

mination θ verifies θ(s) ∈ (k, 1
2
+ k) for some k ∈ Z.

(4) J1(s), J2(s) are linearly independent and (J1(s), J2(s)) is a non-direct basis. There-
fore, the associated angle function satisfies θ̄(s) ∈ (1

2
, 1) mod 1 and any continuous

determination θ verifies θ(s) ∈ (1
2
+ k, k + 1) for some k ∈ Z.

We denote as Θ̄(s) the oriented angle between Df ◦ J1(s) and Df ◦ J2(s).

Lemma 1.6.1. Let I ⊂ R and let M,N be 2-dimensional oriented Riemannian manifolds.
Let f : M → N be a local diffeomorphism which preserves the orientation and let J1, J2 :
I → TM be continuous functions that never vanish. Assume also that πM ◦ J1 = πM ◦ J2.
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Let θ̄, Θ̄ : I → T be the oriented angles, respectively, between the image vectors J1, J2 and
the image vectors Df ◦ J1, Df ◦ J2.
Then, for any s ∈ I

θ̄(s)− Θ̄(s) 6= 1

2
mod 1. (1.81)

We postpone the proof of this lemma and we now prove Proposition 1.4.1.

Proof of Proposition 1.4.1. Let θ be a chosen continuous determination of the angle θ̄, i.e.
the angle between J1, J2. Let fix s0 ∈ I. Depending on the cases, we have

θ(s0)





= k if θ̄(s0) = 0 mod 1

= k + 1
2

if θ̄(s0) = 1
2
mod 1

∈ (0, 1
2
) + k if θ̄(s0) ∈ (0, 1

2
) mod 1

∈ (1
2
, 1) + k if θ̄(s0) ∈ (1

2
, 1) mod 1

where k ∈ Z.
Choose a measure Θ(s0) of the angle Θ̄(s0) (i.e. the angle between Df ◦ J1(s0) and
Df ◦ J2(s0)) such that

|θ(s0)−Θ(s0)| <
1

2
.

By the continuity of the chosen determination Θ, from the relation holding in s0 and from
Lemma 1.6.1, for any s ∈ I we conclude

|θ(s)−Θ(s)| < 1

2
.

Proof of Lemma 1.6.1. As remarked above, only four cases can occur concerning the
relative positions of vectors J1(s), J2(s) for any fixed s ∈ I.
We then show that for any s

θ̄(s)− Θ̄(s) 6= 1

2
mod 1.

Arguing by contradiction, assume that there exists s so that θ̄(s)− Θ̄(s) = 1
2
mod 1. Then

the couples of vectors (J1(s), J2(s)) and (Df ◦ J1(s), Df ◦ J2(s)) belong to different cases
and this is a contradiction. Indeed, since f is a local diffeomorphism which preserves the
orientation, looking at the relative position of vectors Df ◦ J1(s), Df ◦ J2(s), the same
four cases presented above can occur and for any fixed s ∈ I we remain in the same case
as J1(s), J2(s).

Observe that a similar (adapted) result could be obtained in the case of a local diffeo-
morphism which reverses the orientation.

Lemma 1.6.2. Let I ⊂ R and let M,N be 2-dimensional oriented Riemannian manifolds.
Let f : M → N be a local diffeomorphism which inverts the orientation and let J1, J2 :
I → TM be continuous functions that never vanish. Assume also that πM ◦ J1 = πM ◦ J2.
Let θ̄, Θ̄ : I → T be the oriented angles, respectively, between the image vectors J1, J2 and
the image vectors Df ◦ J1, Df ◦ J2.
Then, for any s ∈ I

θ̄(s) + Θ̄(s) 6= 1

2
mod 1. (1.82)
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Proof. Only four cases can occur concerning the relative positions of vectors J1(s), J2(s)
for any fixed s ∈ I. Argue by contradiction and assume that there exists s ∈ I such that
θ̄(s) + Θ̄(s) = 1

2
mod 1.

Let us discuss the possible cases. If J1(s) and J2(s) are positive colinear, then also their
image through Df are positive colinear. That is, both θ̄(s) and Θ̄(s) are null: in particular
θ̄(s) + Θ̄(s) cannot be equal to 1

2
mod 1.

A similar argument excludes the case of J1(s) and J2(s) being negative colinear.
Assume now that θ̄(s) ∈

(
0, 1

2

)
. Consequently, since f reverses the orientation, the angle

Θ̄(s) is in
(
1
2
, 1
)
. Thus

θ̄(s) + Θ̄(s) ∈
(
1

2
, 1 +

1

2

)
mod 1.

In particular, θ̄(s) + Θ̄(s) cannot be equal to 1
2
mod 1. A similar argument excludes also

the case of (J1(s), J2(s)) giving a non-direct basis and we conclude.

From Lemma 1.6.2 we can deduce the following

Proposition 1.6.1. Let I ⊂ R be an interval and let M,N be two-dimensional oriented
Riemannian manifolds. Denote the tangent projections as πM : TM →M,πN : TN → N .
Let f :M → N be a local diffeomorphism which reverses the orientation and let J1 : I →
TM , J2 : I → TM be continuous functions such that πM ◦ J1 = πM ◦ J2.
Suppose that, for any t ∈ I, Ji(t) 6= 0, i = 1, 2 and let θ : I → R be a continuous
determination of the angle function between the image vectors J1, J2.
Then, there exists a continuous determination Θ : I → R of the angle function between
the image vectors Df ◦ J1, Df ◦ J2 such that

|θ(s) + Θ(s)| < 1

2
∀s ∈ I. (1.83)

Proof. The proof is almost the same as Proposition 1.4.1. Let θ be a continuous determi-
nation of θ̄ and let fix s0 ∈ I. Four cases can occur:

θ(s0)





= k if θ̄(s0) = 0 mod 1

= k + 1
2

if θ̄(s0) = 1
2
mod 1

∈
(
0, 1

2

)
+ k if θ̄(s0) ∈

(
0, 1

2

)
mod 1

∈
(
1
2
, 1
)
+ k if θ̄(s0) ∈

(
1
2
, 1
)
mod 1

where k ∈ Z.
Choose then a measure Θ(s0) of the angle Θ̄(s0), the angle between Df ◦ J1(s0) and
Df ◦ J2(s0), so that |θ(s0) + Θ(s0)| < 1

2
. By the continuity of the chosen determinations

and by Lemma 1.6.2, we conclude that for any s ∈ I it holds

|θ(s) + Θ(s)| < 1

2
.
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Chapter 2

Results on negative-torsion maps

In this Chapter we introduce negative-torsion maps and discuss properties of the set
of points of zero torsion for such maps. We will start by focusing on positive (negative)
twist maps, showing that they are examples of negative-torsion (positive-torsion) maps.
We will state results over the Hausdorff dimension of the set of points of zero torsion for
negative-torsion maps.
We also show that the notion of negative-torsion (positive-torsion) maps coincide with
the notion of positive (negative) tilt maps.

Notation 2.0.1. In the following, the annulus A is endowed with the standard Rieman-
nian metric and trivialization. We fix the counterclockwise orientation and consider as
reference vector field the vertical constant one χ = (0, 1). The notation H refers to the
constant horizontal vector (1, 0).

Definition 2.0.1. A C1 diffeomorphism isotopic to the identity f : A → A is a negative-
torsion map (respectively positive-torsion map) if for any z̄ ∈ A it holds

Torsion1(f, z̄, χ) < 0 (respectively > 0) .

Remark 2.0.1. We do not make explicit the choice of the isotopy (and so write Torsion1(f, z̄, χ))
because the torsion is independent of the choice of the isotopy on A (see Proposition 1.3.2).

2.1 Torsion for twist maps

We introduce now the definition of twist map on the annulus A. We refer to [LC91]
and [Cro03]. In addition, other interesting references are [Mat82a], [Mat91] and [Mat82b].

Definition 2.1.1. A positive twist map (respectively negative) f : A → A is a C1 diffeo-
morphism isotopic to the identity such that for any lift F : R2 → R2 and for any x ∈ R
the function

R ∋ y 7→ p1 ◦ F (x, y) ∈ R (2.1)

is a strictly increasing (respectively decreasing) diffeomorphism.

Remark 2.1.1. All over the literature (see [LC91] and [Cro03]), the definition of positive
twist map asks also the further condition that for any lift F : R2 → R2 and for any x ∈ R
the function

R ∋ y 7→ p1 ◦ F−1(x, y) ∈ R (2.2)
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is a decreasing diffeomorphism of R. Actually, Definition 2.1.1 implies this condition
and we omit it. Indeed, from (2.1) we immediately deduce, looking at the differential
DF (F−1(x, y)) and at its inverse, that for any lift F and for any x ∈ R the function
y 7→ p1 ◦ F−1(x, y) is a diffeomorphism onto its image. Its image is actually the whole R
otherwise there would exist ξ ∈ R such that the image of the vertical p1 ◦ F (V(ξ,0)) would
not be the whole R, contradicting condition (2.1).

Example 2.1.1. The C1 diffeomorphism

A ∋ (x, y) 7→ (x+ y, y) ∈ A

is the first simplest example of positive twist map. The annulus is foliated by invariant
circles.

Example 2.1.2. For any α ∈ R, the standard map fα, where

fα(x, y) = (x+ y + α sin(2πx), y + α sin(2πx)),

is an example of positive twist map.

2.1.1 Limitedness of torsion for twist maps

The following result provides an estimation for finite-time torsion of positive twist
maps. Recall that on A the torsion does not depend on the chosen isotopy (see Propositio
1.3.2), so we will omit it in the notation.

Theorem 2.1.1. Let f : A → A be a positive twist map. Then, for any z̄ ∈ A and for
any n ∈ N, n 6= 0, it holds

Torsionn(f, z̄, χ) ∈
(
−1

2
, 0

)
.

Remark 2.1.2. In the framework of negative twist maps, an adapted version of Theorem
2.1.1 holds true. Indeed, if f is a negative twist map, then for any z̄ ∈ A and for any
n ∈ N, n 6= 0 we have

Torsionn(f, z̄, χ) ∈
(
0,

1

2

)
.

Remark 2.1.3. The torsion at any point for a positive twist map f is independent of the
choice of the isotopy I = (ft)t, thanks to Proposition 1.3.2.
In Section 2 of [LC91], Patrice Le Calvez proved that any positive twist map f : A → A
can be joined to the identity IdA through an isotopy I = (ft)t∈[0,1] in Diff1(A) such that
f0 = IdA, f1 = f and for any t ∈ (0, 1] each ft is a positive twist map. We are going to
calculate torsion with respect to this isotopy.

In order to prove Theorem 2.1.1, we first introduce some preliminary steps.

Proposition 2.1.1. Let f : A → A be a positive twist map. For any z̄ ∈ A it holds

Torsion1(f, z̄, χ) ∈
(
−1

2
, 0

)
. (2.3)

Remark 2.1.4. Proposition 2.1.1 implies that any positive twist map is a negative-torsion
map according to Definition 2.0.1.
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Proof. From Proposition 1.3.2, the torsion does not depend on the choice of the isotopy.
Therefore, we use the isotopy given by P. Le Calvez (see Remark 2.1.3): for any t ∈ (0, 1]
the C1 diffeomorphism ft is a positive twist map.
Let Ĩ = (Ft)t be the lifted isotopy of I = (ft)t such that F0 = IdR2 . It joins the identity
to F1 = F , a lift of f . The point z = (x, y) ∈ R2 denotes a lift of the point z̄ ∈ A.
Look then at

Torsion1(Ĩ , z, χ).

It is the variation of a continuous determination ṽ(Ĩ)(z, χ, ·) of the oriented angle function
between χ and DFt(z)χ. Recall that it is independent of the choice of the continuous
determination of the angle function (see Proposition 1.1.1).
By the choice of the isotopy, for any t ∈ (0, 1], ft is a positive twist map. Then, since Ft
is a lift of ft, for any x ∈ R the function

R ∋ y 7→ p1 ◦ Ft(x, y) ∈ R

is an increasing diffeomorphism of R. In particular, its derivative is always positive, that
is

D(p1 ◦ Ft)(z)χ > 0. (2.4)

For any t ∈ (0, 1] the first component of the image vector DFt(z)χ is positive. The
vector remains in the right half-plane and it cannot cross the vertical any more. Thus,
the variation

ṽ(Ĩ)(z, χ, t)− ṽ(Ĩ)(z, χ, 0)

has to stay in the interval
(
−1

2
, 0
)

for any t ∈ (0, 1], thanks also to the continuity of the
lift. We then conclude that

ṽ(Ĩ)(z, χ, 1)− ṽ(Ĩ)(z, χ, 0) = Torsion1(Ĩ , z, χ) =

= Torsion1(f, z̄, χ) ∈
(
−1

2
, 0

)
. (2.5)

Proposition 2.1.2. Let f : A → A be a positive twist map. Let z̄ ∈ A and let ξ ∈
Tz̄A \ {0}. Then it holds

Torsion1(f, z̄, ξ) ∈
(
−1,

1

2

)
. (2.6)

Proof. Let I = (ft)t be an isotopy in Diff 1(A) joining the identity to f . We use the nota-
tions of Proposition 1.1.2. Then W (0, ·) and W

(
−1

2
, ·
)

are continuous determinations of
v(I)(z̄, χ, ·) and v(I)(z̄,−χ, ·) respectively, such that W (0, 0) = 0 and W

(
−1

2
, 0
)
= −1

2
.

We assume that ξ is in the right half-plane. Let us denote ṽ(I)(z̄, ξ, ·) a continuous deter-
mination of v(I)(z̄, ξ, ·) such that ṽ(I)(z̄, ξ, 0) = α ∈

[
−1

2
, 0
]
. Since ṽ(I)(z̄, ξ, ·) = W (α, ·),

by point (ii) of Proposition 1.1.2 it holds

W

(
−1

2
, 1

)
≤ ṽ(I)(z̄, ξ, 1) = W (α, 1) ≤ W (0, 1).

This implies

W

(
−1

2
, 1

)
−W (0, 0) ≤ ṽ(I)(z̄, ξ, 1)− ṽ(I)(z̄, ξ, 0) ≤ W (0, 1)−W

(
−1

2
, 0

)
.
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Because of (iii) of Proposition (1.1.2), we have that W
(
−1

2
, 1
)

= W (0, 1) − 1
2

and
W
(
−1

2
, 0
)
= W (0, 0)− 1

2
. From these equalities and since

Torsion1(f, z̄, ξ) = ṽ(I)(z̄, ξ, 1)− v̄(I)(z̄, ξ, 0),

we obtain

W (0, 1)−W (0, 0)− 1

2
≤ Torsion1(f, z̄, ξ) ≤ W (0, 1)−W (0, 0) +

1

2
.

By Proposition (2.1.1), W (0, 1)−W (0, 0) is in
(
−1

2
, 0
)
, hence

−1 < Torsion1(f, z̄, ξ) <
1

2
.

If ξ is in the left half-plane, then −ξ is in the right half-plane and we know that

Torsion1(f, z̄, ξ) = Torsion1(f, z̄,−ξ) ∈
(
−1,

1

2

)
.

Proof of Theorem 2.1.1. The proof of the Theorem is made by induction. The base case,
that is the case with n = 1, is Proposition 2.1.1. Concerning the inductive step, assume
that the statement holds true for n ∈ N.
We use the notation of Proposition 1.1.2, but we add the dependence on the pointWz̄(s, t).
Then Wz̄(0, ·) is a continuous determination of the angle function v(I)(z̄, χ, ·) that satisfies
(by Proposition 2.1.1) Wz̄(0, 1) = β ∈

(
−1

2
, 0
)
, that is

Wf(z̄)

(
−1

2
, 0

)
= −1

2
< Wz̄(0, 1) = Wf(z̄)(β, 0) < Wf(z̄)(0, 0) = 0.

Remark that t 7→ Wz̄(0, 1 + t) and t 7→ Wf(z̄)(β, t) are continuous determinations of
the same oriented angle function and they coincide at t = 0. Thus, the functions t 7→
Wz̄(0, 1 + t) and t 7→ Wf(z̄)(β, t) are equal.
By point (ii) of Proposition 1.1.2 we have for any t

Wf(z̄)

(
−1

2
, t

)
< Wf(z̄)(β, t) = Wz̄(0, 1 + t) < Wf(z̄)(0, t).

Using (iii) of Proposition 1.1.2 it holds

Wf(z̄)(0, t)−
1

2
< Wz̄(0, 1 + t) < Wf(z̄)(0, t).

For t = n we have

Wf(z̄)(0, n)−
1

2
−Wf(z̄)(0, 0) < Wz̄(0, n+ 1)−Wz̄(0, 0) < Wf(z̄)(0, n)−Wf(z̄)(0, 0).

By induction hypothesis, we have

Wf(z̄)(0, n)−Wf(z̄)(0, 0) ∈
(
−n
2
, 0
)

and then

Wz̄(0, n+ 1)−Wz̄(0, 0) ∈
(
−n+ 1

2
, 0

)
.

✷

Theorem 2.1.1 and Remark 2.1.2 imply the following
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Corollary 2.1.1. Let f : A → A be a positive twist map (respectively a negative twist
map). Let z̄ ∈ A be a point at which the torsion exists.
Then

Torsion(f, z̄) ∈
[
−1

2
, 0

] (
respectively

[
0,

1

2

])
. (2.7)

Remark 2.1.5. The independence of the torsion from the chosen isotopy is assured by
Proposition 1.3.2.

Example 2.1.3. Let f : A → A be a positive twist map. Any point of an Aubry-Mather
set with irrational rotation number has zero torsion. This result has been proved by
S. Crovisier in [Cro03] (see Theorem 1.2).

Example 2.1.4. Let f : A → A be a positive twist map. If z ∈ A is a hyperbolic fixed
point such that Df(z) has a negative real eigenvalue, then we have Torsion(f, z) = −1

2
.

To find an example of such a dynamics, consider the fixed point (0, 0) ∈ A of the map
(x, y) 7→ fλ(x, y) =

(
x+ y − λ

2π
sin(2πx), y − λ

2π
sin(2πx)

)
for λ ∈ R, λ ≥ 4.

2.1.2 Properties of linking number for lifts of twist maps

Thanks to Theorems 1.4.1 and 2.1.1, we can estimate also the linking number of any
two points in the lifted framework R2. Indeed:

Corollary 2.1.2. Let F : R2 → R2 be a lift of a positive twist map (respectively negative
twist map) on A. Let (Ft)t be the isotopy joining the identity to F , obtained as a lift of
an isotopy on A joining IdA to the twist map. Let z1, z2 ∈ R2, z1 6= z2 be such that their
linking number exists. Then

Linking((Ft), z1, z2) ∈
[
−1

2
, 0

] (
respectively

[
0,

1

2

])
.

This result holds true for any couples of points for which the (asymptotic) linking number
exists.

Notation 2.1.1. On R2 we fix the counterclockwise orientation and we consider as ref-
erence vector field the vertical constant one χ = (0, 1).

Proof of Corollary 2.1.2. We are going to prove the result for positive twist maps. Let
f : A → A be a positive twist map and let I = (ft)t be an isotopy in Diff 1(A) joining the
identity to f1 = f . Let Ĩ = (Ft)t be the lift in Diff1(R2) of I = (ft)t such that F0 = IdR2 .
So it joins the identity to F1 = F , which is a lift of f .
Let z1, z2 ∈ R2, z1 6= z2 and assume that the limit

Linking(Ĩ , z1, z2) = lim
n→+∞

Linkingn(Ĩ , z1, z2)

exists.
For any n ∈ N denote ln as the quantity Linkingn(Ĩ , z1, z1). Fix now n ∈ N. From Corollary
1.4.1, there exists a point z lying on the segment joining z1 and z2, such that

Torsionn
(
Ĩ , z, z2 − z1

)
= ln.

55



We have
Torsionn

(
Ĩ , z, χ

)
= Torsionn (f, z̄, χ)

where z̄ ∈ A is the projection on the annulus of the point z ∈ R2. Therefore Theorem
2.1.1 tells us that

Torsionn(Ĩ , z, χ) ∈
(
−1

2
, 0

)
. (2.8)

By Lemma 1.1.2, it holds

∣∣∣Torsionn
(
Ĩ , z, z2 − z1

)
− Torsionn(Ĩ , z, χ)

∣∣∣ < 1

2n

and then, by (2.8),

ln = Torsionn
(
Ĩ , z, z2 − z1

)
∈
(
−1

2
− 1

2n
,
1

2n

)
.

We deduce that

ln = Linkingn(Ĩ , z1, z2) ∈
(
−1

2
− 1

2n
,
1

2n

)
.

Since this holds for any fixed n ∈ N, n 6= 0, passing to the limit, we conclude that

Linking(Ĩ , z1, z2) ∈
[
−1

2
, 0

]
.

We also give an estimation of finite-time linking number under some further assump-
tions.

Proposition 2.1.3. Let F : R2 → R2 be a lift of a positive twist map and let Ĩ = (Ft)t be
an isotopy joining the identity to F obtained as a lift of an isotopy on A. Let p1 : R2 → R be
the projection over the first coordinate. Let z1, z2 ∈ R2, z1 6= z2 be such that p1(z1) = p1(z2).
Then for any n ∈ N

Linkingn(Ĩ , z1, z2) ∈
(
−1

2
, 0

)
. (2.9)

Proof. Arguing by contradiction, assume that there exist points z1, z2 ∈ R2, z1 6= z2 with
p1(z1) = p1(z2) and n ∈ N, n 6= 0 such that

Linkingn(Ĩ , z1, z2) = l (2.10)

with either l smaller or equal −1
2

or l greater or equal 0. From the condition over the first
coordinate projection, the vector z2 − z1 joining the two points is vertical. By Corollary
1.4.1, there exists a point z ∈ R2 lying on the segment joining z2 and z1 such that

Torsionn
(
Ĩ , z, z2 − z1

)
= Torsionn(Ĩ , z, χ) = l. (2.11)

The value l does not belong to the interval
(
−1

2
, 0
)
. This contradicts Theorem 2.1.1 and

we conclude.
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Remark that if two points z1, z2 do not have the same first coordinate projection, then
the result of Proposition 2.1.3 does not hold, as shown by the following two examples.
Moreover, Examples 2.1.5 and 2.1.6 show us that the extremal values 0 and −1

2
of the

admissible interval for the linking number in Corollary 2.1.2 can actually be attained.

Example 2.1.5. Consider a lift of a C1 diffeomorphism on A (not only lifts of twist
maps): the linking number of any two points z1, z2 = z1 + (1, 0) is null.

Example 2.1.6. Let F : R2 → R2 be a lift of a positive twist map on A. Assume that
z0 is a hyperbolic (saddle) fixed point such that DF (z0) has a negative real eigenvalue of
modulus strictly smaller than 1. Let z1 be a point lying on one of the stable branches of
z0. Then Linking(F, z0, z1) = −1

2
.

2.1.3 Crovisier’s torsion for twist maps: definition and compari-

son

In [Cro03] S. Crovisier gives another definition of torsion for a positive twist map.
It seems natural to compare the two definitions: we prove that the two definitions are
equivalent and so we deduce that Crovisier’s results hold also refering to our Definition
1.1.3.
As before, we fix the counterclockwise orientation and we consider as reference vector field
on A the constant one χ = (0, 1).

Notation 2.1.2. Let f : A → A be a positive twist map. Let z̄ ∈ A. We denote as

θ0 : Tz̄A \ {0} → (−1, 0] ⊂ R

ξ 7→ θ0(ξ)

the measure of the oriented angle between the vertical vector χ and ξ contained in the
interval (−1, 0]. The quantity θ0(Df(z̄)χ) is then the measure of the oriented angle be-
tween χ and Df(z̄)χ contained in the interval (−1, 0].
We denote as

θ1 : Tz̄A \ {0} → (θ0(Df(z̄)χ)− 1, θ0(Df(z̄)χ)] ⊂ R

ξ 7→ θ1(ξ)

the measure of the oriented angle between χ and Df(z̄)ξ contained in the real interval
(θ0(Df(z̄)χ)− 1, θ0(Df(z̄)χ)].

Definition 2.1.2 (Crovisier’s definition in [Cro03]). Let f : A → A be a positive twist
map. Let z̄ ∈ A. According to Notation 2.1.2, we define the following function

θ : Tz̄A \ {0} → R

ξ 7→ θ(ξ) := θ1(ξ)− θ0(ξ)

which is a measure of the oriented angle between ξ and Df(z̄)ξ.
For a given n ∈ Z define

θn(ξ) :=

{∑
0≤k≤n−1 θ(Df

k(z̄)ξ) n ≥ 0

−θ−n(Dfn(z̄)ξ) n < 0.
(2.12)
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Observe that for k ∈ N, the quantity θ(Dfk(z̄)ξ) is the difference between θ1(Dfk(z̄)ξ) and
θ0(Dfk(z̄)ξ), where θ0(Dfk(z̄)ξ) is the measure, contained in (−1, 0], of the oriented angle
between the vectors χ and Dfk(z̄)ξ. These vectors lie in the tangent space Tfk(z̄)A. On
the other hand, θ1(Dfk(z̄)ξ) is the measure, contained in the interval (θ0(Df(fk(z̄))χ)−
1, θ0(Df(fk(z̄))χ)], of the oriented angle between χ and Dfk+1(z̄)ξ. These vectors lie in
the tangent space Tfk+1(z̄)A.

Proposition 2.1.4. Let z̄ ∈ A and ξ ∈ Tz̄A \ {0}. Let f : A → A be a positive twist map.
Then (see (2.12) in Definition 2.1.2 and (1.4) in Definition 1.1.2)

nTorsionn (f, z̄, ξ) = θn(ξ). (2.13)

Proof. Let I = (ft)t be an isotopy in Diff 1(A) joining the identity to f . Remark that the
torsion does not depend on the chosen I. Recall that (see (2.12))

θn(ξ) =
∑

0≤k≤n−1

θ(Dfk(z̄)ξ) =
∑

0≤k≤n−1

(
θ1(Dfk(z̄)ξ)− θ0(Dfk(z̄)ξ)

)
.

On the other hand, we have that (see (1.4))

nTorsionn (f, z̄, ξ) =
∑

0≤k≤n−1

Torsion1

(
f, fk(z̄), Dfk(z̄)ξ

)
=

=
∑

0≤k≤n−1

(
ṽ (I)

(
fk(z̄), Dfk(z̄)ξ, 1

)
− ṽ (I)

(
fk(z̄), Dfk(z̄)ξ, 0

))
.

We prove that for any 0 ≤ k ≤ n− 1

θ1(Dfk(z̄)ξ)− θ0(Dfk(z̄)ξ) = ṽ (I)
(
fk(z̄), Dfk(z̄)ξ, 1

)
− ṽ (I)

(
Dfk(z̄), Dfk(z̄)ξ, 0

)

and this concludes the proof.
We show it for k = 0 since the proof of the equality of the other terms is the same.
The oriented angles involved are the same. Indeed, θ0(ξ) is a measure of the oriented angle
between χ and ξ, that is the angle v(I)(z̄, ξ, 0); θ1(ξ) is a measure of the oriented angle
between χ and Df(z̄)ξ, that is the angle v(I)(z̄, ξ, 1).
The quantity ṽ(I)(z̄, ξ, 1)− ṽ(I)(z̄, ξ, 0) does not depend on the chosen lift. We show that,
by choosing the lift so that ṽ(I)(z̄, ξ, 0) = θ0(ξ), it holds ṽ(I)(z̄, ξ, 1) = θ1(ξ). This implies
the required equality.
We refer to the notation of Proposition 1.1.2. We choose the lift so that

ṽ(I)(z̄, ξ, 0) = θ0(ξ) ∈ (−1, 0].

Denote s = θ0(ξ). Then Wz̄(s, ·) = ṽ(I)(z̄, ξ, ·).
Observe that Wz̄(−1, 0) < Wz̄(s, 0) ≤ Wz̄(0, 0). By point (ii) of Proposition 1.1.2 it holds

Wz̄(−1, 1) < Wz̄(s, 1) = ṽ(I)(z̄, ξ, 1) ≤ Wz̄(0, 1).

Point (iii) of Proposition 1.1.2 implies that Wz̄(−1, 1) = Wz̄(0, 1)− 1, so we have

Wz̄(0, 1)− 1 < ṽ(I)(z̄, ξ, 1) ≤ Wz̄(0, 1).

By Theorem 2.1.1 for n = 1 it holds Wz̄(0, 1) ∈
(
−1

2
, 0
)
⊂ (−1, 0]. Being lifts of the same

angle both contained in (−1, 0], we have Wz̄(0, 1) = θ0(Df(z̄)χ).
We then conclude that Wz̄(s, 1) = ṽ(I)(z̄, ξ, 1) ∈ (−1 + θ0(Df(z̄)χ), θ0(Df(z̄)χ)] and so
ṽ(I)(z̄, ξ, 1) = θ1(ξ) being lifts of the same angle both contained in the interval
(−1 + θ0(Df(z̄)χ), θ0(Df(z̄)χ)].
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Remark 2.1.6. Thanks to Proposition 2.1.4, our torsion (see Definition 1.1.3) at a point
exists if and only if Crovisier’s torsion at that point exists (in particular they are equal).

We recall the result obtained by S. Crovisier in [Cro03]. Since the two definitions
of torsion are equivalent, this result holds true also refering to the torsion presented in
Definition 1.1.3. For the definition of well-ordered sets we refer to [Che85] and [Cro03].

Definition 2.1.3 (Well-ordered set). A set Ē ⊂ A, not empty and invariant for f , and
its lift E ⊂ R2 are said well-ordered if

(i) p̄1 : Ē → T is injective;

(ii) for any z, z′ ∈ E, lifts of points z̄, z̄′ ∈ Ē, such that p1(z) < p1(z
′), it holds that

p1(F (z)) < p1(F (z
′)).

Let z ∈ R2. The rotation number of z for F is, whenever it exists, the limit

lim
n→+∞

(
p1 ◦ F n(z)− p1(z)

n

)
.

Let E ⊂ R2 be a well-ordered set. Then the rotation number of E is the rotation number
of any z ∈ E. It is well-defined and it does not depend on z ∈ E (see [LC91]).
From Proposition 2.1.4, the following result by Crovisier holds with respect to our torsion
too.

Theorem 2.1.2 (Theorem 1.2 in [Cro03]). Let f : A → A be a positive twist map. Then,
every point of any well-ordered set with irrational rotation number has zero torsion.

2.2 Set of points of zero torsion for negative-torsion

maps

We start by defining an essential curve of the annulus.

Definition 2.2.1. An essential curve is a C0 embedded circle in A not homotopic to a
point.

The main results of this section will be the following

Theorem 2.2.1. Let f : A → A be a negative-torsion map. Then for any C1 essential
curve γ : T → A there exists z̄ ∈ γ(T) such that Torsion(f, z̄) = 0.

Corollary 2.2.1. Let f : A → A be a negative-torsion map. Then

dimH({z̄ ∈ A : Torsion(f, z̄) = 0}) ≥ 1,

where dimH denotes the Hausdorff dimension of a set.

We refer to [Fal86] for the definition of Hausdorff dimension of a set. Concerning Theorem
2.2.1, we will first prove the following simpler version.

Theorem 2.2.2. Let f : A → A be a negative-torsion map. Then for any r ∈ R there
exists z̄(r) ∈ T× {r} such that Torsion(f, z̄(r)) = 0.

After it, we will present the proof of Theorem 2.2.1 (which generalizes Theorem 2.2.2).
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2.2.1 Points of zero torsion on simple circle curves

We start by showing some lemmas that will lead us to the proof of Theorem 2.2.2.

Lemma 2.2.1. Let f : A → A be a C1 diffeomorphism isotopic to the identity. Let r ∈ R
and n ∈ N∗. Then there exists z̄(r, n) ∈ T× {r} such that

Torsionn(f, z̄(r, n),H) = 0, (2.14)

where H is the horizontal vector (1, 0).

Proof. Let F : R2 → R2 be a lift of f . Let (Ft)t ∈ Diff1(R2) be the isotopy joining the
identity of R2 to F , obtained as lift of an isotopy on A joining IdA to f .
Observe that for any t ∈ R+ the function Ft commutes with the translation by (1, 0).
Consequently, for a fixed r ∈ R, for any n ∈ N∗ it holds (see Definition 1.2.1)

Linkingn((Ft)t, (0, r), (1, r)) = 0.

By Corollary 1.4.1 there exists z(r, n) ∈ [0, 1]× {r} such that

Torsionn((Ft)t, z(r, n),H) = 0,

where H is the positive horizontal vector of norm one. Denoting as z̄(r, n) ∈ T× {r} the
projection on the annulus of the point z(r, n), we conclude that

Torsionn(f, z̄(r, n),H) = 0.

Remark 2.2.1. Let z̄(r, n) ∈ T × {r} be the point given by Lemma 2.2.1 applied to a
negative-torsion map f . Then, by Lemma 1.1.2, it holds

nTorsionn(f, z̄(r, n), χ) ∈
(
−1

2
, 0

)
. (2.15)

Lemma 2.2.2. Let f : A → A be a negative-torsion map. Let m ∈ N∗ and let z̄ ∈ A
be such that mTorsionm(f, z̄, χ) < −k

2
for some k ∈ N∗. Then for any n ≥ m it holds

nTorsionn(f, z̄, χ) < −k
2
.

The statement is a consequence of the negative-torsion condition and of the following

Lemma 2.2.3. Let f : A → A be a C1 diffeomorphism isotopic to the identity. Let a ∈ A.
Let N ∈ N∗, (Ki)i∈J0,N −1K ∈ NN and l0 = 0 < l1 < · · · < lN with li ∈ N for any i.
Assume that for all i ∈ J0,N − 1K it holds

(li+1 − li)Torsionli+1−li(f, f
li(a), χ) < −Ki

2
.

Then for any vector ξ ∈ TaA \ {0} we have

lN TorsionlN (f, a, ξ) < −
∑N −1

i=0 Ki

2
+

1

2
.

In particular, when ξ = χ we have

lN TorsionlN (f, a, χ) < −
∑N −1

i=0 Ki

2
.
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We postpone the proof of Lemma 2.2.3 to Appendix 2.5.

Proof of Lemma 2.2.2. For n = m there is nothing to prove. Fix n > m and apply Lemma
2.2.3 for f at the point z ∈ A with respect to N = 2, l1 = m, l2 = n,K1 = k,K2 = 0. We
can use Lemma 2.2.3 because by hypothesis

mTorsionm(f, z, χ) < −k
2
,

and because, since f is a negative-torsion map and n−m > 0, it holds

(n−m)Torsionn−m(f, f
m(z), χ) < 0.

We conclude that

nTorsionn(f, z, χ) < −k
2
.

Lemma 2.2.4. Let f : A → A be a negative-torsion map. Let z̄(r, n) ∈ T × {r} be the
point given by Lemma 2.2.1 applied at f . Then for any m ∈ (0, n] it holds

mTorsionm(f, z̄(r, n), χ) ∈
[
− 1

2
, 0
)
.

Proof. Argue by contradiction and assume there exists m ∈ (0, n] such that

mTorsionm(f, z̄(r, n), χ) /∈
[
− 1

2
, 0
)
.

In particular, since f is a negative-torsion map, it holds

mTorsionm(f, z̄(r, n), χ) < −1

2
.

By Remark 2.2.1 we have that nTorsionn(f, z̄(r, n), χ) ∈ (−1
2
, 0).

If m = n, then we immediately obtain the required contradiction. If m < n, then by
Lemma 2.2.2 it holds that nTorsionn(f, z̄(r, n), χ) < −1

2
, which provides again an absurd

and we conclude.

Notation 2.2.1. Fix r ∈ R. Consider the sequence of points (z̄(r, n))n∈N ∈ T×{r} given
by Lemma 2.2.1. Denote as z̄(r) ∈ T × {r} a limit point of (z̄(r, n))n∈N∗ . Such a point
exists since T× {r} is compact.

Lemma 2.2.5. Let z̄(r) ∈ T× {r} be a limit point of (z̄(r, n))n∈N. Then for any N ∈ N∗

it holds

N TorsionN(f, z̄(r), χ) ∈
[
− 1

2
, 0
)

Proof. Since f is a negative-torsion map, we have that for any N ∈ N∗

N TorsionN(f, z̄(r), χ) < 0.

Fix now N ∈ N∗. Let ε > 0. Since z̄(r) is a limit point of the sequence (z̄(r, n))n∈N and by
the continuity of the function x 7→ N TorsionN(f, x, χ), there exists n̄ ∈ N, n̄ > N such
that

|N TorsionN(f, z̄(r), χ)−N TorsionN(f, z̄(r, n̄), χ)| < ε. (2.16)
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Consequently we obtain, from (2.16) and from Lemma 2.2.4,

N TorsionN(f, z̄(r), χ) =

= (N TorsionN(f, z̄(r), χ)−N TorsionN(f, z̄(r, n̄), χ))+N TorsionN(f, z̄(r, n̄), χ) > −ε−1

2
.

By the arbitrariness of ε we conclude that N TorsionN(f, z̄(r), χ) ∈ [−1
2
, 0).

Proof of Theorem 2.2.2. Fix r ∈ R and consider a point z̄(r) ∈ T × {r} which is a limit
point of the sequence (z̄(r, n))n∈N defined in Lemma 2.2.1. By Lemma 2.2.5 for any N ∈ N∗

it holds

TorsionN(f, z̄(r), χ) ∈
[
− 1

2N
, 0
)
.

Consequently, as N goes to +∞, we have that Torsion(f, z̄(r)) = 0.

Proof of Corollary 2.2.1. By Theorem 2.2.2 for any r ∈ R there exists z̄(r) ∈ T×{r} such
that Torsion(f, z̄(r)) = 0. Thus, looking at the projection p̄2 over the second coordinate,
we deduce that

p̄2({z ∈ A : Torsion(f, z) = 0}) = R.

We consider now the Hausdorff dimension, denoted as dimH . Recall that if g is Lipschitz,
then, for any set U , dimH(U) ≥ dimH(g(U)) (see Lemma 1.8 in [Fal86]).
Since the projection p̄2 is Lipschitz and since the Hausdorff dimension of R is dimH(R) = 1,
we conclude that dimH({z̄ ∈ A : Torsion(f, z̄) = 0}) ≥ 1.

2.2.2 Angle variation along γ along a C1 essential curve

In this Subsection we explain how to calculate the angle variation of a vector along a
C1 essential curve. Such angle variation will be used in the proof of Theorem 2.2.1 and in
Section 2.4.
Let γ : T → A be a C1 essential curve and let x, y ∈ γ(T). Let s1, s2 ∈ T be such that
γ(s1) = x, γ(s2) = y. Fix S1 ∈ R a lift of s1 and let S2 ∈ R be the lift of s2 such that
S2 ∈ (S1, S1 + 1].
Define the oriented angle function

R+ ∋ t 7→ Θ(γ, S1)(t) := θ(H, γ′ ◦ p(S1 + t)) ∈ T,

where p : R → T is the covering map of T. Equivalently, Θ(γ, S1)(t) is the oriented angle
between H and the vector tangent to γ at γ(p(S1 + t)).
Denote as Θ̃(γ, S1) : R+ → R a continuous determination of the previous angle function.

Definition 2.2.2. The angle variation along γ between x and y is

V arγ(x, y) := Θ̃(γ, S1)(S2 − S1)− Θ̃(γ, S1)(0).

Remark 2.2.2. The angle variation along γ between x and y does not depend on the
choice of the continuous determination Θ̃(γ, S1).
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Proposition 2.2.1. Let γ be a C1 essential curve. Let x, y, z ∈ γ(T).

(1) V arγ(x, y) does not depend on the choice of the lift S1 of s1 ∈ T such that γ(s1) = x.

(2) V arγ(x, x) = 0.

(3) V arγ(x, y) + V arγ(y, z) = V arγ(x, z).

Proof. (1) Let s1, s2 ∈ T be such that γ(s1) = x, γ(s2) = y. Consider two lifts S1, S1+1
of s1 ∈ T. We want to compare

Θ̃(γ, S1)(S2 −S1)− Θ̃(γ, S1)(0) and Θ̃(γ, S1 +1)(S2 −S1)− Θ̃(γ, S1 +1)(0),

where S2 ∈ R is the lift of s2 contained in (S1, S1 + 1]. Observe that S2 + 1 is the
lift of s2 contained in (S1 + 1, S1 + 2].
Since the angles Θ(γ, S1 + 1)(0) and Θ(γ, S1)(0) are equal, choose the continuous
determinations such that Θ̃(γ, S1 + 1)(0) = Θ̃(γ, S1)(0). Since ξ 7→ Θ̃(γ, S1 + 1)(ξ)
and ξ 7→ Θ̃(γ, S1)(ξ) are lifts of the same angle function that coincide at ξ = 0, they
are equal. In particular, Θ̃(γ, S1 + 1)(S2 − S1) = Θ̃(γ, S1)(S2 − S1). Consequently

Θ̃(γ, S1 + 1)(S2 − S1)− Θ̃(γ, S1 + 1)(0) = Θ̃(γ, S1)(S2 − S1)− Θ̃(γ, S1)(0)

and we conclude.

(2) Let s1 ∈ T be such that γ(s1) = x and fix a lift S1 ∈ R of s1. Then, the angle
variation V arγ(x, x) is

Θ̃(γ, S1)(1)− Θ̃(γ, S1)(0).

Consider the change of coordinates

g : A → R2 \ {(0, 0)}

(x, y) 7→ ey(sin(x), cos(x)).

It is a local diffeomorphism that preserves the orientation and it is conformal. The
image g ◦ γ(T) is a simple closed C1 curve. Let us parametrize it as

[0, 1] ∋ t 7→ g ◦ γ ◦ p(S1 + t) ∈ R2 \ {(0, 0)}.

Apply now the Turning Tangent Theorem to g ◦ γ(T) and obtain that the variation
of the angle

θ(H, Dg(γ(p(S1 + t)))γ′(p(S1 + t))) (2.17)

between t = 0 and t = 1 is equal to δ ∈ {±1}, where δ depends on the orientation
of the curve g ◦ γ(T). Consider now the vector Dg(γ(p(S1 + t)))H and calculate the
variation of the angle

θ(H, Dg(γ(p(S1 + t)))H)

between t = 0 and t = 1. In particular

Dg(γ(p(S1 + t)))H = eγ2
(

cos(γ1) sin(γ1)
− sin(γ1) cos(γ1)

)
(1, 0) = eγ2(cos(2πγ1),− sin(2πγ1)),

where (γ1, γ2) = (γ1(t), γ2(t)) = γ ◦ p(S1 + t). The angle θ(H, Dg(γ(p(S1 + t)))H)
is so −γ1(t). Let Γ1 be a lift of γ1. Since γ is an essential curve, it holds that
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Γ1(t + 1) = Γ1(t) + δ, where δ ∈ {±1} depends on the orientation of the curve
g ◦ γ(T) (see Lemma 2.4.1).
Therefore, the angle variation of the vector Dg(γ(p(S1 + t)))H between t = 0 and
t = 1 is δ ∈ {±1}. Such angle variation is the same as the angle variation of (2.17)
between 0 and 1.
Consequently, the variation of the angle

θ(Dg(γ(p(S1 + t)))H, Dg(γ(p(S1 + t)))γ′(p(S1 + t)))

between t = 0 and t = 1 is null. Since g is conformal we deduce that the angle vari-
ation θ(H, γ′(p(S1 + t))) between t = 0 and t = 1 is also null. Such angle variation
is Θ̃(γ, S1)(1)− Θ̃(γ, S1)(0) and so we conclude that V arγ(x, x) = 0.

(3) Let x, y, z ∈ γ(T). Fix S1 ∈ R such that γ ◦ p(S1) = x. Let S2 ∈ R, S2 ∈ (S1, S1 + 1]
be a lift of s2 ∈ T such that γ(s2) = y and let S3 ∈ R, S3 ∈ (S2, S2 + 1] be a lift of
s3 ∈ T such that γ(s3) = z. Consider so the angle functions

R+ ∋ t 7→ Θ(γ, S1)(t) = θ(H, γ′(p(S1 + t))),

R+ ∋ t 7→ Θ(γ, S2)(t) = θ(H, γ′(p(S2 + t))).

Now
V arγ(x, y) = Θ̃(γ, S1)(S2 − S1)− Θ̃(γ, S1)(0),

V arγ(y, z) = Θ̃(γ, S2)(S3 − S2)− Θ̃(γ, S2)(0).

Choose the lift such that Θ̃(γ, S2)(0) = Θ̃(γ, S1)(S2 − S1). Then, the lifts ξ 7→
Θ̃(γ, S2)(ξ) and ξ 7→ Θ̃(γ, S1)(S2 − S1 + ξ) are measures of the same angle function
that coincide at ξ = 0, hence they are equal. In particular

Θ̃(γ, S2)(S3 − S2) = Θ̃(γ, S1)(S3 − S1).

We so obtain
V arγ(x, y) + V arγ(y, z) =

= Θ̃(γ, S1)(S2 − S1)− Θ̃(γ, S1)(0) + Θ̃(γ, S2)(S3 − S2)− Θ̃(γ, S2)(0) =

= Θ̃(γ, S1)(S3 − S1)− Θ̃(γ, S1)(0).

If S3 ∈ (S1, S1+1], then this last term is exactly V arγ(x, z). If S3 ∈ (S1+1, S1+2],
then

Θ̃(γ, S1)(S3 − S1)− Θ̃(γ, S1)(0) =

= Θ̃(γ, S1)(S3 − S1)− Θ̃(γ, S1)(1) + Θ̃(γ, S1)(1)− Θ̃(γ, S1)(0) =

= Θ̃(γ, S1)(S3 − S1)− Θ̃(γ, S1)(1) + V arγ(x, x) = Θ̃(γ, S1)(S3 − S1)− Θ̃(γ, S1)(1).

Since, from point (1), the angle variation does not depend on the lift of s1 ∈ T, it
holds

Θ̃(γ, S1)(S3 − S1)− Θ̃(γ, S1)(1) =

= Θ̃(γ, S1 + 1)(S3 − S1 − 1)− Θ̃(γ, S1 + 1)(0) = V arγ(x, z)

and we conclude.
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Such a piecewise C1 closed curve does not have self-intersections because both Γ(S0) and
Γ(S1) are points of maximal height. We are then interested in

V arγ(γ(s0), γ(s1)) = V arΓ(Γ(S0),Γ(S1)) = Θ̃(Γ, S0)(S1 − S0)− Θ̃(Γ, S0)(0).

Claim 2.2.1. If γ is homotopic to c1, then

p1 ◦ Γ(S0) < p1 ◦ Γ(S1) and Γ′(S0),Γ
′(S1) ∈ R+H.

If γ is homotopic to c−1, then

p1 ◦ Γ(S0) > p1 ◦ Γ(S1) and Γ′(S0),Γ
′(S1) ∈ R−H.

Proof. Since both S0 and S1 are points of maximal height of Γ and since Γ is C1, both
Γ′(S0) and Γ′(S1) are in RH.
By Jordan’s theorem, the closed curve C (see Figure 2.1) separates the plane into two
regions, a bounded one and an unbounded one.
The curve Γ(R) does not have self-intersections. Moreover, since Γ(S0),Γ(S1) are points of
maximal height of Γ, the curve Γ cannot lie in {(x, y) ∈ R2 : y > p2 ◦Γ(S0) = p2 ◦Γ(S1)}.
Thus, Γ(R \ [S0, S1]) cannot intersect C .
Assume that γ is homotopic to c1. Argue by contradiction and assume that p1 ◦ Γ(S1) <
p1 ◦ Γ(S0)

1.
If Γ′(S0) ∈ R+H, then, since Γ(R \ [S0, S1]) cannot intersect C , Γ((−∞, S0)) is contained
in the bounded region determined by the closed curve C , which is a contradiction. Indeed,
since γ is homotopic to c1, for any S ∈ R and any n ∈ N it holds Γ(S+n) = Γ(S)+(n, 0)
(see case (a) in Figure 2.2).
Thus, Γ′(S0) ∈ R−H. Since γ is homotopic to c1, there exists n ∈ N such that

p1 ◦ Γ(S0 − n) < p1 ◦ Γ(S)

for every S ∈ [S0, S1]. In particular, Γ([S0 − n, S0)) lies in the unbounded region deter-
mined by C . Since p2 ◦Γ(S0 −n) = p2 ◦Γ(S0), we can build a closed curve C ′ as done for
S0, S1, starting from S0 − n, S0 (see case (b) in Figure 2.2). The point Γ(S1) is contained
in the bounded region determined by C ′. Thus, it follows that Γ((S0,+∞)) is bounded,
which is a contradiction. We conclude that p1 ◦ Γ(S0) < p1 ◦ Γ(S1).
Since p1 ◦ Γ(S0) < p1 ◦ Γ(S1) and since both Γ((−∞, S0)) and Γ((S1,+∞)) cannot in-
tersect C , if Γ′(S0) ∈ R−H (respectively Γ′(S1) ∈ R−H), then Γ((−∞, S0)) (respectively
Γ((S1,+∞))) would be contained in the bounded region determined by the closed curve
C , providing the required contradiction.
The result for γ homotopic to c−1 can be deduced similarly.

In particular, if γ is homotopic to c1 (respectively to c−1) then the closed curve C is
oriented counterclockwisely (respectively clockwisely).

Apply then the Turning Tangent Theorem to the simple piecewise C1 closed curve C
described above (see Figure 2.1). Using Claim 2.2.1, we discuss the two possible cases.
If γ is homotopic to c1, then we have

Θ̃(Γ, S0)(S1 − S0)− Θ̃(Γ, S0)(0) +
1

4
+

1

4
+

1

4
+

1

4
= 1.

1. Observe that the case p1 ◦ Γ(S0) = p1 ◦ Γ(S1) is not possible because S0 6= S1 and Γ is injective.
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(a) (b)

Figure 2.2 – The contradictions in Claim 2.2.1.

If γ is homotopic to c−1, then we have

Θ̃(Γ, S0)(S1 − S0)− Θ̃(Γ, S0)(0)−
1

4
− 1

4
− 1

4
− 1

4
= −1.

In both cases we deduce that

Θ̃(Γ, S0)(S1 − S0)− Θ̃(Γ, S0)(0) = V arΓ(Γ(S0),Γ(S1)) = V arγ(γ(s0), γ(s1)) = 0.

2.2.3 Points of zero torsion on C1 essential curves

Let γ : T → A be a C1 essential curve. The aim of this subsection is the proof of
Theorem 2.2.1.
Let us begin by introducing some definitions. Let s0 ∈ T be a point of maximal height,
that is such that p̄2 ◦ γ(s0) = maxs∈T p̄2 ◦ γ(s). Fix S0 ∈ R a lift of s0.

Definition 2.2.3 (Complexity of a C1 essential curve). The complexity of the curve γ is

C(γ) := sup
t∈R+

|V arγ(γ(p(S0)), γ(p(S0 + t)))| = max
t∈[0,1]

|V arγ(γ(p(S0)), γ(p(S0 + t))| ,

where p : R → T is the covering map of T.

Lemma 2.2.6. The definition of C(γ) is independent of the choice of s0 ∈ T such that

p̄2 ◦ γ(s0) = max
s∈T

p̄2 ◦ γ(s).

Proof. Let s0, s̄ ∈ T, s0 6= s̄ be such that p̄2 ◦ γ(s0) = p̄2 ◦ γ(s̄) = maxs∈T p2 ◦ γ(s). Let
S0 ∈ R be a lift of s0 and let S̄ be the lift of s̄ contained in (S0, S0+1). From Proposition
2.2.2 it holds that

V arΓ(Γ(S0),Γ(S̄)) = V arγ(γ(s0), γ(s̄)) = 0. (2.18)

The complexity of the curve γ calculated with respect to s̄ is

max
t∈[0,1]

∣∣V arγ(γ(p(S̄)), γ(p(S̄ + t))
∣∣ .
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From (2.18) and by properties (2) and (3) of Proposition 2.2.1, it holds

max
t∈[0,1]

∣∣V arγ(γ(p(S̄)), γ(p(S̄ + t)))
∣∣ = max

t∈[0,1]

∣∣V arγ(γ(s0), γ(s̄)) + V arγ(γ(p(S̄)), γ(p(S̄ + t)))
∣∣ =

= max
t∈[0,1]

∣∣V arγ(γ(p(S0)), γ(p(S̄ + t)))
∣∣ =

= max

(
max

t∈[0,1−S̄+S0]

∣∣V arγ(γ(p(S0)), γ(p(S̄ + t)))
∣∣ , max

t∈[1−S̄+S0,1]

∣∣V arγ(γ(p(S0)), γ(p(S̄ + t)))
∣∣
)

=

= max

(
max

τ∈[S̄−S0,1]
|V arγ(γ(p(S0)), γ(p(S0 + τ)))| , max

τ∈[0,S̄−S0]
|V arγ(γ(p(S0)), γ(p(S0 + 1 + τ)))|

)
=

= max
τ∈[0,1]

|V arγ(γ(p(S0)), γ(p(S0 + τ)))| = C(γ).

The key step of the proof of Theorem 2.2.1 is the following Proposition.

Proposition 2.2.3. Let γ : T → A be a C1 essential curve of complexity C(γ). Let
n ∈ N∗. Then there exists z̄(n) = γ(sn) ∈ γ(T) such that

|nTorsionn(f, γ(sn), γ
′(sn)| ≤ C(γ). (2.19)

We postpone the proof of Proposition 2.2.3 and we will now show how to deduce Theorem
2.2.1 from Proposition 2.2.3.
A first outcome of Proposition 2.2.3 and of Lemma 2.2.3 is the following

Lemma 2.2.7. Let f : A → A be a negative-torsion map. Let K = ⌊2C(γ)⌋ + 2. Let
z̄(n) = γ(sn) ∈ γ(T) be a point given by Proposition 2.2.3 applied at f . Then for any
m ∈ (0, n] it holds

mTorsionm(f, z̄(n), χ) ∈
[
− K

2
, 0
)
.

Proof. We start by recalling that, since f is a negative-torsion map, we have that for any
m it holds mTorsionn(f, z̄(n), χ) < 0.
Argue then by contradiction and assume there exists m ∈ (0, n] such that

mTorsionm(f, z̄(n), χ) < −K
2
.

If m = n then we contradict (2.19) because we would have, using Lemma 1.1.2 and since
K = ⌊2C(γ)⌋+ 2,

nTorsionn(f, γ(sn), γ
′(sn)) < nTorsionn(f, z̄(n), χ) +

1

2
< −K − 1

2
< −C(γ).

Suppose so that m < n. Again because f is a negative-torsion map, we have that

(n−m)Torsionn−m(f, f
m(z̄(n)), χ) < 0.

Apply so Lemma 2.2.3 for f at z̄(n) with respect to N = 2, l1 = m, l2 = n,K1 = K,K2 =
0. We obtain

nTorsionn(f, γ(sn), γ
′(sn)) < −K − 1

2
= −⌊2C(γ)⌋+ 1

2
< −C(γ),

contradicting (2.19). This concludes the proof.
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The candidate point of zero torsion on the curve γ is then a limit point of the sequence
(z̄(n))n∈N, built in Proposition 2.2.3. We first estimate the finite-time torsion of such limit
point.

Lemma 2.2.8. Let f : A → A be a negative-torsion map. Let K = ⌊2C(γ)⌋ + 2. Let
z̄(∞) ∈ γ(T) be a limit point of the sequence (z̄(n))n∈N built in Proposition 2.2.3. Then
for any N ∈ N it holds

N TorsionN(f, z̄(∞), χ) ∈
[
− K

2
, 0
)
.

The proof of Lemma 2.2.8 uses the same ideas as the proof of Lemma 2.2.5.

Proof. Since f is a negative-torsion map, we already know that for any N ∈ N∗ it holds
N TorsionN(f, z̄(∞), χ) < 0. Fix now N ∈ N∗. Let ε > 0. Since there exists a subsequence
of (z̄(n))n∈N (that we will still denote as (z̄(n))n∈N) which converges to z̄(∞) and by the
continuity of the function x 7→ N TorsionN(f, x, χ), there exists n̄ ∈ N, n̄ > N such that

|N TorsionN(f, z̄(∞), χ)−N TorsionN(f, z̄(n̄), χ)| < ε.

Consequently we have, using Lemma 2.2.7,

N TorsionN(f, z̄(∞), χ) =

= (N TorsionN(f, z̄(∞), χ)−N TorsionN(f, z̄(n̄), χ))+N TorsionN(f, z̄(n̄), χ) > −ε−K

2
.

By the arbitrariness of ε we conclude that N TorsionN(f, z̄(∞), χ) ∈
[
− K

2
, 0
)
.

We can finally prove Theorem 2.2.1.

Proof of Theorem 2.2.1. Consider a C1 essential curve and a point z̄(∞) ∈ γ(T) which is
a limit point of the sequence (z̄(n))n∈N defined in Proposition 2.2.3. By Lemma 2.2.8 for
any N ∈ N∗ it holds

TorsionN(f, z̄(∞), χ) ∈
[
− K

2N
, 0
)
,

where K = ⌊2C(γ)⌋+ 2 (in particular K is independent of N). Consequently, as N goes
to +∞, we have that Torsion(f, z̄(∞)) = 0.

Proof of Proposition 2.2.3

We recall that the complexity of a curve γ is independent of the choice of the point of
maximal height of γ (see Lemma 2.2.6).
Let (ft)t∈R+ be an isotopy joining the identity IdA to f . Recall that the torsion does not
depend on the choice of the isotopy (see Proposition 1.3.2). The following notations will
be largely used throughout the proof of Proposition 2.2.3.

Notation 2.2.2. For any t ∈ R+ denote as γt the curve

T ∋ s 7→ γt(s) := ft(γ(s)) ∈ A.
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Consider the function
Mh

γ : R+ → R

t 7→Mh
γ (t) := max

s∈T
p̄2 ◦ γt(s).

For any t ∈ R+ denote

Argmax(p̄2 ◦ γt) = {s ∈ T : p̄2 ◦ γt(s) =Mh
γ (t)}, (2.20)

that is the set of s ∈ T whose image through γt achieves the maximal height among γt(T).
Observe that, since each γt is C1, for any s ∈ Argmax(p̄2 ◦ γt) the tangent vector γ′t(s)
belongs to RH.
For any t ∈ R+ denote as st an element of Argmax(p̄2 ◦ γt).
Notation 2.2.3. The function Φ : R+ → Z is

R+ ∋ t 7→ tTorsiont(f, γ(st), γ
′(st)) + V arγ(γ(s0), γ(st)) ∈ R. (2.21)

The function Φ takes values in Z because, thanks to Claim 2.2.1, if γ is homotopic to c1
(respectively to c−1) then both Dft(γ(st))γ′(st) and γ′(s0) belongs to R+H (respectively
R−H).

The idea of considering points of maximal (respectively minimal) height on a curve is
due to P. Le Calvez (see Section 5 in [LC91]).
We need now to discuss some properties of the function Φ: in particular, we will see that
it is the constant null function.

Lemma 2.2.9. For any t ∈ R+, the value Φ(t) does not depend on the choice of st ∈
Argmax(p̄2 ◦ γt).
Proof. Let st, s̄t ∈ Argmax(p̄2 ◦ γt), st 6= s̄t. From Proposition 2.2.2 it holds that

V arγt(st, s̄t) = 0. (2.22)

Look now at tTorsiont(f, γ(st), γ′(st)) and tTorsiont(f, γ(s̄t), γ′(s̄t)). First, remark that

R+ ∋ τ 7→ V arγτ (γτ (st), γτ (s̄t)) ∈ R

is continuous because τ 7→ fτ is continuous in the C1 compact-open topology.
In particular, since the torsion at finite-time does not depend on the chosen lift, we
calculate the torsion at γ(s̄t) using the continuous lift

R+ ∋ τ 7→ ṽ(f, γ(st), γ
′(st))(τ) + V arγτ (γτ (st), γτ (s̄t)) ∈ R, (2.23)

where ṽ(f, γ(st), γ′(st))(·) is a continuous lift of the angle function τ 7→ θ(H, Dfτ (γ(st))γ′(st)).
Therefore, the function in (2.23) is a continuous determination of the angle function
τ 7→ θ(H, γ′τ (s̄t)).
Consequently the value Φ(t) calculated with respect to s̄t is

tTorsiont(f, γ(s̄t), γ
′(s̄t)) + V arγ(γ(s0), γ(s̄t)).

Let us write tTorsiont(f, γ(s̄t), γ′(s̄t)) using the continuous determination in (2.23) and
obtain

ṽ(f, γ(st), γ
′(st))(t) + V arγt(γt(st), γt(s̄t))− ṽ(f, γ(st), γ

′(st))(0)− V arγ(γ(st), γ(s̄t))+
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+V arγ(γ(s0), γ(s̄t)) =

= tTorsiont(f, γ(st), γ
′(st))+

+V arγt(γt(st), γt(s̄t))− V arγ(γ(st), γ(s̄t)) + V arγ(γ(s0), γ(s̄t)) =

= tTorsiont(f, γ(st), γ
′(st)) + V arγt(γt(st), γt(s̄t)) + V arγ(γ(s0), γ(st)),

where in the last equality we have used property (3) of Proposition 2.2.1. Finally, since
from (2.22) we have that V arγt(γt(st), γt(s̄t)) = 0, we conclude that

tTorsiont(f, γ(s̄t), γ
′(s̄t))+V arγ(γ(s0), γ(s̄t)) = tTorsiont(f, γ(st), γ

′(st))+V arγ(γ(s0), γ(st)),

that is Φ(t) does not depend on the choice of st ∈ Argmax(p̄2 ◦ γt).

Lemma 2.2.10. The function Φ : R+ → Z is the constant zero function.

Proof. We are going to show that Φ is continuous: since Φ takes values in Z and since
Φ(0) = 0, we will conclude that Φ is the constant zero function.
As a first step we are going to consider the function Φ|[0,1] : [0, 1] → R and to show that
its graph is compact. Since a function from a compact space (here [0, 1]) into an Hausdorff
space (here R) is continuous if and only if its graph is compact (see Theorem 5.6.34 in
[Soh03]), we will conclude that Φ|[0,1] is continuous.
Denote for any t ∈ [0, 1]

Kt = {s ∈ T : s ∈ Argmax(p̄2 ◦ γt)} × {t}

and
K =

⋃

t∈[0,1]
Kt =

⋃

t∈[0,1]
{(s, t) : s ∈ Argmax(p̄2 ◦ γt)} ⊂ T× [0, 1].

Clearly the set K is bounded. Let us show that K is closed. Let (sn, tn)n∈N ⊂ K be a
sequence converging to (s, t).
The sequence (tn)n∈N ⊂ [0, 1] converges to t ∈ [0, 1].

Claim 2.2.2. s ∈ Argmax(p̄2 ◦ γt).
Proof. Assume by contradiction that s does not belong to Argmax(p̄2 ◦γt). That is, there
exists s̄ ∈ T such that p̄2 ◦ γt(s̄) > p̄2 ◦ γt(s). Denote

ρ = p̄2 ◦ γt(s̄)− p̄2 ◦ γt(s) > 0.

Since (tn)n∈N converges to t, since τ 7→ fτ is continuous for the C1 compact-open topology
and since both p̄2 and γ are continuous, there exists n̄ ∈ N such that for any n ∈ N, n ≥ n̄

max
x∈T

|p̄2 ◦ γt(x)− p̄2 ◦ γtn(x)| = max
x∈T

|p̄2 ◦ ft ◦ γ(x)− p̄2 ◦ ftn ◦ γ(x)| < ρ

4
.

By the continuity of p̄2 ◦ γt and since the sequence (sn)n∈N converges to s, there exists
ñ ≥ n̄, ñ ∈ N such that for any n ∈ N, n ≥ ñ

|p̄2 ◦ γt(s)− p̄2 ◦ γt(sn)| <
ρ

4
.

Consequently for n ∈ N, n ≥ ñ we have

p̄2 ◦ γtn(s̄) > p̄2 ◦ γt(s̄)−
ρ

4
= p̄2 ◦ γt(s) +

3

4
ρ =

71



= (p̄2 ◦ γt(s)− p̄2 ◦ γt(sn)) + (p̄2 ◦ γt(sn)− p̄2 ◦ γtn(sn)) + p̄2 ◦ γtn(sn) +
3

4
ρ >

> −ρ
4
− ρ

4
+ p̄2 ◦ γtn(sn) +

3

4
ρ = p̄2 ◦ γtn(sn) +

ρ

4
> p̄2 ◦ γtn(sn).

This contradicts the fact that sn belongs to Argmax(p̄2 ◦ γtn) and we conclude.

We deduce so that K is closed and bounded, i.e. it is compact.
Consider now the function

K ∋ (s, t) 7→ (t, tTorsiont(f, γ(s), γ
′(s)) + V arγ(γ(s0), γ(s))) ∈ [0, 1]× R.

It is continuous and, since K is compact, its image is compact too. Observe that its image
is actually the graph of the function Φ|[0,1]. From what remarked before, since the graph
of Φ|[0,1] is compact, we have that Φ|[0,1] is continuous.
Using the same argument, we deduce that the function Φ is continuous on every compact
[0, n] for n ∈ N∗. Consequently, the function Φ : R+ → Z/2 is continuous. This implies
(as remarked above) that Φ is the constant null function, concluding the proof.

We finally prove Proposition 2.2.3.

Proof of Proposition 2.2.3. Fix n ∈ N∗ and let sn ∈ Argmax(p̄2 ◦ γn). By Lemma 2.2.9
the value Φ(n) does not depend on the element of Argmax(p2 ◦ γn) and by Lemma 2.2.10
the function Φ is the constant zero function. Therefore

Φ(n) = nTorsionn(f, γ(sn), γ
′(sn)) + V arγ(γ(s0), γ(sn)) = 0.

That is
|nTorsionn(f, γ(sn), γ

′(sn))| = |V arγ(γ(s0), γ(sn))| ≤ C(γ),

i.e. z̄(n) := γ(sn) ∈ γ(T) is the required point.

2.3 Torsion for tilt maps

The main reference for the definition of tilt maps is [Hu98] (see also [GR13]). We
remark that the notion of tilt map is linked to the notion of positive (negative) paths
presented in [Her83] and in [LC88].

2.3.1 Tilt maps on the bounded annulus

Let γ be a C1 embedded curve γ : [0, 1] → T× [0, 1] such that

p̄2 ◦ γ(0) = 0 p̄2 ◦ γ(1) = 1,

where p̄2 : T × [0, 1] → [0, 1] denotes the projection over the second coordinate and such
that

γ((0, 1)) ⊂ T× (0, 1).
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Denote as χ the vertical vector (0, 1). We define the angle function tilt(γ) as follows

tilt(γ) :[0, 1] → T

t 7→ θ(χ, γ′(t)),
(2.24)

where θ(v, u) denotes the oriented angle between v and u with respect to the standard
Riemannian metric and the counterclockwise orientation.
Let t̃ilt(γ) : [0, 1] → R be the continuous determination of the angle function tilt(γ) such
that

t̃ilt(γ)(0) ∈
[
−1

4
,
1

4

]
.

From the definition of t̃ilt, we deduce the following property.

Lemma 2.3.1. If t ∈ (0, 1] is such that

p̄2 ◦ γ(t) > p̄2 ◦ γ(s)

for any s < t, then

t̃ilt(γ)(t) ∈
[
−1

4
,
1

4

]
.

Proof. Consider the lifted framework R× [0, 1] and denote as Γ : [0, 1] → R× [0, 1] a lift
of the curve γ. Observe that also in the lifted framework we have that p2 ◦Γ(t) > p2 ◦Γ(s)
for any s < t.
Denote M = maxs∈[0,t] p1 ◦Γ(s). Consider then the curve ψ obtained by concatenating the
following ones (see Figure 2.3)

y=1

y=0

y=p (!(t))2

!(0)

!(1)

!(t)

"

Figure 2.3 – The curve ψ built in the proof of Lemma 2.3.1.

(i) {Γ(s) : s ∈ [0, t]};
(ii) the horizontal segment {(τ, p2 ◦ Γ(t)) : τ ∈ [p1 ◦ Γ(t),M + 1]};
(iii) the vertical segment {(M + 1, p2 ◦ Γ(t)− τ) : τ ∈ [0, p2 ◦ Γ(t)]};
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(iv) the horizontal segment {(M + 1 + p1 ◦ Γ(0)− τ, 0) : τ ∈ [p1 ◦ Γ(0),M + 1]}.

Let us orient the curve ψ clockwisely. Thanks to the choice of M and since Γ((0, 1)) ⊂
R × (0, 1), the curve ψ is a piecewise C1 closed curve without self-intersections. We are
going to apply the Turning Tangent Theorem at ψ to calculate the angle variation of the
vector tangent to Γ between Γ(0) and Γ(t): such angle variation is t̃ilt(γ)(t)− t̃ilt(γ)(0).
Denote as

α = t̃ilt(γ)(0) ∈
[
−1

4
,
1

4

]

the measure of the angle between χ and Γ′(0) contained in [−1
4
, 1
4
]. Denote as β the

measure of the angle between χ and Γ′(t) contained in [−1
2
, 1
2
]. Observe in particular that

β ∈ [−1
4
, 1
4
] because the curve Γ crosses the horizontal line R × {p2 ◦ Γ(t)} at Γ(t) from

the bottom up since we are assuming that p2 ◦ Γ(t) > p2 ◦ Γ(s) for any s < t.
In particular then t̃ilt(γ)(t) = β + k for some k ∈ Z. Applying so the Turning Tangent
Theorem we obtain

(β + k − α) + (−1

4
− β)− 1

4
− 1

4
+ (α− 1

4
) = −1,

that is k = 0. We conclude that t̃ilt(γ)(t) = β ∈ [−1
4
, 1
4
] as desired.

For any x ∈ T let us denote as V(x,0) the vertical line passing through the point (x, 0),
i.e. {x}×[0, 1]. In the framework of the bounded annulus, the vertical V(x,0) is parametrized
as

[0, 1] ∋ y 7→ V(x,0)(y) = (x, y) ∈ T× [0, 1].

Definition 2.3.1 (Tilt map of the bounded annulus). A C1 diffeomorphism f : T×[0, 1] →
T × [0, 1] isotopic to the identity is a positive (respectively negative) tilt map of the
bounded annulus if for any x0 ∈ T it holds

t̃ilt(f ◦ V(x0,0))(y) < 0 (respectively > 0), (2.25)

for any y ∈ [0, 1].

Remark 2.3.1. Observe that in [Her83] and in [LC88] a path γ verifying t̃ilt(γ)(t) < 0
(respectively > 0) for any t is called a negative (respectively positive) path. Therefore
every f ◦ V(x0,0) is a negative path.

Proposition 2.3.1. Let f : T× [0, 1] → T× [0, 1] be a C1 diffeomorphism isotopic to the
identity. Then for any z = (x, y) ∈ T× {0} it holds

Torsion1(f, z, χ) = t̃ilt(f ◦ Vz)(y).

Proof. Refering to the notation introduced in Definition 1.1.2 in Chapter 1, the time-one
torsion at z ∈ T× [0, 1] with respect to χ is

ṽ(f, z, χ)(1)− ṽ(f, z, χ)(0),

where t 7→ ṽ(f, z, χ)(t) is a lift of the oriented angle function t 7→ θ(χ,Dft(z)χ).
Consider the vertical Vz passing through z = (x, y): we are interested in t̃ilt(f ◦ Vz). In
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particular, observe that both ṽ(f, z, χ)(1) and t̃ilt(f ◦ Vx)(y) are measures of the same
angle θ(χ,Df(z)χ).
Consequently, the function

[0, 1] ∋ y 7→ Ψ(y) := Torsion1(f, (x, y), χ)− t̃ilt(f ◦ V(x,0))(y) ∈ Z

is a continuous function which takes value in Z. Therefore, it is constant.
Let us calculate Ψ(0). On one hand, by definition of t̃ilt(f ◦ V(x,0)), it holds

t̃ilt(f ◦ V(x,0))(0) ∈
[
−1

4
,
1

4

]
.

On the other hand, since each ft 2 preserves the boundaries, it holds that for any t ∈ [0, 1]
the angle

θ(χ,Dft(x, 0)χ) ∈
[
−1

4
,
1

4

]
. (2.26)

Since the time-one torsion does not depend on the chosen lift, select the lift

t 7→ ṽ(f, (x, 0), χ)(t)

such that ṽ(f, (x, 0), χ)(0) = 0. By the continuity of the lift and because of (2.26), we
deduce that

ṽ(f, (x, 0), χ)(1) ∈
[
−1

4
,
1

4

]
.

That is
Ψ(0) = Torsion1(f, (x, 0), χ)− t̃ilt(f ◦ V(x,0))(0) =

= ṽ(f, (x, 0), χ)(1)− ṽ(f, (x, 0), χ)(0)− t̃ilt(f ◦ V(x,0))(0) =
= ṽ(f, (x, 0), χ)(1)− t̃ilt(f ◦ Vz)(0) = 0.

Since Ψ takes values in Z and it is continuous, we conclude that Ψ is the zero constant
function. That is, for any z ∈ T× [0, 1] it holds

Torsion1(f, z, χ) = t̃ilt(f ◦ Vz)(y). (2.27)

By the definition of positive tilt map, of negative-torsion map and from Proposition
2.3.1, we immediately deduce the following

Corollary 2.3.1. Let f : T × [0, 1] → T × [0, 1] be a C1 diffeomorphism isotopic to the
identity. Then, f is a negative-torsion map if and only if f is a positive tilt map.

Another outcome is the following

Corollary 2.3.2. Let f : T × [0, 1] → T × [0, 1] be a positive (respectively negative) tilt
map of the bounded annulus. Then for any n ∈ N∗ it holds that for any z ∈ T× [0, 1]

Torsionn(f, z, χ) < 0 (respectively > 0).

In particular for any z ∈ T× [0, 1], whenever the limit exists, it holds

Torsion(f, z) ≤ 0 (respectively ≥ 0).

2. Where (ft)t∈[0,1] is an isotopy in Diff 1(T× [0, 1]) joining the identity to f .
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Proof. We proceed by induction. The statement for n = 1 is an immediate consequence
of Corollary 2.3.2 and of the definition of negative-torsion map.
Assume now that the result holds true for n and let us show it for n+1. Fix z ∈ T× [0, 1].
By inductive hypothesis it holds that

nTorsionn(f, z, χ) < 0.

By Corollary 2.3.2 and by Definition 2.0.1 we know that Torsion1(f, f
n(z), χ) < 0 Let us

apply Lemma 2.2.3 for f at z with respect to N = 2, l1 = n, l2 = 1,K1 = K2 = 0. We
conclude that

(n+ 1)Torsionn+1(f, z, χ) < 0,

so in particular Torsionn+1(f, z, χ) < 0, as desired.
Whenever the limit exists, it clearly holds that Torsion(f, z) ≤ 0.

2.3.2 Tilt maps on the unbounded annulus

Let γ be a C1 embedded curve γ : R → A such that

lim
t→+∞

p̄2 ◦ γ(t) = +∞ and lim
n→−∞

p̄2 ◦ γ(t) = −∞, (2.28)

where p̄2 denotes the projection over the second coordinate on A. The angle function
tilt(γ) is defined by

tilt(γ) : R → T

t 7→ θ(χ, γ′(t)), (2.29)

where θ(v, u) denotes the oriented angle between v and u with respect to the standard
Riemannian metric and the counterclockwise orientation.

Lemma 2.3.2. Let t ∈ R be such that

p̄2 ◦ γ(t) > p̄2 ◦ γ(s) ∀s < t.

Let t̃ilt(γ) : R → R be a continuous determination of the angle function in (2.29) such
that t̃ilt(γ)(t) ∈

[
−1

4
, 1
4

]
.

Let t̄ ∈ R, t̄ 6= t be such that

p̄2 ◦ γ(t̄) > p̄2 ◦ γ(s) ∀s < t̄.

Then t̃ilt(γ)(t̄) is in [−1
4
, 1
4
].

Proof. Let us consider the lifted framework and denote as Γ : R → R2 a lift of γ. For any
s we have that t̃ilt(γ)(s) = t̃ilt(Γ)(s). Thus, we will conclude by showing that t̃ilt(Γ)(t̄) ∈
[−1

4
, 1
4
].

Assume without loss of generality that t̄ > t (if t > t̄ we argument similarly). Denote

H = min
s∈[t,t̄]

p2 ◦ Γ(s).

Define
t̃ = max{s ≤ t : p2 ◦ Γ(s) = H − 1}.
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Such t̃ is well-defined because lims→−∞ p2 ◦ Γ(s) = −∞ and by the continuity of p2 ◦ Γ.
Moreover t̃ < t and for any s ∈ (t̃, t̄] it holds p2 ◦ Γ(s) > p2 ◦ Γ(t̃) = H − 1.
Denote

M = max
s∈[t̃,t̄]

p1 ◦ Γ(s).

Consider now two closed simple curve ψ1, ψ2 built as follows.
Let ψ1 be the piecewise C1 closed simple curve obtained by concatenating the following
curves (see Figure 2.4)

Figure 2.4 – The curve ψ1 is the boundary of the red region and the curve ψ2 is the
boundary of the green region.

(i) {Γ(s) : s ∈ [t̃, t]};

(ii) the horizontal segment {(τ, p2 ◦ Γ(t)) : τ ∈ [p1 ◦ Γ(t),M + 1]};

(iii) the vertical segment {(M + 1, p2 ◦ Γ(t) + p2 ◦ Γ(t̃)− τ) : τ ∈ [p2 ◦ Γ(t̃), p2 ◦ Γ(t)]};

(iv) the horizontal segment {(M + 1 + p1 ◦ Γ(t̃)− τ, p2 ◦ Γ(t̃)) : τ ∈ [p1 ◦ Γ(t̃),M + 1]}.

Let ψ2 be the piecewise C1 closed simple curve obtained by concatenating the following
curves (see Figure 2.4)

(i) {Γ(s) : s ∈ [t̃, t̄]};

(ii) the horizontal segment {(τ, p2 ◦ Γ(t̄)) : τ ∈ [p1 ◦ Γ(t̄),M + 1]};

(iii) the vertical segment {(M + 1, p2 ◦ Γ(t̄) + p2 ◦ Γ(t̃)− τ) : τ ∈ [p2 ◦ Γ(t̃), p2 ◦ Γ(t̄)]};

(iv) the horizontal segment {(M + 1 + p1 ◦ Γ(t̃)− τ, p2 ◦ Γ(t̃)) : τ ∈ [p1 ◦ Γ(t̃),M + 1]}.
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The curves ψ1, ψ2 do not have self-intersections thanks to the definition of t̃ and of M .
We orient these curves ψ1, ψ2 clockwisely. Denote now

(a) α ∈ [−1
2
, 1
2
] the measure of the angle θ(χ,Γ′(t̃)) contained in [−1

2
, 1
2
]. In particular,

the curve Γ is crossing at Γ(t̃) the horizontal line R×{H − 1} from the bottom up.
Therefore, α ∈ [−1

4
, 1
4
].

(b) β ∈ [−1
2
, 1
2
] the measure of the angle θ(χ,Γ′(t)) contained in [−1

2
, 1
2
]. Observe that

β = t̃ilt(Γ)(t) ∈ [−1
4
, 1
4
].

(c) ν ∈ [−1
2
, 1
2
] the measure of the angle θ(χ,Γ′(t̄)) contained in [−1

2
, 1
2
]. We remark that

also ν belongs to [−1
4
, 1
4
]. Indeed, since for any s < t̄ it holds p2 ◦ Γ(s) < p2 ◦ Γ(t̄),

the curve Γ is crossing at Γ(t̄) the horizontal line R×{p2◦Γ(t̄)} from the bottom up.

Apply the Turning Tangent Theorem to the first curve ψ1. In particular, since the angle
variation along Γ[t̃,t] does not depend on the chosen lift, we are going to consider t̃ilt(Γ)
as lift and we obtain

(
t̃ilt(Γ)(t)− t̃ilt(Γ)(t̃)

)
+

(
−1

4
− β

)
− 1

4
− 1

4
+

(
α− 1

4

)
= −1.

There exists j ∈ Z such that t̃ilt(Γ)(t̃) = α + j. Thus

(β − α− j)− β + α− 1 = −1,

i.e. j = 0.
Apply the Turning Tangent Theorem to the second curve ψ2, choosing t̃ilt(Γ) as lift to
calculate the angle variation along Γ[t̃,t̄]. There exists k ∈ Z such that t̃ilt(Γ)(t̄) = ν + k.
We so obtain

(
t̃ilt(Γ)(t̄)− t̃ilt(Γ)(t̃)

)
+

(
−1

4
− ν

)
− 1

4
− 1

4
+

(
α− 1

4

)
= −1,

that is
(ν + k − α)− ν + α− 1 = −1.

We conclude that k = 0. Equivalently

t̃ilt(Γ)(t̄) = t̃ilt(γ)(t̄) = ν ∈
[
−1

4
,
1

4

]
.

Notation 2.3.1. Thanks to conditions(2.28) and to Lemma 2.3.2, the continuous deter-
mination t̃ilt(γ)(·) of the angle function in (2.29) such that for any t ∈ R so that

p̄2 ◦ γ(t) > p̄2 ◦ γ(s) ∀s < t

it holds t̃ilt(γ)(t)in
[
−1

4
, 1
4

]
, exists and it is unique. From now on, t̃ilt(γ)(·) denotes such

a continuous determination.

For any x ∈ T let us denote as V(x,0) the vertical line passing through the point (x, 0),
i.e. {x}×R. In the framework of the unbounded annulus, the vertical V(x,0) is parametrized
as

R ∋ y 7→ V(x,0)(y) = (x, y) ∈ A.
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Definition 2.3.2 (Tilt maps of the unbounded annulus). A C1 diffeomorphism f : A → A
isotopic to the identity is a positive (respectively negative) tilt map of the unbounded
annulus if for any x0 ∈ T it holds

t̃ilt(f ◦ V(x0,0))(y) < 0 (respectively > 0), (2.30)

for any y ∈ R.

Example 2.3.1. An example of positive (respectively negative) tilt map (which a priori
is not a twist map) is the composition of positive (respectively negative) twist maps.
Indeed, any composition of positive twist maps is a negative-torsion map (actually it can
be shown that any composition of negative-torsion maps is a negative-torsion map). By
Corollary 2.3.3 we deduce that such a composition is a positive tilt map.

Proposition 2.3.2. Let f : A → A be a C1 diffeomorphism isotopic to the identity. Then
for any z ∈ A it holds

Torsion1(f, z, χ) = t̃ilt(f ◦ Vz)(y).
Proof. Always refering to the notation introduced in Definition 1.1.2 in Chapter 1, the
time-one torsion at z ∈ A with respect to the vertical vector χ is

ṽ(f, z, χ)(1)− ṽ(f, z, χ)(0),

where t 7→ ṽ(f, z, χ)(t) is a lift of the oriented angle function t 7→ θ(χ,Dft(z)χ). Con-
sider the vertical Vz passing through z = (x, y), i.e. Vz = V(x,0) = {x} × R. We consider

t̃ilt(f ◦ Vz).
Observe that both ṽ(f, z, χ)(1) and t̃ilt(f◦Vz)(y) are measures of the same angle θ(χ,Df(z)χ).
Consider then the function

A ∋ z = (x, y) 7→ Ψ(z) := Torsion1(f, z, χ)− t̃ilt(f ◦ Vz)(y) ∈ R.

It is a continuous function taking values in Z and so it is constant. We are going to
exhibit a point z ∈ A such that Ψ(z) = 0: thus we can conclude that Ψ is the constant
zero function. In particular, this will imply that, for any (x, y) ∈ A,

Torsion1(f, (x, y), χ) = t̃ilt(f ◦ V(x,0))(y). (2.31)

Consider the C1 essential curve T × {0} and its image f(T × {0}). Observe that the
angle variation along T × {0} between any two points z1, z2 ∈ T × {0} is null, i.e.
V arT×{0}(z1, z2) = 0. Moreover, any point z1 ∈ T × {0} is a point of maximal height
of T× {0}.
Refering to (2.20), let z̄ = (x, 0) ∈ T× {0} be such that

(x, 0) ∈ Argmax(p̄2 ◦ f|T×{0}) = {(x, 0) ∈ T× {0} : p̄2 ◦ f(x, 0) = max
ξ∈T×{0}

p̄2 ◦ f(ξ)}.

As an outcome of Lemma 2.2.10 and of the choice of z̄, it holds that

Torsion1(f, z̄,H) + V arT×{0}(z1, z̄) = Torsion1(f, z̄,H) = 0,

where z1 ∈ T× {0} is no matter which point of (maximal height of) T× {0}.
By Lemma 1.1.3 in Chapter 1, we deduce that

|Torsion1(f, z̄, χ)| = |Torsion1(f, z̄, χ)− Torsion1(f, z̄,H)| < 1

2
. (2.32)
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Claim 2.3.1. The point z̄ = (x, 0) ∈ T× {0} is such that for any s < 0 it holds

p̄2 ◦ f(x, 0) > p̄2 ◦ f(x, s).

Proof. Consider the vertical V(x,0) and its image f ◦ V(x,0). Assume by contradiction that
there exists s < 0 such that

p2 ◦ f(x, s) ≥ p2 ◦ f(x, 0).

On one hand, since f(x, 0) is a point of maximal height of f(T× {0}), we deduce that

p̄2 ◦ f(x, s) ≥ p̄2 ◦ f(ξ, 0) ∀ξ ∈ T.

Consequently, since f(T×{0}) separates the annulus into an upper and a lower unbounded
regions, it holds that the point f(x, s) lies above or on the curve f(T× {0}).
On the other hand, since f preserves the boundaries, it holds

lim
y→−∞

p̄2 ◦ f(x, y) = −∞.

We so deduce that the curve f(T × {0}) intersects the curve {f(x, ξ) : ξ ≤ s}. This
contradicts the fact that

(T× {0}) ∩ {(x, ξ) : ξ < 0} = ∅

and that f is injective.

Therefore, for any s < 0 we have that p̄2 ◦ f(x, s) < p̄2 ◦ f(x, 0). From the definition of
t̃ilt, this implies that

t̃ilt(f ◦ Vx)(0) ∈
[
−1

4
,
1

4

]
. (2.33)

Look now at Torsion1(f, (x, 0), χ): since it does not depend on the chosen lift, assume
that ṽ(f, (x, 0), χ)(0) = 0 (see Definition 1.1.2 in Chapter 1). Both ṽ(f, (x, 0), χ)(1) and
t̃ilt(f ◦ Vx)(0) are measure of the same angle. So, by the choice of the lift, it holds

ṽ(f, (x, 0), χ)(1)− t̃ilt(f ◦ Vx)(0) = Torsion1(f, (x, 0), χ)− t̃ilt(f ◦ Vx)(0) ∈ Z.

Since from (2.32) we have Torsion1(f, (x, 0), χ) ∈ (−1
2
, 1
2
) and from (2.33) we have t̃ilt(f ◦

Vx)(0) ∈ [−1
4
, 1
4
], we conclude that

Torsion1(f, (x, 0), χ) = t̃ilt(f ◦ Vx)(0).

Since the function Ψ is constant and Ψ(x, 0) = 0, for any z = (x, y) ∈ A it holds Ψ(z) = 0,
that is

Torsion1(f, z, χ) = t̃ilt(f ◦ Vz)(y).

From the definition of positive tilt map and of negative-torsion map and from Propo-
sition 2.3.2, we deduce the following

Corollary 2.3.3. Let f : A → A be a C1 diffeomorphism isotopic to the identity. Then,
f is a negative-torsion map if and only if f is a positive tilt map.
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As for the bounded case, we obtain the following outcome.

Corollary 2.3.4. Let f : A → A be a positive tilt map of the unbounded annulus. Then
for any z ∈ A and for any n ∈ N∗ it holds

Torsionn(f, z, χ) < 0.

In particular for any z ∈ A, whenever the limit exists, it holds

Torsion(f, z) ≤ 0.

The proof of Corollary 2.3.4 is exactly that of Corollary 2.3.2 and so we omit it.

2.4 Birkhoff Theorem through torsion

Using the tool of torsion, we can prove Birkhoff’s-theorem-like result (see [Bir22] and
[Her83]) in a different hypothesis framework. The idea of using the torsion (i.e. the Maslov
index) in order to prove a Birkhoff’s-theorem-like result was already present in the works
of M. Bialy and L. Polterovich (see [BP89], [Pol91] and [BP92]). This section arises from
a question by V. Humiliére.

Theorem 2.4.1. Let f : A → A be a negative-torsion (positive-torsion) map. Let γ :
T → A be a C1 f -invariant essential curve such that f|γ is non wandering. Then γ is the
graph of a C1 function.

We remark that on one hand we do not require that f is either a twist map or a
conservative map. On the other hand f has to be a negative-torsion (positive-torsion)
map and we require that the dynamics restricted to the C1 curve is non-wandering.
Our proof is done by contradiction. We start by stating the main results that will be used
in the proof. Let us first recall the definition of isotopy.

Definition 2.4.1. Let M,N be two smooth manifolds. An isotopy of M in N is an
homotopy H : M × [0, 1] → N such that for any t ∈ [0, 1] the map Ht : M → N, x 7→
H(x, t) is a C0 embedding.

Proposition 2.4.1. An essential curve γ : T → A is isotopic to either

T ∋ τ 7→ c1(τ) = (τ, 0) ∈ A or T ∋ τ 7→ c−1(τ) = (−τ, 0) ∈ A.

Actually, we will show that any Cr essential curve (r ≥ 0) is isotopic to either c1 or to c−1

through an isotopy H : T× [0, 1] → A such that for any s ∈ [0, 1] the map t 7→ H(t, s) is
a Cr embedding of T in A.
We introduce some notations that will be used in the proof of Proposition 2.4.1.

Notation 2.4.1. Let Γ : T → Γ(T) ⊂ R2 be a simple closed curve in the plane. Thanks
to Jordan’s Theorem, R2 \ Γ(T) has two connected components, a bounded one and
an unbounded one, such that Γ(T) is the common boundary. The bounded connected
component is denoted int(Γ). The unbounded one is denoted ext(Γ). We denote as D2

the closed unit disk. With an abuse of notation, in the sequel we identify R2 with the
complex plane.
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Proof. The annulus is diffeomorphic to R2 \ {0} through the diffeomorphism

A ∋ (x, y) 7→ g(x, y) = eye2πix ∈ R2 \ {0}.

Let γ : T → A be a Cr essential curve (r ≥ 0) and let Γ : T → R2 be equal to g ◦ γ. The
curve Γ is so a Cr simple closed curve in R2. The point 0 ∈ R2 belongs to int(Γ) because
γ is an essential curve in A.
We discuss separately the case r = 0 and r ≥ 1.

Case r = 0. By Schoenflies Theorem (see Theorem III.6.C in [Bin83]) there exists a home-
omorphism f : R2 → R2 with compact support such that f(int(Γ)) = D2, where
int(Γ) is the closure of int(Γ).
Without loss of generality, we assume that f(0) = 0. Indeed, if this is not the case,
denote as [0, f(0)] the segment joining the origin to f(0) and let η : R2 → [0, 1] be
a C∞ bump function such that η|R2\D2 = 0 and η|[0,f(0)] = 1.
Let φ1 be the time-one flow of the vector field X = −ηf(0). Observe that φ1(f(0)) =
0 and φ1|R2\D2 = Id. Then, replacing f with φ1 ◦ f , we obtain the required homeo-
morphism.
The homeomorphism G = g−1 ◦f|R2\{0} ◦g : A → A is such that G(γ(T)) = T×{0}.
Moreover, since f has compact support and γ(T) is compact, there exists M > 0
such that G(γ(t) + (0,M)) = γ(t) + (0,M) for any t ∈ T.
Consider the isotopy H : T× [0, 1] → A

(t, s) 7→ G (γ(t) + s(0,M))− s(0,M).

It joins the curve t 7→ H(t, 0) = G ◦ γ(t) to the curve γ. The image of G ◦ γ(T) is
T× {0} and so the map t 7→ p1 ◦G ◦ γ(t) is a homeomorphism of T.
If t 7→ p1◦G◦γ(t) preserves the orientation, then it is isotopic to IdT and therefore γ
is isotopic to c1. Otherwise, t 7→ p1 ◦G ◦ γ(t) is isotopic to −IdT and so γ is isotopic
to c−1.

Case r ≥ 1. By Theorem 8.3.7 in [Hir76] the closed unit disk D2 is Cr diffeomorphic to int(Γ).
That is, there exists a Cr diffeomorphism f : D2 → int(Γ). We can assume that f
preserves the orientation, up to replace f with f ◦ R where R(re2πit) = re−2πit. As
done in the r = 0 case, we can suppose that f(0) = 0.
Denote as S1 the unit circle in R2. Then ϕ = f ◦Γ : T → R2\{0} is a parametrization
of the unit circle. We construct now an isotopy H : T× [0, 1] → R2 \{0} which joins
ϕ to Γ. Thus, g−1 ◦H is an isotopy on the annulus joining g−1 ◦ ϕ to γ.
Since g−1 ◦ ϕ(T) = T × {0}, the map t 7→ p1 ◦ g−1 ◦ ϕ(t) is a Cr diffeomorphism of
T. If it preserves the orientation, then γ is isotopic to c1. Otherwise, γ is isotopic to
c−1.
The isotopy H is obtained by concatenating four isotopies. Since f is at least C1, the
differential Df(0) is in GL(2,R) and so T ∋ t 7→ Df(0)ϕ(t) ∈ R2 is a Cr embedding
whose image is contained in R2 \ {0}.
Since the set of C1 embeddings of T in R2 \ {0} is open in the strong topology (see
Theorem 1.1.4 in [Hir76]), there exists ε > 0 such that every Cr function of T in
R2 \ {0} which is ε-close to t 7→ Df(0)ϕ(t) in the C1-distance is a Cr embedding of
T in R2 \ {0}.
Let r̄ ∈ (0, 1] be such that t 7→ f (r̄ϕ(t))

r̄
is ε-close to t 7→ Df(0)ϕ(t) in the C1-

distance.
The final isotopy is obtained by concatenating the following ones.
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— First we move the Cr embedding ϕ up to the rescaled Cr embedding r̄ϕ using
the isotopy (t, s) 7→ ((1− (1− s)r̄))ϕ(t).

— Since f preserves the orientation, then Df(0) is in the same component of
GL(2,R) as I2. A path in GL(2,R) provides an isotopy from r̄ϕ to r̄Df(0)ϕ.

— Consider the isotopy Ĥ : T× [0, 1] → R2 \ {0}

(t, s) 7→ sf(r̄ϕ(t)) + (1− s)r̄Df(0)ϕ(t).

By the choice of ε and of r̄, each Ĥ(·, s) is a Cr embedding and the isotopy
joins r̄Df(0)ϕ to f(r̄ϕ).

— Finally, consider the isotopy H̃ : T× [0, 1] → R2 \ {0}

(t, s) 7→ f (((1− s)r̄ + s)ϕ(t)) .

It joins f(r̄ϕ) to f ◦ϕ = Γ and for any s the map H(·, s) is a Cr embedding of
T in R2 \ {0}, because f fixes the origin.

The following lemmas give us a sufficient condition to deduce that a C1 essential curve is
actually the graph of a C1 function.

Lemma 2.4.1. Let γ : T → A be an essential curve. Then every lift Γ : R → R2 of γ is
such that Γ(τ +1) = Γ(τ) + (δ, 0), where δ = 1 if γ is homotopic to t 7→ c1(t) = (t, 0) and
δ = −1 if γ is homotopic to t 7→ c−1(t) = (−t, 0).

Proof. Let Γ be a lift of γ. For all τ ∈ R we have that Γ(τ + 1) = Γ(τ) + (k, 0), for some
k ∈ Z. Such an integer does not depend on τ ∈ R. From Proposition 2.4.1 and from the
homotopy lifting property (see [Hat02]), there exists a lift of the homotopy joining γ to c1
(or c−1) which joins Γ to a lift of c1 (or c−1). In particular, denoting as C1 the involved
lift of c1 (or C−1 the involved lift of c−1), we have that

C1(τ + 1)− C1(τ) = (k, 0) = Γ(τ + 1)− Γ(τ)

( or C−1(τ + 1)− C−1(τ) = (k, 0) = Γ(τ + 1)− Γ(τ)) .

Since C1 (respectively C−1) is a lift of c1 (respectively of c−1), we have that k = 1
(respectively k = −1).

Lemma 2.4.2. Let γ be a C1 essential curve. If γ is transversal to the vertical at every
point, then γ is the graph of a function.

Proof. Let Γ be a lift of γ. We show now that Γ is the graph of a C1 function φ : R → R.
Consider the C1 function p1◦Γ : R → R. Since Γ is transversal to the vertical (because Γ is a
lift of γ and γ is transversal to the vertical by hypothesis), it holds thatD(p1◦Γ)(τ) 6= 0 for
any τ ∈ R. Assume, without loss of generality (the other case can be discussed similarly),
that D(p1 ◦ Γ)(τ) > 0 for any τ . Consequently, p1 ◦ Γ is an increasing diffeomorphism to
its image.
By Lemma 2.4.1 and since p1 ◦ Γ is increasing, we have that for any τ ∈ R

p1 ◦ Γ(τ + 1) = p1 ◦ Γ(τ) + 1. (2.34)
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From (2.34) and from the continuity of p1 ◦ Γ, we deduce that p1 ◦ Γ(R) = R. Therefore
p1 ◦ Γ : R → R is a C1 diffeomorphism. Denote φ = (p1 ◦ Γ)−1. Thus, the C1 function

R ∋ s 7→ p2 ◦ Γ ◦ φ(s) ∈ R

is such that Graph(p2 ◦ Γ ◦ φ) = Γ.
Let us show now that p2 ◦ Γ ◦ φ is 1-periodic. From (2.34) it holds for any τ ∈ R

φ(p1 ◦ Γ(τ)) + 1 = τ + 1 = φ(p1 ◦ Γ(τ + 1)) = φ(p1 ◦ Γ(τ) + 1),

that is φ commutes with the translation by 1.
Thus for any s ∈ R we have that

p2 ◦ Γ ◦ φ(s+ 1) = p2 ◦ Γ(φ(s) + 1) = p2(Γ(φ(s)) + (1, 0)) = p2 ◦ Γ ◦ φ(s)

and we deduce that p2 ◦Γ ◦φ is 1-periodic. Consequently, its projection on the annulus is
well-defined and γ is the graph of the C1 function ϕ : T → R satisfying ϕ ◦ p = p2 ◦ Γ ◦ φ,
where p : R → T is the covering map of T.

The following lemma provides an upper bound of the N finite-time torsion along the curve
γ. The bound is independent of N .

Notation 2.4.2. Let x ∈ A and let δ ∈ (0, 1
4
). Denote

C(x, χ, δ) =
{
v ∈ TxA : θ(χ, v) or θ(−χ, v) admits a measure in (−δ, δ)

}
.

Lemma 2.4.3. Let f : A → A be a negative-torsion map and let K be a compact f -
invariant set. There exist ε ∈ (0, 1

2
) and 0 < δ < ε

8
such that for any x ∈ K, for any

v ∈ C(x, χ, δ) (see Notation 2.4.2) and for any N ∈ N∗ it holds

N TorsionN(f, x, v) < −ε
4
< 0.

We postpone the proof of Lemma 2.4.3 to Subsection 2.4.1.
The third result that we will use to prove Theorem 2.4.1 guarantees us that, in the
framework of negative-torsion (positive-torsion) maps, we can use the angle variation
along the curve γ to calculate the finite-time torsion.

Lemma 2.4.4. Let f : A → A be a negative-torsion (positive-torsion) map. Let γ : T → A
be a C1 f -invariant essential curve. Then for any s ∈ T and for any N ∈ N it holds

N TorsionN(f, γ(s), γ
′(s)) = V arγ(γ(s), γ(s̄N)),

where fN ◦ γ(s) = γ(s̄N).

We postpone the proof of Lemma 2.4.4 to Subsection 2.4.2. We finally prove Theorem
2.4.1.

Proof of Theorem 2.4.1. Argue by contradiction and assume that γ is not a graph. Then
from Lemma 2.4.2 there exists a point z = γ(t) such that γ′(t) ∈ Rχ. Denote

χ′ =





χ if γ′(t) ∈ R+χ

−χ if γ′(t) ∈ R−χ.
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In particular θ(χ′, γ′(t)) is zero.
Let ε ∈ (0, 1

2
) and δ ∈ (0, ε

8
) be the parameters given by Lemma 2.4.3 applied at the

f -invariant compact set γ(T).
The curve γ is C1 and it is an embedding. There exists a neighborhood U ⊂ T of t such
that for any s ∈ U the oriented angle θ(χ′, γ′(s)) admits a measure in (−δ, δ).
Since the dynamics f|γ is non wandering, there exists N ∈ N and s̄ ∈ U such that s̄N ∈ U ,
where s̄N is such that fN ◦ γ(s̄) = γ(s̄N).
Let us calculate N TorsionN(f, γ(s̄), γ′(s̄)). From Lemma 2.4.4 we have

N TorsionN(f, γ(s̄), γ
′(s̄)) = V arγ(γ(s̄), γ(s̄N)).

Claim 2.4.1. V arγ(γ(s̄), γ(s̄N)) ∈ (−2δ, 2δ).

Proof. Since both s̄ and s̄N belong to U , we have that both the oriented angles θ(χ′, γ′(s̄))
and θ(χ′, γ′(s̄N)) admit a measure in (−δ, δ). Thus, the oriented angle θ(γ′(s̄), γ′(s̄N))
admits a measure in (−2δ, 2δ).
Since for any s ∈ U the oriented angle θ(χ′, γ′(s)) admits a measure in (−δ, δ), since either
[s̄, s̄N ] or [s̄N , s̄] is contained in U and since δ < 1

2
, we have that either V arγ(γ(s̄), γ(s̄N))

or V arγ(γ(s̄N), γ(s̄)) is in the interval (−2δ, 2δ).
By properties (2) and (3) of Proposition 2.2.1 it holds

V arγ(γ(s̄N), γ(s̄)) = −V arγ(γ(s̄), γ(s̄N)) + V arγ(γ(s̄N), γ(s̄N)) =

= −V arγ(γ(s̄), γ(s̄N)).
In both cases, we have that V arγ(γ(s̄), γ(s̄N)) ∈ (−2δ, 2δ).

Consequently, since δ ∈
(
0, ε

8

)
,

N TorsionN(f, γ(s̄), γ
′(s̄)) = V arγ(γ(s̄), γ(s̄N)) ∈

(
−ε
4
,
ε

4

)
.

From Lemma 2.4.3, we have that N TorsionN(f, γ′(s̄), γ′(s̄)) < − ε
4
. This is the required

contradiction and we conclude.

We highlight the fact that, in order to obtain the result of Theorem 2.4.1, we need to have
information over the dynamics on the curve. Indeed, there exist non conservative positive
twist maps that admit C1 essential f -invariant curves which are not graphs of function.
See for example Proposition 15.3 in [LC88].

Remark 2.4.1. We have actually shown that the curve γ is the graph of a function and
it is always transverse to the vertical. Thus, since γ is C1, we deduce that γ is the graph
of a Lipschitz function.

2.4.1 An upper bound of N-finite time torsion: proof of Lemma

2.4.3

In order to show Lemma 2.4.3 we first need to prove the following
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Lemma 2.4.5. Let K be a compact f -invariant set. There exist ε ∈ (0, 1
2
) and 0 < δ < ε

8

such that for any x ∈ K and for any v ∈ C(x, χ, δ) (see Notation 2.4.2) it holds

Torsion1(f, x, v) < −ε
2
< 0.

Proof. Since f is a negative-torsion map, since K is compact and since the function

T 1
KA ∋ (x, v) 7→ Φ(x, v) := Torsion1(f, x, v) ∈ R

is continuous, there exists ε ∈ (0, 1
2
) such that for any x ∈ K

Φ(x, χ) = Torsion1(f, x, χ) ≤ −ε < 0.

Remark that Φ(x, χ) = Torsion1(f, x, χ) = Torsion1(f, x,−χ) = Φ(x,−χ).
Observe that Φ−1((−∞,− ε

2
)) is a neighborhood of {(x, χ) : x ∈ K}∪{(x,−χ) : x ∈ K}.

Thus there exists δ ∈ (0, ε
8
) such that

{(x, v) : x ∈ K, v ∈ C(x, χ, δ)}

is contained in Φ−1((−∞,− ε
2
]).

Proof of Lemma 2.4.3. Let us proceed by induction. Let δ ∈ (0, ε
8
) be given by Lemma

2.4.5. The case for N = 1 is given by Lemma 2.4.5. Assume now that the result holds
for N − 1, i.e. for any y ∈ K and for any w ∈ C(y, χ, δ) (see Notation 2.4.2) it holds
(N − 1)TorsionN−1(f, y, w) < − ε

4
. Equivalently

ṽ(f, y, w)(N − 1)− ṽ(f, y, w)(0) < −ε
4
.

Let x ∈ K and let v ∈ C(x, χ, δ) (see Notation 2.4.2). Since N TorsionN(f, x, v) =
N TorsionN(f, x,−v), assume without loss of generality that the angle θ(χ, v) admits
a measure in (−δ, δ).
Choose a lift so that ṽ(f, x, v)(0) ∈ (−δ, δ). Then, ṽ(f, x, v)(N − 1) < − ε

4
+ δ < − ε

8
.

Consider now the lift such that ṽ(f, fN−1(x), χ)(0) = 0 3. In particular

ṽ(f, x, v)(N − 1) < ṽ(f, fN−1(x), χ)(0).

By Lemma 1.1.1 in Chapter 1, from the choice of the lift and from Lemma 2.4.5 (since
θ(χ, χ) clearly admits a measure in (−δ, δ)) we have that

ṽ(f, x, v)(N) < ṽ(f, fN−1(x), χ)(1) = ṽ(f, fN−1(x), χ)(1)− ṽ(f, fN−1(x), χ)(0) < −ε
2
.

Thanks to the choice of the lift ṽ(f, x, v)(·) we deduce that

ṽ(f, x, v)(N)− ṽ(f, x, v)(0) < −ε
2
+ δ < −ε

2
+
ε

8
< −ε

4

and we conclude.

3. Careful! We are considering a lift with respect to a different point in TKA.
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2.4.2 Finite-time torsion as angle variation along γ: proof of Lemma

2.4.4

A first step to prove Lemma 2.4.4 is the following result.

Lemma 2.4.6. Let f : A → A be a negative-torsion map. Let γ : T → A be a C1

f -invariant essential curve. Then for any s ∈ T it holds

Torsion1(f, γ(s), γ
′(s)) = V arγ(γ(s), γ(s̄)),

where f ◦ γ(s) = γ(s̄).

Proof. Observe that both Torsion1(f, γ(s), γ
′(s)) and V arγ(γ(s), γ(s̄)) are measures of the

same oriented angle θ(γ′(s), Df(γ(s))γ′(s)) = θ(γ′(s), γ′(s̄)). Therefore, by continuity of
s 7→ θ(γ′(s), Df(γ(s))γ′(s)) and of s 7→ θ(γ′(s), γ′(s̄)), there exists k ∈ Z such that for
any s ∈ T

Torsion1(f, γ(s), γ
′(s)) = V arγ(γ(s), γ(s̄)) + k. (2.35)

Let z(∞) = γ(s(∞)) ∈ γ(T) be a point given by Lemma 2.2.8. In particular there exists
K ∈ N such that for any N ∈ N∗ it holds

N TorsionN(f, z(∞), χ) ∈
[
− K

2
, 0
)
. (2.36)

From Lemma 1.1.3 in Chapter 1 we have that for any N ∈ N∗ it holds

N TorsionN(f, γ(s(∞)), γ′(s(∞))) ∈
(
−K + 1

2
,
1

2

)
, (2.37)

At the same time, from (2.35) and since γ is f -invariant, we have that

N TorsionN(f, γ(s(∞)), γ′(s(∞))) =
N−1∑

i=0

Torsion1(f, f
i◦γ(s(∞)), Df i(γ(s(∞)))γ′(s(∞))) =

= Nk +
N−1∑

i=0

V arγ(γ(s̄i), γ(s̄i+1)),

where for any i ∈ J0, NK the point s̄i ∈ T is such that γ(s̄i) = f i(γ(s(∞))).

Claim 2.4.2. For any N ∈ N∗ it holds

N−1∑

i=0

V arγ(γ(s̄i), γ(s̄i+1)) = V arγ(γ(s̄0), γ(s̄N)).

Proof. Let us show the claim by induction. For N = 1 there is nothing to prove. Assume
that the claim holds for N − 1, N > 1. Consequently

N−1∑

i=0

V arγ(γ(s̄i), γ(s̄i+1)) =
N−2∑

i=0

V arγ(γ(s̄i), γ(s̄i+1)) + V arγ(γ(s̄N−1), γ(s̄N)) =

= V arγ(γ(s̄0), γ(s̄N−1)) + V arγ(γ(s̄N−1), γ(s̄N)).

By property (3) of Proposition 2.2.1, this last quantity is equal to V arγ(γ(s̄0), γ(s̄N)) and
we conclude the proof of the claim.
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Consequently, for any N ∈ N∗

Nk = N TorsionN(f, γ(s(∞)), γ′(s(∞)))− V arγ(γ(s(∞)), γ(s̄N)),

where s̄N ∈ T is such that γ(s̄N) = fN ◦ γ(s(∞)). Refering to Definition 2.2.3, we have
that

|V arγ(γ(s(∞)), γ(s̄N))| ≤ C(γ) < +∞.

This observation, together with (2.37), implies that the application

N∗ ∋ N 7→ N TorsionN(f, γ(s(∞)), γ′(s(∞))− V arγ(γ(s(∞)), γ(s̄N)) ∈ Z

is bounded. Thus, the only possible case is that k = 0.

The proof of Lemma 2.4.4 is now an immediate corollary of Lemma 2.4.6.

Proof of Lemma 2.4.4. Let s ∈ T and let N ∈ N. Then, from Lemma 2.4.6,

N TorsionN(f, γ(s), γ
′(s)) =

=
N−1∑

i=0

Torsion1(f, f
i ◦ γ(s), Df i(γ(s))γ′(s)) =

N−1∑

i=0

V arγ(γ(s̄i), γ(s̄i+1)),

where for any i ∈ J0, N − 1K we denote γ(s̄i) = f i(γ(s)).
From Claim 2.4.2 it holds

N−1∑

i=0

V arγ(γ(s̄i), γ(s̄i+1) = V arγ(γ(s), γ(s̄N))

and so we conclude that N TorsionN(f, γ(s), γ′(s)) = V arγ(γ(s), γ(s̄N)), where s̄N ∈ T is
such that γ(s̄N) = fN ◦ γ(s).

An outcome of Lemma 2.4.4 (already proved by S. Crovisier for twist maps in [Cro03])
is the following

Corollary 2.4.1. Let f : A → A be a negative-torsion (positive-torsion) map. Let γ :
T → A be a C1 essential f -invariant curve on A. Then, for any s ∈ T it holds

Torsion(f, γ(s)) = 0.

Proof. Let s ∈ T. Fix N ∈ N. From Lemma 2.4.4 it holds

TorsionN(f, γ(s), γ
′(s)) =

V arγ(γ(s), γ(s̄N))

N
,

where s̄N ∈ T is such that γ(s̄N) = fN ◦ γ(s). Consequently, since the complexity of the
curve γ (see Definition 2.2.3) is bounded, we deduce that

|TorsionN(f, γ(s), γ
′(s))| ≤ C(γ)

N
.

Consider then the limit as N goes to +∞ and conclude that Torsion(f, γ(s)) = 0 for any
s ∈ T.
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2.5 Appendix of Chapter 2

In this Appendix we prove Lemma 2.2.3.
We recall the hypothesis of the statement. For a ∈ A, N ∈ N∗, (Ki)i∈J0,N −1K ∈ NN and
l0 = 0 < l1 < · · · < lN with li ∈ N we have for any i ∈ J0,N − 1K

ṽ(I)(f li(a), χ, li+1 − li)− ṽ(I)(f li(a), χ, 0) < −Ki

2
. (2.38)

Remark 2.5.1. Observe that (2.38) remains true also with respect to the vector −χ
instead of χ and does not depend on the chosen continuous determination.

Proof of Lemma 2.2.3. Let ξ ∈ TaA \ {0}. Assume that ξ either has strictly positive first
coordinate or ξ is χ: we can choose the continuous determination ṽ(I)(a, ξ, ·) so that

− 1

2
< ṽ(I)(a, ξ, 0) ≤ ṽ(I)(a, χ, 0) = 0. (2.39)

Lemma 1.1.1 in Chapter 1 tells us that for any t ∈ R we have

ṽ(I)(a, ξ, t) ≤ ṽ(I)(a, χ, t). (2.40)

Then we are going to show that for any j ∈ J1,N K it holds 4

ṽ(I)(a, ξ, lj) < −
∑j−1

i=0 Ki

2
. (2.41)

Let us show inequality (2.41) by induction.

(i) Consider j = 1. By (2.38) for i = 0 and by (2.39), we have

ṽ(I)(a, χ, l1)− ṽ(I)(a, χ, 0) = ṽ(I)(a, χ, l1) < −K0

2
. (2.42)

By inequality (2.40) for t = l1 and by inequality (2.42) it holds

ṽ(I)(a, ξ, l1) < −K0

2
.

Thus, (2.41) holds for j = 1.

(ii) Let consider now j > 1 and assume that ṽ(I)(a, ξ, lj−1) < −
∑j−2

i=0 Ki

2
. We are going

to show that

ṽ(I)(a, ξ, lj) < −
∑j−1

i=0 Ki

2
.

We start by choosing the continuous determination ṽ(I)(f lj−1(a), Df lj−1(a)ξ, ·) so
that

ṽ(I)(a, ξ, lj−1) = ṽ(I)(f lj−1(a), Df lj−1(a)ξ, 0). (2.43)

4. Observe that this inequality depends on the choice of the continuous determination.

89



This is possible since v(I)(a, ξ, lj−1) and v(I)(f lj−1(a), Df lj−1(a)ξ, 0) are the same
angle. By the inductive hypothesis we have

ṽ(I)(f lj−1(a), Df lj−1(a)ξ, 0) < −
∑j−2

i=0 Ki

2
. (2.44)

If
∑j−2

i=0 Ki ∈ N is odd, choose the continuous determination ṽ(I)(f lj−1(a),−χ, ·) so
that

ṽ(I)(f lj−1(a),−χ, 0) = −
∑j−2

i=0 Ki

2
. (2.45)

Hence inequality (2.44) becomes

ṽ(I)(f lj−1(a), Df lj−1(a)ξ, 0) < ṽ(I)(f lj−1(a),−χ, 0).

By Lemma 1.1.1 for t = lj − lj−1

ṽ(I)(f lj−1(a), Df lj−1(a)ξ, lj − lj−1) < ṽ(I)(f lj−1(a),−χ, lj − lj−1). (2.46)

Inequality (2.38) with respect to −χ instead of χ for i = j − 1 (see Remark 2.5.1)
gives us

ṽ(I)(f lj−1(a),−χ, lj − lj−1) < −Kj−1

2
+ ṽ(I)(f lj−1(a),−χ, 0).

This, together with (2.45), implies that

ṽ(I)(f lj−1(a),−χ, lj − lj−1) < −
∑j−1

i=0 Ki

2
. (2.47)

By (2.46) and (2.47)

ṽ(I)(f lj−1(a), Df lj−1(a)ξ, lj − lj−1) < −
∑j−1

i=0 Ki

2
. (2.48)

Consider now the two continuous functions

t 7→ ṽ(I)(a, ξ, lj−1 + t)

and
t 7→ ṽ(I)(f lj−1(a), Df lj−1(a)ξ, t).

They are continuous determinations of the same angle function and by (2.43) they
coincide for t = 0. Consequently they are equal at any t, in particular for t = lj−lj−1.
So by (2.48)

ṽ(I)(a, ξ, lj) < −
∑j−1

i=0 Ki

2
.

If
∑j−2

i=0 Ki ∈ N is even, we choose the continuous determination ṽ(I)(f lj−1(a), χ, ·)
so that

ṽ(I)(f lj−1(a), χ, 0) = −
∑j−2

i=0 Ki

2

and we repeat the same argument.
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We have so proved inequality (2.41) and we are going to conclude the proof of Lemma
2.2.3.
By inequality (2.41) for j = N and by (2.39) we have

ṽ(I)(a, ξ, lN )− ṽ(I)(a, ξ, 0) < −
∑N −1

i=0 Ki

2
+

1

2
(2.49)

as desired. If ξ = χ, then again inequality (2.41) for j = N and the equality in (2.39)
imply in particular that

ṽ(I)(a, χ, lN )− ṽ(I)(a, χ, 0) < −
∑N −1

i=0 Ki

2
. (2.50)

Assume now that ξ either has strictly negative first coordinate or ξ is −χ. Then −ξ
either has strictly positive first coordinate or −ξ is χ. From (2.49) we have

ṽ(I)(a,−ξ, lN )− ṽ(I)(a,−ξ, 0) < −
∑N −1

i=0 Ki

2
+

1

2
.

Since
ṽ(I)(a, ξ, lN )− ṽ(I)(a, ξ, 0) = ṽ(I)(a,−ξ, lN )− ṽ(I)(a,−ξ, 0), (2.51)

we conclude that

ṽ(I)(a, ξ, lN )− ṽ(I)(a, ξ, 0) < −
∑N −1

i=0 Ki

2
+

1

2
.

In particular, if ξ = −χ, then by (2.50) and (2.51) it holds

ṽ(I)(a,−χ, lN )− ṽ(I)(a,−χ, 0) < −
∑N −1

i=0 Ki

2
.

This concludes our proof.

91



92



Chapter 3

Points of zero torsion for conservative
twist maps

In this chapter we consider conservative twist maps of the annulus. In particular, we
are interested in the torsion of bounded instability regions of A (both bounded subannuli
and periodic discs). We will show that any bounded instability region contains a subset
of positive measure where the torsion is not null.

3.1 Conservative twist maps and instability zones

The manifold A = T × R is endowed with its standard Riemannian metric and trivi-
lization. Denote as ω = dx∧dy the area form on A. With an abuse of notation, we denote
as ω also the measure associated to the area form on A, i.e. the Lebesgue measure.
Fix the counterclockwise orientation and consider the constant vector field χ(z) = χ =
(0, 1).
We recall that the function p : R → T denotes the universal covering of the 1-dimensional
torus, while p × IdR : R2 → A denotes the universal covering of A. Denote as p1, p2 :
R2 → R the projections over the first and second coordinates, respectively. With an abuse
of notation, denote as p1, p2 also the projections over the first and second coordinate,
respectively, for the annulus A.
Our main references for this section are [Arn16], [Ban88] and [Gol01].

Definition 3.1.1 (Symplectic map). A C1 diffeomorphism f : A → A is symplectic if
f ∗ω = ω.

Definition 3.1.2 (Conservative map). A C1 diffeomorphism f : A → A is conservative
(or exact symplectic) if f ∗ω − ω is an exact 1-form.

Notation 3.1.1. All along the section, f : A → A is a conservative twist map.

We briefly recall the notation used for lifts of oriented angle functions. Let I = (ft)t in
Diff 1(A) be an isotopy joining the identity to f . Define the function

v(I) : TA∗ × R → T

(z, ξ, t) 7→ θ(χ,Dft(x)ξ),

where TA∗ = {(z, ξ) ∈ TA : ξ 6= 0}. Fix (z, ξ) ∈ TA∗ and denote as ṽ(I)(z, ξ, ·) : R → R
a continuous determination of the angle function v(I)(z, ξ, ·).
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Remark 3.1.1. Be careful! Although we have chosen a continuous determination ṽ(f) :
TA∗ × R → R to introduce the torsion, in the sequel sometimes we will be interested
also in considering different determinations ṽ(f)(z, ξ, ·) that are independently defined
for different points (z, ξ) ∈ TA∗.

We refer to Definitions 1.1.2 and 1.1.3 in Chapter 1 for the notion of (finite-time) torsion.
We recall that the (finite-time) torsion on A does not depend on the choice of the isotopy
(see Proposition 1.3.2 in Chapter 1). Therefore, we will use the notations Torsion(f, z)
and Torsionn(f, z, ξ) for the torsion and the torsion at finite time.

We refer to [Arn16] for the following notions.

Definition 3.1.3. An essential curve is a C0-embedded circle in A not homotopic to a
point.

Definition 3.1.4. An essential subannulus of A is a subset of the annulus that is home-
omorphic to A and contains an essential curve of A.

Notation 3.1.2. Denote as I (f) the union of all the invariant continuous graphs of f
and as N (f) its complement.

We are then interested in the dynamics on N (f) and in particular in the torsion at points
of N (f). We start by stating the following

Proposition 3.1.1 (Proposition 2.17 in [Arn16]). Let f be a conservative twist map.
Every connected components of N (f) is either a bounded disc or an essential subannulus
of A.
• When such a component is a disc D, then this disc is periodic i.e. there exists N ≥ 1
such that fN(D) = D. Moreover, the boundary of D is the union of parts of two invariant
continuous graphs that have the same rational rotation number.
• When such a component is an essential subannulus, then it is invariant by f , and each
of the two components of its boundary is either T × {±∞} 1 or an invariant continuous
graph.

Definition 3.1.5. An instability zone is a connected component of N (f) which is an
essential subannulus. An instability disc is a connected component of N (f) which is a
f -periodic disc.

Recall that, with an abuse of notation, we denote as ω both the area form on A and the
measure associated, i.e. the Lebesgue measure. The main result of the chapter is then the
following

Theorem 3.1.1. Let f : A → A be a conservative twist map. Let U ⊂ A be a bounded
connected component of N (f). Then

ω ({z ∈ U : Torsion(f, z) 6= 0}) > 0.

Theorem 3.1.1 is an outcome of Proposition 2.17 in [Arn16] (here Proposition 3.1.1) and
of the following propositions.

Proposition 3.1.2. Let f : A → A be a conservative twist map. Let U ⊂ A be a bounded
instability zone. Then ω({z ∈ U : Torsion(f, z) 6= 0}) > 0.

1. The boundary is considered in the compactification of A, i.e. in T× R̄, where R̄ = R ∪ {±∞}.
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Proposition 3.1.3. Let f : A → A be a conservative twist map. Let U ⊂ A be an
instability disc. Then ω({z ∈ U : Torsion(f, z) 6= 0}) > 0.

Proposition 3.1.2 will be an immediate outcome of Theorem 3.2.1 (see Section 3.2), while
the proof of Proposition 3.1.3 is presented in Section 3.3.

Remark 3.1.2. Let f : A → A be a conservative positive twist map. Let us assume
that, whenever it exists, Torsion(f, z) is zero for ω-almost every z ∈ A. As an outcome of
Theorem 3.1.1, we deduce that there are neither bounded instability zones nor instability
discs.

An outcome of Theorem 3.1.1 concerning the torsion of measures is then the following

Corollary 3.1.1. Let f : A → A be a conservative positive twist map and let ω = dx∧dy
be the area form on A. With an abuse of notation, denote as ω also the Lebesgue measure
on A. Let U be either a bounded instability zone or the orbit of a N-periodic instability
disc D (i.e.

⋃N−1
i=0 f i(D)). Then it holds

−1

2
≤ Torsion(f, ω̃) < 0

where ω̃ is the normalized Lebesgue measure with respect to U , i.e. ω̃(·) = ω(·∩U)
ω(U)

.

Proof. Since for any z ∈ A it holds −1
2
≤ Torsion(f, z) ≤ 0 (see Corollary 2.1.1) and

since, from the definition of the torsion of a measure (see Definition 1.1.4), we have

Torsion(f, ω̃) =
∫

A

Torsion(f, z) dω̃(z) =
∫

U

Torsion(f, z) dω̃(z),

we already know that −1
2
≤ Torsion(f, ω̃) ≤ 0. By Theorem 3.1.1 applied at U , the set

V = {z ∈ U : Torsion(f, z) 6= 0} has positive Lebesgue measure. Actually, because of
Corollary 2.1.1, it holds V = {z ∈ U : Torsion(f, z) < 0}.
Recall that by Ruelle’s theorem in [Rue85] the torsion exists at ω̃-almost every z ∈ U . In
particular, the torsion exists and it is null for ω̃-almost every z ∈ U \ V . Consequently

Torsion(f, ω̃) =
∫

A

Torsion(f, z) dω̃(z) =
∫

U

Torsion(f, z) dω̃(z) =

=

∫

V

Torsion(f, z) dω̃(z) +
∫

U\V
Torsion(f, z) dω̃(z) =

∫

V

Torsion(f, z) dω̃(z) < 0.

That is, it holds −1
2
≤ Torsion(f, ω̃) < 0.

3.2 C0-integrability of bounded sub-annuli

We start by introducing some notions and definitions and by presenting the main
result (see Theorem 3.2.1) whose proof will take almost all the section.

Definition 3.2.1. A conservative twist map f is C0 integrable if there exists a partition
of A into continuous closed invariant curves not homotopic to a point, any one of which
is a continuous embedding of S1 in A.
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Let f : A → A be a conservative positive twist map. Let F : R2 → R2 be a lift of f . Refer-
ing to [Ban88][Sections 1 and 7] (see also [Arn16][Proposition 1.8] and [Gol01][Chapter 1,
Section 5A]), there exists a function

h : R2 → R

such that

F (x, y) = (X, Y ) ⇔ y = − ∂

∂x
h(x,X) , Y =

∂

∂X
h(x,X). (3.1)

The function h is called a generating function of F and

(i) h is a C2 function;

(ii) h is invariant under translation of (1, 1), that is

h(x+ 1, X + 1) = h(x,X) ∀(x,X) ∈ R2;

(iii) for any (x,X) ∈ R2 it holds ∂2

∂x∂X
h(x,X) < 0.

Definition 3.2.2. A sequence of real numbers (xn)n∈Z ⊂ RZ is a configuration for F
if there exists a sequence (yn)n∈Z ⊂ RZ such that (xn, yn)n∈Z is an orbit for F , that is
(xn, yn) = F n(x0, y0) for any n ∈ Z.

Observe that (xn)n∈Z is a configuration if and only if

∂

∂X
h(xn−1, xn) +

∂

∂x
h(xn, xn+1) = 0 ∀n ∈ Z. (3.2)

Definition 3.2.3 (Definition 3.6 in [Arn16]). Let (xn)n∈Z ⊂ RZ be a sequence of real
numbers. The union over all n ∈ Z of segments in the plane R2 joining (n, xn) to (n +
1, xn+1) is called the Aubry diagram of (xn)n∈Z.
We say that the Aubry diagrams of two sequences (xn)n∈Z, (x̃n)n∈Z cross

(i) between n and n+ 1 if (xn − x̃n)(xn+1 − x̃n+1) < 0;

(ii) at n ∈ Z if xn = x̃n and (xn−1 − x̃n−1)(xn+1 − x̃n+1) < 0.

Notation 3.2.1. Let (xn)n∈Z be a sequence of real numbers. We denote as L ((xn)n∈Z)
the Aubry diagram of (xn)n∈Z.

Remark 3.2.1. Observe that two configurations (xn)n∈Z, (x̃n)n∈Z such that xn1 < x̃n1 , xn1+1 =
x̃n1+1 for some n1 ∈ Z actually cross at n1 + 1 according to point (ii) of Definition
3.2.3. Indeed we are now going to show that xn1+2 > x̃n1+2. Equivalently we have that
xn1+1 = x̃n1+1 and

(xn1 − x̃n1)(xn1+2 − x̃n1+2) < 0.

Denote as (xn, yn)n∈Z, (x̃n, ỹn)n∈Z the orbits for F corresponding to (xn)n∈Z, (x̃n)n∈Z, re-
spectively. Recall that the function R ∋ y 7→ p1◦F−1(xn1+1, y) ∈ R is a strictly decreasing
diffeomorphism of R and so its inverse function is strictly decreasing as well. From this and
since yn1+1 = (p1 ◦ F−1(xn1+1, ·))−1(xn1), ỹn1+1 = (p1 ◦ F−1(xn1+1, ·))−1(x̃n1), xn1 < x̃n1 , it
holds yn1+1 > ỹn1+1.
Now the function R ∈ y 7→ p1 ◦ F (xn1+1, y) is a strictly increasing diffeomorphism and,
since yn1+1 > ỹn1+1, we conclude that

xn1+2 = p1 ◦ F (xn1+1, yn1+1) > p1 ◦ F (xn1+1, ỹn1+1) = x̃n1+2.
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Definition 3.2.4. Let (xn)n∈Z be a configuration for F . The sequence (ξn)n∈Z ⊂ RZ,
ξn ∈ TxnR, is a Jacobi field along the configuration (xn)n∈Z if for all n ∈ Z

∂2

∂x∂X
h(xn−1, xn)ξn−1+

[
∂2

∂x2
h(xn, xn+1) +

∂2

∂X2
h(xn−1, xn)

]
ξn+

∂2

∂x∂X
h(xn, xn+1)ξn+1 = 0.

(3.3)

Definition 3.2.5. Two points xM , xN of a configuration (xn)n∈Z, M 6= N , are called
conjugate points if there exists a non zero Jacobi field (ξn)n∈Z along (xn)n∈Z such that
ξM = ξN = 0.

Notation 3.2.2. Let z = (x, y) ∈ R2 and denote as (xn, yn)n∈Z the orbit of z with respect
to F . We say that z has conjugate points along its orbit if there exist M < N,M,N ∈ Z
such that xM , xN are conjugate points.

Remark 3.2.2. For every z ∈ R2, the vertical space at z is

V (z) := ker
(
Dp1|TzR2

)
.

Let M < N , M,N ∈ Z, and let (xn)n∈Z be a configuration for F . Denote as (xn, yn)n∈Z
the orbit associated to the configuration. We remark that, from a geometrical point of
view, two points xM , xN of the configuration are conjugate if

V (xN , yN) ∩DFN−M(xM , yM)(V (xM , yM)) 6= {0}.
Notation 3.2.3. Denote as a BIES an open subset U ⊂ A which is a bounded, f -invariant
essential subannulus.

Remark 3.2.3. Any instability zone is f -invariant. Any bounded instability zone is
a BIES. The boundary of any BIES is the union of two invariant disjoint curves. By
Birkhoff’s theorem, the boundary is actually the union of two disjoint Lipschitz continu-
ous graphs in A (see [Bir22] and Chapter 1 in [Her83]).

The main result of the section concerns the relation between properties of torsion and
C0 integrability for a conservative positive twist map.

Theorem 3.2.1. Let f : A → A be a conservative positive twist map. Let U be a BIES
for f . Then the following statements are equivalent:

(i) f|U is C0 integrable;

(ii) the torsion exists and it is null for every z ∈ U ;

(iii) the torsion is null for ω-almost every z ∈ U .

The implication (ii) ⇒ (iii) of Theorem 3.2.1 is trivial. Let us begin with the proof of the
implication (i) ⇒ (ii) of Theorem 3.2.1.

Proof of (i) ⇒ (ii) of Theorem 3.2.1. Assume f|U is C0 integrable and consider (x, y) ∈ U .
By the C0-integrability condition, there exists a continuous closed f -invariant curve Γ not
homotopic to a point such that (x, y) ∈ Γ. By Birkhoff’s theorem (see [Bir22]), the curve
Γ is the graph of a Lipschitz continuous function γ : T → R. The graph of γ, i.e. Γ, is a
closed well-ordered set and every point of it is an accumulation point of Γ. By Corollary
2.4 in [Cro03], every point of Γ, so in particular (x, y), has zero torsion, according to
Crovisier’s definition. By Proposition 2.1.4 in Chapter 1, Crovisier’s torsion is equivalent
to Definition 1.1.3. Hence, (x, y) has zero torsion with respect to our definition.
By the arbitrariness of (x, y) ∈ U , we conclude that every point in U has zero torsion.
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Sketch of the proof of (iii) ⇒ (i) of Theorem 3.2.1. The proof of this last implication
relies on the following two main propositions.

Proposition 3.2.1. Let f : A → A be a conservative positive twist map and let U be a
BIES. If the torsion is zero for ω-almost every point of U , then f has no conjugate points
in U .

Proposition 3.2.2. Let f : A → A be a conservative positive twist map and let U be a
BIES. If f has no conjugate points in U , then f|U is C0 integrable.

Mostly all the section concerns the proofs of these two main propositions (see Subsection
3.2.1 for the proof of Proposition 3.2.1 and Subsection 3.2.2 for that of Proposition 3.2.2).
Admitting for the moment Propositions 3.2.1 and 3.2.2, the necessary implication follows
immediately.

From Theorem 3.2.1 we deduce the following

Corollary 3.2.1. Let f : T × [0, 1] → T × [0, 1] be a conservative positive twist map on
the bounded annulus. Then, f is C0 integrable if and only if the torsion is null at ω-almost
every point.

Proof. The function f can be extended to a conservative positive twist map f̃ : A → A
on the unbounded annulus such that f̃|T×[0,1] = f (see [LC91][Chapter 1, Section 2] and
[MF94][Theorem 8.1]). The interior of the bounded annulus, that is T× (0, 1), is a BIES
for f̃ . Applying Theorem 3.2.1 we conclude.

An immediate outcome of Theorem 3.2.1 is also the proof of Proposition 3.1.2.

Proof of Proposition 3.1.2. Let U ⊂ A be a bounded instability zone. From Remark
3.2.3 we have that U is a BIES. Since f|U is not C0 integrable (from the definition of
the instability zone), we deduce that the torsion is not ω-almost everywhere null. That is
ω ({z ∈ U : Torsion(f, z) 6= 0}) > 0, as claimed.

3.2.1 Proof of Proposition 3.2.1

This section is devoted to the proof of Proposition 3.2.1. Actually, we are going to
show a more general result. That is, the following proposition holds true.

Proposition 3.2.3. Let f : A → A be a conservative positive twist map. Let U ⊂ A be
an open invariant set such that ω(U) < +∞. If ω-almost every z ∈ U has zero torsion,
then f|U has no conjugate points.

The proof of Proposition 3.2.3 is an outcome of the following result.

Proposition 3.2.4. Let f : A → A be a conservative positive twist map. Let z ∈ A be
such that:

(i) z has a conjugate point;
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(ii) z has a neighborhood U such that ω(∪n∈Zfn(U)) < +∞.

Then there exists an open neighborhood Wz ⊂ U of z such that for ω-almost every z′ ∈ Wz

it holds Torsion(f, z′) < 0.

Let us first show Proposition 3.2.3 by assuming Proposition 3.2.4.

Proof of Proposition 3.2.3. Let us argue by contradiction and suppose there exists z ∈ U
which has a conjugate point. Since U is f -invariant and ω(U) < +∞, by Proposition
3.2.4 there exists a set of positive measure where the torsion is strictly negative. This
contradicts the hypothesis and we conclude.

The rest of the section concerns the proof of Proposition 3.2.4. Such proof relies on
three main arguments:

(1) the presence of a neighborhood of z of positive measure such that each of its points
has strictly negative finite-time torsion;

(2) a link between the returning time of a point z′ to this neighborhood and the torsion
at finite time at z′;

(3) the use of Birkhoff’s Ergodic Theorem for evaluating returning times of points to
the highlighted neighborhood.

Let us prove now Proposition 3.2.4.

Proof. By hypothesis, the point z ∈ A has a conjugate point. That is (see Remark 3.2.2)
there exists n ∈ N∗ and k ∈ Z such that

nTorsionn(I, z, χ) = ṽ(I)(z, χ, n)− ṽ(I)(z, χ, 0) = −k
2
. (3.4)

Since f is a positive twist map, by Theorem 2.1.1 in Chapter 2, any finite-time torsion
with respect to the vertical vector is strictly negative. Hence k ≥ 1.
Since

t 7→ v(I)(z, χ, n+ t) and t 7→ v(I)(fn(z), Dfn(z)χ, t)

are the same angle function, the functions

t 7→ ṽ(I)(z, χ, n+ t) and t 7→ ṽ(I)(fn(z), Dfn(z)χ, t)

differ by an integer. Since Dfn(z)χ is a vertical vector from (3.4) and by Theorem 2.1.1,
for any m ∈ N,m > n it holds

ṽ(I)(fn(z), Dfn(z)χ,m− n)− ṽ(I)(fn(z), Dfn(z)χ, 0) < 0. (3.5)

Since the following differences do not depend on the choice of the continuous determina-
tion, we have that for any m ∈ N,m > n

ṽ(I)(z, χ,m)− ṽ(I)(z, χ, n) =

= ṽ(I)(fn(z), Dfn(z)χ,m− n)− ṽ(I)(fn(z), Dfn(z)χ, 0).

So, by (3.5)
ṽ(I)(z, χ,m)− ṽ(I)(z, χ, n) < 0.
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Consequently for any m ∈ N,m > n we have

ṽ(I)(z, χ,m)− ṽ(I)(z, χ, 0) < −k
2
. (3.6)

Fix now m ∈ N,m > n. By continuity of torsion at finite time with respect to the point,
inequality (3.6) is an open condition and there exists a neighborhood Wz ⊂ U of z such
that for any y ∈ Wz

ṽ(I)(y, χ,m)− ṽ(I)(y, χ, 0) < −k
2
. (3.7)

The open set Wz has positive measure, denoted as ω(Wz) =: ε > 0. We need now to prove
that ω-almost every point in Wz has negative torsion.
Observe that, by Ruelle’s theorem in [Rue85], at ω-almost every point of ∪n∈Zfn(U) the
torsion exists. Consequently, also at ω-almost every point of Wz it exists. Recall that (by
Corollary 2.1.1) the torsion is non positive whenever it exists.

We start now discussing the second main argument of the proof, i.e. the relation
between returning times to Wz and finite time torsion.
Let N ∈ N and let us introduce the notation

�N :
⋃

n∈Z
fn(U) −→ N

x 7→ �N(x) :=
N−1∑

i=0

IWz
(fmi(x)),

(3.8)

where IWz
(·) denotes the characteristic function of the set Wz. The function �N evaluated

at x counts how many points of the segment of the orbit (fmi(x))i∈J0,N−1K of x under fm

are in Wz.
The following lemma provides us the required link between torsion and returning times
(counted by �N(x)).

Lemma 3.2.1. For x ∈ Wz such that �N(x) ≥ 2 we have

ṽ(I)(x, χ,mN)− ṽ(I)(x, χ, 0) < −�N(x)k

2
+
k

2
. (3.9)

The proof of Lemma 3.2.1 relies on the following rough idea. From inequality (3.7), every
time that the orbit of a point x comes back toWz, the torsion gains a negative contribution
(less than −k

2
) over the successive m-lengthed time interval. Hence, when looking at the

variation of a continuous determination of the angle function over a given time interval
N , we consider the fm-orbit of the point x. Each contribution of the torsion between
consecutive points of the fm-orbit with respect to the vertical vector is strictly negative
(see Theorem 2.1.1), but contributions of the torsion corresponding to points coming
back to Wz are strictly less than −k

2
. Adding all the contributions, the variation of the

continuous determination over the considered time interval N is strictly less than �N(x)
times −k

2
.

Actually, when coming back to Wz, we cannot directly use inequality (3.7) and Theorem
2.1.1 since we are not looking at torsion at finite time with respect to the vertical vector.
We need to prove a more accurate estimation and we will show that, up to add a constant,
the previous rough idea holds.
Lemma 2.2.3 will be the main tool in providing such an estimation and in proving Lemma
3.2.1. Therefore we recall Lemma 2.2.3 here (see Appendix 2.5 for the detailed proof).

100



Lemma 2.2.3. Let f : A → A be a C1 diffeomorphism isotopic to the identity. Let a ∈ A.
Let N ∈ N∗, (Ki)i∈J0,N −1K ∈ NN and l0 = 0 < l1 < · · · < lN with li ∈ N for any i.
Assume that for all i ∈ J0,N − 1K it holds

ṽ(I)(f li(a), χ, li+1 − li)− ṽ(I)(f li(a), χ, 0) < −Ki

2
. (3.10)

Then for any vector ξ ∈ TaA \ {0} we have

ṽ(I)(a, ξ, lN )− ṽ(I)(a, ξ, 0) < −
∑N −1

i=0 Ki

2
+

1

2
. (3.11)

Moreover when ξ = χ we have

ṽ(I)(a, χ, lN )− ṽ(I)(a, χ, 0) < −
∑N −1

i=0 Ki

2
. (3.12)

An outcome of Lemma 2.2.3 is Lemma 2.2.2, that we restate here in the particular frame-
work of positive twist maps (we refer to Lemma 2.2.2 for the proof).

Lemma 3.2.2. Let f : A → A be a positive twist map. Let a ∈ A, n ∈ N∗, k ∈ N be such
that

ṽ(I)(a, χ, n)− ṽ(I)(a, χ, 0) < −k
2
.

Then for any l ∈ N, l ≥ n it holds

ṽ(I)(a, χ, l)− ṽ(I)(a, χ, 0) < −k
2
.

We now prove Lemma 3.2.1.

Proof of Lemma 3.2.1. We will show that we can apply Lemma 2.2.3 with respect to fm

in order to bound the quantity

ṽ(I)(x, χ,mN)− ṽ(I)(x, χ, 0)

for x ∈ Wz.
We are assuming that x ∈ Wz is such that �N(x) ≥ 2, that is the fm-orbit of the point
x comes back to Wz at least another time within the time interval J0, N − 1K.
Denote as li the integer in J0, N − 1K such that fmli(x) is the i-th point of the orbit of x
that comes back to Wz. Let us apply Lemma 2.2.3 (used with respect to fm) with a = x,
N = �N(x)− 1 ≥ 1 and Ki = k for any i, where k ∈ N is the positive integer of (3.7).
For any i, since fmli(x) ∈ Wz, by (3.7)

ṽ(I)(fmli(x), χ,m)− ṽ(I)(fmli(x), χ, 0) < −k
2

and, since li+1 − li ≥ 1, from Lemma 3.2.2 we deduce that

ṽ(I)(fmli(x), χ,m(li+1 − li))− ṽ(I)(fmli(x), χ, 0) < −k
2
.

From Lemma 2.2.3, recalling that N = �N(x)− 1, we have (see (3.12))

ṽ(I)(x, χ,mlN )− ṽ(I)(x, χ, 0) < −�N(x)k

2
+
k

2
.
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Since �N(x)k ∈ N∗ and mN ≥ mlN , applying Lemma 3.2.2, we conclude

ṽ(I)(x, χ,mN)− ṽ(I)(x, χ, 0) < −�N(x)k

2
+
k

2
.

The following Lemma concerns the last main argument of the proof and enables us to
conclude.

Lemma 3.2.3. For ω-almost every x ∈ Wz it holds Torsion(f, x) < 0.

Proof of Lemma 3.2.3. We start by remarking that for ω-almost every x ∈ Wz the torsion
exists (see [Rue85]). Since �N (x)

N
is a Birkhoff’s sum, its limit for N going to infinity exists

for ω-almost every x. Denote

A1 := {x ∈ Wz : Torsion(f, x) = 0}.

We are going to prove that ω(A1) = 0. Let A be the set ∪n∈Zfmn(A1). Then A is
clearly fm-invariant. The set A is contained in ∪n∈Zfn(U): since by hypothesis it holds
ω(∪n∈Zfn(U)) < +∞, we have that ω(A) < +∞. Observe that fm preserves the measure
ω|A, defined as ω|A(·) := ω(· ∩ A).
Apply then Birkhoff’s Ergodic Theorem at (A, ω|A) with respect to fm and IWz

(·) ∈
L1(A, ω|A). Then it holds

∫

A

lim
N→+∞

�N(x)

N
dω(x) =

∫

A

IWz
(x) dω(x) = ω(Wz ∩ A). (3.13)

Look now at
∫
A

Torsion(f, x) dω(x).
On one hand, this integral is null by definition of the sets A1 and A and by the invariance
of the torsion along the orbit of a point. On the other hand, we are going to show that
for ω-almost every x ∈ A it holds

Torsion(f, x) ≤ − k

2m
lim

N→+∞

�N(x)

N
, (3.14)

where k ∈ N∗,m ∈ N∗ are the positive integers of (3.7).
By definition of A, for any x ∈ A there exists x̃ ∈ A1 and n = n(x) ∈ Z such that
fnm(x̃) = x.
Observe that for any N > |n| it holds

∣∣∣∣
�N(x)

N
− �N(x̃)

N

∣∣∣∣ =
∣∣∣∣∣

∑N−1+n
i=n IWz

(f im(x̃))

N
−
∑N−1

i=0 IWz
(f im(x̃))

N

∣∣∣∣∣ ≤
2n

N

and so

lim
N→+∞

�N(x)

N
= lim

N→+∞

�N(x̃)

N
. (3.15)

By Poincaré Recurrence Theorem (see Theorem 4.1.19 in [KH95]) applied at A with
respect to f and ω|A, ω|A-almost every x ∈ A is recurrent. Moreover, by definition of A1

and A, the torsion exists at every x ∈ A.
In particular, because the torsion is invariant along the f -orbit of a point, we have

Torsion(f, x) = Torsion(f, x̃). (3.16)
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Let x ∈ A be a recurrent point. Note that the point x̃ is recurrent. In particular, there
exists N̄(x̃) ∈ N∗ such that for any N ≥ N̄(x̃) it holds �N(x̃) ≥ 2.
Then, applying Lemma 3.2.1 at the point x̃, it holds for any N ≥ N̄(x̃)

TorsionmN(f, x̃, χ) < −�N(x̃k)

2mN
+

k

2mN
. (3.17)

Consequently, from (3.15), (3.16) and (3.17)

Torsion(f, x) = Torsion(f, x̃) = lim
N→+∞

TorsionmN(f, x̃, χ) ≤

≤ lim
N→+∞

(
−�N(x̃)k

2mN
+

k

2mN

)
= − k

2m
lim

N→+∞

�N(x̃)

N
= − k

2m
lim

N→+∞

�N(x)

N
.

That is, for ω|A-almost every x ∈ A (i.e. for any x ∈ A at which the torsion exists and
that is recurrent) inequality (3.14) is satisfied.

Look now back at
∫
A

Torsion(f, x) dω(x) = 0. Since (3.14) holds for ω|A-almost every
x ∈ A and from (3.13), we have

0 =

∫

A

Torsion(f, x) dω(x) ≤ − k

2m

∫

A

lim
N→+∞

�N(x)

N
dω(x) = − k

2m
ω(Wz ∩ A) ≤ 0.

Consequently we have ω(Wz ∩A) = 0. We then conclude that 0 ≤ ω(A1) = ω(Wz ∩A1) ≤
ω(Wz ∩ A) = 0, that is ω(A1) = 0 as desired.

We have so exhibited a neighborhood Wz of z where ω-almost every point has non zero
torsion. Since f is a positive twist map, by Corollary 2.1.1, whenever it exists, the torsion
is always non positive. We deduce so that ω-almost every point in Wz has negative torsion.

Remark 3.2.4. In Section 3.3 we will need the notion of over-conjugate points(see Defi-
nition 3.3.2). A point z ∈ A has over-conjugate pointsif there exists m ∈ N∗ such that

ṽ(I)(z, χ,m)− ṽ(I)(z, χ, 0) ≤ −1

2
.

Observe that Proposition 3.2.4 holds true also if we assume as condition (i) that the point
z has over-conjugate points.

We wonder if a similar result could hold from a topological point of view. The following
question is due to J.P. Marco:

Question 3.2.1. Let f : A → A be a conservative positive twist map and let U be an
invariant set of finite measure. If the set {x ∈ U : Torsion(f, x) = 0} contains a Gδ dense
set, then is it true that there are no conjugate points?
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3.2.2 Proof of Proposition 3.2.2

In this Section we show that if there are no conjugate points in a BIES U , then f|U is
C0-integrable. The proof is an adaptation of the results in [CS96]. In [CS96], Cheng and
Sun work with configurations on the whole unbounded annulus: here our framework is
that of Proposition 3.2.1, that is a bounded domain.
We remark that the same result holds for conservative negative twist map, by changing
f into f−1.
The proof largely uses the theory of Aubry-Mather sets as sets of minimizing configura-
tions for an appropriate action functional, as presented in [Ban88]. The hypothesis of not
having conjugate points in U implies that any configuration in the bounded domain is in
some Aubry-Mather set. This implies that the Aubry-Mather set of any given rotation
number (in a suitable interval) is the graph of a continuous 1-periodic function. The pro-
jection over A of such graphs is the desired partition into C0 closed f -invariant essential
curves.
The Subsection is organized as follows. First we introduce the framework of configura-
tions on a bounded domain. Among such configurations, we focus on those minimizing the
action functional H (see Definition 3.2.6). Then we show that minimizing configurations
on the bounded domain are actually minimizers on the whole annulus. We need to adapt
to the bounded framework the arguments of [CS96]. In particular, we prove that if there
are no conjugate points in U , then any configuration in the bounded domain is also min-
imizing. We use then the properties of the rotation number of minimizing configurations
as main tool to show that any Aubry-Mather set is a graph of a continuous 1-periodic
function, concluding so our proof.

Framework and notations

Consistently with (3.1), let F : R2 → R2 denote a lift of the conservative positive twist
map f and let h : R2 → R be a generating function for F , that is

F (x, y) = (X, Y ) ⇔ y = −∂h(x,X)

∂x
, Y =

∂h(x,X)

∂X
.

Notation 3.2.4. Let U ⊂ A be a BIES (see Notation 3.2.3). Each component of the
boundary of U is f -invariant and is the graph of a Lipschitz map. This is a theorem due
to G. D. Birkhoff (see [Her83] for a complete proof).
Denote as γ1, γ2 : T → R the continuous functions whose graphs are the lower and upper
component of ∂U respectively. We write then

U = {(x, y) ∈ A : γ1(x) < y < γ2(x)}. (3.18)

Denote
U = (p× IdR)

−1(U), (3.19)

where p× Id is the universal covering of A.
Observe that U is the intersection of

U1 = {(x, y) ∈ R2 : Γ1(x) < y} and U2 = {(x, y) ∈ R2 : y < Γ2(x)}, (3.20)

where Γi = γi ◦ p for i = 1, 2.
For (x, y) ∈ U , the notation (xn, yn)n∈Z = (F n(x, y))n∈Z refers to the orbit of (x, y) with
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respect to F .
Let D ⊂ R2 be the set

D = {(x,X) ∈ R2 : p1 ◦ F (x,Γ1(x)) < X < p1 ◦ F (x,Γ2(x))}, (3.21)

which is the intersection of

D1 = {(x,X) : p1 ◦F (x,Γ1(x)) < X} and D2 = {(x,X) : X < p1 ◦F (x,Γ2(x))}.

Remark 3.2.5. A point (x, y) ∈ R2 belongs to the subset U if and only if the point
(x,X) = (x, p1 ◦ F (x, y)) ∈ R2 is in D .
On one hand, let (x, y) ∈ U , that is Γ1(x) < y < Γ2(x). By the twist condition (see
Definition 2.1) it holds

p1 ◦ F (x,Γ1(x)) < p1 ◦ F (x, y) = X < p1 ◦ F (x,Γ2(x)),

i.e. (x,X) ∈ D .
On the other hand, let (x,X) ∈ D , that is p1 ◦F (x,Γ1(x)) < X < p1 ◦F (x,Γ2(x)). Again
by the twist condition, the inverse function of y 7→ p1 ◦ F (x, y) remains an increasing
homeomorphism. Therefore

Γ1(x) < (p1 ◦ F (x, ·))−1(X) = y < Γ2(x),

i.e. (x, y) ∈ U .

Notation 3.2.5. Denote as C(D) the set of configurations (xn)n∈Z such that (xn, xn+1) ∈
D for any n ∈ Z.

Remark 3.2.6. If (x, y) ∈ U , then, by the invariance of U , every point of its orbit
(xn, yn) = F n(x, y) is in U . This observation and Remark 3.2.5 tell us that for any n ∈ Z
the point (xn, xn+1) is in D . Therefore the configuration (xn)n = (p1◦F n(x, y))n associated
to the point (x, y) is in C(D).

Minimizing configurations

Definition 3.2.6. For any M,N ∈ Z,M ≤ N , define the action functional HM,N as

HM,N : RN−M+3 −→ R

(xM−1, xM , . . . , xN , xN+1) 7→ HM,N(xM−1, . . . , xN+1) :=
i=N∑

i=M−1

h(xi, xi+1),

where h : R2 → R is a generating function for F .

Definition 3.2.7. Let f : A → A be a conservative positive twist map and let F :
R2 → R2 be a lift of f . Let V ⊂ R2. The minimizing set M (V ) is the set of sequences
(xn)n∈Z such that (xn, xn+1) ∈ V for any n ∈ Z and such that for any M,N ∈ Z the
segment (xM−1, . . . , xN+1) minimizes the action functional HM,N among all the segments
(x̃M−1, . . . , x̃N+1) ∈ RN−M+3 such that x̃M−1 = xM−1, x̃N+1 = xN+1 and (x̃n, x̃n+1) ∈ V
for any n ∈ JM − 1, N + 1K.
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Denote M (R2) as M and call it the minimizing set of f .

Remark 3.2.7. Let U ⊂ A be a BIES. We refer to the notation introduced in Frame-
work and notations. Let (xn)n∈Z be a sequence in M (D). By definition, (xn, xn+1) ∈ D
for any n ∈ Z and for any M,N ∈ Z,M ≤ N , the segment (xM−1, . . . , xN+1) is a local
minimum of the action functional HM,N among segments (x̃M−1, . . . , x̃N+1) ∈ RN−M+3 so
that x̃M−1 = xM−1, x̃N+1 = xN+1 and (x̃n, x̃n+1) ∈ D for any n ∈ JM − 1, NK. Therefore,
for any i ∈ Z it holds

∂h(xi−1, xi)

∂X
+
∂h(xi, xi+1)

∂x
= 0.

The sequence (xn)n∈Z is actually a configuration for F (see (3.2)). That is, (xn)n∈Z ∈
C(D).

The rest of the paragraph is devoted to the proof that minimizing the action functional
among configurations corresponding to orbits of points in U is equivalent to minimizing
the action functional among configurations corresponding to orbits of points in A.
The next proposition is the core of the argument: the aim of the subsection will descend
as a corollary of it. Proposition 3.2.5 compares configurations of two points, the first one
lying under (or above) a f -invariant essential curve, the other one lying on such a curve,
and having the same first coordinate projection. We will show that for any n > 0 the
images through F n of the two points cannot have same first coordinate anymore.

Proposition 3.2.5. Let f : A → A be a conservative positive twist map and let F : R2 →
R2 be a lift of f . Let γ : T → R be a continuous function whose graph is f -invariant and
let Γ = γ ◦ p. For any x ∈ R if y < Γ(x) (respectively y > Γ(x)) then

p1 ◦ F n(x, y) < p1 ◦ F n(x,Γ(x)) ( respectively p1 ◦ F n(x, y) > p1 ◦ F n(x,Γ(x)))

for any n ∈ N∗.

Proof. The region U lying below the graph of γ is f -invariant. Denote U = (p×IdR)
−1(U)

and consider
G := {(x,X) ∈ R2 : X = p1 ◦ F (x,Γ(x))},
D := {(x,X) ∈ R2 : X < p1 ◦ F (x,Γ(x))}.

Denote as (xn, yn)n∈Z, (ξn,Γ(ξn))n∈Z the F -orbits of (x, y) and (x,Γ(x)) respectively, while

(xn)n∈Z = (p1 ◦ F n(x, y))n∈Z and (ξn)n∈Z = (p1 ◦ F n(x,Γ(x)))n∈Z

are their associated configurations. By the invariance of U and of the graph of γ and by
adapting Remark 3.2.6, it holds that (xn)n∈Z ∈ C(D) and (ξn)n∈Z ∈ C(G ). Observe that
x0 = ξ0 = x. We are going to prove by induction that xn < ξn for any n > 0, concluding
so the proof (the case y > Γ(x) can be treated similarly).

(i) Since x0 = ξ0 = x and y < Γ(x), by the twist condition we have

x1 = p1 ◦ F (x, y) < p1 ◦ F (x,Γ(x)) = ξ1.

(ii) Fix now n > 0 and assume that xn < ξn. The function x 7→ p1 ◦F (x,Γ(x)) is the lift
of an orientation preserving homeomorphism of the circle and so it is an increasing
homeomorphism of R. Consequently, by the inductive hypothesis,

p1 ◦ F (xn,Γ(xn)) < p1 ◦ F (ξn,Γ(ξn)) = ξn+1.
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By the invariance of U , we have that (xn, yn) ∈ U , that is yn < Γ(xn). Conse-
quently, by the twist condition, it holds

xn+1 = p1 ◦ F (xn, yn) < p1 ◦ F (xn,Γ(xn)) < p1 ◦ F (ξn,Γ(ξn)) = ξn+1.

In particular, we deduce that if there exists a continuous function on T whose graph is f -
invariant and, consequently, which bounds an upper and a lower unbounded annuli U+, U−,
then there cannot exist two segments of orbits (xn, yn)n∈J0,NK in U+ and (x̃n, ỹn)n∈J0,NK in
U− such that x0 = x̃0, xN = x̃N , N ≥ 1.

Reminder 3.2.1. We recall here some previous notations. Let U ⊂ A be a BIES. Let
γ1, γ2 : T → A be continuous functions such that

U = {(x, y) ∈ A : γ1(x) < y < γ2(x)}.

Let Γi = γi ◦ p for i = 1, 2 and let U = {(x, y) ∈ R2 : Γ1(x) < y < Γ2(x)}. Denote

D = {(x,X) ∈ R2 : p1 ◦ F (x,Γ1(x)) < X < p1 ◦ F (x,Γ2(x))}.

The minimizing set M is the set of sequences (xn)n∈Z such that for any M,N ∈ Z the
segment (xM−1, . . . , xN+1) minimizes the action functional HM,N among all the segments
(x̃M−1, . . . , ˜N + 1) ∈ RN−M+3 such that x̃M−1 = xM−1 and x̃N+1 = xN+1.
The minimizing set M (D) is the set of sequences (xn)n∈Z such that (xn, xn+1) ∈ D for
any n ∈ Z and such that for any M,N ∈ Z the segment (xM−1, . . . , xN+1) minimizes the
action functional HM,N among all the segments (x̃M−1, . . . , ˜N + 1) ∈ RN−M+3 such that
x̃M−1 = xM−1, x̃N+1 = xN+1 and (x̃n, x̃n+1) ∈ D for any n ∈ JM − 1, N + 1K.
Denote as C(D) the set of configurations (xn)n∈Z such that (xn, xn+1) ∈ D for any n ∈ Z.

The following result descends so as a corollary.

Corollary 3.2.2. Let f : A → A be a conservative positive twist map and let F : R2 → R2

be a lift of f . Let U ⊂ A be a BIES. Then M (D) ⊂ M .

Proof. Denote as γ1, γ2 : T → R the continuous functions whose graphs are the boundary
components of U . Refering to (3.19), (3.20) and (3.21), we denote

U = {(x, y) ∈ R2 : Γ1(x) < y < Γ2(x)}

and
D = {(x,X) ∈ R2 : p1 ◦ F (x,Γ1(x)) < X < p1 ◦ F (x,Γ2(x))},

where Γi = γi ◦ p for i = 1, 2.
We want to show that M (D) ⊂ M . Argue by contradiction and suppose there exists
(xn)n∈Z ∈ M (D) not in M . Remark that (xn)n∈Z is a configuration in C(D). Since (xn)n∈Z
does not belong to M , there exist M,N ∈ Z,M ≤ N and a segment (x̃M−1, . . . , x̃N+1) ∈
RM−N+3 such that x̃M−1 = xM−1, x̃N+1 = xN+1, (x̃n, x̃n+1) does not belong to D for at
least an integer n ∈ JM − 1, NK and

HM,N(x̃M−1, x̃M , . . . , x̃N , x̃N+1) < HM,N(xM−1, xM , . . . , xN , xN+1).

Choose (x̃M−1, . . . , x̃N+1) that minimizes HM,N . It satisfies (3.2). Therefore, we extend
it to a configuration (x̃n)n∈Z in C(R2) (in particular, it is in M ). Observe that by the
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invariance of D for every n ∈ Z it holds (x̃n, x̃n+1) /∈ D .
Let (xn, yn)n∈Z and (x̃n, ỹn)n∈Z be the orbits corresponding, respectively, to (xn)n∈Z and
(x̃n)n∈Z. Without loss of generality, assume that

yM−1 < Γ2(xM−1) = Γ2(x̃M−1) ≤ ỹM−1.

Applying Proposition 3.2.5 we have that xN+1 < x̃N+1, which is the desired contradiction.

Remark 3.2.8. The minimizing set of f is non empty (see Theorem 3.17 in [Ban88]).
Moreover, Mather proved that any configuration obtained from a point (x, y) ∈ A lying on
a f -invariant essential curve is in the minimizing set of f (see Proposition 2.8 in [Mat91]).
We will show that, for any BIES U , its correspondent minimizing set M (D) is non empty
(see Remark 3.2.11).

Proof of C(D) = M (D)

In this paragraph we show that if there are no conjugate points for f in U , then
any configuration is minimizing. We are going to adapt to the bounded framework the
arguments in [CS96].
In particular, the absence of conjugate points will imply that two Jacobi fields along a
configuration cross at most once (see Definition 3.2.3). From this we deduce that any two
configurations in C(D) can cross at most once. This will imply that all the configurations
are also minimizers (see Definition 3.2.7).
All along the paragraph we refer to Notation 3.2.4 (see also Reminder 3.2.1).

Notation 3.2.6. Fix a configuration x = (xn)n∈Z ∈ C(D) and integers M ≤ N . Consider
then the action functional HM,N(see Definition 3.2.6) on the set of (N −M + 3)-uples
(x̃M−1, x̃M , . . . , x̃N , x̃N+1) such that x̃M−1 = xM−1, x̃N+1 = xN+1.
We then consider

Hx

M,N : RN−M+1 → R

(x̃M , . . . , x̃N) 7→ Hx

M,N(x̃M , . . . , x̃N) := HM,N(xM−1, x̃M , . . . , x̃N , xN+1) =

= h(xM−1, x̃M) +
N−1∑

i=M

h(x̃i, x̃i+1) + h(x̃N , xN+1). (3.22)

The (N −M)-uple (xM , . . . , xN) is a critical point of Hx

M,N . Denote as H x

M,N(x̃M , . . . , x̃N)
the Hessian matrix of Hx

M,N evaluated at the (N −M)-uple (x̃M , . . . , x̃N). When it will
be clear by the context, we will omit the superscript x on Hx

M,N ,H
x

M,N .

Lemma 3.2.4. Assume that f has no conjugate points in U . Then for any configuration
x = (xn)n∈Z ∈ C(D) and for any integers M ≤ N the hessian H x

M,N is positive definite.

Proof. Since f does not have conjugate points in U , we deduce, for any configuration x̃ =
(x̃n)n∈Z such that x̃M−1 = xM−1, that H x̃

M,N(x̃M , . . . , x̃N) does not have zero eigenvalue.
Indeed, if (ξM , . . . , ξN) is an eigenvector of the zero eigenvalue for H x̃

M,N(x̃M , . . . , x̃N),
then (0, ξM , . . . , ξN , 0) is a segment of a Jacobi field along x̃ = (x̃n)n∈Z (see (3.3)). Since
x̃ = (x̃n)n∈Z is a configuration, by hypothesis it does not have conjugate points. So we
deduce that (ξM , . . . , ξN) is the zero vector and we contradict the fact that (ξM , . . . , ξN)

108



is an eigenvector.
As we will see in Remark 3.2.8 there always exist minimizing configurations in C(D).

By Corollary 3.2.2, they are also minimizing configurations in M . By Lemma 5.3 in
[Arn16], the Hessian H x̃

M,N evaluated at a minimizing configuration 2 x̃ = (x̃n)n∈Z such
that x̃M−1 = xM−1 is positive definite. By the continuity of the eigenvalues and by the
connectedness of D (actually of the set of configurations x̃ = (x̃n)n∈Z such that x̃M−1 =
xM−1), we deduce that H x

M,N(xM , . . . , xN) is positive definite too.

In Definition 3.2.3 we have introduced the Aubry diagram L ((tn)n∈Z) for a sequence of real
numbers (tn)n∈Z and we have explained what it means that two sequences (tn)n∈Z, (sn)n∈Z
cross. That is, (tn)n∈Z and (sn)n∈Z cross

(i) between n and n+ 1 if (tn − sn)(tn+1 − sn+1) < 0;

(ii) at n ∈ Z if tn = sn and (tn−1 − sn−1)(tn+1 − sn+1) < 0.

Lemma 3.2.5. Let f be with no conjugate points in U . Let (ξn)n∈Z and (ηn)n∈Z be two
different Jacobi fields along the same configuration (xn)n∈Z ∈ C(D). Then their Aubry
diagrams L ((ξn)n∈Z) and L ((ηn)n∈Z) cross at most once.

Proof. The set of Jacobi vector fields along (xn)n∈Z is a vector space. Denote as (ζn)n∈Z
the Jacobi vector field along (xn)n∈Z obtained as the difference of (ξn)n∈Z and (ηn)n∈Z.
That is, for any n ∈ Z we have ζn = ξn − ηn.
We are going to show that, given (ζM−1, ζM , . . . , ζN , ζN+1) a segment of the Jacobi field
(ζn)n∈Z along (xn)n∈Z such that

ζM−1 > 0 and ζN+1 ≥ 0, (3.23)

then ζi > 0 for i = M, . . . , N . This will imply our lemma: indeed, if by contradiction
the Jacobi vector fields (ξn)n∈Z and (ηn)n∈Z intersect twice, then we have that (up to
exchange the roles of the fields) there exists M < N such that ηM−1 < ξM−1, ηN+1 ≤ ξN+1

and ηi ≥ ξi for some i ∈ JM,NK. This would contradict our result.
Let us show that, assuming (3.23), it holds ζi > 0 for any i ∈ JM,NK.
Denote as hi,i+1 the generating function at the point (xi, xi+1), i.e. hi,i+1 = h(xi, xi+1).
Use the definition of Jacobi field (see (3.3)) and write

H x

M,N(xM , . . . , xN)



ζM
...
ζN


 =




∂2hM,M+1

∂x2
+

∂2hM−1,M

∂X2

∂2hM,M+1

∂x∂X
0 . . . 0

∂2hM,M+1

∂x∂X

∂2hM+1,M+2

∂x2
+

∂2hM,M+1

∂X2

∂2hM+1,M+2

∂x∂X
. . . 0

...
...

. . . . . .
...

0 . . . . . .
∂2hN−1,N

∂x∂X

∂2hN,N+1

∂x2
+

∂2hN−1,N

∂X2






ζM
...
ζN




2. Such minimizing configuration is in C(D).
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=




− ∂2

∂x∂X
h(xM−1, xM)ζM−1

0
...
0

− ∂2

∂x∂X
h(xN , xN+1)ζN+1




.

By (3.23), the first component of this vector is positive and the last one is non negative.
Concerning the matrix H x

M,N , it is a tridiagonal symmetric matrix that is positive definite
by Lemma 3.2.4: so the diagonal terms are strictly positive. The off-diagonal entries are
striclty negative (since ∂2h/∂x∂X < 0). Its inverse (H x

M,N(xM , . . . , xn))
−1 is a symmetric,

positive definite matrix whose entries are all positive (see Section 2.1 in [Meu92] or Section
3.4.1 in Appendix 3.4).
Since

(H x

M,N(xM , . . . , xN))
−1




− ∂2

∂x∂X
h(xM−1, xM)ζM−1

0
...
0

− ∂2

∂x∂X
h(xN , xN+1)ζN+1)




=



ζM
...
ζN


 ,

since all the entries involved are positive, we conclude that ζi > 0 for i =M, . . . , N .

Lemma 3.2.6. Assume that f has no conjugate points in U . Let (xn)n∈Z, (x̃n)n∈Z be two
configurations in C(D). Then, their Aubry diagrams L ((xn)n∈Z) and L ((x̃n)n∈Z) cross
at most once.

Proof. Argue by contradiction and suppose that L ((xn)n∈Z) and L ((x̃n)n∈Z) cross twice.
Without loss of generality, we can assume that there exists N0 ∈ Z, N0 > 1 such that

x0 < x̃0 x̃1 ≤ x1 xN0 ≤ x̃N0 . (3.24)

Let us define the affine functions

f0 :[0, 1] → R

t 7→ f0(t) := x0 + t(x̃0 − x0)

and

f1 : [0, 1] → R

t 7→ f1(t) := x1 + t(x̃1 − x1).

The following claim proves that the segment connecting (x0, x1) to (x̃0, x̃1) in R2 is fully
contained in D . That is, any point on such a segment corresponds to a configuration in
C(D).

Claim 3.2.1. For all t ∈ [0, 1] we have

(f0(t), f1(t)) ∈ D .
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We postpone the proof of Claim 3.2.1 and we finish now proving Lemma 3.2.6.
We can associate to any (f0(t), f1(t)) ∈ D the corresponding point

y(t) := (p1 ◦ F (f0(t), ·))−1(f1(t))

and, by Remark 3.2.5, the point (f0(t), y(t)) belongs to U . By the invariance of U , every
point of the orbit for F of (f0(t), y(t)) is in U and, by Remark 3.2.6, the configuration
corresponding to the orbit is in C(D). For any t ∈ [0, 1], denote the configuration associ-
ated to (f0(t), y(t)) as (fn(t))n∈Z ∈ C(D).
In the following we exhibit a Jacobi field along a configuration which contradicts Lemma
3.2.5 and this will end our proof.
For any t ∈ [0, 1], being (fn(t))n∈Z a configuration in C(D), we have that, for any n ∈ Z,

∂

∂X
h(fn−1(t), fn(t)) +

∂

∂x
h(fn(t), fn+1(t)) = 0.

Differentiate now with respect to t and obtain

∂2

∂X∂x
h(fn−1(t), fn(t)) f

′
n−1(t) +

[
∂2

∂X2
h(fn−1(t), fn(t)) +

∂2

∂x2
h(fn(t), fn+1(t))

]
f ′
n(t)+

+
∂2

∂x∂X
h(fn(t), fn+1(t)) f

′
n+1(t) = 0.

For any t ∈ [0, 1], the sequence (f ′
n(t))n∈Z is then a Jacobi field along the configuration

(fn(t))n∈Z.
Observe in particular (by (3.24)) that

f ′
0(t) = x̃0 − x0 > 0 and f ′

1(t) = x̃1 − x1 ≤ 0.

Since, again by (3.24),
xN0 = fN0(0) ≤ fN0(1) = x̃N0

there exists t̄ ∈ [0, 1] such that f ′
N0
(t̄) ≥ 0.

Look then at the Jacobi field (f ′
n(t̄))n∈Z along the configuration (fn(t̄))n∈Z ∈ C(D): it

holds f ′
0(t̄) > 0, f ′

N0
(t̄) ≥ 0 and f ′

1(t̄) ≤ 0. Let us discuss the two possible cases.

— If f ′
1(t̄) < 0, the Jacobi field changes sign between 0 and 1 and then, since f ′

N0
(t̄) ≥ 0,

there is another change of sign somewhere between 1 and N0 + 1.

— If f ′
1(t̄) = 0, then by the definition of the Jacobi field we have

∂2

∂x∂X
h(f0(t̄), f1(t̄))f

′
0(t̄) +

(
∂2

∂x2
h(f1(t̄), f2(t̄)) +

∂2

∂X2
h(f0(t̄), f1(t̄))

)
f ′
1(t̄)+

+
∂2

∂x∂X
h(f1(t̄), f2(t̄))f

′
2(t̄) =

=
∂2

∂x∂X
h(f0(t̄), f1(t̄))f

′
0(t̄) +

∂2

∂x∂X
h(f1(t̄), f2(t̄)f

′
2(t̄) = 0.

Since ∂2

∂x∂X
h < 0, it holds f ′

2(t̄) < 0. We are so changing sign at 1. Since f ′
N0
(t̄) ≥ 0,

we have another change of sign between 2 and N0 + 1 and we contradict again
Lemma 3.2.5.
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Proof of Claim 3.2.1. The set D is

{(x,X) ∈ R2 : p1 ◦ F (x,Γ1(x)) < X < p1 ◦ F (x,Γ2(x))}.

Clearly, (f0(0), f1(0)) = (x0, x1) and (f0(1), f1(1)) = (x̃0, x̃1) belong to D . That is

p1 ◦ F (x0,Γ1(x0)) < x1 < p1 ◦ F (x0,Γ2(x0)), (3.25)

p1 ◦ F (x̃0,Γ1(x̃0)) < x̃1 < p1 ◦ F (x̃0,Γ2(x̃0)). (3.26)

Observe that

R ∋ x 7→ p1 ◦ F (x,Γ1(x)) ∈ R and R ∋ x 7→ p1 ◦ F (x,Γ2(x)) ∈ R (3.27)

are lifts of orientation preserving homeomorphisms of T. Consequently, they are strictly
increasing and commute with the translation of the quantity 1.
By definition of f0 and f1, for any t ∈ (0, 1)

x0 < f0(t) < x̃0 and x̃1 ≤ f1(t) ≤ x1. (3.28)

By the strict monotonicity of the functions (3.27), thanks to (3.28) and (3.26) for any
t ∈ (0, 1) we have

p1 ◦ F (f0(t),Γ1(f0(t))) < p1 ◦ F (x̃0,Γ1(x̃0)) < x̃1 ≤ f1(t).

In particular
p1 ◦ F (f0(t),Γ1(f0(t))) < f1(t). (3.29)

In a similar way, by (3.28) and (3.25), for any t ∈ (0, 1)

f1(t) ≤ x1 < p1 ◦ F (x0,Γ2(x0)) < p1 ◦ F (f0(t),Γ2(f0(t))).

In particular
f1(t) < p1 ◦ F (f0(t),Γ2(f0(t))). (3.30)

Hence, by (3.29) and (3.30), for any t ∈ [0, 1] the point (f0(t), f1(t))t∈[0,1] belongs to the
set D .

The main result of this paragraph follows immediately from Lemma 3.2.6.

Proposition 3.2.6. Let f : A → A be a conservative positive twist map and let U
be a BIES. If f has no conjugate points in U then all the configurations in C(D) are
minimizing, i.e. C(D) = M (D) ⊂ M .

Proof. Let x = (xn)n∈Z ∈ C(D). Argue by contradiction and suppose that (xn)n∈Z /∈
M (D). That is, there exist M,N ∈ Z,M ≤ N and a segment (x̃M , . . . , x̃N) of another
configuration (x̃n)n∈Z ∈ C(D) (see Remark 3.2.7) with x̃M−1 = xM−1, x̃N+1 = xN+1 such
that (see (3.22))

Hx

M,N(x̃M , . . . , x̃N) < Hx

M,N(xM , . . . , xN).

The Aubry diagrams L ((xn)n∈Z) and L ((x̃n)n∈Z) cross twice at M − 1 and N + 1,
contradicting then Lemma 3.2.6.
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Rotation number of minimizing configurations

This “independent” paragraph concerns properties of rotation number of minimizing con-
figurations. They will be used in the next paragraph to conclude the proof of the C0-
integrability. The main reference of the subsection is [Ban88].

Notation 3.2.7. The function f : A → A is a conservative positive twist map and we
choose a lift F : R2 → R2 of f .

We start by recalling the following result stated by Bangert (see Corollary 3.16 in [Ban88]).

Proposition 3.2.7. There exists a map ρ : M → R, continuous with respect to the
induced product topology on M ⊂ RZ, such that

(i) for any (xn)n∈Z for any i ∈ Z it holds

|xi − x0 − iρ ((xn)n∈Z)| < 1;

(ii) if (xn)n∈Z is periodic, that is there exist p, q ∈ N such that xq = x0 + p, then
ρ ((xn)n∈Z) =

p
q
;

(iii) the function ρ is invariant by translations, i.e. for any (a, b) ∈ Z2 we have

ρ ((xn−a + b)n∈Z) = ρ ((xn)n∈Z) .

The function ρ is called the rotation number function and ρ ((xn)n∈Z) is called the rotation
number of (xn)n∈Z ∈ M .
From condition (i) we immediately deduce that for any (xn)n∈Z ∈ M

ρ ((xn)n∈Z) = lim
|n|→+∞

xn
n
. (3.31)

Remark 3.2.9. Let γ : T → R be a continuous map whose graph is f -invariant and
denote Γ = γ ◦ p. Then, we can always define the rotation number ρ for F of Γ as the
rotation number of a configuration associated to a point (x,Γ(x)).
Indeed, by Remark 3.2.8, for any point of Graph(Γ) the corresponding configuration is
minimizing and its rotation number is so well-defined. Moreover, all the points inGraph(Γ)
provide the same rotation number.
Indeed, let x1, x2 ∈ R be such that x1 ≤ x2 < x1+1. Consider the associated configurations
(p1 ◦ F n(x1,Γ(x1)))n∈Z and (p1 ◦ F n(x2,Γ(x2)))n∈Z. For any n ∈ N the application

R ∋ x 7→ p1 ◦ F n(x,Γ(x)) ∈ R

is a homeomorphism since it is a lift of a homeomorphism of the circle. It is increasing
since p1 ◦ F n(x,Γ(x)) < p1 ◦ F n(x,Γ(x)) + 1 = p1 ◦ F n(x+ 1,Γ(x+ 1)).
In particular for any n ∈ N it holds

p1 ◦F n(x1,Γ(x1)) ≤ p1 ◦F n(x2,Γ(x2)) < p1 ◦F n(x1+1,Γ(x1+1)) = p1 ◦F n(x1,Γ(x1))+1.

Then

ρ((p1 ◦ F n(x1,Γ(x1)))n∈Z) = lim
n→+∞

p1 ◦ F n(x1,Γ(x1))

n
≤
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≤ lim
n→+∞

p1 ◦ F n(x2,Γ(x2))

n
= ρ((p1 ◦ F n(x2,Γ(x2)))n∈Z)

and

ρ((p1 ◦ F n(x2,Γ(x2)))n∈Z) = lim
n→+∞

p1 ◦ F n(x2,Γ(x2))

n
≤

≤ lim
n→+∞

p1 ◦ F n(x1,Γ(x1)) + 1

n
= ρ((p1 ◦ F n(x1,Γ(x1)))n∈Z).

That is
ρ((p1 ◦ F n(x1,Γ(x1)))n∈Z) = ρ((p1 ◦ F n(x2,Γ(x2)))n∈Z).

Notation 3.2.8. For ρ ∈ R, let Mρ denote the set of minimizing configurations whose
rotation number is ρ.

We recall a fundamental result in [Ban88] concerning configurations in Mρ. See Theorems
4.1, 5.1, 5.3, 5.8 and Page 26 in [Ban88].

Theorem 3.2.2. Let ρ ∈ R \Q. Then configurations in Mρ cannot cross.
Let ρ ∈ Q. Then Mρ is the disjoint union of three sets M per

ρ ⊔M+
ρ ⊔M−

ρ and configurations
in M per

ρ ⊔ M+
ρ (respectively M per

ρ ⊔ M−
ρ ) cannot cross.

Remark 3.2.10. In the case of ρ ∈ Q, Theorem 3.2.2 states that, given x0 ∈ R, there
are at most two configurations (x̃i)i∈Z, (x̄i)i∈Z in Mρ such that x̃0 = x̄0 = x0.

We are now going to consider a BIES U . Both its boundary components are bounded.
We will be interested in the rotation numbers realized by orbits of points of U and we will
introduce the definition of twist interval (see Definition 3.2.8). The following proposition
goes back to Birkhoff (see [Bir32][Section 4]) and will assure us the well-definition and
the “non-degeneracy” of the twist interval.

Proposition 3.2.8. Let ψ1, ψ2 : T → R be continuous maps whose graphs are f -invariant
and such that for any x ∈ T it holds ψ1(x) < ψ2(x). Denote Ψ1 = ψ1 ◦ p,Ψ2 = ψ2 ◦ p and
let ϕ1, ϕ2 be the rotation numbers for F of Ψ1,Ψ2, respectively. Then ϕ1 < ϕ2.

We refer to [Her83] for the proof of Proposition 3.2.8 (see Complement 2.4.4, page 10).
From now until the end of the paragraph we refer to Notation 3.2.4 and to the following

Notation 3.2.9. Let ρ1, ρ2 be the rotation numbers for F of Γ1,Γ2, respectively, where
Γi = γi ◦ p for i = 1, 2 and γ1, γ2 are the components of ∂U .

Remark that by Proposition 3.2.8 it holds ρ1 < ρ2. We can give the following

Definition 3.2.8. The real interval [ρ1, ρ2] is the twist interval for F of U .

Proposition 3.2.8 assures us that the twist interval of a BIES does not degenerate into a
point. An outcome of Proposition 3.2.5 is the following

Corollary 3.2.3. Let U be the BIES introduced in Notation 3.2.9. Denote as [ρ1, ρ2] the
twist interval for F of U . Then

M (D) ⊆
⋃

ρ∈[ρ1,ρ2]
Mρ ⊂ M .
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Proof. Let (xn)n∈Z ∈ M (D). By Corollary 3.2.2 it holds (xn)n∈Z ∈ M . We are going
to show that ρ((xn)n∈Z) is in the twist interval [ρ1, ρ2]. Let (xn, yn)n∈Z be the corre-
sponding orbit of the configuration (xn)n∈Z. Apply then Proposition 3.2.5 to the points
(x0,Γ1(x0)), (x0, y0) and (x0,Γ2(x0)). For any n > 0 we have

p1 ◦ F n(x0,Γ1(x0)) < xn < p1 ◦ F n(x0,Γ2(x0)).

Consequenlty

ρ1 = lim
n→+∞

p1 ◦ F n(x0,Γ1(x0))

n
≤ ρ((xn)n∈Z) = lim

n→+∞

xn
n

≤ lim
n→+∞

p1 ◦ F n(x0,Γ2(x0))

n
= ρ2.

Hence, (xn)n∈Z ∈ ⋃ρ∈[ρ1,ρ2] Mρ.

Actually, we can say something more precise concerning M (D).

Lemma 3.2.7. Let U be the BIES introduced in Notation 3.2.4. Let [ρ1, ρ2] be the twist
interval for F of U . Let (xn)n∈Z be a minimizing configuration of rotation number for F
equal to ρ((xn)n∈Z) ∈ (ρ1, ρ2). Then the orbit (xn, yn)n∈Z corresponding to the configuration
(xn)n∈Z is in U . Moreover ⋃

ρ∈(ρ1,ρ2)
Mρ ⊂ M (D).

Proof. The set U is the bounded open domain delimited by the graphs of γ1 and γ2.
Recall that we are assuming that γ1 < γ2. Let us show that (x0, y0) is above γ1, that is
y0 > γ1(x0).
Consider the configurations (xn)n∈Z and (p1 ◦F n(x0,Γ1(x0)))n∈Z. They are both minimiz-
ing configurations (see Proposition 2.8 in [Mat91]). By Lemma 3.1 in [Ban88], they cross
at most once. Actually they cross at n = 0. Since

lim
n→+∞

xn
n

= ρ((xn)n∈Z) > ρ = ρ((p1 ◦ F n(x0,Γ1(x0)))n∈Z) = lim
n→+∞

p1 ◦ F n(x0,Γ1(x0))

n
,

for any n > 0 it holds xn > p1 ◦ F n(x0,Γ1(x0)). In particular x1 > p1 ◦ F (x0,Γ1(x0)) and,
by the twist condition, we have y0 > Γ1(x0), where (x0, y0) is the point corresponding to
the configuration (xn)n∈Z in the lifted framework. Projecting on the annulus, it holds so
y0 > γ1(x0).
An adapted argument shows that (x0, y0) is below γ2, that is y0 < γ2(x0). Thus (x0, y0) ∈
U . By the invariance of U we conclude that the orbit (xn, yn)n∈Z is in U .
In particular, if (xn)n∈Z is a configuration in Mρ for some ρ ∈ (ρ1, ρ2), then (xn)n∈Z ∈
C(D) and since it is minimizing we deduce that (xn)n∈Z ∈ M (D).

Remark 3.2.11. Since for any ρ ∈ R the set Mρ is non empty (see Theorem 3.17 in
[Ban88]), since ρ1 < ρ2 by Proposition 3.2.8 and from Lemma 3.2.7, we immediately
deduce that M (D) is non empty.

The following lemma gives information about the order of rotation number of configura-
tions having the same zero entry. We will use this property in the following paragraph.

Lemma 3.2.8. Let (x, y1), (x, y2) ∈ A be such that y1 ≤ y2. Assume that their corre-
sponding configurations (p1 ◦ F n(x, y1))n∈Z, (p1 ◦ F n(x, y2))n∈Z are minimizing. Then

ρ((p1 ◦ F n(x, y1))n∈Z) ≤ ρ((p1 ◦ F n(x, y2))n∈Z).
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Proof. Denote as (x1n)n∈Z, (x
2
n)n∈Z the configurations (p1◦F n(x, y1))n∈Z, (p1◦F n(x, y2))n∈Z,

respectively. Observe that x10 = x20 = x and, since y1 ≤ y2, by the twist condition, x11 ≤ x21.
By Lemma 3.1 in [Ban88], minimizing configurations cross at most once and so for any
n > 0 we have x1n ≤ x2n. We now conclude, since

ρ((x1n)n∈Z) = lim
n→+∞

x1n
n

≤ lim
n→+∞

x2n
n

= ρ((x2n)n∈Z).

End of the proof of Proposition 3.2.2

In this paragraph we show that if any configurations in C(D) is minimizing, then U
admits a partition into continuous f -invariant essential curves.
Let U be a BIES and we refer to Notation 3.2.4. Denote as [ρ1, ρ2] the twist interval for
F of U (see Definition 3.2.8).
Since any configuration in C(D) is minimizing (see Proposition 3.2.6), we associate a
rotation number to every (xn)n∈Z ∈ C(D), that is to every (x, y) ∈ U .
From Remark 3.2.9, also any configuration (xn)n∈Z whose corresponding point is in ∂U
has a well-defined rotation number.

Definition 3.2.9. The function 3

R : cl(U ) ⊆ R2 → R

(x, y) 7→ R(x, y) :=ρ((p1 ◦ F n(x, y))n∈Z)

is the rotation number function.

In other words, R(x, y) is the rotation number of the configuration associated to the point
(x, y) ∈ cl(U ) (see Remarks 3.2.5, 3.2.6 and 3.2.9).

Proposition 3.2.9. The function R : cl(U ) → R is continuous.

Proof. Let (x, y) ∈ cl(U ) and fix ε > 0. We are going to show that there exists δ > 0
such that for any (x′, y′) ∈ cl(U ) for which

‖(x, y)− (x′, y′)‖ < δ

it holds
|R(x, y)− R(x′, y′)| < ε.

Fix i ∈ N, i ≥ ⌊4
ε
⌋+ 1. By the continuity of the function p1 ◦ F i, there exists δ ∈ (0, ε

4
) so

that for any (x′, y′) ∈ cl(U ) for which

‖(x, y)− (x′, y′)‖ < δ

it holds ∣∣p1 ◦ F i(x, y)− p1 ◦ F i(x′, y′)
∣∣ < ε

4
.

Choose then (x′, y′) ∈ cl(U ) so that ‖(x, y)− (x′, y′)‖ < δ. Denote as (xn)n∈Z, (x
′
n)n∈Z

the corresponding configurations (p1 ◦ F n(x, y))n∈Z, (p1 ◦ F n(x′, y′))n∈Z which are in

C(D) ∪ {(p1 ◦ F n(x,Γ1(x)))n∈Z : x ∈ R} ∪ {(p1 ◦ F n(x,Γ2(x)))n∈Z : x ∈ R}.
3. cl(U ) denotes the closure of U .
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By Proposition 3.2.6, by Corollaries 3.2.2 and 3.2.3 and by Remark 3.2.9, their rotation
numbers are well-defined and contained in [ρ1, ρ2].
By property (i) of Proposition 3.2.7, it holds

|R(x, y)− R(x′, y′)| = |ρ((xn)n∈Z)− ρ((x′n)n∈Z)| ≤

≤
∣∣∣∣
p1 ◦ F i(x, y)− x

i
− p1 ◦ F i(x′, y′)− x′

i

∣∣∣∣+
2

i
.

By the choice of δ > 0 and i ∈ N made above, we have

|R(x, y)− R(x′, y′)| ≤ |x− x′|
i

+
|p1 ◦ F i(x, y)− p1 ◦ F i(x′, y′)|

i
+

2

i
<
ε

4
+
ε

4
+
ε

2
= ε.

Notation 3.2.10. For any α ∈ [ρ1, ρ2] denote as Mα(D) the set of (minimizing) config-
urations in C(D) with rotation number equal to α 4. Denote as Uα ⊂ U the set of points
(x, y) ∈ U whose corresponding configuration is in Mα(D). Denote as Uα ⊂ U the set of
points (x, y) ∈ U such that (p× IdR)

−1(x, y) ∈ Uα.

The following lemma assures us that above any point x0 ∈ R there is at most one point
in U with prescribed rotation number.

Lemma 3.2.9. Assume that C(D) = M (D). Fix ρ ∈ [ρ1, ρ2] and x0 ∈ R. Then there
cannot exist two different points (x0, y1), (x0, y2) ∈ cl(U ) both with rotation number ρ.

Proof. Argue by contradiction and assume that both (x0, y), (x0, ỹ) ∈ cl(U ) have rota-
tion number ρ. Let us say (to fix the ideas) that y < ỹ. Denote (x1n)n∈Z, (x

2
n)n∈Z their

corresponding configurations. Both the configurations are minimizing. Indeed, if the cor-
responding point is in U , then by the hypothesis C(D) = M (D) and since M (D) ⊂ M
(see Corollary 3.2.2), the configuration is minimizing. If the corresponding point is in ∂U ,
the configuration is minimizing by Proposition 2.8 in [Mat91].
The two configurations cross at n = 0. Let us discuss the value of ρ.

(i) If ρ ∈ R \ Q, then, by Theorem 4.1 in [Ban88] (here Theorem 3.2.2), different
configurations in Mρ cannot cross and we have the desired contradiction.

(ii) If ρ ∈ Q, choose ŷ ∈ (y, ỹ) so that (x0, ŷ) ∈ U . Its corresponding configuration
is minimizing since C(D) = M (D) ⊂ M and by Lemma 3.2.8 we deduce that its
rotation number is ρ.
In [Ban88] (see Section 5, Page 26, here Theorem 3.2.2 and Remark 3.2.10), Bangert
shows that above any x0 ∈ R there are at most two points whose configurations are
minimizing and have the same rational rotation number. This gives us the required
contradiction.

The property that any configuration in C(D) is minimizing and Lemma 3.2.9 enable us
to characterize the whole set M (D) in terms of rotation numbers.

4. By Corollary 3.2.3, any minimizing configuration in M (D) has rotation number in [ρ1, ρ2].
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Proposition 3.2.10. It holds

M (D) =
⋃

ρ∈(ρ1,ρ2)
Mρ.

Proof. By Corollary 3.2.3 and by Lemma 3.2.7 we know that

⋃

ρ∈(ρ1,ρ2)
Mρ ⊂ M (D) ⊂

⋃

ρ∈[ρ1,ρ2]
Mρ.

Argue by contradiction and assume there exists a configuration (xn)n∈Z in M (D) which
does not belong to ∪ρ∈(ρ1,ρ2)Mρ. Consequently, ρ((xn)n∈Z) ∈ {ρ1, ρ2}. Without loss of
generality we assume that ρ((xn)n∈Z) = ρ1 (the case ρ2 is treated similarly).
Denote (x0, y0) ∈ U the point that corresponds to the configuration (xn)n∈Z. Consider
now the points (x0, y0), (x0,Γ1(x0)): they belong to the closure of U and have the same
rotation number. This contradicts Lemma 3.2.9 and we conclude.

The next Lemma shows that for any α ∈ (ρ1, ρ2) the projection over the zero entry
p0 : Mα(D) → R is surjective.

Lemma 3.2.10. Let p0 : C(D) → R be the projection over the 0-th entry of a configura-
tion in C(D). For any α ∈ (ρ1, ρ2) the projection p0(Mα(D)) is R.

Proof. Fix α ∈ (ρ1, ρ2) and fix x0 ∈ R. By Remark 3.2.9, we have that R(x0,Γ1(x0)) = ρ1
and R(x0,Γ2(x0)) = ρ2. By the continuity of the function R (see Proposition 3.2.9),
there exists y0 ∈ (Γ1(x0),Γ2(x0)) such that (x0, y0) ∈ U and R(x0, y0) = α. Thus, the
configuration associated to the point (x0, y0) is minimizing with rotation number α.

By Proposition 3.2.10, for any α ∈ (ρ1, ρ2) we have that Mα(D) = Mα.
In order to show that f|U is C0 integrable, we are going to exhibit a partition of U into
continuous invariant essential curves. In particular, this partition will be given by graphs
of functions γα, α ∈ (ρ1, ρ2), each of which corresponds to Uα (see Notation 3.2.10).

Proposition 3.2.11. Assume that C(D) = M (D). Then, for any α ∈ (ρ1, ρ2) the set Uα
is the graph of a continuous function γα : T → R.

Proof. Fix α ∈ (ρ1, ρ2). By Lemmas 3.2.9 and 3.2.10, for any x ∈ R there exists a unique
y = y(x, α) ∈ R such that:

— (x, y) ∈ U ;

— R(x, y) = α.

Let us define the function
Γα : R → R

x 7→ y(x, α).

Claim 3.2.2. The function Γα is 1-periodic.
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Consider x, x + 1 ∈ R. Since both U and the rotation number function R are invariant
by (1, 0)-translations, it holds (x+ 1, y(x, α)) ∈ U and

R(x+ 1, y(x, α)) = ρ ((p1 ◦ F n(x+ 1, y(x, α)))n∈Z) = ρ ((p1 ◦ F n(x, y(x, α)))n∈Z + 1) =

= ρ((p1 ◦ F n(x, y(x, α)))n∈Z) = α.

Then, thanks to the unicity assured by Lemma 3.2.9, we conclude that y(x, α) = y(x+1, α)
as desired. Equivalently, for any x ∈ R it holds

Γα(x+ 1) = Γα(x).

Define now γα : T → R as the unique function so that

Γα = γα ◦ p.
In particular, the graph of γα is the projection over the annulus of the graph of Γα.

Claim 3.2.3. The function γα is continuous.

Let us start by showing that Graph(Γα) is closed. This will imply that also Graph(γα) is
closed.
Let (xn,Γα(xn))n∈N be a sequence in Graph(Γα) converging to (x, y). By definition of
Γα, each (xn,Γα(xn)) has rotation number α and so by the continuity of R on cl(U ) we
deduce that R(x, y) = α. In particular, as an outcome of Proposition 3.2.10 we deduce
that (x, y) ∈ U . Since there exists a unique point Γα(x) so that R(x,Γα(x)) = α, we
conclude that y = Γα(x), i.e. (x, y) ∈ Graph(Γα) and so the graph of Γα is closed.
Since Graph(γα) is contained in U and U is bounded, we deduce that Graph(γα) is also
bounded. Thus, Graph(γα) is compact. By Theorem 5.6.34 in [Soh03], we then conclude
that γα is continuous, as desired.
Finally, by the definition of γα, its graph is Uα.

We can now prove Proposition 3.2.2.

Proof of Proposition 3.2.2. Let (x, y) ∈ U and let (xn)n∈Z be its corresponding config-
uration. By Proposition 3.2.6, (xn)n∈Z ∈ C(D) = M (D) ⊂ M and so it has rotation
number α ∈ (ρ1, ρ2) by Proposition 3.2.10. By definition of Uα, the point (x, y) belongs
to Uα and so by Proposition 3.2.11 it lies on the graph of γα.
By the invariance of U and that of the rotation number, the graph of γα is f -invariant.
Finally, let α1, α2 ∈ (ρ1, ρ2), α1 6= α2. Then the graphs of γα1 and of γα2 cannot intersect.
The graphs of γα, α ∈ (ρ1, ρ2) provide then the required partition of U into continuous
f -invariant essential curves, showing that f|U is C0-integrable.

3.3 Torsion of instability discs

The main result of this section is Proposition 3.1.3, that we recall here.

Proposition 3.1.3. Let f : A → A be a conservative twist map. Let U ⊂ A be an
instability disc. Then ω({z ∈ U : Torsion(f, z) 6= 0}) > 0.
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3.3.1 Zero-torsion set and over-conjugate points

A fundamental tool for our proof is the notion of over-conjugate points. We start
by presenting different definitions of conjugate points, according to what appear in the
literature.

Definition 3.3.1 (conjugate points). The point z ∈ A has a conjugate pointif there exists
n ∈ N∗ and k ∈ Z such that

ṽ(I)(z, χ, n)− ṽ(I)(z, χ, 0) = −k
2
.

Definition 3.3.1 coincides with Definition 3.2.5 and it is used in [CS96] and [Arc16].

Remark 3.3.1. Since f is a positive twist map, by Theorem 2.1.1, any finite-time torsion
with respect to the vertical vector is negative. Hence, in Definition 3.3.1, it holds k ≥ 1.

Definition 3.3.2 (over-conjugate points). The point z ∈ A has a over-conjugate pointif
there exists n ∈ N∗ such that

ṽ(I)(z, χ, n)− ṽ(I)(z, χ, 0) ≤ −1

2
.

We will see that the fundamental notion of conjugate points for our purposes is actually
Definition 3.3.2.

Definition 3.3.3 (I-conjugate points). Let I = (ft)t be an isotopy in Diff 1(A) joining
the identity to f . The point z ∈ A has a I-conjugate pointwith respect to I if there exists
t ∈ R+ such that

ṽ(I)(z, χ, t)− ṽ(I)(z, χ, 0) = −1

2
.

Definition 3.3.3 is equivalent to the one adopted for example in [AABZ15] within the
framework of Tonelli Hamiltonian flows.

Remark 3.3.2. Since the finite-time torsion on A does not depend on the choice of the
isotopy, Definitions 3.3.1 and 3.3.2 do not depend on I = (ft)t. Nevertheless, Definition
3.3.3 depends on the choice of the isotopy.

Remark 3.3.3. Observe that if z ∈ A has a conjugate point, then it has also a over-
conjugate point.
If z ∈ A has a over-conjugate point, then it has also a I-conjugate point(with respect to
any isotopy).

Definition 3.3.4 (Local twist map). A C1 diffeomorphism isotopic to the identity f :
A → A is a positive (negative) local twist map at (x, y) ∈ A if for any lift F : R2 → R2

of f and any lift X ∈ R of x there exists an open interval I ⊂ R of y such that

I ∋ ξ 7→ p1 ◦ F (X, ξ) ∈ R

is an increasing (decreasing) diffeomorphism to its image.
A C1 diffeomorphism isotopic to the identity f : A → A is a positive (negative) local twist
map on U ⊂ A if it is a positive (negative) local twist map at every (x, y) ∈ U .

The following result links the notions of over-conjugate pointsand of local twist maps.
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Proposition 3.3.1. Let f : A → A be a positive twist map (not necessarily conservative)
and let U ⊂ A. The following conditions are equivalent:

(i) no points of U have over-conjugate points;

(ii) for any n ∈ N∗ the map fn is a positive local twist map on U .

Observe that U ⊂ A can be no matter which subset of A!

Proof. Let us show the two implications.

(i) ⇒ (ii) Since f is a positive twist map, by Theorem 2.1.1 in Chapter 2, and since
by hypothesis there are no points with over-conjugate points, it holds that for any
z ∈ U and for any n ∈ N∗

ṽ(I)(z, χ, n)− ṽ(I)(z, χ, 0) ∈
(
−1

2
, 0

)
.

This implies that for any n ∈ N∗ we have

D(p1 ◦ fn)(z)χ > 0.

Consequently, considering z = (x, y) ∈ U , for any lift F : R2 → R2 of f and for any
lift X ∈ R of x, the function

R ∋ ξ 7→ p1 ◦ F n(X, ξ) ∈ R

has positive derivative at y. Since the function is C1, we deduce from the Inverse
Function Theorem that there exists a neighborhood I ⊂ R of y so that

I ∋ ξ 7→ p1 ◦ F n(X, ξ) ∈ R

is an increasing C1 diffeomorphism to its image. Hence, by the arbitrariness of z ∈ U ,
we conclude that for any n ∈ N∗ the map fn is a positive local twist map on U .

(ii) ⇒ (i) Argue by contradiction and assume there exists z ∈ U which has over-conjugate
points, i.e. there exists m ∈ N∗ such that

ṽ(I)(z, χ,m)− ṽ(I)(z, χ, 0) ≤ −1

2
.

We are now going to show the existence of N ∈ N∗ so that for some (and so any)
lift FN of fN it holds

D(p1 ◦ FN)(z)χ ≤ 0.

This will allow us to conclude since it is a contradiction with the fact that fN is a
positive local twist map at z ∈ U .

Claim 3.3.1. There exists N ∈ N∗ such that D(p1 ◦ FN)(z)χ ≤ 0.
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If

ṽ(I)(z, χ,m)− ṽ(I)(z, χ, 0) ∈
[
−k,−k + 1

2

]

for some k ∈ Z, then there is nothing to prove since D(p1 ◦Fm)(z)χ ≤ 0 and so the
required N is m.
Assume so that

ṽ(I)(z, χ,m)− ṽ(I)(z, χ, 0) ∈
(
−k − 1

2
,−k

)

for some k ∈ Z. That is, the angle θ(χ,Dfm(z)χ) admits a measure in
(
−1

2
, 0
)
.

Since by hypothesis z has a over-conjugate pointat m, it holds k ≥ 1.
Moreover, by Theorem 2.1.1 in Chapter 2, we have that

Torsion1(f, z, χ) ∈
(
−1

2
, 0

)

and consequently m > 1. Define now n̄ ∈ N∗ as the maximum integer in J1,mK so
that

· for any 1 ≤ n ≤ n̄ it holds ṽ(I)(z, χ, n)− ṽ(I)(z, χ, 0) ∈
(
−1

2
, 0
)
;

· ṽ(I)(z, χ, n̄+ 1)− ṽ(I)(z, χ, 0) ≤ −1
2
.

We will now show that

ṽ(I)(z, χ, n̄+ 1)− ṽ(I)(z, χ, 0) ∈
[
−1,−1

2

]

and so D(p1 ◦ f n̄+1)(z)χ ≤ 0, concluding our proof.
By definition of n̄, we have that

ṽ(I)(z, χ, n̄)− ṽ(I)(z, χ, 0) > −1

2
. (3.32)

Choose continuous determinations such that

ṽ(I)(z, χ, 0) = 0 and ṽ(I)(f n̄(z),−χ, 0) = −1

2
. (3.33)

As observed in Remark 3.1.1, we highlight the fact that we are interested in consider-
ing different determinations ṽ(I)(x, ξ, ·) independently defined for different (x, ξ) ∈
TA∗.
Denote as w the vector Df n̄(z)χ and choose a continuous determination such that

ṽ(I)(f n̄(z), w, 0) = ṽ(I)(z, χ, n̄). (3.34)

Consequently, by (3.32), (3.33) and (3.34), we have that

ṽ(I)(f n̄(z), w, 0) > ṽ(I)(f n̄(z),−χ, 0).

From Lemma 1.1.1 in Chapter 1 we deduce that

ṽ(I)(f n̄(z), w, 1) > ṽ(I)(f n̄(z),−χ, 1).
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Since t 7→ ṽ(I)(f n̄(z), w, t) and t 7→ ṽ(I)(z, χ, n̄ + t) are lifts of the same angle
function that coincide at t = 0, we deduce that they are equal. Hence

ṽ(I)(z, χ, n̄+ 1) > ṽ(I)(f n̄(z),−χ, 1).

By the choice of the lifts, since ṽ(I)(z, χ, 0) = 0, it holds

ṽ(I)(z, χ, n̄+ 1)− ṽ(I)(z, χ, 0) = ṽ(I)(z, χ, n̄+ 1) > ṽ(I)(f n̄(z),−χ, 1). (3.35)

By Theorem 2.1.1 we have that

ṽ(I)(f n̄(z),−χ, 1)− ṽ(I)(f n̄(z),−χ, 0) ∈
(
−1

2
, 0

)
,

so it holds, by (3.33),

ṽ(I)(f n̄(z),−χ, 1) > −1

2
+ ṽ(I)(f n̄(z),−χ, 0) = −1. (3.36)

From (3.35) and (3.36) we conclude that

ṽ(I)(z, χ, n̄+ 1)− ṽ(I)(z, χ, 0) > −1.

From the definition of n̄, we have that

−1 < ṽ(I)(z, χ, n̄+ 1)− ṽ(I)(z, χ, 0) ≤ −1

2
.

That is, the required integer N is n̄+ 1, concluding so the proof.

The following result concerns the link between full-measure zero-torsion sets, conjugate
points and local twist maps.

Proposition 3.3.2. Let f : A → A be a conservative positive twist map. Let U ⊂ A be
an open f -invariant set such that ω(U) < +∞ (where ω denotes the Lebesgue measure).
Then the following conditions are equivalent.

(1) The torsion at z is zero for every z ∈ U .

(2) The torsion at z is zero for ω-almost every z ∈ U .

(3) No points z ∈ U have over-conjugate points.

(4) For any n ∈ N∗ the map fn is a positive local twist map on U .

Proof. (1) ⇒ (2) This implication is trivial.

(2) ⇒ (3) This implication comes from Proposition 3.2.4 and Remark 3.2.4.
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(3) ⇒ (1) Let z ∈ U . Since z has no over-conjugate points, by definition for any n ∈ N∗

it holds

ṽ(I)(z, χ, n)− ṽ(I)(z, χ, 0) > −1

2
.

By Theorem 2.1.1, since f is a positive twist map, it holds also that for any n ∈ N∗

ṽ(I)(z, χ, n)− ṽ(I)(z, χ, 0) < 0.

Consequently

Torsion(f, z) = lim
n→+∞

ṽ(I)(z, χ, n)− ṽ(I)(z, χ, 0)

n
= 0.

(3) ⇔ (4) This equivalence is exactly the content of Proposition 3.3.1.

Let U ⊂ A be an open f -invariant set. As an outcome of Proposition 3.3.2 we deduce that
the torsion at z ∈ U is zero for ω-almost every z ∈ U if and only if it is zero for every
z ∈ U .

Remark 3.3.4. Let U ⊂ A be an open set such that ω(U) < +∞ and such that there
exists N ∈ N∗ so that fN(U) = U . Denote as

U =
N−1⋃

i=0

f i(U).

Observe that ω({z ∈ U : Torsion(f, z) 6= 0}) = 0 if and only if ω({z ∈ U : Torsion(f, z) 6=
0}) = 0.
Indeed, assume that ω({z ∈ U : Torsion(f, z) 6= 0}) = 0. Observe that

{z ∈ U : Torsion(f, z) 6= 0} =
N−1⋃

i=0

{x ∈ f i(U) : Torsion(f, x) 6= 0}.

Consequently

ω({z ∈ U : Torsion(f, z) 6= 0}) ≤
N−1∑

i=0

ω({x ∈ f i(U) : Torsion(f, x) 6= 0}).

Since the torsion is invariant along the f -orbit of the point, for any i ∈ J0, N − 1K it holds

{x ∈ f i(U) : Torsion(f, x) 6= 0} =

= {y ∈ U : Torsion(f, f−i(y)) 6= 0} = {y ∈ U : Torsion(f, y) 6= 0}.
Hence we conclude because

ω({z ∈ U : Torsion(f, z) 6= 0}) ≤
N−1∑

i=0

ω({x ∈ U : Torsion(f, x) 6= 0}) = 0.

Consequently, by Proposition 3.3.2 and by this observation, if the torsion is null at ω-
almost every point of U then there are no points with over-conjugate pointsin U.
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3.3.2 About instability discs: proof of Proposition 3.1.3

In this Subsection we finally prove Proposition 3.1.3, that is

Proposition 3.1.3. Let f : A → A be a conservative twist map. Let U ⊂ A be an
instability disc. Then ω({z ∈ U : Torsion(f, z) 6= 0}) > 0.

Remark that, by Proposition 3.1.1, the proof of Proposition 3.1.3, together with Proposi-
tion 3.1.2, concludes the proof of Theorem 3.1.1: every bounded connected component of
N (f) has a positive-measure set of points with non-zero torsion.

The proof of Proposition 3.1.3 is made by contradiction. Assuming that ω-almost every
z ∈ U has zero torsion, by Remark 3.3.4 every point in U is free of over-conjugate points.
The absence of over-conjugate pointsallows us to build an invariant foliation in U . The
leaf of the foliation to which z ∈ U belongs is obtained as limit (as n goes to +∞) of
images through fn of vertical lines passing through f−n(z).
The idea of the construction is inspired by the construction of Green bundles (see [Gre58]
and [Arn10]), but we work on the surface instead of working on the tangent spaces.

Notation 3.3.1. In the sequel we are going to consider the standard Euclidean distance,
denoted as d.

The construction of the foliation (Gz)z∈U

We are going to build our foliation in a more general framework.

Hypothesis (H). Let U ⊂ A be a non empty open bounded set homeomorphic to an
open disc so that there exists N ∈ N∗ such that fN(U) = U and so that

ω({z ∈ U : Torsion(f, z) 6= 0}) = 0.

In order to prove Proposition 3.1.3, we will argue by contradiction and assume that U is
an instability disc such that the torsion is ω-almost everywhere null: in particular U will
verify Hypothesis (H) (see Definition 3.1.5).

Remark 3.3.5. Let U ⊂ A satisfy Hypothesis (H). Then from Remark 3.3.4 every points
in U is free of over-conjugate points.

Let fix a lift F : R2 → R2 of f . Recall that p1, p2 : R2 → R denote the projection over the
first and the second coordinate, respectively. Denote as U ⊂ R2 a connected component
of the lift of U on R2. In particular, U is an open set, homeomorphic to an open disc and
there exists k ∈ Z such that

FN(U ) = U + (k, 0) = {z + (k, 0) : z ∈ U }.

Let z ∈ U . Denote as V CC,U
F−n(z) the connected component of

VF−n(z) ∩ F−n(U ) = {(p1(F−n(z)), y) : y ∈ R} ∩ F−n(U )

which contains F−n(z). Observe that ∂V CC,U
F−n(z) ⊂ ∂F−n(U ) and, since V CC,U

F−n(z) is an open

segment in the real line, it holds that ∂V CC,U
F−n(z) is made up of two distinct points.
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Denote then as Gn,z the image F n(V CC,U
F−n(z)): observe that for any n ∈ N the point z

belongs to Gn,z. Moreover, the boundary ∂Gn,z is contained in ∂U by the invariance of
the boundary.
We start now discussing the structure of these Gn,z.

Lemma 3.3.1. For any z ∈ U and for any n ∈ N∗ the set Gn,z is the graph of a function

Γn,z : (an,z, bn,z) → R,

where (an,z, bn,z) ⊂ R.

Proof. By Remark 3.3.5, there are no points with over-conjugate pointsin U . By Propo-
sition 3.3.1 for any n ∈ N∗ the map fn is a local positive twist map on

⋃
i∈Z f

i(U) =⋃N−1
i=0 f i(U).

Fix now n ∈ N∗ and consider V CC,U
F−n(z). The function

p2(V
CC,U
F−n(z)) ∋ ξ 7→ p1 ◦ F n

(
p1(F

−n(z)), ξ
)
∈ R

is then an increasing diffeomorphism to its image. Its inverse function is so defined on an
open interval that we denote as (an,z, bn,z) ⊂ R. Denote such an inverse function as

(an,z, bn,z) ∋ x 7→ Fn,z(x) ∈ p2(V
CC,U
F−n(z))

and remark that it remains an increasing diffeomorphism to its image.
Define now the function

Γn,z : (an,z, bn,z) → R

x 7→ Γn,z(x) := p2 ◦ F n
(
p1(F

−n(z)),Fn,z(x)
)
.

Thus, by construction, the graph of Γn,z is exactly the set Gn,z and we conclude the proof.

For the construction of the foliation (Gz)z∈U we are going to use Green bundles. We
recall here the main definitions.

Notation 3.3.2. Let z ∈ A and let n ∈ Z \ {0}. Let F : R2 → R2 be the fixed lift of f .
Let z ∈ R2 be a lift of z. Denote as

Gn(z) = Dfn(f−n(z))V (f−n(z)) ∈ TzA,

where V (f−n(z)) = kerDp̄1(f
−n(z)) is the vertical line in Tf−n(z)A. The slope of Gn(z),

when defined, is denoted as sn(z) and so

Gn(z) = {(δ, sn(z)δ) : δ ∈ R}.

We observe that, thanks to the trivialization of the tangent bundle, the subspace Gn(z)
can be identified with the subspace

DF n(F−n(z))V (F−n(z)) ⊂ TzR
2.

In the sequel, with an abuse of notation, we denote as sn(z) both the slope of Gn(z) and
the slope of DF n(F−n(z))V (F−n(z)).
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Remark 3.3.7. If there are no points with over-conjugate points, then for any z and
any n ∈ N∗ the value sn(z) is finite. Indeed, by the absence of over-conjugate points(see
Definition 3.3.2), for any z ∈ U and for any n ∈ N∗ it holds

ṽ(f)(f−n(z), χ, n) ∈
(
−1

2
+ k, k

)
for some k ∈ Z.

Thus, from the definition of θn(z) and from (3.38), we have that

θn(z) ∈
(
−1

4
,
1

4

)
.

Finally, from (3.37), we conclude that |sn(z)| = |tan(2πθn(z))| < +∞.

We recall here the definitions of Green set and Green bundles of f , refering to [Arn16]
and [Arn10].
The Green set of f is denoted as Green(f) and it is the set of points of A such that along
the whole orbit of these points it holds for any n ≥ 1

s−n(x) < s−n−1(x) < sn+1(x) < sn(x).

Definition 3.3.5. If x ∈ Green(f), the two Green bundles at x are subspaces, denoted as
G+(x), G−(x), contained in the tangent space TzA with slopes s+(x), s−(x), respectively,
where

s+(x) = lim
n→+∞

sn(x) and s−(x) = lim
n→+∞

s−n(x).

Let us recall the characterization of the Green bundles presented in Theorem 7 in [Arn16].

Theorem 3.3.1 (Theorem 7 in [Arn16]). Let f : A → A be a positive conservative twist
map. The following conditions are equivalent:

(i) x ∈ Green(f);

(ii) all along the f -orbit of x for any n ≥ 1 it holds sn(x) > s−1(x).

Thanks to this last characterization we deduce the following

Proposition 3.3.3. Let f : A → A be a conservative positive twist map and let U
be an open bounded periodic set homeomorphic to an open disc such that ω({z ∈ U :
Torsion(f, z) 6= 0}) = 0. Then

U ⊂ Green(f).

Proof. Fix z ∈ U . From what observed in (3.37), it holds for any m ≥ 1

sm(z) = tan

(
2π

(
ṽ(f)(f−m(z), χ,m) +

1

4

))
. (3.39)

Consider now the slope s−1(z): since the tangent function is π-periodic, it can be defined
also as the tangent of the angle between H and Df−1(f(z))(−χ). Thus

s−1(z) = tan

(
2π

(
ṽ(f−1)(f(z),−χ, 1) + 1

4

))
. (3.40)
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The function f−1 is a negative twist map and so, by Theorem 2.1.1 and Remark 2.1.2, it
holds that

ṽ(f−1)(f(z),−χ, 1) ∈
(
−1

2
+ k, k

)
for some k ∈ Z.

Consequently, |s−1(z)| =
∣∣tan

(
2π
(
ṽ(f−1)(f(z),−χ, 1) + 1

4

))∣∣ < +∞.
By the periodicity of the tangent function, equalities (3.39) and (3.40) do not depend on
the choice of the continuous determinations ṽ(f)(f−m(z), χ, ·) and ṽ(f−1)(f(z),−χ, ·).
Choose the continuous determination of t 7→ v(f−1)(f(z),−χ, t) such that ṽ(f−1)(f(z),−χ, 0) =
−1

2
. Therefore, by Theorem 2.1.1 and Remark 2.1.2,

ṽ(f−1)(f(z),−χ, 1) ∈
(
−1

2
, 0

)
. (3.41)

By hypothesis the set of points in U with not zero torsion has zero ω measure. By Remark
3.3.4, there are no points with over-conjugate pointsin

⋃N−1
i=0 f i(U), where N denotes the

period of U . Hence, since for any m ≥ 1 the point f−m(z) belongs to
⋃N−1
i=0 f i(U), we have

that for any l ∈ N∗

ṽ(f)(f−m(z), χ, l)− ṽ(f)(f−m(z), χ, 0) ∈
(
−1

2
, 0

)
. (3.42)

We are going now to use the characterization of the Green set of Theorem 7 in [Arn16]
(here Theorem 3.3.1). That is, z ∈ Green(f) if and only if for any n ≥ 1 it holds

sn(z) > s−1(z). (3.43)

Argue by contradiction and assume that there exists n ∈ N∗ such that sn(z) ≤ s−1(z).
Choose the continuous determination of t 7→ v(f)(f−n(z), χ, t) such that ṽ(f)(f−n(z), χ, 0) =
0. Thus, by (3.42),

ṽ(f)(f−n(z), χ, n) ∈
(
−1

2
, 0

)
. (3.44)

By the contradiction hypothesis, by (3.39) and by (3.40) it holds

tan

(
2π

(
ṽ(f)(f−n(z), χ, n) +

1

4

))
= sn(z) ≤

≤ s−1(z) = tan

(
2π

(
ṽ(f−1)(f(z),−χ, 1) + 1

4

))
. (3.45)

By the choices of the lifts, i.e. by (3.41) and (3.44), we deduce from (3.45) that

ṽ(f)(f−n(z), χ, n) ≤ ṽ(f−1)(f(z),−χ, 1). (3.46)

Choose a continuous determination of t 7→ v(f)(z,Dfn(f−n(z))χ, t) such that

ṽ(f)(z,Dfn(f−n(z))χ, 0) = ṽ(f)(f−n(z), χ, n).

Choose a continuous determination of t 7→ v(f)(z,Df−1(f(z))(−χ), t) such that

ṽ(f)(z,Df−1(f(z))(−χ), 0) = ṽ(f−1)(f(z),−χ, 1).
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From Lemma 1.1.1 in Chapter 1, since from (3.46)

ṽ(f)(z,Dfn(f−n(z))χ, 0) ≤ ṽ(f)(z,Df−1(f(z))(−χ), 0),

we have that

ṽ(f)(z,Dfn(f−n(z))χ, 1) ≤ ṽ(f)(z,Df−1(f(z))(−χ), 1). (3.47)

Since t 7→ ṽ(f)(f−n(z), χ, n + t) and t 7→ ṽ(f)(z,Dfn(f−n(z))χ, t) are lifts of the same
angle function that coincide at t = 0, we deduce that

ṽ(f)(z,Dfn(f−n(z))χ, 1) = ṽ(f)(f−n(z), χ, n+ 1). (3.48)

From (3.42) and from the choice of the lift we have

ṽ(f)(f−n(z), χ, n+ 1) ∈
(
−1

2
, 0

)
. (3.49)

Consider now ṽ(f)(z,Df−1(f(z))(−χ), 1). Since f is a positive twist map, by Proposition
2.1.2, we have

ṽ(f)(z,Df−1(f(z))(−χ), 1)− ṽ(f)(z,Df−1(f(z))(−χ), 0) ∈
(
−1,

1

2

)
. (3.50)

Since ṽ(f)(z,Df−1(f(z))(−χ), 0) = ṽ(f−1)(f(z),−χ, 1) and from (3.41), it holds

ṽ(f)(z,Df−1(f(z))(−χ), 0) ∈
(
−1

2
, 0

)
.

Consequently, from (3.50), it holds

ṽ(f)(z,Df−1(f(z))(−χ), 1) ∈
(
−3

2
,
1

2

)
. (3.51)

Observe that ṽ(f)(z,Df−1(f(z))(−χ), 1) is a measure of the oriented angle between χ
and Df(z)Df−1(f(z))(−χ) = −χ. That is

ṽ(f)(z,Df−1(f(z))(−χ), 1) = −1

2
+ k for some k ∈ Z.

From (3.51) we deduce that ṽ(f)(z,Df−1(f(z))(−χ), 1) = −1
2
.

This implies, together with (3.49), (3.47) and (3.48), that

−1

2
< ṽ(f)(f−n(z), χ, n+ 1) ≤ ṽ(f)(z,Df−1(f(z))(−χ), 1) = −1

2
,

which is the required contradiction.
We so conclude that for any n ≥ 1 it holds sn(z) > s−1(z). Equivalently, from Theorem 7
in [Arn16] (here Theorem 3.3.1), z ∈ Green(f).
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It holds that every z ∈ ⋃N−1
i=0 f i(U) is in Green(f). Consequently, for any z ∈ ⋃N−1

i=0 f i(U)
and for any n ∈ N, n > 1 we have that

s−1(z) < s−n(z) < sn(z) < s1(z). (3.52)

Denote as

K := max

(
max

z∈cl(
⋃N−1

i=0 f i(U))
|s−1(z)|, max

z∈cl(
⋃N−1

i=0 f i(U))
|s1(z)|

)
, (3.53)

where cl(
⋃N−1
i=0 f i(U)) denotes the closure of

⋃N−1
i=0 f i(U).

Remark 3.3.8. Observe that

s−1(z) = tan

(
2π

(
ṽ(f−1)(f(z), χ, 1) +

1

4

))

and

s1(z) = tan

(
2π

(
ṽ(f)(f−1(z), χ, 1) +

1

4

))
.

Since f is a positive twist map and f−1 is a negative twist map, from Theorem 2.1.1
and Remark 2.1.2, we deduce that for any z ∈ A both s−1(z) and s1(z) are finite. Since
s−1(z), s1(z) depend continuously on z and since the closure of

⋃N−1
i=0 f i(U) is bounded,

we conclude that the constant K, defined in (3.53), is finite.

We are now going to show that every function Γn,z is a K-Lipschitz function.

Lemma 3.3.2. For every z ∈ U and for every n ≥ 1 the function Γn,z : (an,z, bn,z) → R
is K-Lipschitz.

Proof. Fix z ∈ U and n ∈ N∗. Consider the function Γn,z : (an,z, bn,z) → R. Let x, y ∈
(an,z, bn,z), x < y. By definition of Γn,z it holds that F−n(x,Γn,z(x)), F

−n(y,Γn,z(y)) both
belong to V CC,U

F−n(z), that is the connected component of

VF−n(z) ∩ F−n(U )

that contains F−n(z). Denote now X = p2 ◦ F−n(x,Γn,z(x)), Y = p2 ◦ F−n(y,Γn,z(y)). In
particular {

(p1(F
−n(z)), δ) : δ ∈ [X, Y ]

}
⊂ V CC,U

F−n(z) ⊂ F−n(U ).

By Proposition 3.3.2 and by Remark 3.3.4, at every point of
⋃
i∈Z f

i(U) the map fn is a
positive local twist map. As a consequence, it holds that X < Y .
By Cauchy’s mean value theorem, there exists w ∈ (X, Y ) such that

p2 ◦ F n(p1 ◦ F−n(z), Y )− p2 ◦ F n(p1 ◦ F−n(z), X)

p1 ◦ F n(p1 ◦ F−n(z), Y )− p1 ◦ F n(p1 ◦ F−n(z), X)
=
D(p2 ◦ F n)(p1 ◦ F−n(z), w)χ

D(p1 ◦ F n)(p1 ◦ F−n(z), w)χ
.

(3.54)
Observe that

D(p2 ◦ F n)(p1 ◦ F−n(z), w)χ

D(p1 ◦ F n)(p1 ◦ F−n(z), w)χ
= sn(p1 ◦ F−n(z), w).

From (3.54), by the definition of K (see (3.53)) and from (3.52), it holds
∣∣p2 ◦ F n(p1 ◦ F−n(z), Y )− p2 ◦ F n(p1 ◦ F−n(z), X)

∣∣ ≤
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≤ K
∣∣p1 ◦ F n(p1 ◦ F−n(z), Y )− p1 ◦ F n(p1 ◦ F−n(z), X)

∣∣.
We then conclude remarking that

p2 ◦ F n(p1 ◦ F−n(z), Y )− p2 ◦ F n(p1 ◦ F−n(z), X) = Γn,z(y)− Γn,z(x)

and
p1 ◦ F n(p1 ◦ F−n(z), Y )− p1 ◦ F n(p1 ◦ F−n(z), X) = y − x,

that gives us the desired inequality

|Γn,z(y)− Γn,z(x)| ≤ K|y − x|.

Remark 3.3.9. For every z ∈ ⋃i∈Z F
i(U ) and every n ≥ 1, each function Γn,z can be

extended on the closed interval [an,z, bn,z] so that Γn,z is still continuous and K-Lipschitz
(see Section 3.4.2 in Appendix 3.4).
With an abuse of notation, we refer to every such extension still as Γn,z.

Remark 3.3.10. For any n ≥ 1 and any z ∈ U , the points (an,z,Γn,z(anz)) and
(bn,z,Γn,z(bn,z)) are points on the boundary of U .

For a fixed z ∈ U , we focus now on the relations between the graphs Γn,z as n ≥ 1
varies.

Proposition 3.3.4. Let z ∈ U . The graphs (Graph(Γn,z))n≥1, i.e. (Gn,z)n≥1 are well-
ordered (see Figure 3.2). That is

(i) for any x ∈ (p1(z), bn,z) ∩ (p1(z), bn+1,z) it holds

Γn+1,z(x) < Γn,z(x);

(ii) for any x ∈ (an,z, p1(z)) ∩ (an+1,z, p1(z)) it holds

Γn,z(x) < Γn+1,z(x).

Proof. Fix n ≥ 1 and consider the case (i) (the case (ii) can be treated similarly), i.e. let
x ∈ (p1(z), bn,z) ∩ (p1(z), bn+1,z).
Define the function

[p1(z),min(bn,z, bn+1,z)) ∋ s 7→ Ψ(s) = Γn,z(s)− Γn+1,z(s) ∈ R.

Observe that Ψ(p1(z)) = 0. Since, by Proposition 3.3.3, it holds U ⊂ Green(f), we have
that sn+1(z) < sn(z) from the definition of Green(f) 6.
That is, by (3.37),

sn+1(z) = tan

(
2π

(
ṽ(F )(F−(n+1)(z), χ, n+ 1) +

1

4

))
<

< tan

(
2π

(
ṽ(F )(F−n(z), χ, n) +

1

4

))
= sn(z). (3.55)

6. With an abuse of notation, in order to lighten the notation, we denote as sn(z) both the slope of
Gn((p× Id)(z)) and the slope of DFn(F−n(z))V (F−n(z)).
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Figure 3.2 – The graphs of (Γn,z)n≥1 are well-ordered.

Observe that sn(z) = Γ′
n,z(p1(z)) and sn+1(z) = Γ′

n+1,z(p1(z)) (see Notation 3.3.2). From
the definition of Ψ and since sn+1(z) < sn(z) (see (3.55)), it holds that Ψ′(p1(z)) > 0.
So there exists s̄ such that [p1(z), p1(z) + s̄] ⊂ [p1(z),min(bn,z, bn+1,z)] and for any s ∈
(p1(z), p1(z) + s̄] it holds Ψ(s) > Ψ(p1(z)) = 0.

We claim now that for any s ∈ (p1(z),min(bn,z, bn+1,z)) it holds Ψ(s) > 0. Argue by
contradiction and assume there exists ξ ∈ (p1(z),min(bn,z, bn+1,z)) such that Ψ(ξ) ≤ 0.
By the continuity of the function Ψ there exists X ∈ (p1(z),min(bn,z, bn+1,z))

7 such that
Ψ(X) = 0. Equivalently, Γn,z(X) = Γn+1,z(X).
Thus, we have that F−n(X,Γn,z(X)) = F−n(X,Γn+1,z(X)).
From the definition of Γn,z and Γn+1,z it holds that F−n(X,Γn,z(X)) belongs to V CC,U

F−n(z),

while F−n(X,Γn+1,z(X)) belongs to F (V CC,U

F−(n+1)(z)
).

Since f is a positive twist map, the image F (V CC,U

F−(n+1)(z)
) is a graph over its projection on

the first coordinate and

F (V CC,U

F−(n+1)(z)
) ∩ V CC,U

F−n(z) = {F−n(z)}.

Since F−n(X,Γn,z(X)) = F−n(X,Γn+1,z(X)) is not F−n(z) because X > p1(z), we obtain
the desired contradiction and we conclude.

The key idea for building our invariant foliation is considering the limit as n → +∞
of well-ordered leaves (Gn,z)n≥1 at every z ∈ U .

Notation 3.3.4. Let z ∈ U . Denote

az := lim sup
n→+∞

an,z and bz := lim inf
n→+∞

bn,z.

Since U is bounded, there exists C > such that for every z ∈ U it holds |az| ≤ C, |bz| ≤ C.

Lemma 3.3.3. Let z ∈ U . Then az < p1(z) < bz.

7. Actually we have that X ∈ (p1(z) + s̄,min(bn,z, bn+1,z)).
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Proof. Since U is open, there exists ε > 0 such that the closed ball Bε(z) ⊂ U . We
are now going to build a “security rectangle” around z whose projection over the first
coordinate is contained in (an,z, bn,z) for any n ≥ 1.
Recall that, from Lemma 3.3.2, every function Γn,z is K-Lipschitz. Consider the horizontal
K-cone at z, i.e.

CK,hor
z = {w ∈ R2 : |p2(w − z)| ≤ K|p1(w − z)|},

and intersect it with ∂Bε(z), see Figure 3.3. We so obtain the vertices of our “security

Figure 3.3 – How to build the “security rectangle” around z.

rectangle” R ⊂ U , which is, for some 0 < δ < ε,

R = [p1(z)− δ, p1(z) + δ]× [p2(z)−Kδ, p2(z) +Kδ] .

By Lemma 3.3.2, every Γn,z is K-Lipschitz. We claim now that, for any n ≥ 1, the function
Γn,z is defined on p1(R) = [p1(z)−δ, p1(z)+δ]. Indeed, assume by contradiction that bn,z <
p1(z) + δ. Since Γn,z is K-Lipschitz, we deduce that (bn,z,Γn,z(bn,z)) ∈ R ⊂ Bε(z) ⊂ U .
This contradicts the fact that the point (bn,z,Γn,z(bn,z)) belongs to the boundary of U
(see Remark 3.3.10).
We so conclude that

az = lim sup
n→+∞

an,z ≤ p1(z)− δ < p1(z) < p1(z) + δ ≤ lim inf
n→+∞

bn,z = bz.

We start now discussing the convergence of the functions (Γn,z)n≥1, in particular the
pointwise convergence.

Lemma 3.3.4. Let z ∈ U . The sequence (Γn,z)n≥1 converges pointwise on (az, bz).

Proof. Let x ∈ (az, bz). If p1(z) = x, then the sequence (Γn,z(x))n≥1 is constant and equal
to p2(z).
Assume now that p1(z) 6= x and denote η := min((x− az), (bz − x)) > 0. We discuss the
two possible cases.
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(i) Let p1(z) < x. By definition of bz, there exists n̄ ∈ N such that

inf
m≥n̄

bm,z > bz − η ≥ x.

So for any m ≥ n̄ it holds that x ∈ (p1(z), bm,z) and the function Γm,z is well-defined
at x. By Proposition 3.3.4 the sequence (Γm,z(x))m≥n̄ is decreasing and bounded
(because it is contained in U which is bounded). Therefore, (Γm,z(x))m≥1 converges.
Denote

Γz(x) := lim
n→+∞

Γn,z(x).

(ii) Similar arguments allow us to conclude in the case p1(z) > x.

So far, we have defined at z ∈ U the function

Γz :(az, bz) → R

x 7→ Γz(x) := lim
n→+∞

Γn,z(x).
(3.56)

Lemma 3.3.5. Let z ∈ U . The function Γz : (az, bz) → R is K-Lipschitz (so in particular
uniformly continuous).

Proof. Let x, y ∈ (az, bz). There exist ñ ∈ N such that for any n ≥ ñ both x and y are in
(an,z, bn,z).
Fix ε > 0. Since the sequences (Γn,z(x))n≥ñ, (Γn,z(y))n≥ñ converge to Γz(x),Γz(y) respec-
tively, there exists n̄ ∈ N, n̄ ≥ ñ such that for any n ≥ n̄ it holds

|Γz(x)− Γn,z(x)| <
ε

2
and |Γz(y)− Γn,z(y)| <

ε

2
.

Consequently for any n ≥ n̄ we have

|Γz(x)− Γz(y)| ≤

≤ |Γz(x)− Γn,z(x)|+ |Γn,z(x)− Γn,z(y)|+ |Γn,z(y)− Γz(y)| < |Γn,z(x)− Γn,z(y)|+ ε.

Since for all n ≥ 1 the function Γn,z is K-Lipschitz, we deduce that |Γz(x)− Γz(y)| <
K|x− y|+ ε.
By the arbitrariness of ε, we conclude that |Γz(x)− Γz(y)| ≤ K|x− y|. That is, Γz is
K-Lipschitz (so in particular uniform continuous).

We can actually say something more about the convergence of (Γn,z |[p1(z),bz))n≥1 and of
(Γn,z |(az ,p1(z)])n≥1, which are decreasing and increasing sequences, respectively. Indeed, by
Dini’s Lemma (see for example Theorem 7.13 in [Rud76]) it holds

Fact 3.3.1. On any compact subset of (az, bz) the sequence (Γn,z)n≥1 uniformly converges
to the function Γz.

Remark 3.3.11. For any z ∈ U , we can extend the function Γz on the closed interval
[az, bz] (in an unique way) so that Γz : [az, bz] → R is uniform continuous and K-Lipschitz
(see Section 3.4.2 in Appendix 3.4). With an abuse of notation, we refer to such an
extension still as Γz.
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Lemma 3.3.6. Let z ∈ U . The points (az,Γz(az)) and (bz,Γz(bz)) belong to the boundary
of U .

Proof. We are going to show the existence of a sequence (ank,z,Γnk,z(ank,z))k≥1 which
belongs to the boundary of U and converges to (az,Γz(az)). Since the boundary of U is
closed, we will then deduce that (az,Γz(az)) ∈ ∂U .
By definition of az, there exists a subsequence (ank,z)k≥1 converging to az. It is so sufficient
showing that

lim
k→+∞

Γnk,z(ank,z) = Γz(az).

By Lemma 3.4.2 in Section 3.4.2, the value Γz(az) is the limit limm→+∞ Γz(xm), where
(xm)m≥1 is a sequence in (az, bz) converging to az.
Recall that, by Lemma 3.4.2 in Section 3.4.2, for any n ≥ 1 the functions Γn,z : [an,z, bn,z] →
R and the function Γz : [az, bz] → R are all K-Lipschitz.
Fix now ε > 0. Let m̄ ∈ N be such that for any m ≥ m̄ it holds

0 < ηm := xm − az <
ε

4K
.

Let k̄ = k̄(m̄) ∈ N be such that for any k ≥ k̄ it holds

|ank,z − az| <
ηm̄
2

=
xm̄ − az

2

and so ank,z < az +
ηm̄
2
< xm̄.

In particular, for any k ≥ k̄, the function Γnk,z is well-defined at xm̄.
Since (Γn,z)n∈N converges pointwise to Γz, there exists k̃ ∈ N, k̃ ≥ k̄ such that for any
k ≥ k̃ it holds

|Γnk,z(xm̄)− Γz(xm̄)| <
ε

3
.

Hence, for k ≥ k̃ it holds
|Γnk,z(ank,z)− Γz(az)| ≤

≤ |Γnk,z(ank,z)− Γnk,z(xm̄)|+ |Γnk,z(xm̄)− Γz(xm̄)|+ |Γz(xm̄)− Γz(az)| ≤

≤ K|ank,z − xm̄|+
ε

3
+K|xm̄ − az|,

where in the last inequality we use the fact that both Γnk,z and Γz are K-Lipschitz on the
closure of their own domain of definition.
Now

|Γnk,z(ank,z)− Γz(az)| ≤ K|ank,z − az|+ 2K|az − xm̄|+
ε

3
<
ε

8
+
ε

2
+
ε

3
=

23

24
ε < ε.

Consequently, the sequence (ank,z,Γnk,z(ank,z))k ⊂ ∂U converges to (az,Γz(az)). Thus,
(az,Γz(az)) belongs to the boundary of U .
A similar argument shows that also (bz,Γz(bz)) ∈ ∂U .

Remark 3.3.12. In Lemma 3.3.6 we actually show that there exists a sequence (ank,z,Γnk,z(ank,z))k≥1

(respectively (bnk,z,Γnk,z(bnk,z))k≥1) which converges to (az,Γz(az)) (respectively to (bz,Γz(bz))).
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Similarly, for any n ≥ ñ we deduce that

Γn,z′(x2)− Γn,z(x2) > −∆

3
+ η − ∆

3
≥ ∆

3
> 0.

Fix now n ≥ ñ. Because of the continuity of the function ξ 7→ Γn,z(ξ)− Γn,z′(ξ) and since
Γn,z(x1) − Γn,z′(x1) > 0 > Γn,z(x2) − Γn,z′(x2), we deduce that there exists X ∈ (x1, x2)
such that both Γn,z and Γn,z′ are defined at X and Γn,z(X)− Γn,z′(X) = 0.
From the definitions of Γn,z,Γn,z′ , we have exhibited a point of intersection between
F n(VF−n(z)) and F n(VF−n(z′)).
That is, the vertical lines VF−n(z) and VF−n(z′) intersect at some point and thus they must
coincide. We deduce so that the leaves Graph(Γn,z) and Graph(Γn,z′) coincide, contra-
dicting the fact that Γn,z(x1) 6= Γn,z′(x1) and Γn,z(x2) 6= Γn,z′(x2).

About the invariance of leaves of (Gz)z∈U

We discuss now the dynamics over each leaf and we will show the invariance of the
foliation. That is

Proposition 3.3.6. Let z ∈ U . Then F (Gz) = GF (z).

Remark 3.3.14. In the previous sections we have built the leaves of the foliation Gz for
z ∈ U . The construction can be done for any z ∈ F i(U ) for i ∈ J0, N − 1K, where N is
the period of U .

Proof. We are going to prove that F (Gz) ⊂ GF (z). Once we will prove this inclusion, we
can conclude. Indeed, if by contradiction there exists a point in GF (z) \F (Gz), then, since
we are assuming that F (Gz) ⊂ GF (z), it holds that F (az,Γz(az)) or F (bz,Γz(bz)) is in
the open set F (U ). This contradicts the fact that {(az,Γz(az)), (bz,Γz(bz))} ⊂ ∂U (see
Lemma 3.3.6 and Notation 3.3.5) and that F (∂U ) = ∂(F (U )).
Argue by contradiction and assume that there exists w ∈ F (Gz) but w /∈ GF (z). Actually,

we can say that w /∈ ĜF (z). Indeed, if w would belong to ĜF (z)\GF (z), then it should belong
to:

— either the boundary of F (U ), contradicting the hypothesis of being in F (Gz) ⊂
F (U ) and the fact that F (U ) is open;

— or to a connected component of ĜF (z) ∩ F (U ) which does not contain F (z). Since
F is a homeomorphism and by the definition of Gz, this contradicts the fact that
w ∈ F (Gz) and that F (Gz) remains connected and contains F (z).

In particular, w = F (x,Γz(x)) for some x ∈ (az, bz). Without loss of generality we can
assume that x 6= p1(z).
Denote

d(w,GF (z)) = inf
ζ∈GF (z)

d(w, ζ) ≥ min
ζ∈ĜF (z)

d(w, ζ) =: ε > 0.

By the uniform continuity of F on U , there exists δ > 0 such that for any r, s ∈ U so
that d(r, s) < δ it holds that d(F (r), F (s)) < ε

3
.

There exists n̄ ∈ N such that for any n ≥ n̄ we have

x ∈ (an,z, bn,z) and |Γn,z(x)− Γz(x)| < δ.
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Consequently for any n ≥ n̄ we have 8

d(F (x,Γz(x)), F (x,Γn,z(x))) <
ε

3
.

Assume now that p1(z) < x < bz. For any n ∈ N, when defined, it holds

Γz(x) ≤ Γn+1,z(x) < Γn,z(x). (3.57)

For any n ≥ n̄ denote X(n) = p1 ◦ F (x,Γn,z(x)). From (3.57) and since F is the lift of a
positive twist map, for any n ≥ n̄ it holds X(n+ 1) < X(n).
The sequence (X(n))n≥n̄ is decreasing and bounded (since F (U ) is bounded). Therefore,
it converges and we denote as

X := lim
m→+∞

X(m) ≤ X(n) ∀n ≥ n̄.

Observe that for any n ≥ n̄ the point F (x,Γn,z(x)) belongs to

F n+1(VF−n(z)) = F n+1(VF−(n+1)(F (z))) = Graph(Γn+1,F (z)).

Hence, for any n ≥ n̄ it holds

X(n) ∈
(
an+1,F (z), bn+1,F (z)

)

and
F (x,Γn,z(x)) =

(
X(n),Γn+1,F (z)(X(n))

)
.

Because of the absence of over-conjugate pointsand because of Proposition 3.3.2, for any
m ≥ 1 the function fm is a positive local twist map at every point. Thus, since we are
assuming that p1(z) < x and since fn is a local positive twist map, for any n ≥ n̄ it holds
that

p2 ◦ F−n(z) < p2 ◦ F−n(x,Γn,z(x)).

Since also fn+1 is a local positive twist map and since p1 ◦F−n(z) = p1 ◦F−n(x,Γn,z(x)),
we deduce that

p1(F (z)) = p1 ◦ F n+1(F−n(z)) < p1 ◦ F n+1(F−n(x,Γn,z(x))) = X(n).

Since for any n ≥ n̄ it holds
X ≤ X(n) < bn+1,F (z), (3.58)

we conclude that
p1(F (z)) ≤ X ≤ lim inf

n→+∞
bn,F (z) = bF (z).

The function ΓF (z) is so defined at X and so (X,ΓF (z)(X)) ∈ ĜF (z).
Consider now

d(w, (X,ΓF (z)(X))) ≥ d(w, ĜF (z)) = ε > 0. (3.59)

For any n ≥ n̄ we have

d(w, (X,ΓF (z)(X))) = d(F (x,Γz(x)), (X,ΓF (z)(X))) ≤

≤ d(F (x,Γz(x)), F (x,Γn,z(x))) + d(F (x,Γn,z(x)), (X,ΓF (z)(X))) <

8. Recall that we are considering the standard Euclidean distance, see Notation 3.3.1.
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<
ε

3
+ d((X(n),Γn+1,F (z)(X(n))), (X,ΓF (z)(X))) ≤

≤ ε

3
+ d(X(n), X) + d(Γn+1,F (z)(X(n)),ΓF (z)(X)) ≤

≤ ε

3
+ d(X(n), X) + d(Γn+1,F (z)(X(n)),Γn+1,F (z)(X)) + d(Γn+1,F (z)(X),ΓF (z)(X)).

Every Γn+1,F (z) is K-Lipschitz (see (3.53)) and, since (X(n))n∈N converges to X, there
exists ñ ≥ n̄ such that for any n ≥ ñ it holds d(X(n), X) < ε

3(1+K)
. Hence

d(X(n), X) + d(Γn+1,F (z)(X(n)),Γn+1,F (z)(X)) <
ε

3
.

Therefore for n ≥ ñ we have that

d(w, (X,ΓF (z)(X))) <
2

3
ε+ d(Γn+1,F (z)(X),ΓF (z)(X)). (3.60)

If X < bF (z), then by the pointwise convergence of (Γn+1,F (z))n∈N towards ΓF (z) there
exists N ≥ ñ such that for any n ≥ N it holds

d(Γn+1,F (z)(X),ΓF (z)(X)) <
ε

3
.

Consequently for n ≥ N , from (3.59) and from (3.60), we conclude that

ε ≤ d(w, (X,ΓF (z)(X))) <
2

3
ε+ d(Γn+1,F (z)(X),ΓF (z)(X)) < ε,

obtaining so the required contradiction.
Suppose now that X = bF (z). Let (ym)m∈N be a sequence in (aF (z), bF (z)) converging to
bF (z). In particular it holds that ΓF (z)(X) = ΓF (z)(bF (z)) = limm→+∞ ΓF (z)(ym).
Fix now m̄ ∈ N so that

d(ym̄, bF (z)) <
ε

9K
and d(ΓF (z)(ym̄),ΓF (z)(bF (z))) <

ε

9
. (3.61)

Remark that for any m it holds ym < X = bF (z) = lim infn→+∞ bn,F (z). Consequently, for
any n ≥ ñ, from (3.60) and (3.61), we have

ε ≤ d(w, (X,ΓF (z)(X))) <
2

3
ε+ d(Γn+1,F (z)(X),ΓF (z)(X)) ≤

≤ 2

3
ε+d(Γn+1,F (z)(X),Γn+1,F (z)(ym̄))+d(Γn+1,F (z)(ym̄),ΓF (z)(ym̄))+d(ΓF (z)(ym̄),ΓF (z)(X)) <

<
2

3
ε+Kd(X, ym̄) + d(Γn+1,F (z)(ym̄),ΓF (z)(ym̄)) +

ε

9
<

<
2

3
ε+

2

9
ε+ d(Γn+1,F (z)(ym̄),ΓF (z)(ym̄)).

By the definition of az and bz there exists N ∈ N, N ≥ ñ such that for any n ≥ N we
have that ym̄ ∈ (an,z, bn,z).
By the pointwise convergence of (Γn+1,F (z))n∈N to ΓF (z) at ym̄, there exists N̄ ≥ N such
that for any n ≥ N̄ it holds

d(Γn+1,F (z)(ym̄),ΓF (z)(ym̄)) <
ε

9
.
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Therefore, we conclude that for n ≥ N̄

ε ≤ d(w, (X,ΓF (z)(X))) <
2

3
ε+

2

9
ε+

ε

9
= ε,

that is the required contradiction.
The case p1(z) > x can be discussed similarly and so we conclude the proof.

We are interested in the dynamics over the instability disc on the annulus.

Notation 3.3.6. Let z ∈ U . The closed leaf cl(Gz) divides U into two (simply) connected
components because U is homeomorphic to an open disc and because Gz ⊂ U and
(cl(Gz) \ Gz) ⊂ ∂U (see Theorems V.11.7 and VI.5.1 in [New61]).
Denote as Uz,+ the connected component lying above Gz, i.e. the connected component
containing

V CC,+
z := {(p1(z), y) ∈ V CC,U

z : y > p2(z)}.
Denote as Uz,− the connected component lying below Gz, i.e. the connected component
containing

V cc,−
z := {(p1(z), y) ∈ V CC,U

z : y < p2(z)}.
See Figure 3.6.

Figure 3.6 – The connected components Uz,+ and Uz,−.

Similarly, the notations (F (U ))F (z),+ and (F (U ))F (z),− refer to the connected components
of F (U ) \ GF (z) lying, respectively, above and below the leaf GF (z).

Proposition 3.3.7. F (Uz,+) = (F (U ))F (z),+ and F (Uz,−) = (F (U ))F (z),−.

Proof. By Proposition 3.3.6 we have that F (Gz) = GF (z). Since F is a homeomorphism,
two cases can occur. Either

F (Uz,+) = (F (U ))F (z),+ and F (Uz,−) = (F (U ))F (z),−

or
F (Uz,+) = (F (U ))F (z),− and F (Uz,−) = (F (U ))F (z),+.
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Let x ∈ (az, bz) be such that x > p1(z). Let n̄ ∈ N be such that x ∈ (an̄,z, bn̄,z) and
p1 ◦ F (x,Γn̄,z(x)) = X(n̄) ∈ (aF (z), bF (z)).
By the definition of Γz(x) and of (Γn,z(x))n∈N we have that Γn̄,z(x) > Γz(x). Thus the
point (x,Γn̄,z(x)) belongs to U+.
Since fm is a positive local twist map for any m ∈ N (in particular for n̄, n̄+1) we deduce
that

p2 ◦ F−n̄(x,Γn̄,z(x)) > p2 ◦ F−n̄(z)

and consequently
X(n̄) := p1 ◦ F (x,Γn̄,z(x)) > p1 ◦ F (z). (3.62)

From (3.62), since F (Graph(Γn̄,z)) = Graph(Γn̄+1,F (z)) and since X(n̄) ∈ (aF (z), bF (z)), we
deduce that

Γn̄+1,F (z)(X(n̄)) ≥ ΓF (z)(X(n̄)).

Actually, since F (x,Γn̄,z(x)) does not belong to GF (z), it holds that Γn̄+1,F (z)(X(n̄)) >
ΓF (z)(X(n̄)). Equivalently

(X(n̄),Γn̄+1,F (z)(X(n̄)) = F (x,Γn̄,z(x)) ∈ (F (U ))F (z),+.

Since we have exhibited a point of Uz,+ whose image through F is contained in (F (U ))F (z),+,
we conclude that

F (Uz,+) = (F (U ))F (z),+ and F (Uz,−) = (F (U ))F (z),−.

We are now going to show that the projection on the annulus of every leaf Gz is
f -periodic.

Proposition 3.3.8. Let p × Id : R2 → A be the projection on the annulus and let U =
(p× Id)(U ). For any z̄ ∈ U ⊂ A there exists M ∈ N such that

(p× Id)(GFMN (z)) = (p× Id)(Gz)

where N is the period of U and z ∈ U is the lift of z̄.

Proof. We work on the lifted framework. Let z′, z′′ ∈ ⋃i∈Z F
iN(U ). In R2 we say that

two leaves Gz′ ,Gz′′ are t-equivalent if there exists k ∈ Z so that

Gz′ + (k, 0) = {x+ (k, 0) : x ∈ Gz′} = Gz′′ .

Clearly, two leaves are t-equivalent in R2 if and only if their projections p × Id on the
annulus coincide.
Fix z ∈ U . Argue by contradiction and assume that for any M ∈ N the leaves Gz and
GFMN (z) are not t-equivalent. In particular, Gz and GFN (z) are not t-equivalent, that is

Gz + (k, 0) 6= GFN (z) = FN(Gz),

where k ∈ Z is such that FN(z) ∈ U + (k, 0) (so it depends on the lift F ). The last
equality is Proposition 3.3.6.
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Claim 3.3.2. If Gz and GFN (z) are not t-equivalent, then

(Uz,+ + (k, 0)) ∩ (FN(U ))FN (z),+ = ∅.

Proof. From Proposition 3.3.5, since different leaves cannot intersect strictly, it holds that
either (Uz,+ + (k, 0)) ⊂ (FN(U ))FN (z),+ or (FN(U ))FN (z),+ ⊂ (Uz,+ + (k, 0)) or the two
components are disjoint (see Figure 3.7).
If (FN(U ))FN (z),+ is (strictly) contained in Uz,+ + (k, 0) (see (a) in Figure 3.7), then

(a) (b)

(c)

Figure 3.7 – The three possible cases discussed in Claim 3.3.2.

ω((FN(U ))FN (z),+) < ω(Uz,+). (3.63)

Indeed, if there exists w ∈ Uz,+ + (k, 0) and w /∈ (FN(U ))FN (z),+ (i.e. w /∈ GFN (z)), then
we have that ω((FN(U ))FN (z),+) < ω(Uz,+) because ω is positive on open sets.
If every w ∈ Uz,++(k, 0)\(FN(U ))FN (z),+ is contained in (FN(U ))FN (z),+\(FN(U ))FN (z),+,
then every such w has to be in GFN (z) because it cannot belong to ∂F (U ).
Consequently, it holds

(FN(U ))FN (z),+ ⊂ Uz,+ + (k, 0) ⊂ (FN(U ))FN (z),+ ∪ GFN (z) ⊂ (FN(U ))FN (z),+.

Since Uz,+ + (k, 0) is open, we have that Uz,+ + (k, 0) = (FN(U ))FN (z),+.
Thus, we deduce that Gz + (k, 0) = GFN (z), contradicting the hypothesis that the two
leaves are not t-equivalent.
Assuming so (3.63), from Proposition 3.3.7, we conclude that

ω(FN(Uz,+)) = ω((FN(U ))FN (z),+) < ω(Uz,+),
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contradicting the fact that F is conservative. The same argument holds if Uz,+ + (k, 0) ⊂
(FN(U ))FN (z),+ (see (b) in Figure 3.7).
We conclude that (Uz,+ + (k, 0)) ∩ (FN(U ))FN (z),+ = ∅ (see (c) in Figure 3.7).

Arguing similarly, for any i, j ∈ N, i 6= j, since by contradiction every GF iN (z) and GF jN (z)

are not t-equivalent, from Claim 3.3.2 we have that

(
(F iN(U ))F iN (z),+ + (k(i− j), 0)

)
∩ (F jN(U ))F jN (z),+ = ∅.

Since F is conservative and since ω is invariant by translations, we obtain that

ω(U ) ≥
∑

i∈N
ω((F iN(U ))F iN (z),+) = +∞,

which contradicts the fact that ω(U ) is finite.

Proof of Proposition 3.1.3

We finally prove Proposition 3.1.3. That is, any instability disc has a subset of positive
measure whose points have non zero torsion.

Proof of Proposition 3.1.3. Argue by contradiction and assume that ω-almost every z ∈ U
has zero torsion. Equivalently, U ⊂ A satisfies Hypothesis (H). We can so build the folia-
tion (Gz)z∈U made up of periodic leaves.
Let U be a connected component of (p× Id)−1(U). Fix z ∈ U . Let M ∈ N be such that

(p× Id)(Gz) = (p× Id)(GFMN (z)),

that is the leaves Gz and GFMN (z) are t-equivalent. Let k ∈ Z be such that FMN(U ) =
U + (k, 0). Consequently

Gz + (k, 0) = GFMN (z). (3.64)

By Proposition 3.3.2 and by Remark 3.3.4, every fn is a positive local twist map, in
particular for n =MN .
Consider V CC,U

z (i.e. the connected component of Vz∩U containing z) and FMN(V CC,U
z ).

Since fMN is a positive local twist map, the image FMN(V CC,U
z ) is a “partial” graph and

p2(V
CC,U
z ) ∋ y 7→ p1 ◦ FMN(p1(z), y) ∈ R

is an increasing diffeomorphism to its image.
According to Notation 3.3.6, Uz,+ and Uz,− denote the two connected components of
U \ Gz lying respectively above and below Gz.
From Proposition 3.3.7 we deduce that

FMN(Uz,+) = (FMN(U ))FMN (z),+

and, since from (3.64) we have that Gz + (k, 0) = GFMN (z), we conclude that

Uz,+ + (k, 0) = FMN(Uz,+).
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In particular

FMN(V CC,+
z ) ⊂ Uz,+ + (k, 0) and FMN(V CC,−

z ) ⊂ Uz,− + (k, 0).

Denote now as Wz,R and Wz,L the connected components of U \V CC,U
z that lie respectively

locally on the right and locally on the left of the vertical segment V CC,U
z .

Let V = Uz,+ ∩ Wz,R, see Figure 3.8. Since F is conservative, it holds that ω(V ) =
ω(FMN(V )).

Figure 3.8 – The set V = Wz,R ∩ Uz,+.

Claim 3.3.3. p1(F
MN(z)) < p1(z) + k.

Proof of Claim 3.3.3. Argue by contradiction and assume that p1(z) + k ≤ p1(F
MN(z)).

Observe that FMN(V ) is one of the four connected components of

(U + (k, 0)) \ ((Gz + (k, 0)) ∪ FMN(V CC,U
z )).

From Proposition 3.3.7 we know that FMN(V ) ⊂ Uz,+ + (k, 0).
Moreover, since fMN is a positive local twist map and it preserves the orientation, the
image FMN(Wz,R) is the connected component of (U + (k, 0)) \ FMN(V CC,U

z ) that lies
locally below FMN(V CC,U

z ) (which is a partial graph).
Since FMN is a positive local twist map and by contradiction hypothesis, for any ζ ∈ V CC,+

z

it holds
p1 ◦ FMN(ζ) > p1 ◦ FMN(z) ≥ p1(z) + k.

That is, the image FMN(V CC,+
z ) is contained in Wz,R + (k, 0).

Consequently we have that FMN(V ) ⊂ V + (k, 0). Actually it is strictly contained since
FMN(V CC,+

z ) is a partial graph.
Thus, ω(FMN(V )) < ω(V ) and this contradicts the fact that F is conservative.

Consider now the set Uz,− ∩ Wz,L. Arguing as in Claim 3.3.3 for V , we deduce that

p1(F
MN(z)) > p1(z) + k.
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This provide us a contradiction. The absurd was assuming that ω-almost every z ∈ U has
null torsion and we conclude that

ω ({z ∈ U : Torsion(f, z) 6= 0}) > 0.

3.4 Appendix of Chapter 3

3.4.1 About tridiagonal symmetric positive definite matrices

This Section of the Appendix is devoted to prove a technical fact about tridiagonal,
symmetric, positive definite matrices that is used in Lemma 3.2.5. Let us introduce the
following notation.

Notation 3.4.1. The set TSP (n) is the set of matrices A ∈Mn(R) which are tridiagonal,
symmetric, positive definite and whose off-diagonal terms are all negative. That is, a
matrix A ∈ TSP (n) is of the form

A =




α1 β1 0 . . . 0
β1 α2 β2 . . . 0
0 β2 α3 . . . 0
...

...
...

. . . βn−1

0 . . . . . . βn−1 αn



,

where αi > 0 for all i ∈ J1, nK and βi < 0 for all i ∈ J1, n− 1K.
Lemma 3.4.1. Let A ∈ TSP (n). Then its inverse matrix A−1 has all positive entries.

Proof. Let us prove the result by induction over n ∈ N∗.
For n = 1 we are considering a scalar α1. Clearly its inverse 1

α1
is positive since α1 > 0.

Assume the statement holds true for matrices in TSP (n). Let us show it for matrices in
TSP (n+ 1). Consider a matrix B in TSP (n+ 1), i.e.

B =




A

0
...
0
βn

0 . . . 0 βn αn+1



,

where A ∈ TSP (n), βn < 0 and αn+1 > 0. Its inverse matrix is also symmetric and
positive definite: denote it as (

C v
vt γ

)
,

where C ∈Mn(R), v ∈ Rn and γ ∈ R. Then we have



A

0
...
0
βn

0 . . . 0 βn αn+1




(
C v
vt γ

)
= In+1,
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where In+1 is the identity matrix of size n+ 1. Equivalently



AC +

(
O(n−1)×n
βnv

t

)
Av +




0
...
0
βnγ




(
0 . . . 0 βn

)
C + αn+1v

t αn+1γ




= In+1.

Consequenly, since αn+1 > 0 and αn+1γ = 1, we deduce that γ > 0.
Since

Av +




0
...
0
βnγ


 =



0
...
0


 ∈ Rn,

we have that

v = A−1




0
...
0

−βnγ


 .

Since −βnγ is positive and since all the entries of A−1 are positive by inductive hypothesis,
we deduce that all entries of the vector v are positive.
We also have that

AC +

(
O(n−1)×n
βnv

t

)
= In.

Consequently

C = A−1 + A−1

(
O(n−1)×n
−βnvt

)
.

Since all the entries of A−1 are positive by inductive hypothesis and since all the entries
of the vector −βnvt are positive, we conclude that also all the entries of C are positive.
That is, the inverse matrix of B has all positive entries.

3.4.2 Extension theorem

In this Section of the Appendix we recall a useful classical result on extension theorems
that is largely used in the construction of the foliation (Gz)z∈U in Section 3.3.2 to extend
the functions Γn,z on boundary points.

Lemma 3.4.2. Let X be a complete space and let E ⊂ X. Let f : E → R be a uniform
continuous K-Lipschitz function. Then there exists a unique extension f̄ : Ē → R of f
which is uniform continuous and K-Lipschitz.

Proof. Define the function f̄ as follows:

f̄(x) =





f(x) if x ∈ E

lim
y→x
y∈E

f(y) if y ∈ Ē \ E.

We start by showing the following
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Claim 3.4.1. For x ∈ Ē \ E the limit lim
y→x
y∈E

f(y) ∈ R exists.

Let x ∈ Ē \ E and let (xn)n∈N ⊂ E be a sequence converging towards x. In particular,
(xn)n∈N is a Cauchy sequence and consequently (f(xn))n∈N is a Cauchy sequence too. De-
note as ȳ ∈ R the limit of (f(xn))n∈N. Let (x′n)n∈N be another sequence in E converging
to x. Fix ε > 0.
By the uniform continuity of f , there exists δ > 0 so that for any z, w ∈ E, d(z, w) < δ it
holds that |f(z)− f(w)| < ε. Since both (xn)n∈N and (x′n)n∈N converge to x, the distance
d(xn, x

′
n) is tending to 0 as n goes to +∞. Let n̄ ∈ N be such that for any n ≥ n̄ we have

d(xn, x
′
n) < δ. Consequently for any n ≥ n̄ it holds that |f(xn)− f(x′n)| < ε. By the arbi-

trariness of ε, we conclude that limn→+∞ f(x′n) = ȳ. Equivalently, the limit limy→x
y∈E

f(y)

exists.

The function f̄ is so well-defined and it is continuous. This implies its uniqueness. We
can now prove the following

Claim 3.4.2. The function f̄ is uniform continuous.

Argue by contradiction and assume there exists ε0 > 0 such that for any δ > 0 there are
x, y ∈ Ē so that d(x, y) < δ and

∣∣f̄(x)− f̄(y)
∣∣ ≥ ε0.

Since f is uniform continuous, at least one among x and y has to be in Ē \ E.
Let δ0 > 0 be such that for any z, w ∈ E, d(z, w) < δ0 it holds |f(z)− f(w)| =∣∣f̄(z)− f̄(w)

∣∣ < ε0
4
.

Fix now δ = δ0
4
. Let x, y ∈ Ē be the points such that, by contradiction hypothesis,

d(x, y) < δ0
4

and
∣∣f̄(x)− f̄(y)

∣∣ ≥ ε0.
Let (xn)n∈N, (yn)n∈N be sequences in E converging respectively to x and y. In particular,
let n ∈ N be large enough such that

d(x, xn) <
δ0
4

and d(y, yn) <
δ0
4
.

Since both xn and yn belong to E, by the uniform continuity of f , we have that |f(xn)− f(yn)| <
ε0
4

because d(xn, yn) < δ0.
Up to choose a bigger n, by the continuity of f̄ , we can also assume that

∣∣f̄(x)− f̄(xn)
∣∣ < ε0

4
and

∣∣f̄(y)− f̄(yn)
∣∣ < ε0

4
.

Consequently

ε0 ≤
∣∣f̄(x)− f̄(y)

∣∣ ≤
∣∣f̄(x)− f̄(xn)

∣∣+ |f(xn)− f(yn)|+
∣∣f̄(yn)− f̄(y)

∣∣ < 3ε0
4
,

which is the required contradiction.

Since f is K-Lipschitz, we can also deduce the following

Claim 3.4.3. The function f̄ is K-Lipschitz.

Indeed, let x, y ∈ Ē and let (xn)n∈N, (yn)n∈N be sequences in E converging to x, y respec-
tively.
Fix ε > 0. There exists n̄ ∈ N such that for any n ≥ n̄ it holds

d(x, xn) <
ε

4K
and d(y, yn) <

ε

4K
, (3.65)
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where K is the Lipschitz constant of f . Moreover, by the continuity of f̄ , there exists
ñ ∈ N such that for any n ≥ ñ we have

∣∣f̄(x)− f̄(xn)
∣∣ < ε

4
and

∣∣f̄(y)− f̄(yn)
∣∣ < ε

4
.

Then for any n ≥ max(n̄, ñ) we have

∣∣f̄(x)− f̄(y)
∣∣ ≤

∣∣f̄(x)− f̄(xn)
∣∣+
∣∣f̄(xn)− f̄(yn)

∣∣+
∣∣f̄(yn)− f̄(y)

∣∣ < ε

2
+
∣∣f̄(xn)− f̄(yn)

∣∣.

Now, since xn, yn ∈ E and since f is K-Lipschitz, it holds that

|f(xn)− f(yn)| ≤ Kd(xn, yn).

Consequently, from (3.65),

∣∣f̄(x)− f̄(y)
∣∣ < ε

2
+Kd(xn, yn) ≤

ε

2
+ k (d(xn, x) + d(x, y) + d(y, yn)) < Kd(x, y) + ε.

From the arbitrariness of ε, we conclude that
∣∣f̄(x)− f̄(y)

∣∣ ≤ Kd(x, y), that is also f̄ is
K-Lipschitz.
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Chapter 4

Torsion of horseshoes

Let S be a surface among R2,A,T2: endow S with the standard Euclidean metric and
the standard trivialization. Fix the counterclockwise orientation of the plane R2 and the
constant vector field H = (1, 0).
Let f : S → S be a C1 diffeomorphism isotopic to the identity. In particular, f preserves
the orientation. For any x ∈ S, we denote as O(x, f) the orbit of x with respect to f .
Recall that, if N ⊂ S and x ∈ N , we denote as CC(N, x) the connected component of N
containing x.
If S = R2, we make the further assumption that f has compact support.
We briefly recall the notions of (finite-time) torsion. Let I = (ft)t∈R be an isotopy joining
the identity to f in Diff 1(S). For any (x, v) ∈ TS, v 6= 0, we recall the notation of the
oriented angle function

R+ ∋ t 7→ v(I)(x, v, t) = θ(H, Dft(x)v) ∈ T.

Let R ∋ t 7→ ṽ(I)(x, v, t) ∈ R be a continuous determination of the previous angle
function. The torsion at finite time n ∈ N, n 6= 0 at (x, v) is then

Torsionn(I, x, v) :=
1

n
(ṽ(I)(x, v, n)− ṽ(I)(x, v, 0)) .

The (asymptotic) torsion at x ∈ S is the limit, when it exists,

Torsion(I, x) := lim
n→+∞

Torsionn(I, x, v).

Remark 4.0.1. The torsion, both at finite-time and asymptotic, does not depend on
the choice of the continuous determination (see Proposition 1.1.1 in Chapter 1). The
(asymptotic) torsion does not depend on the choice of the tangent vector v ∈ TxS \ {0}
(see Proposition 1.1.3 in Chapter 1). Moreover, the torsion does not depend on the choice
of the isotopy if S = T2 (see Section 2 in [BB13] and here Remark 1.3.1 in Chapter 1) or if
S = A (see Proposition 1.3.2). If f : R2 → R2 has compact support then the torsion does
not depend on the choice of the isotopy as long as we consider isotopies with compact
support 1 (see Section 2 in [BB13]). Therefore, in the sequel we omit the dependance on
the isotopy.

Let q ∈ S be a periodic hyperbolic point for f . Let N > 0 be the period of q for f . In

1. An isotopy I has compact support if for any t ∈ [0, 1] the support of ft is in a compact set,
independent of t.
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the sequel, we will largely use classical results about hyperbolic sets that are recalled in
Appendix A.
Assume p ∈ S is a point of transverse homoclinic intersection of O(q, f) not belong-
ing to the orbit of q. Without loss of generality (see Fact A.0.1), we assume that p ∈
(W u(q) ⋔ W s(q)) \ {q}.
Let λ1, λ2 be the eigenvalues of DfN(q) : TqS → TqS. By the existence of p we have that
λ1, λ2 ∈ R and

0 < |λ1| < 1 < |λ2|.
Up to consider f 2 instead of f , we can assume that λ1 and λ2 are both positive.
Concerning the torsion at finite time N at q, since the fields of half-lines of the stable and
unstable directions are preserved (because the eigenvalues of DfN(q) are positive), there
exists k ∈ Z such that

N TorsionN(f, q, v) = N TorsionN(f, q, w) = k (4.1)

for v ∈ Eu
q , w ∈ Es

q , where Eu/s
q denotes respectively the unstable and the stable subspace

in TqS.

Notation 4.0.1. To simplify the notation, from now on when not specified we consider
the dynamics of fN so that q is a hyperbolic fixed point for fN and we denote as f the
diffeomorphism fN to lighten the notation.
In particular, concerning the N -time torsion for f at q, we have that

N TorsionN(f, q, v) = Torsion1(f, q, v) = k, (4.2)

for v ∈ Eu
q or v ∈ Es

q .

4.1 Statement of the main results

In this introductive section we state the main theorem of the chapter and present the
main corollaries and outcomings.
The point q is a fixed hyperbolic point for f with transverse homoclinic intersections. To
simplify the notation, assume that Torsion1(f, q, v) = 0, where v ∈ Eu

q .
Let p ∈ W u(q) ⋔ W s(q), p 6= q be a suitable transverse homoclinic point, i.e. such that:

— the point p belongs to the local stable manifold of q,

— the unstable manifold (respectively the stable manifold) at p has almost the same
slope as Eu

q (respectively Es
q): to be precise, we compare slopes of the images of

TpW
u(q) and Eu

q through the differential of a chart.

See (a) of Figure 4.1.
We are going to construct a horseshoe, i.e. a uniformly hyperbolic set for some fn such
that fn restricted to the horseshoe is conjugated to a shift dynamics, as follows. See
Section 4.3. Consider a small rectangle R which contains the fixed point q and the point
of homoclinic intersection p and which stretches along the local stable manifold. Then,
there exists n ∈ N such that fn(R) strecthes along the unstable manifold and contains the
homoclinic point p. We focus on the two connected components of fn(R) ∩ R containing
p and q. Denote them as V1 and V0 respectively. See (b) of Figure 4.1. We consider then
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(a) (b)

Figure 4.1

the fn-invariant set H =
⋂
i∈Z f

in(V0 ∪ V1). The set H is a uniformly hyperbolic set for fn

such that (H, fn) is conjugated to the shift dynamics ({0, 1}Z, S) (see Proposition 4.3.2).
That is, we associate to every x ∈ H a sequence (δi(x))i∈Z = (δi)i∈Z ∈ {0, 1}Z such that

fin(x) ∈ Vδi .

Our aim is so calculating the torsion at points of the horseshoe H. Since the asymptotic
torsion does not depend on the tangent vector, we calculate the torsion for f at finite
time n at points of H with respect to vectors belonging to the unstable subspace. The
unstable subspace is well-defined because H is hyperbolic. Moreover the unstable suspace
is invariant for Dfn.
Consider the angle variation of the vector tangent to the unstable manifold varying be-
tween q and p. Such angle variation admits a measure which is either almost null or almost
equal to 1

2
. The unstable angle variation of (q, p) is the integer m ∈ Z such that the angle

variation of the vector tangent to the unstable manifold between q and p is almost equal
to m

2
.

The key point of our result is showing that for any x ∈ H we have that

nTorsionn(f, x, v) is almost equal to
m

2
δ1(x),

where the vector v belongs to the unstable subspace of x.
Using then a non trivial induction argument, we deduce the main theorem (see Theorem
4.4.1 and Corollary 4.4.1).

Theorem. Let f : S → S be a C1 diffeomorphism isotopic to the identity. Let q ∈ S be a
fixed hyperbolic point with transverse homoclinic intersections. Assume that Torsion(f, q) =
0. Let p ∈ W u(q) ⋔ W s(q) be a suitable transverse homoclinic point. Let H be the asso-
ciated horseshoe. Let m ∈ Z be the unstable angle variation of (q, p). For any x ∈ H the
set of limit points of the sequences 2

(Torsionl(f, x))l∈N and

(
m

2n

∑l
i=0 δi(x)

l

)

l∈N

2. We do not make explicit the vector with respect to which we calculate the torsion to simplify the
presentation of the main result.
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are the same. The torsion of x exists if and only if the limit liml→+∞
∑l

i=1 δi(x)

l
exists and,

whenever it exists,

Torsion(f, x) =
m

2n
lim
l→+∞

∑l
i=1 δi(x)

l
.

We highlight the role played by the unstable angle variation m. Indeed, if m = 0, then
the torsion exists and it is null (i.e. equal to Torsion(f, q)) at every point of H. In order
to have non trivial torsion values, we are interested in the cases when m 6= 0.

Observe that if there are points x1, x2 ∈ H whose torsion values are different, then the
unstable angle variation of (q, p) is non null. Moreover, if there are two periodic points of
H with the same period, the first one with reflexion 3, the second without, then again the
unstable angle variation is non null.

We then state some interesting outcomings when the unstable angle variation m is non
null. See Section 4.6.

Corollary A. Let m 6= 0. For any [α, β] ⊂ [0,m] there exists x ∈ H such that the set of
limit points of (Torsionl(f, x))l∈N is [α, β].

Corollary B Let m 6= 0. For any α ∈ [0,m] the set of points of H whose torsion equals
α is dense in H.

In particular, if m is non null, then we have examples of points where the torsion does
not exist.

Corollary C. Let m 6= 0. The set of points of H at which the torsion does not exist
contains a dense Gδ-subset of H.

Some consequences can be deduced also concerning torsion of measures.

Corollary D. Let m 6= 0. For any α ∈ [0,m] there exists an ergodic f-invariant measure
µ with compact support such that Torsion(f, µ) = α.

If S = R2 or S = A, then there are conditions to obtain transverse homoclinic points with
non zero unstable angle variation. See Lemma 4.5.3 and Remarks 4.5.1 and 4.5.2.

Proposition A. Let S be either A or R2. Let f : S → S be a C1 diffeomorphism isotopic to
the identity. Assume that there is a periodic hyperbolic point q with transverse homoclinic
intersections. Suppose that

— every homoclinic intersection is transverse,

— or f is C∞.

Then there exists a point p of transverse homoclinic intersection such that the unstable
angle variation of (q, p) is non null.

3. That is, the differential of fN at the point, where N is the period of the point, has negative
eigenvalues.
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Through Proposition A and using Katok’s result (see [Kat80]) which links topological
entropy and transverse homoclinic intersections, we obtain sufficient conditions concern-
ing the torsion to have dynamics with null topological entropy htop.

Corollary E. Let S be either T × [0, 1] or D2. Let f : S → S be a C1+ε diffeomorphism
(ε > 0) such that:

— every homoclinic intersection of a hyperbolic periodic point is transverse,

— or f is C∞.

If the torsion exists everywhere, then htop(f) = 0.

4.2 Choice of an adapted neighborhood for transverse

homoclinic intersections

Fix

0 < ε <
1

12
.

This will be the maximum error that we will admit in calculating torsion at finite-time.

4.2.1 Choice of an adapted neighborhood of q

The main aim of this Subsection is selecting a suitable neighborhood of the fixed
hyperbolic point.

Lemma 4.2.1. There exists a neighborhood O of q and a chart φ : O → R2 such that

(i) φ(q) = (0, 0);

(ii) φ(O) ⊂ (−1, 1)2;

(iii) φ(CC(W s(q) ∩O, q)) = {0} × (−1, 1) and φ(CC(W u(q) ∩O, q)) = (−1, 1)× {0}.
Proof. Let Es

q and Eu
q be the stable and unstable subspaces of Df(q), respectively. Let

ψ : O → (−1, 1)2 be a chart such that ψ(q) = (0, 0) and

Dψ(q)TqW
u(q) = R× {0} and Dψ(q)TqW

s(q) = {0} × R. (4.3)

Recall that both W u(q) and W s(q) are C1 1-dimensional immersed submanifolds. So, up
to restrict the neighborhood O, there exist C1 diffeomorphisms to their images

γ : (−1, 1) → O, Γ : (−1, 1) → O

such that γ(0) = Γ(0) = q, γ(−1, 1) = CC(W u(q) ∩ O, q) and Γ(−1, 1) = CC(W s(q) ∩
O, q).
Let p1, p2 : R2 → R be the projections over the first and the second coordinate respectively
and consider then p1 ◦ ψ ◦ γ : (−1, 1) → R and p2 ◦ ψ ◦ Γ : (−1, 1) → R. Since both

Dp1(ψ ◦ γ(0)) ◦Dψ(γ(0))γ′(0) and Dp2(ψ ◦ Γ(0)) ◦Dψ(Γ(0))Γ′(0)

are not zero, by the inverse function theorem there exists δ > 0 such that

p1 ◦ ψ ◦ γ : (−δ, δ) → R, p2 ◦ ψ ◦ Γ : (−δ, δ) → R
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are C1 diffeomorphisms to their images. Up to decrease δ > 0 (since p1 ◦ψ ◦γ(0) = p2 ◦ψ ◦
Γ(0) = 0), we can assume that p1 ◦ ψ ◦ γ(−δ, δ) ⊂ (−1, 1) and p2 ◦ ψ ◦ Γ(−δ, δ) ⊂ (−1, 1).
The functions ψ ◦ γ : (−δ, δ) → R2 and ψ ◦ Γ : (−δ, δ) → R2 are graphs of functions in
the first and the second coordinates, respectively, of R2. That is, there exist C1 functions

gu : (−1, 1) → (−1, 1), gs : (−1, 1) → (−1, 1)

so that
ψ ◦ γ|(−δ,δ) ⊆ {(x, gu(x)) : x ∈ (−1, 1)}

and
ψ ◦ Γ|(−δ,δ) ⊆ {(gs(y), y) : y ∈ (−1, 1)}.

In particular it holds that gu(0) = gs(0) = 0 and, by (4.3), g′u(0) = g′s(0) = 0.
Consider then the function Φ : (−1, 1)2 → R2 which deforms the standard vertical-
horizontal foliation into the foliation made up of vertical translations of the graph of gu
(function in the first coordinate) and of horizontal translations of the graph of gs (function
in the second coordinate), see Figure 4.2.

Figure 4.2 – Deformation of vertical-horizontal foliations into graph(gs)–graph(gu) folia-
tions.

That is
Φ : R2 → R2

(x, y) 7→ Φ(x, y) = (x+ gs(y), y + gu(x)).

Observe that DΦ(0, 0) = I2 4 and so by the inverse function theorem there exists a neigh-
borhood W of 0 ∈ R2 such that W ⊂ (−1, 1)2 and Φ|W is a C1 diffeomorphism to its
image. By considering then

φ := Φ−1 ◦ ψ : ψ−1(Φ(W )) → R2,

4. Where I2 denotes the 2-dimensional identity matrix.
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we obtain a chart that verifies the required conditions.

Let O be a neighborhood of q and φ a chart given by Lemma 4.2.1. For any x, y ∈ O we
identify the tangent spaces TxS ∼= TyS ∼= R2 through the chart φ.

Notation 4.2.1. Let O be a neighborhood of q given by Lemma 4.2.1 and let x, y ∈ O.
Let E ⊂ TxS and F ⊂ TyS be 1-dimensional subspaces. The angle between E and F is
denoted as θ(E,F ) and it is

θ(E,F ) =
∣∣θ̄(v′, w′)

∣∣ = min
v∈E∩S1
w∈F∩S1

∣∣θ̄(v, w)
∣∣,

where θ(v, w) := θ(H, v) − θ(H, w) 5 and where θ̄ is the measure of the oriented angle θ
contained in

[
− 1

2
, 1
2

)
.

Condition 4.2.1. Let O be an open neighborhood of q given by Lemma 4.2.1. Assume
that

(i) for any x ∈ CC(W s(q)∩O, q) the angle θ(Es
q , TxW

s(q)) admits a measure in (− ε
4
, ε
4
);

(ii) for any x ∈ CC(W u(q)∩O, q) the angle θ(Eu
q , TxW

u(q)) admits a measure in (− ε
4
, ε
4
).

Condition 4.2.2. Let O be an open neighborhood of q given by Lemma 4.2.1. Assume
that there exists 0 < δ < ε

2
so that O ⊆ Bδ(q) = {x ∈ O : d(x, q) < δ} 6,

CC(W u(q) ∩O, q) = W u
loc,δ(q)

and
CC(W s(q) ∩O, q) = W s

loc,δ(q),

where W S
loc,δ(q),W

u
loc,δ(q) are the local stable and unstable manifolds of q respectively for

f (see the Local (Un)Stable Manifold Theorem, here Theorem A.0.1).

Remark 4.2.1. Let O be a neighborhood of q satisfying Condition 4.2.2. Remark that
fn(x) ∈ O for any n ≥ 0 if and only if x ∈ W s

loc,δ(q) and f−n(x) ∈ O for any n ≥ 0 if and
only if x ∈ W u

loc,δ(q).

Definition 4.2.1. Let O be a neighborhood of q satisfying Condition 4.2.2. A future-
first-entry point for O is a point x ∈ O(p, f) such that

(i) x ∈ W s
loc,δ(q) ⊂ O;

(ii) f−1(x) /∈ W s
loc,δ(q).

A past-first-entry point for O is a point x ∈ O(p, f) such that

(i) x ∈ W u
loc,δ(q) ⊂ O;

(ii) f(x) /∈ W u
loc,δ(q).

5. Recall that θ(H, v) is the oriented angle between the non zero vectors H, v with respect to the
standard Riemannian metric and orientation.

6. The distance d on O is the one inherited from the fixed metric.
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Remark 4.2.2. Let O be a neighborhood of q satisfying Condition 4.2.2. Then the future-
first-entry and past-first-entry points for O (with respect to O(p, f)) are well-defined and
unique.

Recall that the set {q} ∪ O(p, f) is hyperbolic for f (see Fact A.0.2). Define now the
functions

{q} ∪ O(p, f) ∋ x 7→ Eu
x ∩ S1 ∈

⋃

x∈{q}∪O(p,f)

G1(TxS) ∩ S1,

{q} ∪ O(p, f) ∋ x 7→ Es
x ∩ S1 ∈

⋃

x∈{q}∪O(p,f)

G1(TxS) ∩ S1,

where G1(TxS) is the Grassmannian of the 1-dimensional subspaces in TxS. They are
continuous functions with respect to the Hausdorff distance.
Define for i = u, s the functions (see Notation 4.2.1)

{q} ∪ O(p, f) ∈ x 7→ θ(RH, Eu
x) ∈ T,

{q} ∪ O(p, f) ∈ x 7→ θ(RH, Es
x) ∈ T.

Observe that these functions are continuous.

Condition 4.2.3. Let O be an open neighborhood of q satisfying Condition 4.2.2. Since
the angle function is continuous with respect to the vectors, there exists δ > 0 so that if
v, w ∈ T 1O, ‖v‖ = ‖w‖ = 1 and ‖v − w‖ < η 7, then the oriented angle

θ(w, v) = θ(H, v)− θ(H, w)

admits a measure in
(
− ε

4
, ε
4

)
.

Assume that for every x ∈ O(p, f)∩W u
loc,δ(q) the connected component CC(W s(q)∩O, x)

is η − C1 close to W s
loc,δ(q) and for every x ∈ O(p, f) ∩W s

loc,δ(q) the connected component
CC(W u(q) ∩O, x) is η − C1 close to W u

loc,δ(q).
We refer to Definition A.0.5 in Appendix A for the notion of η − C1 close.

Remark 4.2.3. Observe in particular that Conditions 4.2.1 and 4.2.3 imply that

— for every x ∈ O(p, f) ∩W u
loc,δ(q) the angle θ(Es

q , E
s
x) admits a measure in (− ε

2
, ε
2
);

— for every x ∈ O(p, f) ∩W s
loc,δ(q) the angle θ(Eu

q , E
u
x) admits a measure in (− ε

2
, ε
2
).

Lemma 4.2.2. Let q be a fixed hyperbolic point for f and let p be a transverse homoclinic
point for q. There exist two continuous vector fields eu, es

({q} ∪ O(p, f)) ∋ x 7→ eux ∈ Eu
x ∩ S1,

({q} ∪ O(p, f)) ∋ x 7→ esx ∈ Es
x ∩ S1.

Let O be an open neighborhood of q satisfying Conditions 4.2.1, 4.2.2 and 4.2.3. Then for
any x ∈ ({q} ∪ O(p, f)) ∩ (W s

loc,δ(q) ∪W u
loc,δ(q)) the angles θ(euq , e

u
x) and θ(esq, e

s
x) admit a

measure in (− ε
2
, ε
2
).

7. We are identifying tangent spaces at different points of O through the chart.
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The ideas of the proof of Lemma 4.2.2 are the same of those of the proof of Lemma 4.2.4.
Hence, we send to the proof of Lemma 4.2.4 in the following Subsection.
Let us introduce the cone field property (with respect to f).

Definition 4.2.2. A set U ⊂ S satisfies the cone field property for η ∈ R+, ξ, δ ∈
(0, 1)∩R,m ∈ N∗ if there exist a splitting E1⊕E2 = TUS and a cone field (Cη

x)x∈U where

Cη
x = {v ∈ TxS : v = v1 + v2, v1 ∈ E1

x, v
2 ∈ E2

x,
∥∥v2
∥∥ ≤ η

∥∥v1
∥∥}

such that

(i) for any x ∈ U it holds dimE1
x = dimE2

x = 1;

(ii) for any x ∈ U ∩ f−1(U) it holds Df(x)Cη
x ⊂ Cηδ

f(x);

(iii) for any x ∈ U

— for any v ∈ Cη
x it holds ‖Dfm(x)v‖ ≥ 1

ξ
‖v‖;

— for any w /∈ int(Cη
x) it holds ‖Df−m(x)w‖ ≥ 1

ξ
‖w‖.

Condition 4.2.4. Let O be a neighborhood of the fixed hyperbolic point q which satisfies
the cone field property.
We refer to Appendix B for a detailed discussion of the open cone field property.

Condition 4.2.5. Let O be an open neighborhood of q satisfying Condition 4.2.2 such
that

O(p, f) ∩O ⊂ W s
loc,δ ∪W u

loc,δ.

That is the f-orbit of p intersects O only along the local stable manifold of q and the local
unstable manifold of q.

Condition 4.2.6. Let O be an open neighborhood of q such that for any x ∈ ({q} ∪
O(p, f)) ∩O it holds

∣∣Torsion1(f, x, e
u
x)− Torsion1(f, q, e

u
q )
∣∣ < ε

2

and ∣∣Torsion1(f, x, e
s
x)− Torsion1(f, q, e

s
q)
∣∣ < ε

2
.

For the following condition we refer to [Con75] and [Mos73].

Condition 4.2.7. Let O be a neighborhood of q given by Lemma 4.2.1 and satisfying
Conditions 4.2.2 and 4.2.3. Let p, f−M(p) ∈ O be respectively future-first-entry and past-
first-entry points for O (see Definition 4.2.1).
Refering to the chart of Lemma 4.2.1, assume that φ(p) ∈ {0}×R+, φ(f

−M(p)) ∈ R+×{0}.
Suppose that the set RV is contained in O, where RV is the image through φ−1 of the
intersection of the following sets (see Figure 4.3-(a))

— {x ≥ 0, y ≥ 0};
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— Ipo–graph(u0) := {(x, y) : y ≤ u0(x)}, i.e. the set of all points that lie on or below
the graph of u0, where the graph of u0 denotes φ(CC(W u(q) ∩O, p));

— Left–graph(s0) := {(x, y) : x ≤ s0(y)}, i.e. the set of all points that lie on or at the
left of the graph of s0, where the graph of s0 denotes φ(CC(W s(q) ∩O, f−M(p))).

From now on, for sake of simplicity we omit the chart φ in our notation. Therefore, we
speak of first and second coordinates also on the neighborhood of q.

Notation 4.2.2. Let O be a neighborhood of q satisfying Condition 4.2.7. Let p, f−M(p) ∈
O be respectively future-first-entry and past-first-entry points for O (see Definition 4.2.1).
For any i ≥ 0 we have that fi(p) ∈ W s

loc,δ(q) and f−(M+i)(p) ∈ W u
loc,δ(q). Moreover, by Con-

dition 4.2.3, for any i ≥ 0 it holds

— CC(W u(q) ∩O, fi(p)) is a graph with respect to the first coordinate and we denote
it as the graph of ui;

— CC(W s(q)∩O, f−(M+i)(p)) is a graph with respect to the second coordinate and we
denote it as the graph of si.

We denote then for any i ≥ 0 (see Figure 4.3-(a))

RV (i) = {x ≥ 0, y ≥ 0} ∩ Ipo–graph(u0) ∩ Left–graph(si),

where

· Ipo–graph(u0) = {(x, y) : y ≤ u(x)} is the set of all points that lie on or below the
graph of u0 (that is CC(W u(q) ∩O, p));
· Left–graph(si) = {(x, y) : x ≤ si(y)} is the set of all points that lie on or at the left of
the graph of si (that is CC(W s(q) ∩O, f−(M+i)N(p))).

We similarly denote for any i ≥ 0 (see Figure 4.3-(b))

RH(i) = {x ≥ 0, y ≥ 0} ∩ Ipo–graph(ui) ∩ Left–graph(s0),

where

· Ipo–graph(ui) = {(x, y) : y ≤ u(x)} is the set of all points that lie on or below the
graph of ui (that is CC(W u(q) ∩O, fi(p)));
· Left–graph(s0) = {(x, y) : x ≤ s0(y)} is the set of all points that lie on or at the left
of the graph of s0 (that is CC(W s(q) ∩O, f−M(p))).

Remark 4.2.4. Let O be a neighborhood of q and let p, f−M(p) be respectively future-
first-entry and past-first-entry points for O with respect to which Condition 4.2.7 holds.
Remark then, refering to Notation 4.2.2, that

(RV (i))i≥0 and (RH(i))i≥0

are both decreasing sequences of sets contained in O.
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(a) (b)

Figure 4.3 – Example of vertical rectangles RV (i) and of horizontal rectangles RH(i).

Definition 4.2.3. Let q ∈ S be a fixed hyperbolic point for f and let p ∈ (W u(q) ⋔

W s(q)) \ {q}. Fix 0 < ε < 1
12

.
A neighborhood O of q satisfying Conditions 4.2.1, 4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6 and 4.2.7,
with respect to ε is called an adapted neighborhood of q for O(p, f) with respect
to ε.

Lemma 4.2.3. Let q ∈ S be a fixed hyperbolic point for f and let p ∈ (W u(q) ⋔ W s(q)) \
{q}. Fix 0 < ε < 1

12
and let W be an open neighborhood of q. Then there exits an adapted

neighborhood Oε of q for O(p, f) with respect to ε contained in W .

Proof. Let O be a neighborhood of q given by Lemma 4.2.1: up to shrink O, we can
assume it is contained in W . In particular, CC(W s(q) ∩ O, q) is sent by a chart φ on
{0} × (−1, 1) and for any x ∈ CC(W s(q) ∩ O, q) it holds Dφ(x)TxW s(q) = R(0, 1).
Because of the continuity of the angle function and because the stable manifold W s(q) is
a C1 immersed submanifold, there exists a neighborhood O1 ⊂ O of q such that for any
x ∈ CC(W s(q) ∩O1, q) the angle

θ(Es
q , TxW

s(q))

admits a measure in (− ε
4
, ε
4
). Similarly, we find a neighborhood O2 ⊂ O1 such that for

any x ∈ CC(W u(q) ∩O2, q) the angle

θ(Eu
q , TxW

u(q))

admits a measure in (− ε
4
, ε
4
). That is, O2 satisfies Condition 4.2.1. Remark that any

neighborhood of q contained in O2 still satisfies Condition 4.2.1.
Apply the Local (Un)Stable Manifold Theorem at q for f (see Theorem A.0.1). Then,
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there exists a neighborhood O3 ⊂ O2 of q satisfying Condition 4.2.2. That is CC(W u(q)∩
O3, q) = W u

loc,δ(q) and CC(W s(q) ∩ O3, q) = W s
loc,δ(q) for some 0 < δ < ε

2
. This condition

is verified for any neighborhood of q contained in O3, up to decrease δ.
Thanks to the λ-lemma (see Theorem A.0.3) we find a neighborhood O4 ⊂ O3 that verifies
also Condition 4.2.3. Again, we remark that such a condition still holds true if we shrink
the neighborhood of the hyperbolic point.
The point q is hyperbolic and so in particular it satisfies the cone field property (see
Proposition A.0.1). Such a criterion is an open condition in S (see Appendix B). Hence,
there exists a neighborhod O5 of q contained in O4 verifying the cone field property, that
is satisfying Condition 4.2.4. Observe that we can extend the cone field property by asking
that for any

x ∈ O(p, f) ∩O5 ∩ [CC(W s(q) ∩O5, q) ∪ CC(W u(q) ∩O5, q)]

the stable and unstable splitting is exactly

TxW
s(q)⊕ TxW

u(q).

The connected component CC(O5, q) is a neighborhood of q which satisfies all the condi-
tions 4.2.1, 4.2.2, 4.2.3 and 4.2.4.
Since limn→±∞ fn(p) = q, there is a finite number of points of O(p, f) which do not belong
to CC(W u(q) ∩ O5, q) ∪ CC(W s(q) ∩ O5, q). Therefore we find a neighborhood O6 of q
contained in CC(O5, q) such that all the previous conditions hold and such that

O(p, fN) ∩O6 ⊂ CC(W u(q) ∩O6, q) ∪ CC(W s(q) ∩O6, q).

That is, O6 satisfies also Condition 4.2.5.
Since the vector field eu (respectively es) is continuous (see Lemma 4.2.2) and since the
torsion at finite time is continuous, also the function

x 7→ Torsion1(f, x, e
u
x) ( respectively x 7→ Torsion1(f, x, e

s
x))

is continuous. So, there exists a neighborhood O7 of q contained in O6 such that it satisfies
Condition 4.2.6. Observe that O7 satisfies also Conditions from 4.2.1 to 4.2.4.
The intersection O(p, f) ∩ O7 is contained in CC(W s(q) ∩ O6, q) ∪ CC(W u(q) ∩ O6, q).
There is a finite number of points of O(p, f) ∩ O7 which do not belong to CC(W s(q) ∩
O7, q) ∪ CC(W u(q) ∩ O7, q). We can so shrink O7 in order to exclude those points and
verify also Condition 4.2.5.
Consider then p and f−M(p) (for some M > 0) respectively future-first-entry and past-
first-entry points for O7 (see Definition 4.2.1). By the λ-lemma (see Theorem A.0.3),
there exists i ≥ 0 such that the “deformed” vertical rectangle RV (i) (see Notation 4.2.2)
is contained in O7. We then find a suitable small open neighborhood O8 of the rectangle
RV (i) contained in O7. That is, the neighborhood O8 satisfies all the conditions 4.2.1,
4.2.2, 4.2.3, 4.2.4, 4.2.5, 4.2.6 and 4.2.7.
We so conclude that O8 is an adapted neighborhood of q for O(p, f) with respect to ε
contained in W .

Fix an adapted neighborhood Oε of q for O(p, f). Assume that the point p is a future-
first-entry point for Oε and let f−J(p) be a past-first-entry point for Oε. Since p ∈ W s

loc,δ(q)
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4.2.2 Choice of an adapted neighborhood of {q} ∪ O(p)

In this Subsection we are going to choose a neighborhood of the hyperbolic set {q} ∪
O(p, f) with respect to the fixed 0 < ε < 1

12
.

Condition 4.2.8. Let U be an open neighborhood of {q} ∪ O(p, f) with a finite number
n ∈ N of connected componentsand such that

(i) the connected component Ũ := CC(U, q) containing q is an adapted neighborhood
of q for O(p, f) with respect to ε (see Definition 4.2.3);

(ii) every other connected component of U not containing q meets {q} ∪O(p, f) only at
one point of O(p, f).

Remark 4.2.6. Let U be an open neighborhood of {q} ∪ O(p, f) satisfying Condition
4.2.8. In particular, CC(U, q) is an adapted neighborhood of q for O(p, f). Denote then
as p the future-first-entry point for CC(U, q) (see Definition 4.2.1). Then, U has n ∈ N
connected components if and only if f−n(p) is the past-first-entry point for CC(U, q).

Condition 4.2.9. Let U be an open neighborhood of the hyperbolic set {q} ∪ O(p, fN)
which satisfies the cone field property (for f) 9.

Observe in particular that we extend the (un)stable splitting (and so the (un)stable cone
field) on a neighborhood of {q} ∪ O(p) so that for any x ∈ {q} ∪ O(p, f) the splitting is
the hyperbolic one

TxW
u(q)⊕ TxW

s(q).

See Proposition B.0.2 in Appendix B.

Notation 4.2.3. Let U be an open neighborhood of {q} ∪ O(p, f) satisfying Condition
4.2.9. Denote the maximal invariant set for f contained in U as

Λ(U) :=
⋂

n∈Z
fn(U).

Remark 4.2.7. Thanks to the cone field criterion, the set Λ(U) defined in Notation 4.2.3
is hyperbolic for f and it strictly contains {q}∪O(p, f), since this last set is not isolated (see
Fact A.0.3). Denote as Eu

Λ(U) ⊕ Es
Λ(U) the corresponding Df-invariant splitting of TΛ(U)S.

Condition 4.2.10. Let U be an open neighborhood of {q}∪O(p, f) satisfying Conditions
4.2.8 and 4.2.9. Let Λ(U) be the maximal f-invariant set contained in U . Recall that Λ(U)
is hyperbolic (see Remark 4.2.7). Assume that (we refer to Notation 4.2.1)

— for any x ∈ Λ(U) ∩ Ũ both the angle θ(Eu
q , E

u
x) between Eu

x and Eu
q and the angle

θ(Es
q , E

s
x) between Es

x and Es
y are in

(
− ε

2
, ε
2

)
;

— for every connected component V of U not containing q, for any x ∈ Λ(U)∩V both
the angle θ(Eu

y , E
u
x) between Eu

x and Eu
y and the angle θ(Es

y, E
s
x) between Es

x and
Es
y are in

(
− ε

2
, ε
2

)
, where y is the only point in V ∩ O(p, f).

9. We refer to Appendix B for a detailed discussion of the cone field property.
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Notation 4.2.4. Let U be a neighborhood of {q}∪O(p, f) which satisfies Condition 4.2.8.
The number of connected components of U is denoted n. The connected component of U
containing q is denoted Ũ . The point p denotes the future-first-entry point for Ũ and so
f−n(p) is the past-first-entry point for Ũ . For any i ∈ J1, n−1K denote as Ui the connected
component of U which meets O(p, f) only at f−i(p).

Lemma 4.2.4. Let q be a hyperbolic fixed point for f and let p ∈ (W s(q) ⋔ W u(q)) \ {q}.
Let U be an open neighborhood of {q} ∪ O(p, f) satisfying Conditions 4.2.8, 4.2.9 and
4.2.10.
There exist two continuous vector fields

Λ(U) ∋ x 7→ eux ∈ Eu
x ∩ S1,

Λ(U) ∋ x 7→ esx ∈ Es
x ∩ S1

such that

— for any i ∈ J1, n− 1K, for any x ∈ Λ(U) ∩ Ui the angles

θ(eux, e
u
f−i(p)) and θ(esx, e

s
f−i(p))

both admit a measure in
(
− ε

2
, ε
2

)
;

— for x ∈ Λ(U) ∩ Ũ the angles

θ(eux, e
u
q ) ånd θ(esx, e

s
q)

both admit a measure in
(
− ε

2
, ε
2

)
.

Proof. First of all, let us choose euq ∈ Eu
q ∩S1 and eu

f−i(p) ∈ Eu
f−i(p)∩S1 for any i ∈ J1, n−1K.

We are going to show the existence and the continuity of the vector field eu. Then the
proof for es is analogous.
Consider Λ(U)∩ Ũ . Observe that, since each Eu

x is 1-dimensional, every Eu
x ∩ S1 contains

only two vectors {v,−v}. The vector field eu is so defined, on Λ(U) ∩ Ũ , as

— at q it is the chosen euq ;

— at x ∈ Λ(U) ∩ Ũ , eux is the vector such that the angle θ(euq , e
u
x) admits a measure in(

− ε
2
, ε
2

)
.

The vector eux is defined for any x ∈ Λ(U) ∩ Ũ . Indeed, the angle between Eu
q and Eu

x is
(see Notation 4.2.1)

min
w∈Eu

q ∩S1
v∈Eu

x∩S1

∣∣θ̄(w, v)
∣∣ = min{

∣∣θ̄(euq , v)
∣∣,
∣∣θ̄(euq ,−v)

∣∣,
∣∣θ̄(−euq , v)

∣∣,
∣∣θ̄(−euq ,−v)

∣∣},

where v ∈ Eu
x ∩ S1. Recall that the notation

∣∣θ̄(w, v)
∣∣ refers to the absolute value of the

measure of the angle contained in
[
− 1

2
, 1
2

)
. In particular the angle θ(Eu

x , E
u
q ) is

min{
∣∣θ̄(euq ), v

∣∣,
∣∣θ̄(euq ,−v)

∣∣}, where v ∈ Eu
x ∩ S1,
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since
∣∣θ̄(euq , v)

∣∣ =
∣∣θ̄(−euq ,−v)

∣∣ and
∣∣θ̄(euq ,−v)

∣∣ =
∣∣θ̄(−euq , v)

∣∣. By Condition 4.2.10, we
have that

min{
∣∣θ̄(euq , v)

∣∣,
∣∣θ̄(euq ,−v)

∣∣} < ε

2
.

So we define eux ∈ {v,−v} so that
∣∣θ̄(euq , eux)

∣∣ < ε
2
. That is such that θ(euq , e

u
x) admits a

measure in
(
− ε

2
, ε
2

)
.

The vector eux is uniquely defined. Indeed, θ(euq ,−eux) admits a measure in
(
1
2
− ε

2
, 1
2
+ ε

2

)

and, since 0 < ε < 1
12

, we deduce that

∣∣θ̄(euq , eux)
∣∣ <

∣∣θ̄(euq ,−eux)
∣∣.

Let us prove the continuity of eu on Λ(U) ∩ Ũ . Fix x ∈ Λ(U) ∩ Ũ and fix δ > 0. By the
continuity of the splitting Eu

Λ(U) ⊕ Es
Λ(U), there exists a neighborhood W of x such that

for any y ∈ Λ(U) ∩W we have

dH(E
u
x ∩ S1, Eu

y ∩ S1) < δ.

In particular
min

v∈Eu
y∩S1

‖eux − v‖ = min{
∥∥eux − euy

∥∥,
∥∥eux + euy

∥∥} < δ.

By showing that
∥∥eux − euy

∥∥ <
∥∥eux + euy

∥∥, we immediately conclude.

Claim 4.2.1.
∥∥eux − euy

∥∥ <
∥∥eux + euy

∥∥.

Proof of Claim 4.2.1. Observe that, thanks to the definition of eu, the angle θ(eux, e
u
y) admits

a measure in (−ε, ε) and the angle θ(eux,−euy) admits a measure in
(
1
2
− ε, 1

2
+ ε
)
. We look

now at
∥∥eux + euy

∥∥2. Recall that we are considering the Euclidean norm on R2 ∼= TxŨ for
any x ∈ Λ(U)∩Ũ and we are identifying all the tangent spaces thanks to the trivialization.
Denote as 〈·, ·〉 the standard scalar product. Hence

∥∥euy + eux
∥∥2 =

∥∥euy − eux
∥∥2 + 4

〈
eux, e

u
y

〉
.

Since the angle θ(eux, e
u
y) admits a measure in (−ε, ε) and since 0 < ε < 1

12
, we have that

〈
eux, e

u
y

〉
= cos(2π θ(eux, e

u
y)) >

1

2
.

Therefore, we conclude that

∥∥euy + eux
∥∥ =

∥∥euy − eux
∥∥2 + 4

〈
eux, e

u
y

〉
>
∥∥eux − euy

∥∥2 + 2 >
∥∥eux − euy

∥∥.

The same argument can be repeated on each Λ(U) ∩ Ui for i ∈ J1, n− 1K and this shows
the continuity of the vector field eu.

Condition 4.2.11. Let U be an open neighborhood of {q}∪O(p, f) satisfying Conditions
4.2.8, 4.2.9 and 4.2.10. Let p be the future-first-entry point for Ũ . Then suppose that
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— for x ∈ Λ(U) ∩ Ũ it holds

∣∣Torsion1(f, x, e
u
x)− Torsion1(f, q, e

u
q )
∣∣ < ε

2

and ∣∣Torsion1(f, x, e
s
x)− Torsion1((f, q, e

s
q)
∣∣ < ε

2
;

— for any i ∈ J1, n− 1K, for any x ∈ Λ(U) ∩ Ui it holds
∣∣∣Torsion1(f, x, e

u
x)− Torsion1(f, f

−i(p), euf−i(p))
∣∣∣ < ε

2

and ∣∣∣Torsion1(f, x, e
s
x)− Torsion1(f, f

−i(p), esf−i(p))
∣∣∣ < ε

2
.

Definition 4.2.4. Let q ∈ S be a fixed hyperbolic point for f and let p ∈ (W s(q) ⋔

W u(q)) \ {q}. Fix 0 < ε < 1
12

.
Then an open neighborhood of {q} ∪ O(p, f) that satisfies Conditions 4.2.8, 4.2.9, 4.2.10
and 4.2.11 with respect to ε is an adapted neighborhood of {q}∪O(p, f) with respect
to ε.

Fact 4.2.1. Let q ∈ S be a fixed hyperbolic point for f and let p ∈ (W s(q) ⋔ W s(q)) \ {q}.
Fix 0 < ε < 1

12
.

Let W be an open neighborhood of {q}∪O(p, f). Then there exists an adapted neighborhood
of {q} ∪ O(p, f) with respect to ε contained in W .

Proof. From Lemma 4.2.3, there exists an adapted neighborhood Oε of q for O(p, f) with
respect to ε contained in CC(W, q) (since CC(W, q) is a neighborhood of q). Denote as
fK(p), f(K−n)(p) ∈ O(p, f) the future-first-entry and past-first-entry points, respectively,
for Oε (see Definition 4.2.1). Since Oε is an adapted neighborhood of q, by Condition
4.2.5 for any i ∈ J1, n−1K the point f(K−i)(p) does not belong to Oε. Consider so for every
i ∈ J1, n−1K open connected neighborhoods Ui of f(K−i)(p), contained in W , disjoint from
Oε and such that each Ui meets O(p, f) just at f(K−i)(p).
The neighborhood

W1 := Oε ∪
n−1⋃

i=1

Ui

is so a neighborhood of {q} ∪ O(p, f) contained in W and satisfying Condition 4.2.8.
The set {q} ∪ O(p, f) is hyperbolic for f, hence it satisfies the cone field property (see
Proposition A.0.2). Since this property is open in S (see Appendix B), we find an open
neighborhood W2 of {q} ∪O(p, f) contained in W1 which satisfies the cone field property,
that is Condition 4.2.9.
Up to restrict W2, we can assume that W̃2 := CC(W2, q) is an adapted neighborhood of q
for O(p, f) with respect to ε and that W2 \ W̃2 is made up of a finite number of connected
components, each of which intersects {q} ∪ O(p, f) at just one point of O(p, f). That is,
W2 satisfies Conditions 4.2.8 and 4.2.9.
Observe that if two neighborhoods of {q} ∪ O(p, f) are such that the first is contained in
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the second, then the maximal f-invariant subset of the first neighborhood is contained in
the maximal f-invariant subset of the second.
By Condition 4.2.9 and by the cone field criterion (see Proposition A.0.2), the f-invariant
set Λ(W2) is hyperbolic for f. Recall that the hyperbolic splitting of Λ(W2) is continuous.
Also the angle functions

Λ(W2)× Λ(W2) ∋ (x, y) 7→ θ(Ei
x, E

i
y) ∈ T for i = u, s

are continuous. So, we find a neighborhood W3 contained in W2 satisfying Condition 4.2.8,
i.e. a neighborhood

W3 := V ∪
m⋃

i=1

Vi,

where V is an adapted neighborhood of q, such that

— for every x ∈ Λ(W2) ∩ V the angles θ(Eu
q , E

u
x) and θ(Es

q , E
s
x) both are in (− ε

2
, ε
2
)

and such that, denoting as fL(p) the future-first-entry point for V ,

— for every x ∈ Λ(W2)∩ Vi the angles θ(Eu
f(L−i)(p)

, Eu
x) and θ(Es

f(L−i)(p)
, Es

x) both are in

(− ε
2
, ε
2
), where f(L−i)(p) is the only point of O(p, f) belonging to Vi.

Then, the neighborhood W3 is a neighborhood of {q} ∪ O(p, f) which satisfies Condition
4.2.9 (the cone field property) because it is contained in W2 and, since Λ(W3) ⊂ Λ(W2),
it satisfies also Condition 4.2.10 (concerning the angles of the (un)stable spaces).
By the continuity of the vector fields eu, es (see Lemma 4.2.4) and since the torsion at
finite time is continuous, there exists a neighborhood W4 contained in W3 (so in particular
Λ(W4) ⊂ Λ(W3)) which satisfies Conditions 4.2.8 and 4.2.9 and such that

— for any x ∈ Λ(W3) ∩ CC(W4, q) it holds

∣∣Torsion1(f, x, e
u
x)− Torsion1(f, q, e

u
q )
∣∣ < ε

2
,

∣∣Torsion1(f, x, e
s
x)− Torsion1(f, q, e

s
q)
∣∣ < ε

2
.

— for any i ∈ Z such that fi(p) /∈ CC(W4, q) at any x ∈ Λ(W3) ∩ CC(W4, f
i(p)) it

holds ∣∣∣Torsion1(f, x, e
u
x)− Torsion1(f, f

i(p), eufi(p))
∣∣∣ < ε

2
,

∣∣∣Torsion1(f, x, e
s
x)− Torsion1(f, f

i(p), esfi(p))
∣∣∣ < ε

2
.

Up to shrink the connected components other than CC(W4, q), the neighborhood W4

can be chosen so that it satisfies also Condition 4.2.10 (concerning angles of (un)stable
subspaces). Consequently, we conclude thatW4 is an adapted neighborhood of {q}∪O(p, f)
with respect to ε contained in W .
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4.3 Construction of the horseshoe

In the sequel we are going to construct the so–called horseshoe dynamics.
Let us recall our framework. Let fN = f : S → S be a C1 diffeomorphism on S (where S
is either R2 or A or T2) isotopic to the identity. Let q ∈ S be a fixed hyperbolic point for
f (i.e. a periodic hyperbolic point for f of period N) such that the eigenvalues of Df(q)
are λ1, λ2 ∈ R so that 0 < λ1 < 1 < λ2. Let p ∈ (W u(q) ⋔ W s(q)) \ {q}.
Let 0 < ε < 1

12
. Fix an adapted neighborhood Uε of {q} ∪ O(p, f) with respect to ε (see

Definition 4.2.4).
Denote as Ũ the connected component CC(Uε, q): by Condition 4.2.8, it is an adapted
neighborhood of q for O(p, f) with respect to ε. Up to change the point, let p be the
future-first-entry point for Ũ (see Definition 4.2.1). Denote as f−nu(p) the past-first-entry
point for Ũ .
The neighborhood Uε has nu connected components (see Remark 4.2.6) and we denote as
Ui the connected component which meets O(p, f) only at f−i(p) (see Figure 4.5).

From now on, on Ũ we use the coordinates given by the chart φ of Lemma 4.2.1.
That is, the local unstable and stable manifolds are contained respectively in R×{0} and
{0} ×R with respect to these coordinates. Up to contract or dilate the chart, we assume
that

φ(CC(W s(q) ∩ Ũ, q)) = {0} × B1(0) and φ(CC(W u(q) ∩ Ũ, q)) = B1(0)× {0},

where CC(W s(q) ∩ Ũ, q) (respectively CC(W u(q) ∩ Ũ, q)) is the connected component of
W s(q) ∩ Ũ (respectively W u(q) ∩ Ũ) that contains q.

Figure 4.5 – An adapted neighborhood Uε of {q} ∪ O(p, fN) with nu = 5.

Up to modify the chart φ as z 7→ (−p1 ◦ φ(z), p2 ◦ φ(z)) or as z 7→ (p1 ◦ φ(z),−p2 ◦ φ(z)),
assume that φ(p) ∈ {0} × R+ and φ(f−nu(p)) ∈ R+ × {0}.
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Define for any r ∈ (0, 1) the following sets

Ds
r := {(0, y) ∈ R2 : y ∈ [0, r)} and Du

r := {(x, 0) ∈ R2 : x ∈ [0, r)}.

Since p, f−nu(p) are the future-first-entry and the past-first-entry points for Ũ respectively,
we have that

p ∈ φ−1(Ds
1) \ f(φ−1(Ds

1))

and
f−nu(p) ∈ φ−1(Du

1 ) \ f−1(φ−1(Du
1 )).

Assumption 4.3.1. Up to slightly modify the chart φ, we assume that

p ∈ int
(
φ−1(Ds

1) \ f(φ−1(Ds
1))
)

(4.8)

and
f−nu(p) ∈ int

(
φ−1(Du

1 ) \ f−1(φ−1(Du
1 ))
)
. (4.9)

Lemma 4.3.1. There exist δu ∈ (0, 1] and δs ∈ (0, 1] such that

p ∈ int
(
f−nu(φ−1(Ds

δs)) \ f−(nu−1)(φ−1(Ds
δs))
)

and
p ∈ int

(
fnu(φ−1(Du

δu)) \ f(nu−1)(φ−1(Du
δu))
)
.

In order to prove Lemma 4.3.1, we introduce the following functions

(0, 1] ∋ δ 7→ ls(δ) ∈ N,

ls(δ) := min{n ≥ 0 : fn(p) ∈ Ds
δ}

(4.10)

and

(0, 1] ∋ δ 7→ lu(δ) ∈ N,

lu(δ) := min{n ≥ 0 : f−n(p) ∈ Du
δ }.

(4.11)

Remark 4.3.1. Observe that for any n ≥ ls(δ) it holds fn(p) ∈ Ds
δ and that for any

n < ls(δ) it holds fn(p) /∈ Ds
δ . Similarly for any n ≥ lu(δ) it holds f−n(p) ∈ Du

δ and for
any n < lu(δ) it holds f−n(p) /∈ Du

δ .

Remark 4.3.2. We remark also that the functions δ 7→ ls(δ) and δ 7→ lu(δ) are both non
increasing.

Remark 4.3.3. The integer ls(δ) ∈ N is the unique integer such that

p ∈ f−l
s(δ)(φ−1(Ds

δ)) \ f−(ls(δ)−1)(φ−1(Ds
δ)), (4.12)

while lu(δ) ∈ N is the unique integer such that

p ∈ fl
u(δ)(φ−1(Du

δ )) \ f(l
u(δ)−1)(φ−1(Du

δ )). (4.13)

Lemma 4.3.1 follows then from the following claim.
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Claim 4.3.1. For any J ∈ N, J ≥ ls(1) there exists δs ∈ (0, 1] such that ls(δs) = J .
Similarly, for any J ∈ N, J ≥ lu(1) there exists δu ∈ (0, 1] such that lu(δu) = J .

Proof of Claim 4.3.1. We just prove the first assertion. The second one follows similarly.
By Assumption 4.3.1, we have that p ∈ int (φ−1(Ds

1) \ f(φ−1(Ds
1))). Consequently, for any

n ≥ 0 it holds that

fn(p) ∈ int
(
fn(φ−1(Ds

1)) \ f(n+1)(φ−1(Ds
1))
)
.

Observe that, for any natural integer n, the set fn(φ−1(Ds
1)) \ f(n+1)(φ−1(Ds

1)) is a funda-
mental domain of the connected component Bs of W s(q) \ {q} that contains p. That is
the orbit of any x ∈ Bs meets such a domain at just one point.
There exists δ(n) ∈ (0, 1] such that

fn(φ−1(Ds
1)) = φ−1(Ds

δ(n)).

Therefore
fn(p) ∈ int

(
φ−1(Ds

δ(n)) \ f(φ−1(Ds
δ(n)))

)

and so
p ∈ int

(
f−n(φ−1(Ds

δ(n))) \ f−(n−1)(φ−1(Ds
δ(n)))

)
,

i.e. n = ls(δ(n)). By choosing n = J , we have that δ(J) = δs ∈ (0, 1] is so that ls(δs) = J .

Proof of Lemma 4.3.1. By Claim 4.3.1, for any J ∈ N, J ≥ max(ls(1), lu(1)) there exist
δs, δu ∈ (0, 1] such that ls(δs) = lu(δu) = J . Remark that ls(1) = 1 and lu(1) = nu from
(4.8) and (4.9). By choosing then J = nu, we immediately conclude.

Remark 4.3.4. Up to slightly modify δs, δu, we can assume that ls(δs) = lu(δu) = nu and
(see Figure 4.6)

(i) f−nu(φ−1(Ds
δs
)) ⊂ Ũ ;

(ii) f−nu(φ−1(0, δs)) /∈ CC(W u(q) ∩ Ũ, p);

(iii) fnu(φ−1(δu, 0)) ∈ CC(W u(q) ∩ Ũ, p) \ CC(W s(q) ∩ Ũ, q).

Remark 4.3.5. Since Ũ = CC(Uε, q) is an adapted neighborhood of q for O(p, f) with
respect to ε, by Condition 4.2.3 we have that CC(W u(q)∩ Ũ, p) is a graph with respect to
the first coordinate (through φ) and that CC(W s(q)∩ Ũ, f−nu(p)) is a graph with respect
to the second coordinate (through φ). See Figure 4.7.

Notation 4.3.1. The notations p1 : R2 → R and p2 : R2 → R refer to the projections
over the first and the second coordinates respectively.

Notation 4.3.2. Let V1 be a rectangle-shaped neighborhood of p contained in Ũ . That
is, there exist two closed intervals I1, I2 contained respectively in R × {0}, {0} × R such
that φ(V1) = p1(I1)× p2(I2). Observe that 0 ∈ p1(I1).
By the continuity of f−i for i ∈ J1, nuK and since f−nu(p) ∈ Ũ and f−i(p) ∈ Ui for any
i ∈ J1, nu − 1K, we can choose V1 so that:
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Figure 4.6

Figure 4.7 – CC(W u(q) ∩ Ũ, p) (respectively CC(W s(q) ∩ Ũ, f−nu(p))) is a graph with
respect to the first (respectively second) coordinate.

— f−i(V1) is contained in Ui for any i ∈ J1, nu − 1K;

— f−nu(V1) is contained in Ũ .

Let V0 be a rectangle-shaped neighborhood of q contained in Ũ . Observe that 0 ∈ p1◦φ(V0)
and 0 ∈ p2 ◦ φ(V0). By the continuity of fi for any i ∈ J1, nuK and since f−i(q) ∈ Ũ for any
i ∈ J1, nuK, we can choose V0 so that:

— f−i(V0) is contained in Ũ for any i ∈ J1, nuK.

Notation 4.3.3. From now on, in order to lighten the notation, we omit to write φ, φ−1.

By Condition 4.2.4 of Ũ adapted neighborhood of q for O(p) (the cone field property),
for every x ∈ Ũ we can define its stable and unstable cones. Denote as Cs

x and Cu
x the
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stable and unstable cones at x ∈ Ũ respectively 10. For every x ∈ Ũ we can assume that
Cs
x ∩ Cu

x = {0}.
Let us now introduce the notion of stable and unstable curves and of rectangles. We refer
to Appendix C for a detailed discussion of these notions.

Definition 4.3.1. Let γ : [0, 1] → Ũ be a C1 embedding. Then γ is an unstable curve if
for any t ∈ [0, 1] it holds

γ′(t) ∈ Cu
γ(t).

Similarly, γ is a stable curve if for any t ∈ [0, 1] it holds

γ′(t) ∈ Cs
γ(t).

A rectangle R is a C1 embedding

R : [0, 1]2 → Ũ

such that for any t ∈ [0, 1] we have that R({t}× [0, 1]) is a stable curve and R([0, 1]×{t})
is an unstable curve.

Notation 4.3.4. Let R be a rectangle. The stable boundary of R is

∂sR = ∂s0R ∪ ∂s1R = R({0} × [0, 1]) ∪R({1} × [0, 1]),

while the unstable boundary of R is

∂uR = ∂u0R ∪ ∂u1R = R([0, 1]× {0}) ∪R([0, 1]× {1}).

Let j ∈ N. Let Q = Q(j) be a rectangle contained in Ũ such that

— ∂s0Q = cl(Ds
δs
);

— denoting as [q, f−(nu+j)(p)]u the subset of the local unstable manifold of q connecting
q to f−(nu+j)(p), it holds that

[q, f−(nu+j)(p)]u ⊂ ∂u0Q ⊆ f−j(Du
δu);

— f−nu(Q) ⊂ Ũ .

See Figure 4.8. Denote as (Vt)t∈[0,1] the foliation in Q made up of stable curves (Q({t} ×
[0, 1]))t∈[0,1]. Denote as (Hs)s∈[0,1] the foliation of Q made up of unstable curves (Q([0, 1]×
{s}))s∈[0,1].
Denote as

R = f−nu(Q).

Condition 4.3.1. Let j1 ∈ N be such that for any j ≥ j1 the points q and p belong to
different connected components of

f(2nu+j)(R) ∩R,

denoted respectively as V0(j) and V1(j).

10. In order to lighten the notation, we omit the parameter η refering to the size of the cones. See
Appendixes B and C

173



Figure 4.8 – The rectangle Q ⊂ Ũ .

Condition 4.3.2. Let V1,V0 be the neighborhoods of p and q respectively introduced
in Notation 4.3.2. Let j2 ∈ N be such that for any j ≥ j2 the connected components
of f(2nu+j)(R) ∩ R containing q and p (that is V0(j) and V1(j), see Condition 4.3.1) are
contained in V1 and V0 respectively.

Condition 4.3.3. Denote as F the foliation whose leaves are the connected components
of

f−nu(Vt) ∩ (V0(j) ∪ V1(j))
as t ∈ [0, 1].
Let j3 ∈ N be such that for any j ≥ j3 for any s ∈ [0, 1] the image f(nu+j)(Hs) intersects
each leaf of F only once and transversally.

Proposition 4.3.1. There exists j ∈ N such that the rectangle Q(j) is well-defined and
Conditions 4.3.1, 4.3.2 and 4.3.3 hold.

Proof. Recall that p ∈ Ũ and f−nu(p) ∈ Ũ denote respectively the future-first-entry and
the past-first-entry points for Ũ (see Definition 4.2.1). With an abuse of notation we iden-
tify Ũ with its image in R2 through the chart φ.
The unstable and stable subspaces Eu and Es extend continuously on Ũ (see Proposition
B.0.2 in Appendix B). Actually, the unstable subspace can be extended such that for
x ∈ CC(W u(q) ∩ Ũ, q) ∪ CC(W u(q) ∩ Ũ, p) it holds TxW u(q) = Eu

x .
There exists a continuous vector field eu : Ũ → Eu

Ũ
such that for any z ∈ Ũ the

vector euz belongs to Eu
z ∩ S1 (see Proposition B.0.3 in Appendix B). Observe that for

z ∈ CC(W u(q) ∩ Ũ, q) we have that Dφ(z)euz ∈ R× {0}.
For any (0, y) ∈ Ds

δs
the vector (0, 1) belongs to int Cs

(0,y). By the continuity of the stable
cones, there exists a compact rectangle-shaped neighborhood W of φ−1(Ds

δs
) contained in

Ũ such that for any z ∈ W the vector Dφ−1(φ(z))(0, 1) belongs to int Cs
z . In particular

any vertical segment contained in W is a stable curve.
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Since 11 (see Remark 4.3.4 and Notation 4.3.2):

— f−nu(Ds
δs
) is contained in Ũ ;

— p1(φ ◦ f−nu ◦ φ−1(Ds
δs
)) = {0} ⊂ p1(V0) ∩ p1(V1);

— φ ◦ fnu ◦ φ−1(δu, 0) /∈ φ ◦ f−nu ◦ φ−1(Ds
δs
);

there exists a neighborhood W of f−nu ◦ φ−1(Ds
δs
) contained in Ũ such that

p1(W) ⊂ p1(V0) ∩ p1(V1) and fnu ◦ φ−1(δu, 0) /∈ cl(W).

In particular, there exists a ball Bζ′(f
nu(δu, 0)) ⊂ Ũ centered at fnu ◦φ−1(δu, 0) and disjoint

from W.
Observe that p2(CC(W u(q) ∩ Ũ, q) ∩W) = {0} and so it is clearly contained in p2(V0).
In addition, up to restrict W, we can assume that the projection over the second coordi-
nate of CC(W u(q) ∩ Ũ, p) ∩W is strictly contained in p2(V1). See Figure 4.9.

Figure 4.9 – The neighborhood W of φ ◦ f−nu ◦ φ−1(Ds
δs
).

LetBζ(f
−nu(0, δs)) ⊂ Ũ be a ball centered at f−nu◦φ−1(0, δs) and disjoint from CC(W u(q)∩

Ũ, p) (see Remark 4.3.4).
Since f−nu is a C1 diffeomorphism and since the images trough Df−1 of stable curves con-
tained in Ũ remain stable curves (see Lemma C.5.1), there exists δ > 0 so that if γ is a
stable curve δ–C0 close to φ−1(Ds

δs
), then f−nu ◦ γ is a stable curve in W and the image

through f−nu of the endpoint of γ that is δ-close to (φ−1(0, δs)) is in Bζ(f
−nu(0, δs)).

Consider now fnu ◦ φ−1(Du
δu
). There exists a neighborhood U of fnu ◦ φ−1(Du

δu
) such that

(see Figure 4.10):

— q and p belong to different connected components of U ∩ Ũ ;

11. Recall that we are considering the coordinates of the chart φ.
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Figure 4.10 – The components of the neighborhood U of φ◦ fnu ◦φ−1(Du
δu
) in Ũ containing

q and p.

— the connected component of U ∩ Ũ containing p is disjoint from Bζ(f
−nu(0, δs));

— the projection over the second coordinate of CC(U∩ Ũ, p)∩W is contained in p2(V1)
and the projection over the second coordinate of CC(U∩Ũ, q) is contained in p2(V0).

Let ρ > 0 be such that if a curve γ contained in Ũ is ρ–C1 close to either CC(W u(q) ∩
Ũ, q) or to CC(W u(q) ∩ Ũ, p), then the vector tangent to the curve γ′ belongs to the
unstable cone of the corresponding point of γ. This comes from the fact that at points
x of CC(W u(q) ∩ Ũ, q) and of CC(W u(q) ∩ Ũ, p) the subspace TxW u(q) is the unstable
subspace of x.
Thus, if γ is a curve contained in Ũ and it is ρ–C1 close to fnu ◦φ−1(Du

δu
), then γ intersects

a stable curve contained either in CC(U ∩ W, p) or in CC(U ∩ W, q) at most once and
transversally because stable and unstable cones are disjoints.

Recall that W is the fixed neighborhood of φ−1(Ds
δs
) where the vertical segments are

stable curves. Let j1 ∈ N be the first integer such that f−j1 ◦φ−1(Du
δu
) ⊂ W . Since f(j1+nu)

is a C1 diffeomorphism, there exists ε > 0 such that if an unstable curve γ is contained in
W and is ε–C1 close to f−j1 ◦ φ−1(Du

δu
), then the curve f(j1+nu) ◦ γ is contained in U and

is ρ–C1 close to φ ◦ fnu ◦ φ−1(Du
δu
) and one of its endpoints is in Bζ′(f

nu(δu, 0)).

Let us now build a rectangle Q = Q(j) within W .
Let us start by building an horizontal foliation, made up of unstable curves. The horizontal
curve φ−1(R× {0}) ∩W is an unstable curve because

φ−1(R× {0}) ∩W ⊂ CC(W u(q) ∩ Ũ, q)

and for any z ∈ φ−1(R× {0}) ∩W the vector euz = Dφ−1(φ(z))(1, 0) belongs to int Cu
z .

Claim 4.3.2. There exists a C∞ vector field ẽu : W → TWS such that:
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— for any z ∈ W the vector ẽuz ∈ Cu
z ;

— for any z ∈ W the projection over the first coordinate D(p1 ◦ φ(z))ẽuz = 1;

— for any z ∈ φ−1(R× {0}) ∩W it holds Dφ(z)ẽuz ∈ RDφ(z)euz .

Proof of Claim 4.3.2. In the proof we omit the notations φ, φ−1 in order to lighten the
text. Consider the function

W ∋ z 7→ g(z) =
Dp2(z)e

u
z

Dp1(z)euz
∈ R.

By definition of W , it holds R(0, 1) ∈ int Cs
z for any z ∈ W and Cs

z ∩ Cu
z = {0}. Con-

sequently euz ∈ Eu
z does not belong to R(0, 1) and its projection over the first coordinate

is not null. We deduce so that g is continuous. Since W is compact, the function g is
bounded.
By Stone-Weierstrass Theorem, the set of C∞ bounded functions on W is dense in the
set of continuous bounded functions on W . Observe that for any z ∈ W the vector
(1, g(z)) ∈ Eu

z ⊂ Cu
z . We also remark that for any (x, 0) ∈ W it holds g(x, 0) = 0. Thus

for any (x, y) ∈ W the vector (1, g(x, y)− g(x, 0)) belongs to Eu
(x,y) ⊂ Cu

(x,y).
Consequently, there exists a C∞ bounded function g̃ on W which is a perturbation of g
and such that at any point z ∈ W the vector

ẽuz := (1, g̃(z)− g̃(p1(z), 0)) ∈ Cu
z .

The first two conditions of the claim are satisfied. Moreover, for any z ∈ (R × {0}) ∩W
the vector ẽuz belongs to Reuz = R(1, 0) 12.

Consider the local flow Ψ defined on an open neighborhood of Ds
δs
× {0} contained in

W × R and determined by the vector field ẽu of Claim 4.3.2.
For any σ ∈ [0, 1] consider the C∞ curve Ψ((0, σδs), ·) : R+ → Ũ . These curves provide
us the required horizontal foliation into unstable curves of our rectangle. Every curve
Ψ((0, σδs),R+) ∩ W is a graph with respect to the first coordinate (through φ) because
at every point z of W the vector ẽuz is transversal to Dφ−1(φ(z))R(1, 0).
By the compactness of [0, 1], there exists an interval [0, α] such that for any σ ∈ [0, 1] the
curve φ ◦Ψ((0, σδs), ·) contains the graph of a C∞ function Γσ : [0, α] → R. In particular

[0, α] ∋ t 7→ φ−1(t,Γσ(t)) = Ψ((0, sδs), t) ∈ W . (4.14)

Apply now the λ-lemma (see Lemma 7.1 in [PdM82]) to the leaves of the horizontal
foliation of Q (

φ−1(Graph(Γσ))
)
σ∈[0,1] .

In particular there exists j2 ∈ N such that for any i ≥ j2 for any σ ∈ [0, 1] the curve
fi ◦ φ−1(Graph(Γσ)) contains a curve Ωσ that is ε–C1 close to f−j1 ◦ φ−1(Du

δu
), that is an

unstable curve, because such curve is the image of an unstable curve (see Lemma C.5.1
in Appendix C) and that is contained in W . From the definiton of W , the curve φ(Ωσ) is
transverse to R(0, 1): thus, φ(Ωσ) is a graph with respect to the first coordinate.

12. Careful! We are omitting the chart φ.
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Up to modify the domain, assume that every curve φ(Ωσ) is the graph of a function defined
on p1(φ ◦ f−j1 ◦ φ−1(Du

δu
)).

Define
Qi : p1(φ ◦ f−j1 ◦ φ−1(Du

δu))× [0, 1] → W

(t, σ) 7→ Ψ̃(φ ◦ fi ◦ φ−1(0, σδs), t),

where Ψ̃ is the flow generated by the vector field

z 7→ Dfi(z)ẽuz
D(p1 ◦ φ ◦ fi)(z)ẽuz

. (4.15)

Qi is a C1 diffeomorphism. Observe that, by the choice of the vector field in(4.15), it holds
that

p1 ◦ φ ◦ Ψ̃(fi ◦ φ−1(0, σδs), t) = t.

In particular Qi is a rectangle. Indeed, for any fixed σ the curve Qi(·, σ) is an unstable
curve by the definition of ẽu and because images through Dfi of unstable curves remain
unstable curves. For any fixed t the curve Qi(t, ·) is a vertical segment because

p1 ◦ φ ◦ Ψ̃(fi ◦ φ−1(0, σδs), t) = t

and, since we are in W , any vertical segment is a stable curve.
Define now

Qi(t, σ) = f−iQi(t, σ).

By our construction, also Qi is a rectangle.
Observe that for any i we have that ∂s0Qi = cl(Ds

δs
) and ∂u0Qi = p1 ◦ f−(j1+i)(Du

δu
). The

images of the vertical segment in Qi, which are stable curves, remain stable curves (thanks
to Lemma C.5.1 in Appendix C).
Remark that the vertical foliation of Qi does not depend on i. Apply the λ-lemma (see
Lemma 7.1 in [PdM82]) to these vertical leaves: there exists j3 ∈ N such that for any
i ≥ j3 the image of each vertical leaf through f−i is δ–C1 close to φ−1(Ds

δs
).

Let J = max{j2, j3} and denote as j = J + j1. The rectangle Q = Qj is so such that:

— f−nu(Q) = R ⊂ W, since every vertical leaf is δ-C1 close to φ−1(Ds
δs
);

— f(j+nu)(Q) = f(2nu+j)(R) ⊂ U, since fJ of every horizontal leaf is ε-C1 close to
f−j1 ◦ φ−1(Du

δu
).

The rectangle Q is well-defined.
In particular, q and p belong to different connected components of R∩ f(2nu+j)(R). Recall
that V0(j), V1(j) denote the connected components of R ∩ f(2nu+j)(R) to which q and p
belong, respectively. That is, Condition 4.3.1 holds.
We have that V0(j) ⊂ CC(W ∩ U, q) and V1(j) ⊂ CC(W ∩ U, p). Consequently, since V0

and V1 are rectangle-shaped and since CC(W ∩ U, q) ⊂ V0 and CC(W ∩ U, p) ⊂ V1, we
deduce that also Condition 4.3.2 is satisfied.
The images through f(j+nu) of the unstable curves of Q are ρ–C 1 close to fnu ◦ φ−1(Du

δu
).

From the choice of ρ, we conclude that Condition 4.3.3 holds.
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Remark 4.3.6. Refering to Notation 4.2.2, observe that the rectangle Qj that we have
just built is contained in RV (nu − 1) ∩RH(j − 1).

Definition 4.3.2 (Horseshoe H(Uε, j)). Let Uε be an adapted neighborhood of {q} ∪
O(p, f) with respect to 0 < ε < 1

12
. Assume that p is the future-first-entry point for

Ũ = CC(Uε, q) and that f−nu(p) is the past-first-entry point for Ũ = CC(Uε, q). Let
j ∈ N satisfy Conditions 4.3.1 and 4.3.2.
The horseshoe H(Uε, j) is

⋂

n∈Z
f(2nu+j)n(V0(j) ∪ V1(j)) ⊂ Ũ.

Remark 4.3.7. Observe that the horseshoe H(Uε, j) is f(2nu+j)-invariant. Moreover, since
Ũ satisfies the cone field property from Condition 4.2.4, the set H(Uε, j) is hyperbolic for
f(2nu+j).

Lemma 4.3.2. The set
nu+j−1⋃

i=−nu

fi(V0(j) ∪ V1(j))

is contained in Uε. In particular

fi(V0(j) ∪ V1(j)) ⊂ Ũ for any i ∈ J0, nu + j − 1K,

f−i(V0(j)) ⊂ Ũ for any i ∈ J1, nuK,
f−i(V1(j)) ⊂ Ui for any i ∈ J1, nu − 1K

and
f−nu(V1(j)) ⊂ Ũ.

Proof. Clearly, V0(j) ∪ V1(j) ⊂ R is contained in Ũ . We remark that the set fi(R) is
contained in RV ⊂ Ũ for any i ∈ J1, nu + j − 1K (see Remarks 4.2.4 and 4.3.6) where RV
is the image through φ−1 of the intersection of the following sets

— {x ≥ 0, y ≥ 0};

— Ipo–graph(u0) := {(x, y) : y ≤ u0(x)}, i.e. the set of all points that lie on or under
the graph of u0 which is φ(CC(W u(q) ∩ Ũ, p));

— Left–graph(s0) := {(x, y) : x ≤ s0(y)}, i.e. the set of all points that lie on or at
the left of the graph of s0 which is φ(CC(W s(q) ∩ Ũ, f−nu(p))).

By Condition 4.2.7 of Ũ adapted neighborhood of q for O(p, fN), the set RV is contained
in Ũ . Consequently, fi(R) (and so also fi(V0(j)∪V1(j))) is in Ũ for any i ∈ J1, nu+ j− 1K.
Since by Condition 4.3.2 the set V0(j) is contained in V0 and f−i(V0) is contained in Ũ for
any i ∈ J0, nuK, we deduce that

f−i(V0(j)) ⊂ Ũ for any i ∈ J0, nuK.

Similarly, since V1(j) is contained in V1 and since for any i ∈ J1, nu−1K it holds f−i(V1) ⊂
Ui and f−nu(V1) ⊂ Ũ , we deduce that

f−i(V1(j)) ⊂ Ui ∀i ∈ J1, nu − 1K, f−nu(V1(j)) ⊂ Ũ.
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That is,
nu+j−1⋃

i=−nu

fi(V0(j) ∪ V1(j)) ⊂ Uε.

Notation 4.3.5. Let H(Uε, j) be the horseshoe of Definition 4.3.2. Denote as

Λ :=

2nu+j−1⋃

i=0

fi(H(Uε, j))

the f-orbit of H(Uε, j).

Remark 4.3.8. The set Λ introduced in Notation 4.3.5 is f-invariant. Observe that Λ is
contained in

⋃nu+j−1
i=−nu

fi(V0(j)∪ V1(j)). By Lemma 4.3.2 we deduce that Λ is contained in
Uε. By Condition 4.2.9, the set Λ is hyperbolic for f. Moreover, Λ is contained in Λ(Uε),
where Λ(Uε) is the maximal f-invariant set contained in Uε (see Remark 4.2.7).

Lemma 4.3.3. Let Uε be the fixed adapted neighborhood of {q}∪O(p, f) with respect to ε.
Let j ∈ N satisfy Conditions 4.3.1 and 4.3.2. Let H(Uε, j) be the horseshoe of Definition
4.3.2. Let x ∈ H(Uε, j). Then

(i) if f (2nu+j)N(x) = f(2nu+j)(x) ∈ V0(j) then f iN(x) = fi(x) ∈ Ũ for any i ∈ J0, 2nu+jK;
(ii) if f (2nu+j)N(x) = f(2nu+j)(x) ∈ V1(j) then f iN(x) = fi(x) ∈ Ũ for any i ∈ J0, nu + jK

and f (2nu+j−i)N(x) = f(2nu+j−i)(x) ∈ Ui for any i ∈ J1, nu − 1K.
Proof. By Lemma 4.3.2, for any i ∈ J0, nu+ j−1K and for any point x ∈ H(Uε, j) it holds
fi(x) ∈ Ũ .
If f(2nu+j)(x) ∈ V0(j) ⊂ V0, then, by Lemma 4.3.2, for any i ∈ J0, nuK we have that

f(2nu+j−i)(x) ∈ f−i(V0) ⊂ Ũ.

If f(2nu+j)(x) ∈ V1(j) ⊂ V1, then, by Lemma 4.3.2, for any i ∈ J1, nu − 1K we have that

f(2nu+j−i)(x) ∈ f−i(V1) ⊂ Ui,

and
f(nu+j)(x) ∈ f−nu(V1) ⊂ Ũ.

We now briefly recall how to build the homeomorphism to link the dynamics of the
horseshoe H(Uε, j) to the symbolic dynamics. For an accurate treatment of the argument
we refer to [Sma65], [Shu87], [Rob99] and [Dev03].

Let {0, 1}Z denote the set of bi-infinite sequences of 0’s and 1’s symbols. The dynamics
over {0, 1}Z is given by the shift map (to the left), i.e.

S : {0, 1}Z → {0, 1}Z

(si)i∈Z 7→ S((si)i∈Z) = (si+1)i∈Z.

We consider the metric space ({0, 1}Z, d̄), where the distance is defined as

d̄((si)i∈Z, (ti)i∈Z) =
+∞∑

i=−∞

|si − ti|
4|i|

.
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Remark 4.3.9. The metric space ({0, 1}Z, d̄) is a complete metric space (see Section 8.3
in [Rob99]). Actually, it is a complete metric space with respect to any metric

dλ((si)i∈Z, (ti)i∈Z) =
+∞∑

i=−∞

|si − ti|
λ|i|

,

where λ > 1. We highlight that, given (si)i∈Z ∈ {0, 1}Z and k ≥ 0, the cylinder

Ck = {(ti)i∈Z ∈ {0, 1}Z : ti = si ∀ |i| ≤ k}

coincides with the ball

B 1

λk
((si)i∈Z) =

{
(ti)i∈Z ∈ {0, 1}Z : dλ((si)i∈Z, (ti)i∈Z) <

1

λk

}

if and only if λ > 3.

Proposition 4.3.2. Let H(Uε, j) be the horseshoe with respect to the adapted neighborhood
Uε of {q} ∪ O(p, f). There exists a homeomorphism

h : H(Uε, j) → {0, 1}Z

such that
h ◦ f(2nu+j)

|H(Uε,j)
= S ◦ h

(
i.e. h ◦ f (2nu+j)N

|H(Uε,j)
= S ◦ h

)
.

This Proposition follows from the following Lemma 4.3.4 and from Proposition C.2.1 in
Appendix C. Let us first introduce some definitions. We refer to Appendix C for a deeper
discussion.

Definition 4.3.3 (Definition C.1.3 in Appendix C). Let R,R′ be rectangles. We say that
R is a stable subrectangle of R′ if R ⊂ R′ and the stable boundary ∂sR is contained in
the stable boundary ∂sR′.

Definition 4.3.4 (Definition C.1.4 in Appendix C). Let R,R′ be rectangles. We say that

R is f -linked to R′ and we write R
f→ R′ if

(i) f(R) ∩R′ 6= ∅;

(ii) f(R) ∩R′ is a stable subrectangle of R′;

(iii) f(∂sR) ∩ (intR′) = ∅ and (int f(R)) ∩ ∂uR′ = ∅.

Lemma 4.3.4. The sets V0(j), V1(j) are rectangles and for l,m = 0, 1 it holds

Vl(j)
f(2nu+j)

−→ Vm(j).

Proof. Denote as (Hs)s∈[0,1] the horizontal foliation of the rectangle Q and as (Vt)t∈[0,1]
its vertical foliation. Then (f−nu(Vt))t∈[0,1] is a vertical foliation made up of stable curves,
because images through f−1 of stable curves contained in Ũ remain stable curves. By
construction, for any s ∈ [0, 1] the curves f(nu+j)(Hs) ∩ V0(j) and fnu+j(Hs) ∩ V1(j) are
unstable curves.
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Let us show that V0(j) is a rectangle. Let x ∈ V0(j): in particular x belongs to both
f−nu(Q) and to f(nu+j)(Q). Consider the function

V0(j) ∋ x 7−→V0(j)
−1(x) := (t(x), s(x)) =

(
p1 ◦Q−1 ◦ fnu(x), p2 ◦Q−1 ◦ f−(nu+j)(x)

)
.

By Condition 4.3.3, every fnu+j(Hs) intersects only once and transversally every f−nu(Vt)∩
V0(j). Thus, V0(j)−1 is bijective. Since stable and unstable cones are disjoint and since Q
is a rectangle, it can be proved that V0(j)−1 is a C1 diffeomorphism (the strategy is that
of the proof of Proposition C.5.3 in Appendix C).
The inverse function V0(j) : [0, 1]2 → V0(j) is the required C1 diffeomorphism. Any
V0(j)(t, ·) is a curve contained in f−nu(Vt) and so it is a stable curve. Any V0(j)(·, s)
is the image through f(nu+j) of an unstable curve contained in Ũ and so (by Lemma C.5.1
in Appendix C) it is an unstable curve. Thus, V0(j) is a rectangle.
A similar argument proves that V1(j) is a rectangle.

Let us show now that V0(j)
f(2nu+j)

→ V0(j). Thanks to the point q, it holds that

f(2nu+j)(V0(j)) ∩ V0(j) 6= ∅.

Define the function

f(2nu+j)(V0(j)) ∩ V0(j) ∋ x 7→ (p1 ◦ V0(j)−1(x), p2 ◦ V0(j)−1 ◦ f−(2nu+j)(x)) ∈ [0, 1]2.

Using the same ideas as for V0(j)−1, it can be proved that it is a C1 diffeomorphism and,
through its inverse function, we can deduce that f(2nu+j)(V0(j))∩V0(j) is a stable subrect-
angle of V0(j).
Consider now the stable boundary of f(2nu+j)(V0(j)). Its left component is contained in
∂s0(V0(j)), so in particular it does not intersect the interior of V0(j).
Remark that f(nu+j)(∂s1Q) is not contained in the interior of R, otherwise Condition 4.3.3
fails (not every image of horizontal leaf would intersect every image of vertical leaf). Thus,
since ∂s1V0(j) ⊂ f−nu∂s1Q, we deduce that f(2nu+j)(∂s1V0(j)) does not intersect the interior
of V0(j).
Consider now the unstable boundary of V0(j). Its lower component ∂u0V0(j) is contained
in ∂u0 (f

(2nu+j)(V0(j)). In particular it does not intersect the interior of f(2nu+j)(V0(j)).
Observe that ∂u1V0(j) is contained in fnu+j(∂u1Q) and that fnu(V0(j)) ⊂ Q. In particu-
lar int (f2nu+j(V0(j))) is contained in fnu+j(intQ). Equivalently, ∂u1V0(j) cannot intersect
int (f2nu+j(V0(j))).
In conclusion

V0(j)
f (2nu+j)N

−→ V0(j).

The other relations can be shown with similar arguments.

Proof of Proposition 4.3.2. The function h : H(Uε, j) → {0, 1}Z is defined as follows: for
any x ∈ H(Uε, j)

h(x) := (si)i∈Z, (4.16)

where for any i ∈ Z it holds

f(2nu+j)i(x) = f (2nu+j)Ni(x) ∈ Vsi(j).

That is, the value si tells us which connected component among V0(j) and V1(j) the i-th
iterate through f(2nu+j) of x belongs at.
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The function h is continuous because both V0(j) and V1(j) are open disjoint sets with
respect to the topology induced by H(Uε, j).
Refering to Definitions C.1.5 and C.1.6 in Appendix C, by Lemma 4.3.4 it holds that
{V0(j), V1(j)} is a geometric Markov partition and that any bi-infinite sequence in {0, 1}Z
is admissible.
From Proposition C.2.1 in Appendix C we deduce that h is bijective. Since h is a contin-
uous bijection on a compact set, we conclude that it is a homeomorphism.

4.4 Symbolic dynamics and torsion

Let Uε be a fixed adapted neighborhood of {q} ∪ O(p, f) with respect to 0 < ε < 1
12

(see Definition 4.2.4). Let H(Uε, j) be the horseshoe introduced in Definition 4.3.2.
We are going to calculate (finite-time) torsion at points of the horseshoe H(Uε, j) for
f = fN . In particular, as a first step, we look at the torsion at finite-time 2nu + j for
f = fN , where 2nu + j is the iterate of f with respect to which we have obtained the
horseshoe dynamics in Section 4.3.
The following result concerns the link between symbolic dynamics and finite-time torsion.
In particular it explains how to estimate (2nu+ j)-finite time torsion for f at x ∈ H(Uε, j)
from h(x)1. Equivalently, it determines the (2nu + j)N -finite time torsion for f at x ∈
H(Uε, j).

Notation 4.4.1. In the sequel, we always refer to the diffeomorphism f (instead of
f = fN).

Theorem 4.4.1. Let f : S → S be a C1 diffeomorphism isotopic to the identity 13 and let
q ∈ S be a hyperbolic periodic point for f of period N . Let p ∈ (W s(q) ⋔ W u(q)) \ {q}.
Denote

k = N TorsionN(f, q, v) ∈ Z

for v ∈ Eu
q or v ∈ Es

q . Let 0 < ε < 1
12

.
Fix Uε adapted neighborhood of {q}∪O(p, fN) with respect to ε. Denote as p and f−nuN(p)
the future-first-entry and past-first-entry points of Ũ = CC(Uε, q) respectively.
Let H(Uε, j) be the horseshoe of Definition 4.3.2. Let h : H(Uε, j) → {0, 1}Z be the
homeomorphism (see Proposition 4.3.2) such that

h ◦ f (2nu+j)N
|H(Uε,j)

= S ◦ h.

Then there exists m ∈ Z such that for any x ∈ H(Uε, j)
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, w)−

[
(2nu + j)k + h(x)1

m

2

]∣∣∣ < ε. (4.17)

for w ∈ Eu
x .

Remark 4.4.1. We do not make explicit the isotopy joining the identity IdS to f . Indeed,
if S = T2 or S = A, the finite-time torsion does not depend on the choice of the isotopy.
If S = R2 and f has compact support, the torsion does not depend on the choice of the
isotopy.

13. If S = R2 assume that f has compact support to guarantee the independence of the torsion from
the choice of the isotopy.
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Recall that Uε is of the form (see Condition 4.2.8)

Uε = Ũ ∪
nu−1⋃

i=1

Ui,

where Ũ is an adapted neighborhood of q for O(p, f) and each connected component Ui
meets O(p, f) only at fi(p) = f−iN(p). The set Λ(Uε) is the maximal fN -invariant set
contained in Uε.

The proof of Theorem 4.4.1 is divided into two cases. First, we calculate the tor-
sion for f at finite-time (2nu + j)N of any x ∈ H(Uε, j) such that f (2nu+j)N(x) ∈ V0(j),
i.e. h(x)1 = 0. Then, we estimate the (2nu+ j)N -finite-time torsion for f at x ∈ H(Uε, j)
so that f (2nu+j)N(x) ∈ V1(j), i.e. h(x)1 = 1.

Notation 4.4.2. The functions γs and γu presented respectively in (4.4) and (4.5) are
parametrizations of the local stable and unstable manifolds

[0, ts] ∋ t 7→ γs(t) = φ−1((0, ts − t)) ∈ W s
loc,δ(q)

and
[0, tu] ∋ t 7→ γu(t) = φ−1((t, 0)) ∈ W u

loc,δ(q),

so that p = γs(0) and f−nuN(p) = γu(tu).
Moreover, denote

euq =
γ′u(0)

‖γ′u(0)‖
and esq =

γ′s(ts)

‖γ′s(ts)‖
.

We are going to prove the following Lemma that will be largely used within this
Section.

Lemma 4.4.1. Let x1, x2 ∈ Λ(Uε). Suppose there exist α, β ∈ R+ such that α + β < 1
2
,

i ∈ N∗ and l ∈ Z so that

(i)

∣∣∣∣iN TorsioniN(f, x1, eux1)− iN TorsioniN(f, x2, eux2) +
l

2

∣∣∣∣ <
1

2
− (α + β);

(ii) θ(Eu
x1
, Eu

x2
) < α;

(iii) θ(Eu
f iN (x1)

, Eu
f iN (x2)

) < β.

Then ∣∣∣∣iN TorsioniN(f, x1, e
u
x1
)− iN TorsioniN(f, x2, e

u
x2
) +

l

2

∣∣∣∣ < α + β.

Proof. Since

eux1 ∈ Eu
x1

∩ S1 = {eux1 ,−eux1} and eux2 ∈ Eu
x2

∩ S1 = {eux2 ,−eux2}

and since (see Notation 4.2.1)
θ(Eu

x1
, Eu

x2
) < α,

the oriented angle θ(eux1 , e
u
x2
) admits a measure either in (−α, α) or in

(
1
2
− α, 1

2
+ α

)
.

Denote as θ̄(eux1 , e
u
x2
) such a measure. By the invariance of the unstable bundle,

Df iN(x1)e
u
x1

∈ Eu
f iN (x1)

and Df iN(x2)e
u
x2

∈ Eu
f iN (x2)

.
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As remarked above for θ(eux1 , e
u
x2
), since

θ(Eu
f iN (x1)

, Eu
f iN (x2)

) < β,

the oriented angle θ(Df iN(x1)eux1 , Df
iN(x2)e

u
x2
) admits a measure either in (−β, β) or in(

1
2
− β, 1

2
+ β

)
.

Denote as θ̄(Df iN(x1)eux1 , Df
iN(x2)e

u
x2
) such a measure. Look now at the quantity

iN TorsioniN(f, x1, e
u
x1
)− iN TorsioniN(f, x2, e

u
x2
) +

l

2
.

Observe that iN TorsioniN(f, x1, eux1)− iN TorsioniN(f, x2, eux2) is a measure of the angle

θ(eux1 , Df
iN(x1)e

u
x1
)− θ(eux2 , Df

iN(x2)e
u
x2
).

Equivalently, it is a measure of the angle

θ(eux1 , e
u
x2
)− θ(Df iN(x1)e

u
x1
, Df iN(x2)e

u
x2
).

Hence
iN TorsioniN(f, x1, e

u
x1
)− iN TorsioniN(f, x2, e

u
x2
) =

= θ̄(eux1 , e
u
x2
)− θ̄(Df iN(x1)e

u
x1
, Df iN(x2)e

u
x2
) + n

for some n ∈ Z.
From the definition of θ̄(eux1 , e

u
x2
) and of θ̄(Df iN(x1)eux1 , Df

iN(x2)e
u
x2
), we have that

iN TorsioniN(f, x1, e
u
x1
)− iN TorsioniN(f, x2, e

u
x2
) +

l

2
⊂
⋃

n∈Z

(
−α− β +

n

2
, α + β +

n

2

)
.

This observation and hypothesis (i) imply that the quantity

iN TorsioniN(f, x1, e
u
x1
)− iN TorsioniN(f, x2, e

u
x2
) +

l

2

is contained in
(
−1

2
+ (α + β),

1

2
− (α + β)

)
∩
(
−(α + β) +

j

2
, α + β +

j

2

)

for some j ∈ Z. Such an intersection is not empty if and only if j = 0 and so we conclude
that ∣∣∣∣iN TorsioniN(f, x1, e

u
x1
)− iN TorsioniN(f, x2, e

u
x2
) +

l

2

∣∣∣∣ < α + β.

4.4.1 Torsion at finite-time (2nu + j)N for h(x)1 = 0

The main result of this Subsection is the following

Lemma 4.4.2. Let x ∈ H(Uε, j) be such that f (2nu+j)N(x) ∈ V0(j), that is h(x)1 = 0.
Then

(2nu + j)N Torsion(2nu+j)N(f, x, e
u
x) ∈ ((2nu + j)k − ε, (2nu + j)k + ε). (4.18)
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Lemma 4.4.2 is an outcome of the following result.

Lemma 4.4.3. Let x ∈ Λ(Uε) ∩ Ũ , where Λ(Uε) is the maximal fN -invariant subset
contained in Uε. Assume that there exits n ∈ N∗ such that f iN(x) ∈ Λ(Uε) ∩ Ũ for any
i ∈ J0, nK.
Then ∣∣nN TorsionnN(f, x, e

u
x)− nN TorsionnN(f, q, e

u
q )
∣∣ < ε,

equivalently
|nN TorsionnN(f, x, e

u
x)− nk| < ε.

We postpone the proof of Lemma 4.4.3 and we now show how Lemma 4.4.2 follows from it.

Proof of Lemma 4.4.2. By hypothesis, the point x ∈ H(Uε, j) is such that f (2nu+j)N(x) ∈
V0(j). By Lemma 4.3.3 it holds that f iN(x) ∈ Ũ for any i ∈ J0, 2nu + jK. Applying then
Lemma 4.4.3 for n = 2nu + j we have

∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e
u
x)− (2nu + j)k

∣∣ < ε,

that is

(2nu + j)N Torsion(2nu+j)N(f, x, e
u
x) ∈ ((2nu + j)k − ε, (2nu + j)k + ε) .

Proof of Lemma 4.4.3. We are going to prove the result by induction over n ∈ N∗. The
case n = 1 is actually Condition 4.2.11 of Uε adapted neighborhood of {q} ∪ O(p, fN)
(recall that f = fN). Indeed, by this condition for any x ∈ Λ(Uε) ∩ Ũ it holds

∣∣N TorsionN(f, x, e
u
x)−N TorsionN(f, q, e

u
q )
∣∣ < ε

2
.

That is
|N TorsionN(f, x, e

u
x)− k| < ε

2
< ε.

Let n ∈ N, n ≥ 2. Assume that f iN(x) ∈ Λ(Uε) ∩ Ũ for any i ∈ J0, nK and suppose by
induction that

∣∣(n− 1)N Torsion(n−1)N(f, x, e
u
x)− (n− 1)N Torsion(n−1)N(f, q, e

u
q )
∣∣ < ε. (4.19)

We remark that f (n−1)N(x) ∈ Λ(Uε)∩ Ũ and, by the invariance of the unstable bundle, it
holds

Df (n−1)N(x)eux ∈ Eu
f (n−1)N (x).

In particular, we have that

Df (n−1)N(x)eux
‖Df (n−1)N(x)eux‖

∈ {euf (n−1)N (x),−euf (n−1)N (x)}. (4.20)

From (4.20), we have so

N TorsionN(f, f
(n−1)N(x), Df (n−1)N(x)eux) = N TorsionN(f, f

(n−1)N(x), euf (n−1)N (x)).
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Then, by Condition 4.2.11 of Uε adapted neighborhood of {q}∪O(p, fN), we deduce that

∣∣N TorsionN(f, f
(n−1)N(x), Df (n−1)N(x)eux)−N TorsionN(f, q, e

u
q )
∣∣ < ε

2
. (4.21)

Consequently, by (4.19) and (4.21), we obtain
∣∣nN TorsionnN(f, x, e

u
x)− nN TorsionnN(f, q, e

u
q )
∣∣ ≤

≤
∣∣(n− 1)N Torsion(n−1)N(f, x, e

u
x)− (n− 1)N Torsion(n−1)N(f, q, e

u
q )
∣∣+

+
∣∣N TorsionN(f, f

(n−1)N(x), Df (n−1)N(x)eux)−N TorsionN(f, q, e
u
q )
∣∣ < 3

2
ε. (4.22)

We can improve the inequality (4.22) by applying Lemma 4.4.1 at the points x, q with
respect to ε

2
(both as α and as β), to n ∈ N∗ as i and to 0 as l ∈ Z. Indeed, since 3

2
ε < 1

2
−ε,

from (4.22) hypothesis (i) of Lemma 4.4.1 is satisfied. We obtain so
∣∣nN TorsionnN(f, x, e

u
x)− nN TorsionnN(f, q, e

u
q )
∣∣ < ε.

4.4.2 Torsion at finite-time (2nu + j)N for h(x)1 = 1

The main result of this subsection is the following

Lemma 4.4.4. Let x ∈ H(Uε, j) be such that f (2nu+j)N(x) ∈ V1(j), that is h(x)1 = 1.
Hence ∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e

u
x)−

− (2nu + j)N Torsion(2nu+j)N(f, f
−(2nu+j)N(p), euf−(2nu+j)N (p))

∣∣ < 2ε. (4.23)

Thanks to Lemma 4.4.4, in order to estimate finite-time torsion at points of the horseshoe
for which h(x)1 = 1, we deduce that it is sufficient to calculate the (2nu+ j)N -finite-time
torsion at the point f−(2nu+j)N(p) ∈ O(p, fN).
Lemma 4.4.4 is an outcome of Lemma 4.4.3 and of the following

Lemma 4.4.5. Let x ∈ Λ(Uε) be such that x, fnuN(x) ∈ Λ(Uε) ∩ Ũ and such that
f (nu−i)N(x) ∈ Ui for any i ∈ J1, nu − 1K.
Then it holds

∣∣∣nuN TorsionnuN(f, x, e
u
x)− nuN TorsionnuN(f, f

−nuN(p), euf−nuN (p))
∣∣∣ < 2ε.

We postpone the proof of Lemma 4.4.5 and we now show how Lemma 4.4.4 follows from
it and from Lemma 4.4.3.

Proof of Lemma 4.4.4. We are assuming that p and f−nuN(p) are future-first-entry and
past-first-entry points for Ũ = CC(Uε, q). In particular it holds that

— f−(nu+i)N(p) ∈ Ũ for any i ∈ J0, nu + jK;

— f−iN(p) ∈ Ui for any i ∈ J1, nu − 1K.

From Lemma 4.3.3, since f (2nu+j)N(x) ∈ V1(j), it holds
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— f iN(x) ∈ Ũ for any i ∈ J0, nu + jK;

— f (2nu+j−i)N(x) ∈ Ui for any i ∈ J1, nu − 1K.

By applying Lemma 4.4.3 to both x and f−(2nu+j)N(p) for n = nu + j, we deduce that
∣∣∣(nu + j)N Torsion(nu+j)N(f, x, e

u
x)− (nu + j)N Torsion(nu+j)N(f, f

−(2nu+j)N(p), euf−(2nu+j)N (p))
∣∣∣ ≤

≤
∣∣(nu + j)N Torsion(nu+j)N(f, x, e

u
x)− (nu + j)N Torsion(nu+j)N(f, q, e

u
q )
∣∣+

+
∣∣(nu+j)N Torsion(nu+j)N(f, q, e

u
q )−(nu+j)N Torsion(nu+j)N(f, f

−(2nu+j)N(p), euf−(2nu+j)N (p))
∣∣

< 2ε.

We will now apply Lemma 4.4.5 at f (nu+j)N(x). By the DfN -invariance of the unstable
bundle and since Eu

f (nu+j)N (x)
= {eu

f (nu+j)N (x)
,−eu

f (nu+j)N (x)
} we have that

Df (nu+j)N(x)eux
‖Df (nu+j)N(x)eux‖

∈ {euf (nu+j)N (x),−euf (nu+j)N (x)}.

Therefore

nuN TorsionnuN(f, f
(nu+j)N(x), Df (nu+j)N(x)eux) = nuN TorsionnuN(f, f

(nu+j)N(x), euf (nu+j)N (x)).

The same argument for Df (nu+j)N(f−(2nu+j)N(p))eu
f−(2nu+j)N (p)

tells us that

nuN TorsionnuN(f, f
−nuN(p), Df (nu+j)N(f−(2nu+j)N(p))euf−(2nu+j)N (p)) =

= nuN TorsionnuN(f, f
−nuN(p), euf−nuN (p)).

We so obtain, from Lemma 4.4.5, that
∣∣nuN TorsionnuN(f, f

(nu+j)N(x), Df (nu+j)N(x)eux)−

−nuN TorsionnuN(f, f
−nuN(p), Df (nu+j)N(f−(2nu+j)N(p))euf−(2nu+j)N (p))

∣∣ < 2ε.

Finally then, it holds
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e

u
x)−

−(2nu + j)N Torsion(2nu+j)N(f, f
−(2nu+j)N(p), euf−(2nu+j)N (p))

∣∣∣ ≤

≤
∣∣∣(nu + j)N Torsion(nu+j)N(f, x, e

u
x)−

−(nu + j)N Torsion(nu+j)N(f, f
−(2nu+j)N(p), euf−(2nu+j)N (p))

∣∣∣+

+
∣∣∣nuN TorsionnuN(f, f

(nu+j)N(x), euf (nu+j)N (x))− nuN TorsionnuN(f, f
−nuN(p), euf−nuN (p))

∣∣∣ < 4ε.

(4.24)
Observe that, since x, f (2nu+j)N(x), f−(2nu+j)N(p) and p all belong to Λ(Uε) ∩ Ũ , by Con-
dition 4.2.10 it holds (see Notation 4.2.1)

θ(Eu
x , E

u
f−(2nu+j)N (p)) ≤ θ(Eu

x , E
u
q ) + θ(Eu

q , E
u
f−(2nu+j)N (p)) < ε
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and
θ(Eu

f (2nu+j)N (x), E
u
p ) ≤ θ(Eu

f (2nu+j)N (x), E
u
q ) + θ(Eu

q , E
u
p ) < ε.

Since 4ε < 1
2
− 2ε, we can improve the inequality (4.24) by applying Lemma 4.4.1 at the

points x, f−(2nu+j)N(p) with respect to ε (both as α and as β), to (2nu + j) as i and 0 as
l ∈ Z. We deduce so that

∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e
u
x)−

−(2nu + j)N Torsion(2nu+j)N(f, f
−(2nu+j)N(p), euf−(2nu+j)N (p))

∣∣∣ < 2ε.

Proof of Lemma 4.4.5. The first step of the proof is showing the following

Claim 4.4.1. Assume that x ∈ Ũ and that f iN(x) ∈ Unu−i for i ∈ J1, nu − 1K. Then
∣∣∣iN TorsioniN(f, x, e

u
x)− iN TorsioniN(f, f

−nuN(p), euf−nuN (p))
∣∣∣ < 2ε (4.25)

for i ∈ J1, nu − 1K.

Proof of Claim 4.4.1. We proceed by induction.

— Case n = 1: both x and f−nuN(p) belong to Λ(Uε)∩ Ũ . Hence, by Condition 4.2.11
of Uε adapted neighborhood, it holds

∣∣∣N TorsionN(f, x, e
u
x)−N TorsionN(f, f

−nuN(p), euf−nuN (p))
∣∣∣ ≤

≤
∣∣N TorsionN(f, x, e

u
x)−N TorsionN(f, q, e

u
q )
∣∣

+
∣∣∣N TorsionN(f, q, e

u
q )−N TorsionN(f, f

−nuN(p), euf−nuN (p))
∣∣∣ < ε < 2ε.

— Inductive step: let now n ∈ J2, nu − 1K. By inductive hypothesis we have that
∣∣∣(n− 1)N Torsion(n−1)N(f, x, e

u
x)− (n− 1)N Torsion(n−1)N(f, f

−nuN(p), euf−nuN (p))
∣∣∣ < 2ε.

We consider now
∣∣∣nN TorsionnN(f, x, e

u
x)− nN TorsionnN(f, f

−nuN(p), euf−nuN (p))
∣∣∣ ≤

≤
∣∣∣(n− 1)N Torsion(n−1)N(f, x, e

u
x)− (n− 1)N Torsion(n−1)N(f, f

−nuN(p), euf−nuN (p))
∣∣∣+

+
∣∣N TorsionN(f, f

(n−1)N(x), Df (n−1)N(x)eux)−

−N TorsionN(f, f
−(nu−n+1)N(p), Df (n−1)N(f−nuN(p))euf−nuN (p))

∣∣ <

< 2ε+
ε

2
. (4.26)

The last inequality is an outcome of the inductive hypothesis and of Condition 4.2.11
of Uε adapted neighborhood. Indeed, by hypothesis, the point f (n−1)N(x) ∈ Unu−n+1

and, by definition of Unu−n+1 (recall that p is the future-first-entry point for Ũ), also
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f−nuN+(n−1)N(p) belongs to this connected component of Uε. By the DfN -invariance
of the unstable bundle it holds that

Df (n−1)N(x)eux ∈ Eu
f (n−1)N (x)

and
Df (n−1)N(f−nuN(p))euf−nuN (p) ∈ Eu

f−nuN+(n−1)N (p).

In particular we have that

Df (n−1)N(x)eux
‖Df (n−1)N(x)eux‖

∈ {euf (n−1)N (x),−euf (n−1)N (x)}.

Similarly, it holds

Df (n−1)N(f−nuN(p))euf−nuN (p)∥∥∥Df (n−1)N(f−nuN(p))eu
f−nuN (p)

∥∥∥
∈ {euf−(nu−n+1)N (p),−euf−(nu−n+1)N (p)}.

So we have that
∣∣N TorsionN(f, f

(n−1)N(x), Df (n−1)N(x)eux)−

−N TorsionN(f, f
−(nu−n+1)N(p), Df (n−1)N(f−nuN(p))euf−nuN (p))

∣∣ =

=
∣∣∣N TorsionN(f, f

(n−1)N(x), euf (n−1)N (x))−N TorsionN(f, f
−(nu−n+1)N(p), euf−(nu−n+1)N (p))

∣∣∣

is smaller than ε
2

by Condition 4.2.11.
Observe now that, since both x and f−nuN(p) belong to Ũ , by Condition 4.2.10, it
holds

θ(Eu
x , E

u
f−nuN (p)) ≤ θ(Eu

x , E
u
q ) + θ(Eu

q , E
u
f−nuN (p)) < ε. (4.27)

Since f (n−1)N(x) is in Λ(Uε) ∩ Unu−n+1, by Condition 4.2.10 it holds

θ(Eu
f (n−1)N (x), E

u
f−(nu−n+1)N (p)) <

ε

2
. (4.28)

Thus, we improve inequality 4.26 by applying Lemma 4.4.1 to the points x, f−nuN(p)
with respect to ε as α, ε

2
as β, n as i and 0 as l ∈ Z. Indeed, since 2ε+ ε

2
< 1

2
−(ε+ ε

2
),

from (4.26) hypothesis (i) of Lemma 4.4.1 holds. We deduce so that
∣∣∣nN TorsionnN(f, x, e

u
x)− nN TorsionnN(f, f

−nuN(p), euf−nuN (p))
∣∣∣ < ε+

ε

2
< 2ε.

The proof is so ended by induction.

In order to end the proof of Lemma 4.4.5, we recall that x, fnuN(x) ∈ Λ(Uε) ∩ Ũ and
f iN(x) ∈ Unu−i for any i ∈ J1, nu − 1K. Look now at

∣∣∣nuN TorsionnuN(f, x, e
u
x)− nuN TorsionnuN(f, f

−nuN(p), euf−nuN (p))
∣∣∣ ≤

≤
∣∣∣(nu − 1)N Torsion(nu−1)N(f, x, e

u
x)− (nu − 1)N Torsion(nu−1)N(f, f

−nuN(p), euf−nuN (p))
∣∣∣+

+
∣∣N TorsionN(f, f

(nu−1)N(x), Df (nu−1)N(x)eux)−
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−N TorsionN(f, f
−N(p), Df (nu−1)N(f−nuN(p))euf−nuN (p))

∣∣. (4.29)

By Claim 4.4.1 for i = nu − 1 it holds
∣∣∣(nu − 1)N Torsion(nu−1)N(f, x, e

u
x)− (nu − 1)N Torsion(nu−1)N(f, f

−nuN(p), euf−nuN (p))
∣∣∣ < 2ε.

By hypothesis f (nu−1)N(x) ∈ Λ(Uε) ∩ U1. Moreover, by the invariance of the unstable
bundle, it holds Df (nu−1)N(x)eux ∈ Eu

f (nu−1)N (x)
. Recalling that

Eu
f (nu−1)N (x) ∩ S1 = {euf (nu−1)N (x),−euf (nu−1)N (x)},

we have that

N TorsionN(f, f
(nu−1)N(x), Df (nu−1)N(x)eux) = N TorsionN(f, f

(nu−1)N(x), euf (nu−1)N (x)).

Similarly

N TorsionN(f, f
−N(p), Df (nu−1)N(f−nuN(p))euf−nuN (p)) = N TorsionN(f, f

−N(p), euf−N (p)).

Consequently, it holds
∣∣N TorsionN(f, f

(nu−1)N(x), Df (nu−1)N(x)eux)−

−N TorsionN(f, f
−N(p), Df (nu−1)N(f−nuN(p))euf−nuN (p))

∣∣ =

=
∣∣∣N TorsionN(f, f

(nu−1)N(x), euf (nu−1)N (x))−N TorsionN(f, f
−N(p), euf−N (p)

∣∣∣ .

By Condition 4.2.11 of Uε adapted neighborhood of {q} ∪O(p, fN), we then deduce that
∣∣N TorsionN(f, f

(nu−1)N)(x), Df (nu−1)N(x)eux)−

−N TorsionN(f, f
−N(p), Df (nu−1)N(f−nuN(p))euf−nuN (p))

∣∣ < ε

2
.

Consequently we estimate inequality (4.29) and we have
∣∣∣nuN TorsionnuN(f, x, e

u
x)− nuN TorsionnuN(f, f

−nuN(p), euf−nuN (p))
∣∣∣ < 2ε+

ε

2
. (4.30)

Observe that, since x, fnuN(x), f−nuN(p) and p belong to Ũ , it holds by Condition 4.2.10
that

θ(Eu
x , E

u
f−nUN (p)) ≤ θ(Eu

x , E
u
q ) + θ(Eu

q , E
u
f−nuN (p)) < ε

and
θ(Eu

fnuN (x), E
u
p ) ≤ θ(Eu

fnuN (x), E
u
q ) + θ(Eu

q , E
u
p ).

We improve inequality (4.30) by applying Lemma 4.4.1 at the points x, f−nuN(p) with
respect to ε both as α and as β, to nu as i and to 0 as l ∈ Z. Indeed, since 2ε+ ε

2
< 1

2
−2ε,

from (4.30) hypothesis (i) of Lemma 4.4.1 holds. We conclude that
∣∣∣nuN TorsionnuN(f, x, e

u
x)− nuN TorsionnuN(f, f

−nuN(p), euf−nuN (p))
∣∣∣ < 2ε,

ending so our proof.
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As remarked above, Lemma 4.4.4 implies that it is sufficient to calculate the finite-time
torsion at point f−nuN(p) to estimate finite-time torsion at any point x ∈ H(Uε, j) such
that h(x)1 = 1. In the sequel we are going to show how to calculate finite-time torsion at
f−nuN(p) through the angle variation of the vector tangent to the unstable manifold.
We recall the notations presented in (4.5) and (4.7). See also Notation 4.4.2. The curves
γu and Γu are defined as

[0, tu] ∋ t 7→ γu(t) = φ−1(t, 0) ∈ W u
loc,δ(q),

[0, tu] ∋ t 7→ Γu(t) = fnuN(γu(t)) ∈ W u(q).

Observe that γu(0) = Γu(0) = q, γu(tu) = f−nuN(p) and Γu(tu) = p.

Notation 4.4.3. Introduce the following angle function

[0, tu] ∋ t 7→ θ(H,Γ′
u(t)) ∈ T,

where H is the horizontal vector (1, 0) and θ(u, v) is the oriented angle between the two
non zero vectos u, v. Denote as

[0, tu] ∋ t 7→ θ̃(H,Γu(t)) ∈ R

a continuous determination of the previous angle function.
Define the following continuous function

[0, tu] ∋ t 7→ τ(t) := γ−1
u ◦ f−nuN ◦ γu(t) ∈ [0, tu].

That is, for t ∈ [0, tu] the function τ(t) denotes the parameter which correponds to the
point f−nuN(γu(t)) on the local unstable manifold. In particular, it holds Γu(τ(t)) = γu(t).

We will focus then on the angle variation of the vector tangent to the unstable manifold
between f−nuN(p) and p, that is we will be interested in

θ̃(H,Γ′
u(tu))− θ̃(H,Γ′

u(τ(tu)) = θ̃(H,Γ′
u(tu))− θ̃(H, γ′u(tu)).

The following lemma allows us to make explicit the relation between the nuN -finite-time
torsion at f−nuN(p) and the angle variation along the unstable manifold between f−nuN(p)
and p.

Lemma 4.4.6. Let q ∈ S be a hyperbolic periodic point of period N for f and let p ∈
(W s(q) ⋔ W u(q)) \ {q}. Denote

k = N TorsionN(f, q, v) ∈ Z

for v ∈ Eu
q or v ∈ Es

q .
Let Oε be an adapted neighborhood of q for O(p, fN) with respect to 0 < ε < 1

12
. Denote as

p, f−nuN(p) the future-first-entry and the past-first-entry points for Oε respectively. Then

nuN TorsionnuN(f, f
−nuN(p), euf−nuN (p)) = θ̃(H,Γ′

u(tu))− θ̃(H,Γ′
u(τ(tu))) + knu. (4.31)
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Proof. Let us define the following continuous function

Θ : [0, tu] −→ R

t 7→ Θ(t) := nuN TorsionnuN(f, γu(t), γ
′
u(t))−

(
θ̃(H,Γ′

u(t))− θ̃(H,Γ′
u(τ(t)))

)
.

For any t ∈ [0, tu] both nuN TorsionnuN(f, γu(t), γ
′
u(t)) and θ̃(H,Γ′

u(t)) − θ̃(H,Γ′
u(τ(t)))

are measures of the same angle

θ(γ′u(t), Df
nuN(f−nuN(p))γ′u(t)).

Therefore, the function Θ takes values in Z. By the continuity of the function and since
Γu([0, tu]) is connected, we deduce that

nuN TorsionnuN(f, γu(t), γ
′
u(t))−

(
θ̃(H,Γ′

u(t))− θ̃(H,Γ′
u(τ(t)))

)
= l,

for some l ∈ Z which does not depend on t. In particular

nuN TorsionnuN(f, γu(tu), γ
′
u(tu))−

(
θ̃(H,Γ′

u(tu))− θ̃(H,Γ′
u(τ(tu)))

)
=

nuN TorsionnuN(f, f
−nuN(p), euf−nuN (p))−

(
θ̃(H,Γ′

u(tu))− θ̃(H,Γ′
u(τ(tu)))

)
= l.

Observe that

nuN TorsionnuN(f, γu(0), γ
′
u(0)) = nuN TorsionnuN(f, q, e

u
q ) = knu

and clearly
θ̃(H,Γ′

u(0))− θ̃(H,Γ′
u(τ(0))) = 0.

That is, Θ(0) = knu. Since the function Θ is constant, we conclude that

Θ(tu) = nuN TorsionnuN(f, f
−nuN(p), euf−nuN (p))−

(
θ̃(H,Γ′

u(tu))− θ̃(H,Γ′
u(τ(tu)))

)
= knu.

Remark 4.4.2. Observe that there exists m ∈ Z such that

θ̃(H,Γ′
u(tu))− θ̃(H,Γ′

u(τ(tu))) ∈
(m
2
− ε,

m

2
+ ε
)
. (4.32)

Indeed, since p and f−nuN(p) belong to Oε, by Conditions 4.2.1 and 4.2.3 it holds that

θ(Eu
p , E

u
f−nuN (p)) ≤ θ(Eu

p , E
u
q ) + θ(Eu

q , E
u
f−nuN (p)) < ε. (4.33)

Recall that
Γ′
u(tu) ∈ Eu

p and Γ′
u(τ(tu)) ∈ Eu

f−nuN (p). (4.34)

Since
Eu
p ∩ S1 = {eup ,−eup} and Eu

f−nuN (p) ∩ S1 = {euf−nuN (p),−euf−nuN (p)},

the quantity θ̃(H,Γ′
u(tu))−θ̃(H,Γ′

u(τ(tu))) is a measure of the oriented angle θ(Γ′
u(τ(tu)),Γ

′
u(tu)).

From (4.33) and (4.34), this angle admits either a measure in (−ε, ε) or in
(
1
2
− ε, 1

2
+ ε
)
.

Thus
θ̃(H,Γ′

u(tu))− θ̃(H,Γ′
u(τ(tu))) ∈

(m
2
− ε,

m

2
+ ε
)
,
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for some m ∈ Z. Such an integer m ∈ Z can be determined by calculating the angle
variation of the tangent vector along the unstable manifold from q to p, which will be
contained in

(
m
2
− ε

2
, m

2
+ ε

2

)
.

From (4.32) and from Lemma 4.4.6, we deduce that
∣∣∣nuN TorsionnuN(f, f

−nuN(p), euf−nuN (p))− knu −
m

2

∣∣∣ < ε. (4.35)

Let us introduce the following

Definition 4.4.1. Let q be a hyperbolic periodic point for f of period N and let O(p, fN)
be the fN -orbit of a transverse homoclinic point in (W u(q) ⋔ W s(q)) \ {q}. Let Uε be an
adapted neighborhood of {q} ∪ O(p, fN) with respect to 0 < ε < 1

12
(see Definition 4.5).

Let p be the future-first-entry point for the connected component of Uε containing q.
The unstable angle variation of (q, p) is the integer m ∈ Z such that

(
θ̃(H,Γ′

u(tu))− θ̃(H,Γ′
u(0))

)
− m

2
= min

{(
θ̃(H,Γ′

u(tu))− θ̃(H,Γ′
u(0))

)
− k

2
: k ∈ Z

}
.

That is, m is the integer that is the closest to 2
(
θ̃(H,Γ′

u(tu))− θ̃(H,Γ′
u(0))

)
.

See Figure 4.11 for examples of different values of the unstable angle variation of (q, p).

q

p

m=1

(a)

q

p

m=2

(b)

q

p
m=-2

(c)

q

p
m=0

(d)

Figure 4.11 – Examples of possible values of the unstable angle variation of (q, p).

Remark 4.4.3. By Lemma 4.4.3, Lemma 4.4.6 and Remark 4.4.2 we deduce that
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, f

−(2nu+j)N(p), euf−(2nu+j)N (p))− k(2nu + j)− m

2

∣∣∣ < 2ε.

(4.36)
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The following Lemma is a refinement of Lemma 4.4.4, i.e. of the estimation of (2nu+j)N -
finite time torsion at x ∈ H(Uε, j) such that h(x)1 = 1.

Lemma 4.4.7. Let x ∈ H(Uε, j) be such that h(x)1 = 1. Then it holds
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e

u
x)− k(2nu + j)− m

2

∣∣∣ < ε. (4.37)

Proof. By Lemma 4.4.4 and by inequality (4.36) it holds
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e

u
x)− k(2nu + j)− m

2

∣∣∣ < 4ε. (4.38)

Recalling that N TorsionN(f, q, euq ) = k, we have

∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e
u
x)− (2nu + j)N Torsion(2nu+j)N(f, q, e

u
q )−

m

2

∣∣∣ < 4ε.

(4.39)
Both x and f (2nu+j)N(x) belong to Λ(Uε) ∩ Ũ and so, by Condition 4.2.10, we have

θ(Eu
x , E

u
q ) <

ε

2
and θ(Eu

f (2nu+j)N (q), E
u
f (2nu+j)N (x)) = θ(Eu

q , E
u
f (2nu+j)N (x)) <

ε

2
. (4.40)

We want to apply Lemma 4.4.1 at the points x, q with respect to ε
2

as both α and β,
to 2nu + j as i and to −m as l ∈ Z. Indeed, since 4ε < 1

2
− ε, from inequality (4.39),

hypothesis (i) of Lemma 4.4.1 holds. Thus, we conclude that
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e

u
x)− (2nu + j)N Torsion(2nu+j)N(f, q, e

u
q )−

m

2

∣∣∣ =

=
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e

u
x)− k(2nu + j)− m

2

∣∣∣ < ε.

The proof of Theorem 4.4.1 follows then immediately from the above lemmas (Lemmas
4.4.2 and 4.4.7).

Proof of Theorem 4.4.1. Let x ∈ H(Uε, j). Then

— either f (2nu+j)N(x) ∈ V0(j), i.e. h(x)1 = 0. Then from Lemma 4.4.2

(2nu + j)N Torsion(2nu+j)N(f, x, e
u
x) ∈ (k(2nu + j)− ε, k(2nu + j) + ε);

— or f (2nu+j)N(x) ∈ V1(j), i.e. h(x)1 = 1. Then from Lemma 4.4.7

(2nu + j)N Torsion(2nu+j)N(f, x, e
u
x) ∈

(
k(2nu + j) +

m

2
− ε, k(2nu + j) +

m

2
+ ε
)
.

Summing up, we so conclude that for any x ∈ H(Uε, j)

(2nu + j)N Torsion(2nu+j)N(f, x, e
u
x) ∈

∈
(
k(2nu + j) +

m

2
h(x)1 − ε, k(2nu + j) +

m

2
h(x)1 + ε

)
.

195



4.4.3 On asymptotic torsion of points of H(Uε, j)

From Theorem 4.4.1 we can calculate the n(2nu + j)N -finite-time torsion at points of
the horseshoe H(Uε, j) for n ∈ N∗.

Proposition 4.4.1. Let x ∈ H(Uε, j) and let (h(x)i)i∈Z be its associated sequence in
{0, 1}Z. Then for any n ∈ N∗ it holds
∣∣∣∣∣n(2nu + j)N Torsionn(2nu+j)N(f, x, e

u
x)−

(
kn(2nu + j) +

m

2

n∑

i=1

h(x)i

)∣∣∣∣∣ < ε, (4.41)

where m ∈ Z is the unstable angle variation of (q, p).

Proof. The proof is made by induction. The case n = 1 is Theorem 4.4.1.
Assume now that (4.41) holds for n ∈ N∗ and let us prove it for n + 1. Remark that
fn(2nu+j)N(x) ∈ H(Uε, j) and by the invariance of the unstable bundle

Dfn(2nu+j)N(x)eux ∈ Eu
fn(2nu+j)N (x).

Since Eu
fn(2nu+j)N (x)

∩ S1 = {eu
fn(2nu+j)N (x)

,−eu
fn(2nu+j)N (x)

}, we have that

(2nu + j)N Torsion(2nu+j)N(f, f
n(2nu+j)N(x), Dfn(2nu+j)N(x)eux) =

= (2nu + j)N Torsion(2nu+j)N(f, f
n(2nu+j)N(x), eufn(2nu+j)N (x)).

Using the inductive hypothesis, applying Theorem 4.4.1 at the point fn(2nu+j)N(x) and
recalling that h(x)n+1 = h(fn(2nu+j)N(x))1, we obtain that
∣∣∣∣∣(n+ 1)(2nu + j)N Torsion(n+1)(2nu+j)N(f, x, e

u
x)−

(
k(n+ 1)(2nu + j) +

m

2

n+1∑

i=1

h(x)i

)∣∣∣∣∣ ≤

≤
∣∣∣∣∣n(2nu + j)N Torsionn(2nu+j)N(f, x, e

u
x)−

(
kn(2nu + j) +

m

2

n∑

i=1

h(x)i

)∣∣∣∣∣+

+
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, f

n(2nu+j)N(x), Dfn(2nu+j)N(x)eux)−

−
(
k(2nu + j) +

m

2
h(x)n+1

) ∣∣∣ < 2ε. (4.42)

Recall that

k(n+ 1)(2nu + j) = (n+ 1)(2nu + j)N Torsion(n+1)(2nu+j)N(f, q, e
u
q ).

Both x and f (n+1)(2nu+j)N(x) belong to Λ(Uε) ∩ Ũ . Consequently by Condition 4.2.10 we
have that

θ(Eu
q , E

u
x) <

ε

2
and θ(Eu

f (n+1)(2nu+j)N (q), E
u
f (n+1)(2nu+j)N (x)) = θ(Eu

q , E
u
f (n+1)(2nu+j)N (x)) <

ε

2
.

We want to apply Lemma 4.4.1 at the points x, q with respect to ε
2

as both α and β, to
(n+ 1)(2nu + j) as i and to

−m
n+1∑

i=1

h(x)i
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as l ∈ Z. Since 2ε < 1
2
− ε, inequality (4.42) implies hypothesis (i) of Lemma 4.4.1. We

conclude that ∣∣∣(n+ 1)(2nu + j)N Torsion(n+1)(2nu+j)N(f, x, e
u
x)−

−
(
k(n+ 1)(2nu + j) +

m

2

n+1∑

i=1

h(x)i

)∣∣∣ < ε.

As an outcome of Proposition 4.4.1 we can discuss the asymptotic torsion for f at
points of the horseshoe H(Uε, j). Recall that S is either R2 or A or T2.

Corollary 4.4.1. Let f : S → S be a C1 diffeomorphism isotopic to the identity. Let
q ∈ S be a periodic hyperbolic point for f of period N . Denote

k = N TorsionN(f, q, v) ∈ Z

for any v ∈ Eu
q . Let p ∈ (W u(q) ⋔ W s(q)) \ {q}.

Let 0 < ε < 1
12

. Let Uε be an adapted neighborhood of {q} ∪ O(p, fN) with respect to ε.
Let H(Uε, j) be the horseshoe of Definition 4.3.2. Let h : H(Uε, j) → {0, 1}Z be the
homeomorphism of Proposition 4.3.2. Let m ∈ Z be the unstable angle variation of (q, p)
(see Definition 4.4.1).
For any x ∈ H(Uε, j) the torsion of f at x exists if and only if the limit

lim
n→+∞

∑n
i=1 h(x)i
n

exists. Whenever it exists, it holds

Torsion(f, x) = lim
n→+∞

(
k

N
+

m

2(2nu + j)N

∑n
i=1 h(x)i
n

)
.

Proof. The torsion at x is, when the limit exists,

lim
n→+∞

Torsionn(f, x, v) = lim
n→+∞

Torsionn(2nu+j)N(f, x, v)

where v ∈ Eu
x (the asymptotic torsion does not depend on the choice of the tangent vector,

see Lemma 1.1.3). By Proposition 4.4.1 it holds for any n ∈ N∗

Torsionn(2nu+j)N(f, x, v) ∈
(
k

N
+

m

2(2nu + j)N

∑n
i=1 h(x)i
n

− ε

n(2nu + j)N
,
k

N
+

m

2(2nu + j)N

∑n
i=1 h(x)i
n

+
ε

n(2nu + j)N

)
.

Since limn→+∞
ε

n(2nu+j)N
= 0, we conclude that the torsion at x exists if and only if the

limit limn→+∞
∑n

i=1 h(x)i
n

exists. Moreover, whenever the limit exists, we have

Torsion(f, x) = lim
n→+∞

(
k

N
+

m

2(2nu + j)N

∑n
i=1 h(x)i
n

)
.
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4.5 On triviality and non triviality of the torsion

From Corollary 4.4.1 we observe that the unstable angle variation of (q, p) plays a
fundamental role in determining the torsion of points of the horseshoe H(Uε, j).
Indeed

Corollary 4.5.1. In the hypothesis of Corollary 4.4.1 let m ∈ Z be the unstable angle
variation of (q, p).

— If m = 0, then the torsion exists at every x ∈ H(Uε, j) and for any x ∈ H(Uε, j)

Torsion(f, x) =
k

N
.

— If m 6= 0, then the torsion at x ∈ H(Uε, j) exists if and only if the limit limn→+∞
∑n

i=1 h(x)i
n

exists and

Torsion(f, x) =
k

N
+

m

2(2nu + j)N
lim

n→+∞

∑n
i=1 h(x)i
n

.

When the unstable angle variation m is null, then the torsion is trivial, i.e. the torsion
exists at every point and it is constantly equal to k

N
.

Observe that if f ∈ C2 then, through Livšic’s periodic point theorem, we can deduce that

x 7→ (2nu + j)N Torsion(2nu+j)N(f, x, e
u
x)− (2nu + j)k

is cohomologous to the zero constant if and only if the angle variation m is null. This
remark arises from a question of J. Buzzi.
We recall now Livšic’s periodic point theorem (see [CPW98]) in our framework.

Theorem 4.5.1. Consider the horseshoe dynamical system (H(Uε, j), f
(2nu+j)N). Let

T : H(Uε, j) → R be Hölder continuous. Then the following conditions are equivalent.

(i) There exists a continuous map g : H(Uε, j) → R such that T = g ◦ f (2nu+j)N − g,
i.e. T is cohomologous to the zero constant function.

(ii) For every periodic x ∈ H(Uε, j), i.e. such that (f (2nu+j)N)l(x) = x for some l =
l(x) ∈ N, it holds

l−1∑

i=0

T ◦ f (2nu+j)Ni(x) = T (x) + · · ·+ T (f (2nu+j)N(l−1)(x)) = 0.

The function T in our case is

H(Uε, j) ∋ x 7→ T (x) := (2nu + j)N Torsion(2nu+j)N(f, x, e
u
x)− (2nu + j)k ∈ R.

In order to apply Livšic’s theorem, we first need to check that the finite-time torsion is
Hölder continuous. Here is the point that demands some further regularity hypothesis.
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Proposition 4.5.1. Let f be C2. Then the function

H(Uε, j) ∋ x 7→ (2nu + j)N Torsion(2nu+j)N(f, x, e
u
x) ∈ R

is Hölder continuous.

Proof. We are going to prove that the (2nu + j)N -finite time torsion is locally Hölder.
This will enable us to conclude because a locally Hölder continuous function defined on
a compact metric space (the horseshoe H(Uε, j) in our case) is Hölder continuous (see
Theorem 4.4.2 in [Fio16]).
Let η > 0 be such that if x, y ∈ H(Uε, j) and d(x, y) < η then h(x)1 = h(y)1 where
(h(x))i∈Z, (h(y))i∈Z are the sequences associated to x, y respectively.
For x, y ∈ H(Uε, j) such that d(x, y) < η we have from Proposition 4.4.1 that
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e

u
x)− (2nu + j)N Torsion(2nu+j)N(f, y, e

u
y)
∣∣∣ < 2ε. (4.43)

Up to replace euy with −euy , assume that

∥∥eux − euy
∥∥ = min

v∈Eu
y∩S1

‖eux − v‖. (4.44)

Observe now that
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e

u
x)− (2nu + j)N Torsion(2nu+j)N(f, y, e

u
y)
∣∣∣ =

=
∣∣∣θ̄(eux, euy)− θ̃(euf (2nu+j)N (x), e

u
f (2nu+j)N (y))

∣∣∣,

where θ̄(eux, e
u
y) is the measure of the oriented angle θ(eux, e

u
y) contained in (−ε, ε) (thanks

to (4.44). The notation θ̃(eu
f (2nu+j)N (x)

, eu
f (2nu+j)N (y)

) refers to a measure of the oriented
angle

θ(euf (2nu+j)N (x), e
u
f (2nu+j)N (y)).

Consequently, from (4.43),

θ̃(euf (2nu+j)N (x), e
u
f (2nu+j)N (y)) ∈ (−3ε, 3ε).

By the invariance of the unstable bundle and since ε < 1
12

, we deduce that

∥∥∥euf (2nu+j)N (x) − euf (2nu+j)N (y)

∥∥∥ = min
v∈Eu

f(2nu+j)N (y)∩S1

∥∥∥euf (2nu+j)N (x) − v
∥∥∥. (4.45)

Indeed, since θ(eu
f (2nu+j)N (x)

, eu
f (2nu+j)N (y)

) admits a measure in (−3ε, 3ε) and since ε ∈(
0, 1

12

)
, we have that

cos
(
2π θ(euf (2nu+j)N (x), e

u
f (2nu+j)N (y))

)
> 0.

Consequently it holds ∥∥∥euf (2nu+j)N (x) + euf (2nu+j)N (y)

∥∥∥
2

=

=
∥∥∥euf (2nu+j)N (x) − euf (2nu+j)N (y)

∥∥∥
2

+ 4 cos
(
2π θ(euf (2nu+j)N (x), e

u
f (2nu+j)N (y))

)
>
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>
∥∥∥euf (2nu+j)N (x) − euf (2nu+j)N (y)

∥∥∥
2

,

implying (4.45). We then continue and have 14

∣∣∣θ̄(eux, euy)− θ̃(euf (2nu+j)N (x), e
u
f (2nu+j)N (y))

∣∣∣ ≤
∣∣∣θ̄(eux, euy)

∣∣∣+
∣∣∣θ̃(euf (2nu+j)N (x), e

u
f (2nu+j)N (y))

∣∣∣ =

=
1

2π
arccos

(
1−

∥∥eux − euy
∥∥2

2

)
+

1

2π
arccos


1−

∥∥∥euf (2nu+j)N (x)
− eu(2nu+j)N

(y)
∥∥∥
2

2


 .

The arc cosinus is well-defined thanks to (4.45). Thus
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e

u
x)− (2nu + j)N Torsion(2nu+j)N(f, y, e

u
y)
∣∣∣ ≤

≤ 1

2π
arccos

(
1−

∥∥eux − euy
∥∥2

2

)
− 1

2π
arccos(1)+

+
1

2π
arccos


1−

∥∥∥euf (2nu+j)N (x)
− eu(2nu+j)N

(y)
∥∥∥
2

2


− 1

2π
arccos(1) ≤

≤ C
∥∥eux − euy

∥∥α + C
∥∥∥euf (2nu+j)N (x) − eu(2nu+j)N(y)

∥∥∥
α

,

for some C > 0, α > 0, where the last inequality comes from the fact that arccos is Hölder
and arccos(1) = 0.
From (4.44) and (4.45) we deduce that

∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e
u
x)− (2nu + j)N Torsion(2nu+j)N(f, y, e

u
y)
∣∣∣ ≤

≤ CdH
(
Eu
x ∩ S1, Eu

y ∩ S1
)α

+ CdH

(
Eu
f (2nu+j)N (x) ∩ S1, Eu

(2nu+j)N(y) ∩ S1
)α
.

If f ∈ C2, then the function 15

H(Uε, j) ∋ x 7→ Eu
x ∈

⋃

x∈H(Uε,j)

G1(TxS),

is Hölder continuous (see Corollary 2.1 in [BP74] or Theorem 5.18 in [Shu87]).
Consequently, for suitable C̄ > 0, β > 0,

∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e
u
x)− (2nu + j)N Torsion(2nu+j)N(f, y, e

u
y)
∣∣∣ ≤

≤ C̄d(x, y)β + C̄d(f (2nu+j)N(x), f (2nu+j)N(y))β

and, since f is in particular C1 and the horseshoe is compact, we conclude that
∣∣∣(2nu + j)N Torsion(2nu+j)N(f, x, e

u
x)− (2nu + j)N Torsion(2nu+j)N(f, y, e

u
y)
∣∣∣ ≤

≤ C̄(1 + C̃) d(x, y)β,

that is the (2nu + j)N -finite time torsion is locally Hölder continuous.

14. We are using the fact that the length ‖v‖2 of the chord of an angle θ is 2 sin
(
θ
2

)
and that 2 sin2

(
θ
2

)
=

1− cos(θ).
15. G1(TxS) is the Grassmannian of the 1-dimensional subspaces in TxS.
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We can now show the following

Lemma 4.5.1. Let f be C2. Then the function

H(Uε, j) ∋ x 7→ (2nu + j)N Torsion(2nu+j)N(f, x, e
u
x) ∈ R

is cohomologous to the constant (2nu + j)k if and only if the unstable angle variation of
(q, p) is null.

Proof. Let us discuss the two possible cases.

• Case m = 0. Let x ∈ H(Uε, j) be a periodic point of period l ∈ N. Since the unstable
bundle is invariant and f (2nu+j)Nl(x) = x, we deduce that

(2nu + j)NlTorsion(2nu+j)Nl(f, x, e
u
x)− (2nu + j)lk ∈ 1

2
+ Z. (4.46)

From Proposition 4.4.1 since m = 0 we have that

(2nu + j)NlTorsion(2nu+j)Nl(f, x, e
u
x)− (2nu + j)lk ∈ (−ε, ε) . (4.47)

Since ε ∈
(
0, 1

12

)
, from (4.46) and (4.47), it holds

(2nu + j)NlTorsion(2nu+j)Nl(f, x, e
u
x)− (2nu + j)lk = 0.

Thanks to the arbitrariness of x ∈ H(Uε, j) periodic point, we can apply Livšic’s
periodic point theorem and conclude that if m = 0 then

H(Uε, j) ∋ x 7→ (2nu + j)N Torsion(2nu+j)N(f, x, e
u
x)− (2nu + j)k ∈ R

is cohomologous to the zero constant function.

• Case m 6= 0. We want to show that

x 7→ (2nu + j)N Torsion(2nu+j)N(f, x, e
u
x)

is not cohomologous to a constant function. Thanks again to Livšic’s periodic point
theorem, it is sufficient to exhibit two periodic points x, y ∈ H(Uε, j) of periods
l1, l2 ∈ N respectively such that

(2nu + j)Nl1 Torsion(2nu+j)Nl1(f, x, e
u
x) 6= (2nu + j)Nl2 Torsion(2nu+j)Nl2(f, y, e

u
y).

Consider the points x, y of the horseshoe corresponding to the symbolic sequences
(si)i∈Z, (ti)i∈Z so that for any i we have si = 0, ti = 1. They are fixed points with
respect to f (2nu+j)N . From Proposition 4.4.1 and the invariance of the unstable
bundle we deduce that

(2nu + j)N Torsion(2nu+j)N(f, x, e
u
x) = (2nu + j)k 6=

6= (2nu + j)k +
m

2
= (2nu + j)N Torsion(2nu+j)N(f, y, e

u
y).

Equivalently, from Livšic’s periodic point theorem, if m 6= 0 then the (2nu + j)N -
finite time torsion is not cohomologous to a constant function.
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4.5.1 Sufficient conditions for the non triviality of torsion

In the sequel, we are going to give sufficient conditions to assure that the unstable angle
variation of (q, p) m is not null.

Reminder 4.5.1. Recall that Γu refers to the parametrization of [q, p]u (see (4.7)), that
is the subset of W u(q) connecting q to p. Remark that Γu(0) = q,Γu(tu) = p. The angle
function

[0, tu] ∋ t 7→ θ(H,Γ′
u(t)) ∈ T

is the oriented angle between the constant horizontal vector and the vector tangent to
W u(q) at Γu(t). Let

[0, tu] ∋ t 7→ θ̃(H,Γ′
u(t)) ∈ R

be a continuous determination of such angle function.
The angle variation of the tangent vector along the unstable manifold between q and p is
so

θ̃(H,Γ′
u(tu))− θ̃(H,Γ′

u(0)).

Observe that such an angle variation does not depend on the chosen continuous determi-
nation.
We recall that [0, ts] ∋ t 7→ γs(t) ∈ CC(W s(q), q) denotes a parametrization of [p, q]s, i.e.
the subset of the local stable manifold of q connecting p to q, such that γs(0) = p, γs(ts) =
q.

Definition 4.5.1. Let p ∈ (W u(q) ⋔ W s(q)) \ {q} be the future-first-entry point for
CC(Uε, q). The point p is zero homoclinic if the closed curve γs([0, ts]) ∪ Γu([0, tu]) does
not have self-intersections and it is homotopic to a point.

Definition 4.5.2. Let p ∈ (W u(q) ⋔ W s(q)) \ {q} be the first-entry point for CC(Uε, q).
The point p ∈ S has a good orientation with respect to q if the orientation determined by

(Γ′
u(tu), γ

′
s(0))

is opposite with respect to the orientation determined by (Γ′
u(0), γ

′
s(ts)).

The point p ∈ S has a bad orientation with respect to q if p has not a good orientation
(with respect to q).

Remark that by the invariance of the unstable manifold it holds Γ′
u(0)

‖Γ′
u(0)‖

= γ′u(0)
|γ′u(0)|

= euq (see
(4.6)) and Γ′

u(tu) ∈ Eu
p .

The following Proposition sums up sufficient conditions to assure m ∈ Z not null.

Proposition 4.5.2. Let S be a surface among R2,A and T2. Let f : S → S be a C1

diffeomorphism isotopic to the identity 16. Let q ∈ S be a periodic hyperbolic point for f
of period N . Let O(p, fN) ⊂ (W u(q) ⋔ W s(q)) \ {q}. Let Uε be an adapted neighborhood
of {q} ∪ O(p, fN) with respect to 0 < ε < 1

12
. Suppose that p is the first-entry point for

CC(Uε, q). Assume that

— the point p is zero homoclinic (see Definition 4.5.1)

16. If S = R2 then assume also that f has compact support.
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or

— the point p has a good orientation with respect to q (see Definition 4.5.2).

Then m ∈ Z is not zero.

The proof of Proposition 4.5.2 is an outcome of the following two Lemmas.

Lemma 4.5.2. If the point p is zero homoclinic, then

θ̃(H,Γ′
u(tu))− θ̃(H,Γ′

u(0)) ∈
(m
2
− ε

2
,
m

2
+
ε

2

)

for some m ∈ Z \ {0}.

Proof of Lemma 4.5.2. Consider Γ a lift on R2 of γs([0, ts])∪Γu([0, tu]). It is a C1 piecewise
closed curve which does not have self-intersections since p is zero homoclinic (see Defini-
tion 4.5.1).
We apply the Turning Tangent Theorem to Γ (see [DC76], Chapter 4, Section 5) to de-
termine the angle variation we are interested in. By Condition 4.2.1 of CC(Uε, q) adapted
neighborhood of q for O(p, fN) with respect to 0 < ε < 1

12
, for any t ∈ [0, ts] the angle

θ(γ′s(0), γ
′
s(t)) = θ(H, γ′s(t))− θ(H, γ′s(0))

admits a measure in (− ε
4
, ε
4
) and we denote such measure as θ̄(γ′s(0), γ

′
s(t)).

Consequently, the variation of any continuous determination of the angle function t 7→
θ(H, γ′s(t)) between 0 and ts along the local stable manifold, that we denote as θ̃(H, γ′s(ts))−
θ̃(H, γ′s(0)), is in (− ε

4
, ε
4
) and so equal to θ̄(γ′s(0), γ

′
s(ts)).

By Condition 4.2.3 of CC(Uε, q) adapted neighborhood of q for O(p, fN), by Remark 4.2.3
and by the invariance of the unstable manifold, the angle

θ(Γ′
u(0),Γ

′
u(tu)) = θ(H,Γ′

u(tu))− θ(H,Γ′
u(0))

admits a measure either in
(
1
2
− ε

2
, 1
2
+ ε

2

)
(if p has a good orientation) or in (− ε

2
, ε
2
) (if p

has a bad orientation) and we denote such a measure as θ̄(Γ′
u(0),Γ

′
u(tu)).

The angle variation of the tangent vector along the unstable manifold

θ̃(H,Γ′
u(tu))− θ̃(H,Γ′

u(0))

is a measure of the angle θ(Γ′
u(0),Γ

′
u(tu)) and so it is equal to

θ̄((Γ′
u(0),Γ

′
u(tu)) + n for some n ∈ Z.

Denote as

(i) θ̄(γ′s(ts),Γ
′
u(0)) the measure of the angle θ(γ′s(ts),Γ

′
u(0)) contained in

(
−1

2
, 1
2

)
;

(ii) θ̄(Γ′
u(tu),Γ

′
s(0)) the measure of the angle θ(Γ′

u(tu), γ
′
s(0)) contained in

(
−1

2
, 1
2

)
.
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The Turning Tangent Theorem implies that
(
θ̃(H, γ′s(ts))− θ̃(H, γ′s(0))

)
+ θ̄(γ′s(ts),Γ

′
u(0))+

(
θ̃(H,Γ′

u(tu))− θ̃(H,Γ′
u(0))

)
+ θ̄(Γ′

u(tu), γ
′
s(0)) = δ,

where δ is either 1 or −1, depending on the orientation of the lifted curve Γ.
Consequently

θ̄(γ′s(0), γ
′
s(ts)) + θ̄(γ′s(ts),Γ

′
u(0)) + θ̄(Γ′

u(0),Γ
′
u(tu)) + n+ θ̄(Γ′

u(tu),Γ
′
s(0)) = δ

and so n = δ, that is n is either 1 or −1.
If p has a good orientation, then

θ̃(H,Γ′
u(tu))− θ̃(H,Γ′

u(0)) ∈
(
1

2
+ δ − ε

2
,
1

2
+ δ +

ε

2

)
.

If p has a bad orientation, then

θ̃(H,Γ′
u(tu))− θ̃(H,Γ′

u(0)) ∈
(
δ − ε

2
, δ +

ε

2

)
.

In both cases we have that

θ̃(Γ′
u(0),Γ

′
u(tu)) ∈

(m
2
− ε

2
,
m

2
+
ε

2

)

for some m ∈ Z,m ∈ {−2,−1, 2, 3}.

Lemma 4.5.3. Let p ∈ (W u(q) ⋔ W s(q)) \ {q} be the first-entry point for CC(Uε, q). If
the point p has a good orientation with respect to q, then

θ̃(H,Γ′
u(tu))− θ̃(H,Γ′

u(0)) ∈
(m
2
− ε

2
,
m

2
+
ε

2

)
for some m ∈ Z \ {0}.

Proof of Lemma 4.5.3. By Condition 4.2.3 of CC(Uε, q) adapted neighborhood of q for
O(p, fN) with respect to 0 < ε < 1

12
, by Remark 4.2.3 and since p has a good orientation

with respect to q, the angle

θ(Γ′
u(0),Γ

′
u(tu)) = θ(H,Γ′

u(tu))− θ(H,Γ′
u(0))

admits a measure in
(
1
2
− ε

2
, 1
2
+ ε

2

)
and we denote such a measure as θ̄(Γ′

u(0),Γ
′
u(tu)).

Since the variation between 0 and tu of any continuous determination of the angle function
[0, tu] ∋ t 7→ θ(H,Γ′

u(t)) ∈ T, that is

θ̃(H,Γ′
u(tu))− θ̃(H,Γ′

u(0)),

is a measure of the angle θ(Γ′
u(0),Γ

′
u(tu)), we have that

θ̃(H,Γ′
u(tu))− θ̃(H,Γ′

u(0)) ∈
(m
2
− ε

2
,
m

2
+
ε

2

)

for some m ∈ 2Z+ 1, in particular m 6= 0.

In the framework of R2 and of A, the following Lemma gives us sufficient conditions to
obtain the hypothesis of (and so apply) Proposition 4.5.2.
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Lemma 4.5.4. Assume that the curve [p, q]s intersects transversally the curve [q, fN(p)]u.
That is, for any x ∈ [p, q]s ∩ [q, fN(p)]u it holds TxW s(q) + TxW

u(q) = TxS.

(i) If S = R2 then there exists a transverse homoclinic point r ∈ (W u(q) ⋔ W s(q))\{q}
which is zero homoclinic.

(ii) If S = A then there exists a transverse homoclinic point r ∈ (W u(q) ⋔ W s(q)) \ {q}
which has a good orientation with respect to q.

Proof. Let S = R2. Since [q, p]u ⊂ [q, fN(p)]u and [p, q]s ⋔ [q, fN(p)]u, we deduce that
also [p, q]s ⋔ [q, p]u and the intersection is not empty since p ∈ [p, q]s ⋔ [q, p]u. Consider
the parametrization of [q, p]u

[0, tu] ∋ t 7→ Γu(t) ∈ R2.

Let t̄ ∈ (0, tu] be the first point of intersection between [q, p]u and [p, q]s (not considering
q) and denote as r the corresponding point Γu(t̄). Since [p, q]s ⋔ [q, p]u, the point r is a
point of transverse homoclinic intersection. Because of the choice of r as first intersection
point, the closed curve [r, q]s ∪ [q, r]u does not have self-intersections. Moreover, since we
are considering as surface R2, the closed curve [r, q]s∪ [q, r]u is homotopic to a point. That
is, r ∈ (W u(q) ⋔ W s(q)) \ {q} is zero homoclinic.

Let S = A. If p has a good orientation with respect to q, then there is nothing to
prove.
Assume that p has a bad orientation with respect to q. Let r ∈ (W u(q)∩W s(q)) \ {q} be
the first point of intersection between [p, q]s and [q, p]u, not considering the point q. That
is, let t ∈ (0, tu] be such that

— r = Γu(t) ∈ (W s(q) ∩W u(q)) \ {q};

— for any s ∈ (0, t) the point Γu(s) does not belong to [p, q]s.

The point r is a point of transverse homoclinic intersection because [q, r]u ⊂ [q, p]u ⊂
[q, fN(p)]u and by hypothesis [p, q]s ⋔ [q, fN(p)]u. Observe that, since r is the first point
of intersection between [p, q]s and [q, p]u (after q), the closed curve [r, q]s ∪ [q, r]u does not
have self-intersections.
Let us parametrize the curves [r, q]s and [q, r]u as follows:

[0, τu] ∋ t 7→ Ψu(t) ∈ [q, r]u,

[0, τs] ∋ t 7→ ψs(t) ∈ [r, q]s

such that Ψu(0) = ψs(τs) = q,Ψu(τu) = ψs(0) = r.
If r has a good orientation with respect to q, then there is nothing to prove. Assume that r
has a bad orientation with respect to q. Remark that the curve [r, q]s∪ [q, r]u separates the
annulus into two connected components, say A1,A2. Since λ1, λ2 eigenvalues of DfN(q)
are both positive 17, the points r and fN(r) belong to the same connected component of
W s(q) \ {q}. In particular fN(r) ∈ [r, q]s.
Recall that [q, r]u ⊂ fN([q, r]u) = [q, fN(r)]u.

17. Recall that at the beginning of Chapter 4 we have assumed that the eigenvalues of DfN (q) are in
R+, up to replace f with f2.

205





q

p

z

Figure 4.13 – A transverse homoclinic point p with m = 0. The point z is a tangent
homoclinic point.

to q) at the two points of intersection (see Figure 4.13). Then, by the λ-lemma, the
unstable manifold W u(q) also intersects transversally the stable manifold in two points
with different orientations. This provides us the required transverse homoclinic point with
a good orientation with respect to q.

4.6 Results on torsion in the non trivial case

The results presented in Section 4.4 enable us to deduce some interesting consequences
over the asymptotic torsion at points of the horseshoe in the non trivial case.
We assume that the unstable angle variation m is not null and, using the symbolic
dynamics, we deduce some consequences over torsion at points of H(Uε, nu, j).

Assumption 4.6.1. In this Section we assume that the unstable angle variation of (q, p)
m ∈ Z is not null.

Proposition 4.6.1. For any A ≤ B, A,B ∈ [0, 1] there exists (δi)i∈Z ∈ {0, 1}Z such that

lim inf
n→+∞

∑n
i=1 δi
n

= A ≤ B = lim sup
n→+∞

∑n
i=1 δi
n

. (4.48)

From Proposition 4.6.1 it immediately descendes the following

Corollary 4.6.1. Let m 6= 0. For any α ≤ β, α, β ∈
[
k
N
, k
N
+ m

2(2nu+j)N

]
there exists

x ∈ H(Uε, j) such that

lim inf
n→+∞

Torsionn(f, x, v) = α ≤ β = lim sup
n→+∞

Torsionn(f, x, v), (4.49)

where v ∈ TxS
18.

18. The asymptotic torsion does not depend on the tangent vector.
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Proof. Define

A :=
2(2nu + j)N

m

(
α− k

N

)
and B :=

2(2nu + j)N

m

(
β − k

N

)
.

Observe that A,B ∈ [0, 1].
From Proposition 4.6.1 there exists (δi)i∈Z ∈ {0, 1}Z such that

lim inf
n→+∞

∑n
i=1 δi
n

= α ≤ β = lim sup
n→+∞

∑n
i=1 δi
n

.

Let x ∈ H(Uε, j) be such that h(x) = (δi)i∈Z. Such x exists because h is a homeomorphism
on the horseshoe H(Uε, j). From Corollary 4.4.1 it holds that

lim inf
n→+∞

Torsionn(f, x, v) =
k

N
+

m

2(2nu + j)N
lim inf
n→+∞

∑n
i=1 δi
n

=
k

N
+

m

2(2nu + j)N
A = α

and similarly

lim sup
n→+∞

Torsionn(f, x, v) =
k

N
+

m

2(2nu + j)N
lim sup
n→+∞

∑n
i=1 δi
n

=
k

N
+

m

2(2nu + j)N
B = β.

Proof of Proposition 4.6.1. Assume as a first case that A < B. Let
(
pn
qn

)
n∈N

,
(
rn
tn

)
n∈N

be

sequences in QN converging decreasingly to A and increasingly to B, respectively. That is

pn
qn

n→+∞−→ A and A ≤ pn+1

qn+1

≤ pn
qn

∀n ∈ N

and
rn
tn

n→+∞−→ B and B ≥ rn+1

tn+1

≥ rn
tn

∀n ∈ N.

Since A < B we can suppose that p0
q0

≤ r0
t0

.

Remark 4.6.1. If A or B is in Q, then we simply consider the constant sequence pn
qn

= A
for any n ∈ N or rn

tn
= B for any n ∈ N.

Define now the sequences
(
an
bn

)
n∈N

∈ QN and (εn)n∈N ∈ RN as follows

an
bn

:=





pn
2

qn
2

if n is even

rn−1
2

tn−1
2

if n is odd

(4.50)

and

εn :=





pn
2

qn
2

− A if n is even

B −
rn−1

2

tn−1
2

if n is odd.

(4.51)
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Observe that (εn)n∈N converges to 0. In particular both (ε2n)n∈N and (ε2n+1)n∈N converge
decreasingly to 0.
Let n ∈ N and consider a finite sequence of 0s and 1s of length bn as follows. Let ρn, τn ∈ N
be such that

bn = ρnan + τn

where τn ∈ J0, an − 1K and ρn ≤ bn
an

.

Definition 4.6.1. Let a ∈ N, b ∈ N∗ such that a ≤ b. Let ρ, τ ∈ N be such that b = ρa+τ
and τ ∈ J0, a− 1K. An adapted sequence for a

b
is a sequence of finite length b obtained by

alternating a 1-symbol and then (ρ−1) 0-symbols for a times and by ending the sequence
with τ 0-symbols. That is

b︷ ︸︸ ︷

1

ρ−1︷ ︸︸ ︷
0 . . . 0︸ ︷︷ ︸
ρ

1 0 . . . 0 1 0 . . . 0 . . . 1 0 . . . 0

︸ ︷︷ ︸
ρa

0 . . . 0︸ ︷︷ ︸
τ

.

Remark 4.6.2. Consider an adapted sequence for a
b

according to Definition 4.6.1. Observe
that the total number of 1-symbols contained in such a sequence is exactly a.

Let us define the sequence (Nn, Ñn)n∈N recursively as follows. Let (N0, Ñ0) be (1, 1).
Choose now N1 ∈ N so that for any N ≥ N1 it holds

a0 +Na1
b0 +Nb1

=
b0

b0 +Nb1

a0
b0

+
Nb1

b0 +Nb1

a1
b1

≥ a1
b1

− ε1 = B − 2ε1.

The integer Ñ1 is so max{N1, b2}. Let n > 1 and assume now that we have defined the
couples (Ni, Ñi) for all i ∈ J1, n− 1K. Define Nn ∈ N so that for any N ≥ Nn it holds

a0 + Ñ1a1 + · · ·+ Ñn−1an−1 +Nan

b0 + Ñ1b1 + · · ·+ Ñn−1bn−1 +Nbn
=

=
b0∑n−1

i=0 Ñibi +Nbn

a0
b0

+
Ñ1b1∑n−1

i=0 Ñibi +Nbn

a1
b1

+ · · ·+ Nbn∑n−1
i=0 Ñibi +Nbn

an
bn

is:

— ≥ an
bn

− εn = B − 2εn if n is odd;

— ≤ an
bn

+ εn = A+ 2εn if n is even.

Define Ñn as max{Nn, nbn+1}.
We now construct a sequence (δi)i∈Z as follows. For i ∈ Z, i ≤ 0, that is for a non positive
index, the value δi is no matter which value among 0 and 1.
Starting from the 1-th entry, we concatenate (according to Definition 4.6.1 of adapted
sequence):

— one adapted sequence for a0
b0

(determining so δi for i ∈ J1, b0K) ;

— Ñ1 adapted sequences for a1
b1

(determining so δi for i ∈ Jb0 + 1, b0 + Ñ1b1K);
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— Ñ2 adapted sequences for a2
b2

(determining δi for i ∈ Jb0+Ñ1b1+1, b0+Ñ1b1+Ñ2b2);

— . . .

— Ñn adapted sequences for an
bn

(
determining δi for i ∈

r∑n−1
j=0 Ñjbj+1,

∑n
j=0 Ñjbj

z)
;

— . . .

We are now going to show that

lim sup
m→+∞

∑m
i=1 δi
m

= B and lim inf
m→+∞

∑m
i=1 δi
m

= A.

Since we are using adapted sequences (see Definition 4.6.1), from Remark 4.6.2 we are
able to estimate

∑m
i=1 δi.

Fix δ > 0. Consider m ∈ N: there exists n ∈ N∗ such that

m = b0 + Ñ1b1 + · · ·+ Ñn−1bn−1 + lbn + jρn + k,

where l ∈ J0, Ñn − 1K, j ∈ J0, anK and k ∈ J0, ρn − 1K. In particular

jρn + k < bn. (4.52)

If m ∈ N is large enough then n ≥ 2 and

2

n− 1
< δ. (4.53)

Then ∑m
i=1 δi
m

=
m− jρn − k

m

∑m−jρn−k
i=1 δi

m− jρn − k
+

∑m
i=m−jρn−k+1 δi

m
≤

≤
∑m−jρn−k

i=1 δi
m− jρn − k

+
j + 1

m
.

On one hand, since (see Remark 4.6.2 for the following equality)

∑m−jρn−k
i=1 δi

m− jρn − k
=

=
b0

m− jρn − k

a0
b0

+ · · ·+ Ñn−1bn−1

m− jρn − k

an−1

bn−1

+
lbn

m− jρn − k

an
bn

is a convex combination of a0
b0
, . . . , an

bn
and for any i ∈ N it holds ai

bi
≤ B, we have that

∑m−jρn−k
i=1 δi

m− jρn − k
≤ B.

On the other hand, from the choice of Ñn−1 = max{Nn−1, (n− 1)bn} and from (4.53), it
holds

j + 1

m
≤ bn + 1

Ñn−1bn−1

≤ bn + 1

(n− 1)bnbn−1

≤ 2

n− 1
< δ.

Therefore, we can deduce that
∑m

i=1 δi
m

≤ B + δ. So by the arbitrariness of δ we conclude
that

lim sup
m→+∞

∑m
i=1 δi
m

≤ B. (4.54)
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Consider now the subsequence (
∑2n+1

j=0 Ñjbj)n∈N: for any n ∈ N it holds, from the con-

struction of (δi)i∈Z and the choice of Ñn, that

∑∑2n+1
j=0 Ñjbj

i=1 δi∑2n+1
j=0 Ñjbj

=
b0∑2n+1

j=0 Ñjbj

a0
b0

+
Ñ1b1∑2n+1
j=0 Ñjbj

a1
b1

+ · · ·+ Ñ2n+1b2n+1∑2n+1
j=0 Ñjbj

a2n+1

b2n+1

≥

≥ a2n+1

b2n+1

− ε2n+1 = B − 2ε2n+1,

where the last equality comes from (4.50) and (4.51).

Consequently, since ε2n+1
n→+∞−→ 0, we have

lim inf
n→+∞

∑∑2n+1
j=0 Ñ2n+1b2n+1

i=1 δi∑2n+1
j=0 Ñjbj

≥ B

and so from (4.54)

lim
n→+∞

∑∑2n+1
j=0 Ñ2n+1b2n+1

i=1 δi∑2n+1
j=0 Ñjbj

= B.

We conclude that

lim sup
m→+∞

∑m
i=1 δi
m

= B.

Adapting the previous argument, for m ∈ N large enough it holds
∑m

i=1 δi
m

=

(
1− jρn + k

m

) ∑m−jρn−k
i=1 δi

m− jρn − k
+

∑m
i=m−jρn−k+1 δi

m
≥
(
1− jρn + k

m

)
A ≥

≥
(
1− 2

n− 1

)
A > A− δ,

since A ∈ [0, 1] and, from (4.52) and from (4.53),

jρn + k

m
≤ bn

Ñn−1bn−1

≤ 2

n− 1
< δ.

That is, by the arbitrariness of δ,

lim inf
m→+∞

∑m
i=1 δi
m

≥ A. (4.55)

Consider now the subsequence (
∑2n

j=0 Ñjbj)n∈N: for any n ∈ N it holds, from the construc-

tion of (δi)i∈Z and the choice of Ñn,

∑∑2n
j=0 Ñjbj

i=1 δi∑2n
j=0 Ñjbj

=
b0∑2n

j=0 Ñjbj

a0
b0

+ · · ·+ Ñ2nb2n∑2n
j=0 Ñjbj

a2n
b2n

≤ a2n
b2n

+ ε2n = A+ 2ε2n.

Consequently, since ε2n
n→+∞−→ 0, we have

lim sup
n→+∞

∑∑2n
j=0 Ñjbj

i=1 δi∑2n
j=0 Ñjbj

≤ A
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and so from (4.55)

lim
n→+∞

∑∑2n
j=0 Ñjbj

i=1 δi∑2n
j=0 Ñjbj

= A.

We deduce that

lim inf
m→+∞

∑m
i=1 δi
m

= A.

Let now A = B. Assume that A > 0: if this is not the case, then the sequence (δi)i∈Z

whose entries are all zeroes is a sequence such that limm→+∞

∑m
i=1 δi
m

= 0. Let (pn
qn
)n∈N be

a sequence in QN converging increasingly to A, that is

lim
n→+∞

pn
qn

= A and
pn−1

qn−1

≤ pn
qn

≤ A ∀n ∈ N∗.

Define the sequence (εn)n∈N so that

εn := A− pn
qn
. (4.56)

Define the sequence (Nn, Ñn)n∈N recursively as follows. Let (N0, Ñ0) be (1, 1). Let n > 1
and assume we have already defined the couples (Ni, Ñi) for i ∈ J1, n − 1K. Let Nn ∈ N
be such that for any N ≥ Nn it holds

q0∑n−1
j=0 Ñjqj +Nnqn

p0
q0

+
Ñ1q1∑n−1

j=0 Ñjqj +Nnqn

p1
q1

+ · · ·+ Nnqn∑n−1
j=0 Ñjqj +Nnqn

pn
qn

∈
[
pn
qn

− εn,
pn
qn

+ εn

]
= [A− 2εn, A+ 2εn] , (4.57)

where the last equality comes from the definition of εn in (4.56). Define Ñn as max{nqn+1, Nn}.
Construct the sequence (δi)i∈Z as follows. For any i ∈ Z, i ≤ 0, choose no matter which
value of δi in {0, 1}. Starting from the 1-th entry and refering to Definition 4.6.1, concate-
nate: an adapted sequence for p0

q0
, Ñ1 adapted sequences for p1

q1
, . . . , Ñn adapted sequences

for pn
qn

and so on.We immediately remark that the sequence

(∑∑n
j=0 Ñjqj

i=1 δi∑n
j=0 Ñjqj

)

n∈N
converges

to A.
For any n ∈ N we denote as ρn ∈ J1, qnK the integer such that

qn = pnρn + τn,

where τn ∈ J0, pn − 1K.
Fix now 0 < δ < 2A. Let m ∈ N. There exists n ∈ N∗ so that

m = q0 + Ñ1q1 + · · ·+ Ñn−1qn−1 + lqn + jρn + k,

where l ∈ J0, Ñn − 1K, j ∈ J0, pnK and k ∈ J0, ρn − 1K. If m ∈ N∗ (and so n ∈ N∗) is large
enough, then

2

n− 1
<
δ

2
< A and εn−1 <

δ

4
. (4.58)
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Observe that
∑m

i=1 δi
m

=

(
1− jρn + k

m

)∑m−jρn−k
i=1 δi

m− jρ− k
+

∑m
i=m−jρn−k+1 δi

m
.

First, we remark that
∑m−jρn−k

i=1 δi
m− jρ− k

∈ [min{A− 2εn−1, A− εn}, A+ 2εn−1] = [A− 2εn−1, A+ 2εn−1]

since εn ≤ εn−1 and since
∑m−jρ−k

i=1 δi
m−jρ−k is a convex combination of

∑∑n−1
j=0 Ñjqj

i=1 δi∑n−1
j=0 Ñjqj

and
pn
qn
,

where pn
qn

= A− εn from (4.56) and

∑∑n−1
j=0 Ñjqj

i=1 δi∑n−1
j=0 Ñjqj

∈ [A− 2εn−1, A+ 2εn−1]

thanks to the choice of Ñn−1 (see (4.57)).
Moreover, we have that

0 ≤
∑m

i=m−jρn−k+1 δi

m
≤ j + 1

m
≤ qn + 1

Ñn−1qn−1

≤ 2

(n− 1)
<
δ

2
.

Therefore it holds (from the second inequality in (4.58))
∑m

i=1 δi
m

≤ A+ 2εn−1 +
δ

2
< A+ δ. (4.59)

Concerning the lower bound, we have that
∑m

i=1 δi
m

≥
(
1− jρn + k

m

) ∑m−jρn−k
i=1 δi

m− jρn − k
≥
(
1− jρn + k

m

)
(A− 2εn−1) .

Since m > Ñn−1qn−1 ≥ (n− 1)qnqn−1 and from (4.58) it holds 2
n−1

< δ
2

and εn−1 <
δ
4
, we

deduce that
(
1− jρn + k

m

)
(A− 2εn−1) >

(
1− δ

2

)(
A− δ

2

)
= A− δ

2
A− δ

2
+
δ2

4
.

Recalling that A ≤ 1 we have that A
2
+ 1

2
− δ

4
< 1 and we conclude that

∑m
i=1 δi
m

> A− δ. (4.60)

By (4.59) and (4.60) and by the arbitrariness of δ > 0 we conclude that

lim
m→+∞

∑m
i=1 δi
m

= A.

Immediate consequences of Corollary 4.6.1 are the following results. Recall that m ∈ Z
is the unstable angle variation of (q, p) (see Definition 4.4.1).
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Corollary 4.6.2. For any α ∈
[
k
N
, k
N
+ m

2(2nu+j)N

]
there exists a point x ∈ H(Uε, j) so

that Torsion(f, x) = α.

Corollary 4.6.3. There exist points in H(Uε, j) where the torsion does not exist.

Actually we can say something more concerning the set of points with prescribed torsion
value using the symbolic dynamics of {0, 1}Z.

Claim 4.6.1. For any α ≤ β, α, β ∈
[
k
N
, k
N
+ m

2(2nu+j)N

]
the set of points x ∈ H(Uε, j)

such that
lim inf
n→+∞

Torsionn(f, x, v) = a ≤ β = lim sup
n→+∞

Torsionn(f, x, v)

is dense in H(Uε, j).

Proof. Let α ≤ β, α, β ∈
[
k
N
, k
N
+ m

2(2nu+j)N

]
. From Corollary 4.6.1 there exists x̄ ∈

H(Uε, j) such that

lim inf
n→+∞

Torsionn(f, x̄, v) = α and lim sup
n→+∞

Torsionn(f, x̄, v) = β.

Fix x ∈ H(Uε, j) and η > 0. Denote (δi)i∈Z = h(x) and (δ̄i)i∈Z = h(x̄). Since h is a homeo-
morphism, there exists ζ > 0 such that if d̄(δi)i∈Z, (δ̃i)i∈Z) < ζ then d(x, h−1((δ̃i)i∈Z) < η.
Let n̄ ∈ N be such that 2

∑+∞
i=n̄

1
2i
< ζ. Define the sequence (δ̃i)i∈Z so that

— for i ∈ J−n̄+ 1, n̄− 1K it holds δ̃i = δi;

— for |i| ≥ n̄ it holds δ̃i = δ̄i.

Therefore we have that d(x, h−1((δ̃i)i∈Z)) < η and

lim inf
n→+∞

Torsionn(f, h
−1((δ̃i)i∈Z), v) = lim inf

n→+∞
Torsionn(f, x̄, w) = α,

lim sup
n→+∞

Torsionn(f, h
−1((δ̃i)i∈Z), v) = lim sup

n→+∞
Torsionn(f, x̄, w) = β,

where v denotes no matter which tangent vector in Th−1((δ̃i)i∈Z)
S and w no matter which

vector in T 1
x̄S.

By the arbitrariness of ζ > 0 and of x ∈ H(Uε, j), the set of points whose inferior limit of
torsion is α and whose superior limit of torsion is β is dense in H(Uε, j).

We can actually say more concerning the level sets of the torsion function. We recall the
definition of Cantor set.

Definition 4.6.2. A Cantor set C is a non empty, compact, totally disconnected set with
no isolated points.

Claim 4.6.2. Let α ∈
[
k
N
, k
N
+ m

2(2nu+j)N

]
\ Q. There exist uncountably many disjoint

invariant Cantor sets Cα so that Torsion(f, x) = α for every x ∈ Cα.

Claim 4.6.2 is an outcome of Proposition 4.4.1 and of the following result over symbolic
dynamics due to K. Hockett and P. Holmes (see Section 3.3, Lemmas C,D and E in
[HH86]) applied with respect to ρ =

(
α− k

N

)
2(2nu+j)N

m
∈ [0, 1] \Q.
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Lemma 4.6.1. Let ρ ∈ [0, 1] \ Q. There exist uncountable many disjoint S-invariant
Cantor sets Ωρ in {0, 1}Z such that for any (si)i∈Z ∈ Ωρ it holds

lim
n→+∞

∑n
i=1 si
n

= ρ.

Thus, since the coding map h is a homeomorphism, the image through h−1 of the set Ωρ

(with ρ =
(
α− k

N

)
2(2nu+j)N

m
) is the union of uncountably many disjoint invariant Cantor

sets and it is contained in the α-level set of the torsion function.
In [HH86], Hockett and Holmes work in the framework of some homoclinic transverse in-
tersection and use this result to show the existence of uncountably many disjoint Cantor
sets whose points have prescribed irrational rotation number.

Claim 4.6.3. The set of points in H(Uε, j) where the torsion does not exist contains a
dense Gδ-set, i.e. it is residual.

Proof. The set of points of H(Uε, j) at which the torsion does not exist can be described
as the set

N T :=
⋃

n∈N
n 6=0

⋂

N∈N

⋃

i>j≥N

{
x ∈ H(Uε, j) : |Torsioni(f, x, e

u
x)− Torsionj(f, x, e

u
x)| >

1

n

}
,

where eux ∈ T 1
xS belongs to the unstable subspace of x.

Fix n ∈ N∗, N ∈ N. For any fixed i > j ≥ N the set
{
x ∈ H(Uε, j) : |Torsioni(f, x, e

u
x)− Torsionj(f, x, e

u
x)| >

1

n

}

is open. Then, the set

⋃

i>j≥N

{
x ∈ H(Uε, nu, j) : |Torsioni(f, x, e

u
x)− Torsionj(f, x, e

u
x)| >

1

n

}
,

i.e. the set of points admitting subsequences converging to different limit values, is an
open set (since it is a countable union of open sets) containing a dense set (see Claim
4.6.1). So, in particular, it is dense. By Baire’s theory (since H(Uε, j) is a Baire space),
the set N T is a union of Gδ-dense sets.

Claim 4.6.4. There exists a point x ∈ H(Uε, j) at which the torsion does not exist and
which has dense orbit in H(Uε, j).

Proof. Claim 4.6.4 is an outcome of Claim 4.6.3. Indeed, Claim 4.6.3 says that the set of
points at which the torsion does not exist is residual.
The horseshoe is a transitive dynamical system, i.e. there exists a point whose orbit is
dense in H(Uε, j). By Birkhoff Transitive Theorem (see Theorem 2.1 in Chapter 8 in
[Rob99]) the set of points whose orbit is dense in the horseshoe is a Gδ-dense set.
Consequently, the intersection of these two sets is dense, so in particular not empty. That
is, there exist points whose orbit is dense in H(Uε, j) and at which the torsion does not
exist.

215



Remark 4.6.3. We can also make explicit the point of Claim 4.6.4. Indeed, in Corollary
4.6.3 we have remarked that there exist points in H(Uε, j) at which the torsion does not
exist. Let x ∈ H(Uε, j) be one of those points. Denote (δi)i∈Z = h(x) and build a sequence
(δ̄i)i∈Z so that

— for i ≥ 0 it holds δ̄i = δi;

— for i < 0 the sequence is completed by successively concatenating all blocks of
0-symbols and 1-symbols of all the possible lengths, i.e.


. . . | 11 10 01 00︸ ︷︷ ︸

2-lengthed blocks

| 1 0︸︷︷︸
1-lengthed blocks

| (δi)i∈N


 .

At the point x̄ := h−1((δ̄i)i∈Z) the torsion does not exist. At the same time, we remark
that the S−1-orbit of (δ̄i)i∈Z (i.e. the orbit of the shift to the right) is dense in ({0, 1}Z, S)
and consequently the f (2nu+j)N -orbit of x̄ is dense in H(Uε, j).

4.6.1 Consequences for torsion of invariant measures of the horse-

shoe

In this Subsection we are interested in torsion values of f -invariant measures whose
support is contained in the horseshoe. We start by recalling the definition of the torsion
of a f -invariant measure.

Definition 4.6.3. Let f : S → S be a C1 diffeomorphism isotopic to the identity. Let
I = (ft)t ∈ Diff 1(S) be an isotopy joining the identity to f and let µ be a f -invariant
Borel probability measure on S. Assume that µ or I has compact support. Then the
torsion of the measure µ is

Torsion(I, µ) =
∫

S

Torsion(I, x) dµ(x).

The main result of this section is the following

Theorem 4.6.1. Let S be either R2 or A or T2. Let f : S → S be a C1 diffeomorphism
isotopic to the identity 19 and let q ∈ S be a hyperbolic periodic point for f of period N .
Let p ∈ (W s(q) ⋔ W u(q)) \ {q}. Denote as

k = N TorsionN(f, q, v) ∈ Z

for v ∈ Eu
q . Let 0 < ε < 1

12
. Let Uε be an adapted neighborhood of {q} ∪ O(p, fN) with

respect to ε. Let H(Uε, j) be the horseshoe of Definition 4.3.2 and let m ∈ Z be the unstable
angle variation of (q, p) (see Definition 4.4.1).

For any α ∈
[
k
N
, k
N
+ m

2(2nu+j)N

]
there exists an ergodic f -invariant measure Γ whose

support is contained in O(H(Uε, j), f) and such that

Torsion(f,Γ) =
∫

S

Torsion(f, x) dΓ(x) = α.

19. If S = R2 then assume also that f has compact support.
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Reminder 4.6.1. The torsion does depend on the chosen isotopy neither on A nor on T2.
It is independent of the isotopy also on R2 up to consider diffeomorphisms with compact
support. For this reason we denote the torsion of a measure µ for f as Torsion(f, µ).

In order to prove Theorem 4.6.1 we are going to use Arnaud’s result in [Arn18] to insert
Denjoy dynamics within the horseshoe and obtain f -invariant ergodic measures with
prescribed torsion value.

Coding of Denjoy counterexample

We are going to provide a coding of a Denjoy’s counterexample F with rotation number
ρ ∈ (R \Q) ∩ [0, 1) with one wandering interval I ⊂ T. We refer to [Her79] for a detailed
contruction of such a Denjoy’s counterexample.

Notation 4.6.1. Let F : T → T be the Denjoy’s counterexample with one wandering
interval I with rotation number ρ ∈ (R \ Q) ∩ [0, 1). Denote the non wandering set
K. Then, F is semiconjugated to the irrational rotation Rρ. Denote as g : T → T the
semiconjugation such that g(I) = 0 and

g ◦ F = Rρ ◦ g.

The next Proposition is due to M.-C. Arnaud (see [Arn18]).

Proposition 4.6.2. Let ρ ∈ (R\Q)∩ [0, 1) and let F : T → T be the Denjoy’s counterex-
ample of rotation number ρ with one wandering interval I . Let K be the non-wandering
set of (T, F ). There exists a continuous injective map

H : K → H(K) ⊂ {0, 1}Z

such that
H ◦ F|K = S|H(K) ◦H,

where S is the shift (to the left) map on {0, 1}Z.
Proof. Consider the wandering interval I and its image F (I), which are connected com-
ponents of the complementary set of K. Denote as ∆0,∆1 the closed intervals between
(running clockwise along the circle) I and F (I) and between F (I) and I, respectively (see
Figure 4.14).
Define

H : K = T \
⋃

n∈Z
int F n(I) −→ {0, 1}Z

x 7−→ H(x) = (si)i∈Z

(4.61)

where
F i(x) ∈ ∆si .

The function H is well-defined since K is F -invariant. The function H is continuous
because T \ (int I ∪ int F (I)) is open in K and F is continuous.
In order to show the injectivity of H we distinguish two cases.

(a) Let x1, x2 ∈ K, x1 6= x2 be points on the boundary of the same F l(I), for some l ∈ Z.
Then, either F−l(x1) ∈ ∆0 and F−l(x2) ∈ ∆1 or F−l(x1) ∈ ∆1 and F−l(x2) ∈ ∆0.
In particular (H(x1))−l 6= (H(x2))−l, that is H(x1) 6= H(x2).
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Remark 4.6.4. The image H(K) is strictly contained in {0, 1}Z since the Denjoy coun-
terexample (T, F ) has zero topological entropy (see Example 2 in [AKM65]), while the
system ({0, 1}Z, S) has positive entropy.

Remark 4.6.5. The Denjoy’s counterexample is uniquely ergodic (see Theorem 11.2.9 in
[KH95]). Denote as µ the unique F -invariant measure of the system. The support of µ is
the non wandering set K.

Claim 4.6.5. µ(∆1) = 1− ρ.

Proof. The irrational rotation Rρ is uniquely ergodic and its unique invariant measure
is the Lebesgue measure Leb on T. The rotation Rρ is semiconjugated to the Denjoy’s
counterexample (T, F ) through g. Since g∗µ is Rρ-invariant, we deduce that g∗µ = Leb.
Denote as cl(F (I)), cl(I) the closure of the intervals F (I), I respectively. Recall that
g(I) = 0 and g(F (I)) = ρ and observe now that

(∆1 ∪ cl(F (I)) ∪ cl(I)) ∩K = g−1([ρ, 1]) ∩K.
Consequently, since µ(∆1) = µ((∆1 ∪ cl(F (I)) ∪ cl(I)) ∩ K) because µ is absolutely
continuous (see Proposition 12.4.1 in [KH95]) and it is supported on K, it holds

µ(∆1) = µ((∆1∪cl(F (I))∪cl(I))∩K) = µ(g−1([ρ, 1])) = g∗µ([ρ, 1]) = Leb([ρ, 1]) = 1−ρ.

Notation 4.6.2. Denote the function

Pr :{0, 1}Z → {0, 1}
(si)i∈Z 7→ s0.

For any irrational A ∈ [0, 1] there exists an ergodic measure ν on {0, 1}Z invariant for the
shift such that the integral of the function Pr with respect to ν over {0, 1}Z is the fixed
value A . The key idea is using the unique ergodic measure on the Denjoy’s counterexample
of rotation number 1− A and the coding of such system presented in Proposition 4.6.2.

Lemma 4.6.2. Let A ∈ [0, 1] \Q. There exists an ergodic S-invariant measure ν whose
support is strictly contained in {0, 1}Z and such that

∫

{0,1}Z
Pr((si)i∈Z) dν((si)i∈Z) = A .

Proof. Consider the Denjoy’s counterexample with one wandering interval (T, F ) with
irrational rotation number ρ = 1−A . Let µ be the unique F -invariant measure in T (see
Remark 4.6.5). Its support is K.
Let H : K → {0, 1}Z be the coding homeomorphism (to its image) of such Denjoy’s
counterexample given by Proposition 4.6.2. Let ν := H∗µ. The support of the measure ν
is H(K) and it is S-invariant. Since µ is ergodic, then also ν is ergodic. Let us calculate
now

∫
{0,1}Z Pr((si)i∈Z) dν((si)i∈Z). It holds

∫

{0,1}Z
Pr((si)i∈Z) dν((si)i∈Z) =

∫

H(K)

Pr((si)i∈Z) dH∗µ((si)i∈Z) =

∫

K

I∆1(x) dµ(x) = µ(∆1).

From Claim 4.6.5, we have µ(∆1) = 1− ρ = A and so we conclude that
∫

{0,1}Z
Pr((si)i∈Z) dν((si)i∈Z) = µ(∆1) = A .
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Notation 4.6.3. By the coding of the Denjoy counterexample, it is possible to insert
such a dynamics within the horseshoe H(Uε, j) through the topological conjugacies h,H.
Denote as

ζ : K → ζ(K) ⊂ H(Uε, j)

the map h−1
|H(K) ◦H.

Measures with prescribed torsion value

The main result of the section is Theorem 4.6.1. In order to prove it we need the following
Lemma. Recall that m ∈ Z is the unstable angle variation of (q, p) (see Definition 4.4.1).

Lemma 4.6.3. In the hypothesis of Theorem 4.6.1 for any A ∈
[
k(2nu + j), k(2nu + j) + m

2

]

there exists an ergodic f (2nu+j)N -invariant measure λ whose support is contained in H(Uε, j)
and such that Torsion(f (2nu+j)N , λ) = A.

We postpone the proof of Lemma 4.6.3 and we now show how Theorem 4.6.1 follows from
it.

Proof of Theorem 4.6.1. Fix α ∈
[
k
N
, k
N
+ m

2(2nu+j)N

]
and denote A = (2nu + j)Nα.

By Lemma 4.6.3 there exists an ergodic f (2nu+j)N -invariant measure λ such that

Torsion(f (2nu+j)N , λ) = A.

Define then

Γ =
1

(2nu + j)N

(2nu+j)N−1∑

i=0

f i∗λ,

where f i∗λ is the push-forward of the measure with respect to f i.
Observe that the measure Γ is f -invariant, indeed

f∗Γ =
1

(2nu + j)N




(2nu+j)N−1∑

i=1

f i∗λ+ f (2nu+j)N
∗ λ


 =

1

(2nu + j)N

(2nu+j)N∑

i=0

f i∗λ = Γ,

since λ if f (2nu+j)N -invariant.
Let us show that the measure Γ is ergodic with respect to f . Let B be a f -invariant
measurable set. Then, B is also f (2nu+j)N -invariant. Since λ is an ergodic measure with
respect to f (2nu+j)N , we have that either λ(B) = 0 or λ(B) = 1. Consider now

Γ(B) =
1

(2nu + j)N

(2nu+j)N−1∑

i=0

f i∗λ(B).

It follows that Γ(B) is either 0 or 1, that is Γ is ergodic with respect to f .
Finally, we look at the torsion of Γ with respect to f . It holds

Torsion(f,Γ) =
∫

S

Torsion(f, x) dΓ(x) =
1

(2nu + j)N

(2nu+j)N−1∑

i=0

∫

S

Torsion(f, x) df i∗λ(x) =

=
1

(2nu + j)N

(2nu+j)N−1∑

i=0

∫

S

Torsion(f, x) dλ(x),
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by the definition of Γ and since the asymptotic torsion is invariant along the f -orbit of a
point.
By Lemma 4.6.3 we have that

Torsion(f (2nu+j)N , λ) =

∫

S

Torsion(f (2nu+j)N , x) dλ(x) = A.

Consequently

Torsion(f,Γ) =
∫

S

Torsion(f, x) dλ(x) =
∫

S

1

(2nu + j)N
Torsion(f (2nu+j)N , x) dλ(x) =

=
Torsion(f (2nu+j)N , λ)

(2nu + j)N
=

A

(2nu + j)N
= α.

Let us now prove Lemma 4.6.3. We are going to used the results presented in Section 4.6.

Proof of Lemma 4.6.3. Fix A ∈
[
k(2nu + j), k(2nu + j) + m

2

]
. If m = 0, then the measure

λ =
1

N

N−1∑

i=0

δf i(q),

that is the measure supported on the orbit of the periodic point q, is the required ergodic
f (2nu+j)N -invariant measure such that Torsion(f (2nu+j)N , λ) = k(2nu + j)N = A.
Assume now that m 6= 0 and denote as

A =
2(A− k(2nu + j))

m
∈ [0, 1] .

As a first case, suppose that A ∈ R \ Q. From Lemma 4.6.2, there exists a S-invariant
ergodic measure ν whose support is a subset H(K) of {0, 1}Z and such that

∫

H(K)

Pr((si)i∈Z) dν((si)i∈Z) = A . (4.65)

Consider then the measure λ := (h−1
|H(K))∗ν. It is f (2nu+j)N -invariant and its support

h−1 ◦H(K) is contained in the horseshoe H(Uε, j). Moreover, λ is an ergodic measure for
f (2nu+j)N . Finally, we have

Torsion(f (2nu+j)N , λ) =

∫

H(Uε,j)

Torsion(f (2nu+j)N , z) dλ(z) =

=

∫

h−1◦H(K)

Torsion(f (2nu+j)N , z) d(h−1
|H(K))∗ν(z).

Since h−1 ◦H(K) ⊂ H(Uε, j), from Corollary 4.4.1 and since

Torsion(f (2nu+j)N , z) = (2nu + j)N Torsion(f, z),

we obtain that ∫

h−1◦H(K)

Torsion(f (2nu+j)N , z) d(h−1
|H(K))∗ν(z) =
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= (2nu + j)N

∫

h−1◦H(K)

Torsion(f, z) d(h−1
|H(K))∗ν(z) =

= k(2nu + j) +
m

2
lim

n→+∞

∫

h−1◦H(K)

∑n
i=1 h(z)i
n

d(h−1
|H(K))∗ν(z) =

= k(2nu + j) +
m

2
lim

n→+∞

∫

H(K)

∑n
i=1 Pr(S

i((sj)j∈Z))

n
dν((sj)j∈Z).

Now, since ν is S-invariant, it holds that for any i ∈ Z
∫

H(K)

Pr(Si((sj)j∈Z)) dν((sj)j∈Z) =

∫

H(K)

Pr((sj)j∈Z) dν((sj)j∈Z).

Consequently

k(2nu + j) +
m

2
lim

n→+∞

∫

H(K)

∑n
i=1 Pr(S

i((sj)j∈Z))

n
dν((sj)j∈Z) =

= k(2nu + j) +
m

2

∫

H(K)

Pr((sj)j∈Z) dν((sj)j∈Z) = k(2nu + j) +
mA

2
,

where the last equality is (4.65) (from Lemma 4.6.2). We so conclude that

Torsion(f (2nu+j)N , λ) = k(2nu + j) +
mA

2
= A.

As second and last case, assume that A ∈ Q, i.e. A = p
q

for some p ∈ Z, q ∈ N∗.
Consequently A = k(2nu + j) + m

2
p
q
.

Let α = k
N
+ m

2(2nu+j)N
p
q
. In particular it holds (2nu + j)Nα = A. From Corollary 4.6.2

there exists x ∈ H(Uε, j) such that

Torsion(f, x) = α.

Therefore

Torsion(f (2nu+j)N , x) = (2nu + j)N Torsion(f, x) = (2nu + j)Nα = A.

Let x ∈ H(Uε, j) be such that its torsion value is α = k
N

+ m
2(2nu+j)N

p

q
∈ Q and such

that it is periodic for f of period (2nu + j)Nq: it is sufficient to select the point which
corresponds to the periodic sequence in {0, 1}Z obtained by repeating

p entries︷ ︸︸ ︷
1 . . . 1 0 . . . 0︸ ︷︷ ︸

q entries

.

Let λ be the f (2nu+j)N -invariant measure defined as

λ =
1

(2nu + j)Nq

(2nu+j)Nq−1∑

i=0

δf i(x),

where δf i(x) is the Dirac measure at f i(x). Hence

Torsion(f (2nu+j)N , λ) =

∫

S

Torsion(f (2nu+j)N , z) dλ(z) =
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=
1

(2nu + j)Nq

(2nu+j)Nq−1∑

i=0

Torsion(f (2nu+j)N , f i(x)) = Torsion(f (2nu+j)N , x) = A,

that is λ is a ergodic f (2nu+j)N -invariant probability measure with the prescribed A as
torsion value.
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Appendix A

Reminders on hyperbolic sets and
stable/unstable manifolds

Let M be a m-dimensional smooth Riemannian manifold and let f : M → M be a
C1 diffeomorphism. A subset Λ ⊂ M is f -invariant if f(Λ) = Λ. Fix a metric on M and
denote as ‖·‖ the corresponding norm.

Definition A.0.1 (Hyperbolic set). A subset Λ ⊂M is hyperbolic for f if Λ is compact,
f -invariant and there exist a splitting TΛM = Es ⊕ Eu, a norm ‖·‖ and constants λ ∈
(0, 1), C > 0 such that

(i) for any x ∈ Λ it holds Df(x)Eu
x = Eu

f(x), Df(x)E
s
x = Es

f(x);

(ii) for any n > 0 and for any v ∈ Es it holds ‖Dfn(x)v‖ ≤ Cλn‖v‖;
(iii) for any n > 0 and for any w ∈ Eu it holds ‖Df−n(x)w‖ ≤ Cλn‖w‖.
Remark A.0.1. Let Λ be a hyperbolic set for f . Since Λ is compact and since in a finite-
dimensional vector space all norms are equivalent, Definition A.0.1 holds with respect to
any norm, up to modify the constant C > 0.

Remark A.0.2. Let Λ be a hyperbolic set for f . Then there exists an adapted norm
‖·‖a for Λ such that Definition A.0.1 holds with C = 1 and for any x ∈ Λ and for any
v ∈ TxM , v = vs + vu, vs ∈ Es

x, v
u ∈ Eu

x it holds ‖v‖a = max(‖vs‖a, ‖vu‖a) (see [Mat68]
or Section 1.4.1 in [Yoc95]).

Remark A.0.3. Observe that in Definition A.0.1 we do not ask that the splitting Es⊕Eu

is continuous. Nevertheless, the continuity of the splitting is an outcome of Definition
A.0.1. Consequently the functions

Λ ∋ x 7→ δu(x) := dimEu
x ∈ N and Λ ∋ x 7→ δs(x) := dimEs

x ∈ N

are continuous, locally constant and f -invariant (i.e. δu(x) = δu(f(x)), δs(x) = δs(f(x))).

Let Λ ⊂ M be a compact f -invariant subset and let E1 ⊕ E2 = TΛM be a splitting (not
necessarily continuous).
A cone field in TΛM = E1 ⊕ E2 with respect to ‖·‖ and η > 0 is a family (Cη

x)x∈Λ where

Cη
x := {v ∈ TxM, v = v1 + v2, v1 ∈ E1

x, v
2 ∈ E2

x :
∥∥v1
∥∥ ≤ η

∥∥v2
∥∥}.

The parameter η > 0 is the size of the cone field.
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Definition A.0.2 (Cone field property). A compact f -invariant subset Λ ⊂ M satisfies
the cone field property with respect to ‖·‖ if there exist a splitting E1 ⊕ E2 = TΛM and
a cone field (Cη

x)x∈Λ of size η > 0 (with respect to ‖·‖) such that

(i) for any x ∈ Λ it holds dimE1
x = dimE1

f(x) and dimE2
x = dimE2

f(x);

(ii) there exist ξ, δ ∈ (0, 1) and m ∈ N∗ such that for any x ∈ Λ

— Dfm(x)Cη
x ⊂ Cηδ

fm(x);

— for any v ∈ Cη
x it holds ‖Dfm(x)v‖ ≥ 1

ξ
‖v‖;

— for any w /∈ int(Cη
x) it holds ‖Df−m(x)w‖ ≥ 1

ξ
‖w‖.

Proposition A.0.1. Let Λ ⊂M be a compact f -invariant set in M . Then Λ is hyperbolic
if and only if Λ satisfies the cone field property.

For a proof of Proposition A.0.1 we refer to Section 1.5 in [Yoc95].
In the sequel we recall the definitions of (local) stable/unstable manifolds and their main
properties. We refer to [HP70], [New72], [PdM82] and [Shu87] for an exhaustive treatment
of the subject.
Let Λ ⊂M be a hyperbolic set for f and let d be the fixed metric.

Definition A.0.3 (Local stable/unstable manifolds). Let x ∈ Λ and ε > 0. The ε-local
stable manifold at x is

W s
loc,ε(x) := {y ∈M : d(fn(y), fn(x)) < ε ∀n ≥ 0}.

The ε-local unstable manifold at x is

W u
loc,ε(x) := {y ∈M : d(f−n(y), f−n(x)) < ε ∀n ≥ 0}.

The ε-local stable manifold system over Λ 1 is the family {W s
loc,ε(x)}x∈Λ. Similarly the

ε-local unstable manifold system over Λ is the family {W u
loc,ε(x)}x∈Λ.

We recall the Local Stable Manifold Theorem, first for a hyperbolic point (see [Shu87])
and then for a hyperbolic set (see [HP70]).

Definition A.0.4 (u–s chart). Let q ∈M be a fixed hyperbolic point for f . Then, (U, φ)
is a u–s chart for q with respect to f if U is an open neighborhood of q and φ : U → Rm is
a chart such that φ(q) = 0 ∈ Rm and there exists r > 0 such that φ(U) = Bs

r(0)×Bu
r (0),

where s is the dimension of Es
q , u is the dimension of Eu

q and Bs
r(0) (respectively Bu

r (0))
is the ball in Rs (respectively in Ru) centered at 0 of radius r.

Notation A.0.1. Let q ∈M be a fixed hyperbolic point for f with respect to ‖·‖ and to
constants λ ∈ (0, 1), C > 0. Let (U, φ) be a u–s chart for q with respect to f . Denote as
f̃ : V → Bs

r(0)× Bu
r (0) the map

φ ◦ f ◦ φ−1 : V −→ Bs
r(0)× Bu

r (0)

where V = φ(U∩f−1(U)). Denote as T : Rm → Rm the linear hyperbolic homeomorphism

Dφ(q) ◦Df(q) ◦ (Dφ(q))−1 : Rm −→ Rm

such that for any n ∈ N∗

∥∥T n|Rs×{0}
∥∥ ≤ Cλn,

∥∥∥T−n
|{0}×Ru

∥∥∥ ≤ Cλn.

1. Such definition is presented in [HP70].
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Notation A.0.2. Let N ⊂ M and let x ∈ N . Denote as CC(N, x) the connected com-
ponent of N containing x.

Notation A.0.3. Let x ∈M and denote as O(x, f) the orbit of x with respect to f , i.e.

O(x, f) = {fn(x) : n ∈ Z}.

Theorem A.0.1 (Local Stable Manifold Theorem for a fixed hyperbolic point). Let
f : M → M be a C1 diffeomorphism and let q ∈ M be a fixed hyperbolic point for f .
There exist ε, r > 0 small enough and a u–s chart (U, φ) for q such that U ⊂ Bε(q),
φ(U) = Bs

r(0)× Bu
r (0) and there exists a C1 map g : Bs

r(0) → Bu
r (0) so that

φ−1(graph(g)) = W s
loc,ε(q) ⊂ U.

We recall some further properties of the map g and hence of the ε-local stable manifold of q.

Properties of the ε-local stable manifold of q:

(i) The function g is Lipschitz with Lipschitz constant L(g) < 1.

(ii) The image through φ−1 of the graph of g is f -forward invariant. That is

fn(φ−1(graph(g))) ⊂ φ−1(graph(g)) ∀n > 0.

(iii) The function f̃ is a contraction on graph(g). Then there exists ζ ∈ (0, 1) such that
for any x1, x2 ∈ Bs

r(0) and for any n > 0 it holds
∥∥∥f̃n(x1, g(x1))− f̃n(x2, g(x2))

∥∥∥ ≤ ζn‖x1 − x2‖.

(iv) The point q ∈ φ−1(graph(g)), i.e. g(0s) = 0u (where 0s ∈ Rs, 0u ∈ Ru). More-
over the graph of g is tangent to Rs × {0} at 0, i.e. Dg(0) is null. Consequently
φ−1(graph(g)) = W s

loc,ε(q) is tangent to Es
q at q.

(v) If f is Ck then the function g is Ck.

Remark A.0.4. A similar result holds for the local unstable manifold W u
loc,ε(q).

This implies that W s
loc,ε(q) and W u

loc,ε(q) are C1 submanifolds of M .

We want now to present the Local Stable Manifold Theorem for a hyperbolic set (see
[HP70] and [Yoc95]). For the sake of clarity, let us recall the definition of two submanifolds
that are C1 close.

Definition A.0.5. Fix an atlas {Uj, φj}j of M . Let S, S ′ ⊂M be differentiable submani-
folds. Denote as i : S →֒M , i′ : S ′ →֒M the corresponding inclusions. Let {Uj∩S,Πs◦φj}j
be an atlas for S such that φj(Uj ∩ S) = Rs × {0}, where s is the dimension of S and
Πs : Rm → Rs is the projection over the first s coordinates. Assume that each change of
coordinates φj ◦ φ−1

l has bounded C1 norm.
Fix ε > 0. The submanifold S ′ is ε-close to S with respect to {Uj, φj}j if:

(a) S ′ ⊂ ⋃j∈J Uj =: U , where J = {j : Uj ∩ S 6= ∅};
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(b) there exists a C1 diffeomorphism h : S ′ → S such that for any p ∈ S ′ there exists
j = j(p) so that p, h(p) ∈ Uj and

‖φj ◦ i′(p)− φj ◦ i ◦ h(p)‖ < ε;

(c) for any p ∈ S ′ let us consider

Dφj(i
′(p)) ◦Di′(p) : TpS ′ → Rm

and
Dφj(i ◦ h(p)) ◦D(i ◦ h)(p) : TpS ′ → Rm.

Then it holds for any v ∈ TpS
′

‖Dφj(i′(p)) ◦Di′(p)v −Dφj(i ◦ h(p)) ◦D(i ◦ h)(p)v‖ < ε‖v‖.

Theorem A.0.2 (Local Stable Manifold Theorem for a hyperbolic set). Let Λ ⊂M be a
hyperbolic set for f . Then

(i) there exists ε > 0 small enough such that for any x ∈ Λ

W s
loc,ε(x) = {y ∈M : d(fn(y), fn(x)) < ε ∀n ≥ 0}

is a C1 submanifold of M ;

(ii) {W s
loc,ε(x)}x∈Λ is a continuous family of C1 submanifolds, i.e. for any x ∈ Λ for any

δ > 0 there exists U neighborhood of x such that for any y ∈ U ∩Λ the submanifold
W s
loc,ε(y) is δ– C1 close to W s

loc,ε(x);

(iii) the ε-local stable manifold system {W s
loc,ε(x)}x∈Λ is f -forward invariant, i.e.

fn(W s
loc,ε(x)) ⊂ W s

loc,ε(f
n(x)) ∀n > 0.

In particular, there exist ζ ∈ (0, 1) and K > 0 such that for any x ∈ Λ for any
y, z ∈ W s

loc,ε(x) it holds

d(fn(y), fn(z)) ≤ Kζn d(y, z) ∀n > 0;

(iv) every W s
loc,ε(x) is tangent to Es

x at x.

We now give the definition of (global) stable/unstable manifolds for a hyperbolic set.

Definition A.0.6 (Global stable/unstable manifolds). Let Λ ⊂M be a hyperbolic set for
f . Let ε > 0 be the parameter given by point (i) of Theorem A.0.2. The stable (unstable)
manifold at x ∈ Λ is

W s(x) =
⋃

n≥0

f−n(W s
loc,ε(x))

(
W u(x) =

⋃

n≥0

fn(W u
loc,ε(x))

)
.

The stable manifold system of Λ is {W s(x)}x∈Λ (and the unstable one is {W u(x)}x∈Λ).
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Observe that the stable (unstable) manifold at x can be defined as

W s(x) = {y ∈M : lim
n→+∞

d(fn(y), fn(x)) = 0}

(
W u(x) = {y ∈M : lim

n→+∞
d(f−n(y), f−n(x)) = 0}

)
.

The stable (respectively unstable) manifold at x, i.e. W s(x) (respectively W u(x)), is an
injectively immersed submanifold of M .

We recall now another fundamental result: the λ-lemma. We refer to [PdM82] for
the proof of the result.

Theorem A.0.3 (λ-lemma). Let f :M →M be a C1 diffeomorphism and let q be a fixed
hyperbolic point for f (with respect to ‖·‖). Let p ∈ W s(q) \ {q} and let i : Bu

1 (0) → M
be an embedding of the u-dimensional ball of radius 1 (where u is the dimension of Eu

q )
such that i(0) = p, i(Bu

1 (0)) = Du and Du is transverse to W s(q) at p, i.e.

Di(0)T0B
u
1 (0) + TpW

s(q) = TpM.

Let (U, φ) be a u-s chart for q with respect to f such that there exist ǫ > 0 so that

CC(W u(q) ∩ U, q) = W u
loc,ǫ(q).

Given δ > 0 there exists n0 so that for any n > n0

CC(fn(Du) ∩ U, fn(p))

is δ– C1 close to W u
loc,ǫ(q).

We can adapt this statement to a periodic hyperbolic point in the following way.

Theorem A.0.4 (λ-lemma for a hyperbolic periodic point). Let q be a periodic hyperbolic
point for f of period N . Let p ∈ W s(q) \ O(q). Let Du be the image of the embedding of
a u-dimensional ball 2 of radius 1 such that Du is transverse to W s(q) at p.
For any i ∈ J0, N − 1K, let (Ui, φi) be a u–s chart for f i(q) with respect to fN such that
there exists ǫ > 0 so that

CC(W u(f i(q)) ∩ Ui, f i(q)) = W u
loc,ǫ(f

i(q)).

Given δ > 0 there exists n0 such that for any n > n0

CC(fnN(Du) ∩ U0, f
nN(p))

is δ– C1 close to W u
loc,ǫ(q).

Analogous statements hold with respect to the local stable manifold and embedding of
s-dimensional ball transverse to the unstable manifold (where s is the dimension of the
stable manifold).
The following Corollary is an outcome of the λ-lemma.

2. u is the dimension of the unstable manifold.
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Corollary A.0.1. Let q1, q2, q3 ∈M be hyperbolic periodic points for f . Assume that

(i) W u(q1) has a point of transverse intersection with W s(q2) which does not belong to
O(q1);

(ii) W u(q2) has a point of transverse intersection with W s(q3) which does not belong to
O(q2).

Then W u(q1) has a point of transverse intersection with W s(q3) which does not belong to
O(q1).

Let us consider the set of hyperbolic periodic points in M for f : we denote it as HP (f)
and suppose it is not empty. Define the relation ⊣ on HP (f) as follows.

Definition A.0.7 (Relation ⊣). Let p, q ∈ HP (f). Then p ⊣ q if W u(p) has a point of
transverse intersection with W s(q) which does not belong to O(p).

Remark A.0.5. The relation ⊣ is transitive thanks to Corollary A.0.1. In particular
the point of transverse intersection does not belong to the orbit of the involved periodic
points.

Using this relation ⊣ on HP (f) we deduce the following

Fact A.0.1. Let q ∈ HP (f). Then

(W s(O(q)) ⋔ W u(O(q))) \ O(q) 6= ∅ ⇔ (W s(q) ⋔ W u(q)) \ {q} 6= ∅.

Proof of Fact A.0.1. Let us show the two implications.

(⇐) If p ∈ (W s(q) ⋔ W u(q))\{q}, then p /∈ O(q) and clearly p ∈ W s(O(q)) ⋔ W u(O(q)).

(⇒) Let p ∈ (W s(f i(q)) ⋔ W u(f j(q))) \ O(q) for some i, j ∈ J0, N − 1K where N is
the period of q. Up to consider f−i(p) instead of p, we assume that p ∈ W s(q) ⋔

W u(f j(q)), that is q ⊣ f j(q).
By considering iterates of p, it holds fk(q) ⊣ f j+k(q) for any k ∈ Z. In particular
for any k ∈ Z we have fkj(q) ⊣ f (k+1)j(q). Since the relation is transitive, we deduce
that q ⊣ fkj(q) for any k ∈ N.
Hence, choosing k = N , there exists a point of transverse intersection betweenW s(q)
and W u(q) which does not belong to the orbit of q, i.e.

(W s(q) ⋔ W u(q)) \ {q} 6= ∅.

Let now consider q ∈M hyperbolic periodic point for f and let

p ∈ (W s(q) ⋔ W u(q)) \ {q}.

Fact A.0.2. The set O(q) ∪ O(p) is a hyperbolic set for f .
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Proof of Fact A.0.2. Denote as ‖·‖ the adapted norm for O(q) (see Remark A.0.2).
The set O(q) ∪ O(p) is f -invariant. Since O(q) is a finite set and since the limit set
of (fn(p))n∈N, (f−n(p))n∈N is contained in O(q), the set O(q) ∪ O(p) is compact.
We are going to show that there exist a splitting Eu ⊕ Es = TO(q)∪O(p)M , constants
C > 0, λ ∈ (0, 1) such that conditions (i), (ii) and (iii) of Definition A.0.1 are satisfied
with respect to ‖·‖.
For a point in O(q), the splitting is the one given by the definition of hyperbolicity of
O(q). For P ∈ O(p) the candidate splitting is

Eu
P = TPW

u(q), Es
P = TPW

s(q).

Since the intersection is transverse at p, it holds

TPW
s(q) + TPW

u(q) = TPM ∀P ∈ O(p).

The candidate splitting is f -invariant thanks to the f -invariance of the stable and unstable
manifolds. By the hyperbolicity of O(q) 3, there exists ξ ∈ (0, 1) such that for any n > 0

∥∥∥Dfn|Es
O(q)

∥∥∥ ≤ ξn,
∥∥∥Df−n

|Eu
O(q)

∥∥∥ ≤ ξn

where Es
O(q), E

u
O(q) are respectively the stable and unstable bundle restricted to O(q). The

candidate splitting Eu⊕Es over O(q)∪O(p) is continuous thanks to the Local (Un)Stable
Manifold Theorem and to the λ-lemma.
Fix ε > 0 such that ξ + ε < 1. By the continuity of Df and Df−1 and by the continuity
of the splitting Eu ⊕ Es over O(q) ∪ O(p) there exists a neighborhood U of O(q) such
that for any y ∈ U ∩ (O(q) ∪ O(p))

∥∥∥Df(y)|Es
y

∥∥∥ ≤ ξ + ε and
∥∥∥Df−1(y)|Eu

y

∥∥∥ ≤ ξ + ε.

Since (fn(p))n∈N, (f
−n(p))n∈N converge to q, there is a finite number n0 of points in O(p)\

U .
We now show that there exist C > 0 and λ ∈ (0, 1) such that for any n > 0

∥∥Dfn|Es

∥∥ ≤ Cλn.

A similar argument holds for the unstable bundle.
Define

D := max

(
1, max

y∈O(p)\U

∥∥∥Df(y)|Es
y

∥∥∥
)
> 0.

For any n > 0 we have
∥∥Dfn|Es

∥∥ ≤ Dn0(ξ + ε)n−n0 = Cλn,

where C := Dn0

(ξ+ε)n0
> 0 and λ = (ξ + ε) ∈ (0, 1).

We end this appendix by recalling the definitions of locally maximal hyperbolic set and
of local product structure. Refering to [Yoc95] and [KH95], we recall also the equivalence
of these notions.

3. Recall that we are considering an adapted norm for O(q).
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Definition A.0.8 (Locally maximal hyperbolic set). A hyperbolic set Λ ⊂ M for f is
locally maximal (or isolated) if there exists a neighborhood V of Λ in M such that

Λ =
⋂

n∈Z
fn(V ).

Before introducing the definition of local product structure, we highlight an outcome
of the Local (Un)Stable Manifold Theorem.

Proposition A.0.2 (Proposition 7.2 in[Shu87]). Let Λ ⊂ M be a hyperbolic set for f .
For any ε > 0 (such that the ε-local stable (unstable) manifold is well-defined) there exists
δ > 0 such that if x, y ∈ Λ and d(x, y) < δ then W s

loc,ε(x)∩W u
loc,ε(y) = {z} and the unique

point of intersection z is a point of transverse intersection.

Proposition A.0.2 is an outcome of the continuity of the family of local stable (unstable)
manifold system {W s

loc,ε(x)}x∈Λ and of the fact that W s
loc(x) ⋔ W u

loc(x) = {x}.
Definition A.0.9 (Local product structure). A hyperbolic set Λ ⊂M has a local product
structure if for any ε > 0 4 there exists δ > 0 such that if x, y ∈ Λ and d(x, y) < δ then
W s
loc,ε(x) ⋔ W u

loc,ε(y) = {z} ⊂ Λ.

That is, Λ has a local product structure if the points of transverse intersection of local
stable/unstable manifolds presented in Proposition A.0.2 are points of Λ.
Definitions A.0.8 and A.0.9 are equivalent, that is

Theorem A.0.5 (Section 4.1 in [Yoc95]). Let Λ ⊂ M be a hyperbolic set. Then Λ is
locally maximal if and only if Λ has a local product structure.

For a detailed proof of this result we refer to [Yoc95] (see also Proposition 8.22 in [Shu87]).

We focus now on homoclinic transverse intersections. We then remark the following

Fact A.0.3. Let q be a hyperbolic periodic point for f and let p ∈ (W s(q) ⋔ W u(q))\{q}.
Then O(q) ∪ O(p) is not a locally maximal hyperbolic set.

Proof of Fact A.0.3. By the hyperbolicity of O(q) ∪ O(p) (see Fact A.0.2), there exists
ε > 0 such that we can extend the open cone field property on Bε = {x ∈M : d(x,O(q)∪
O(p)) < ε} (see Appendix B), where

d(x,O(q) ∪ O(p)) = inf
z∈O(q)∪O(p)

d(x, z).

Being p a homoclinic point, the sequences (fnN(p))n∈N, (f
−nN(p))n∈N both converge to

q 5.
By Proposition A.0.2 and by this last remark on (fnN(p))n∈N, (f

−nN(p))n∈N, for any ε > 0
there exists n0 ∈ N such that for any n ≥ n0 it holds

W s
loc,ε(f

−nN(p)) ⋔ W u
loc,ε(f

nN(p)) = {zn}.
We observe that zn does not belong to O(q)∪O(p), but O(q)∪O(p)∪O(zn) is compact,
f -invariant and contained in Bε.
By the choice of Bε and by the cone field criterion (see Proposition A.0.1), O(q)∪O(p)∪
O(zn) is a hyperbolic set. As just observed, O(q)∪O(p)∪O(zn) strictly contains O(q)∪
O(p). We then deduce that O(q) ∪ O(p) is not locally maximal.

4. Sufficiently small so that the ε-local stable (unstable) manifold is well-defined.
5. Recall that q = fN (q).
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Appendix B

Extension of the Cone Field Property

In this appendix we refer to [CP15] and we prove the following

Fact B.0.1. Let M be a m-dimensional smooth manifold. Let f : M → M be a C1

diffeomorphism. Let Λ ⊂M be a hyperbolic set for f . There exists a neighborhood U of Λ
which satisfies the cone field property.

In this Appendix we fix a Riemannian norm ‖·‖, but we remark that, since M is finite-
dimensional and Λ is compact, all the norms are equivalent. Let us recall the cone field
property.

Definition B.0.1. Let f :M →M be a C1 diffeomorphism on a m-dimensional manifold
M . A set U ⊂ M satisfies the cone field property for η ∈ R+, ξ, δ ∈ (0, 1) ∩ R,m ∈ N∗ if
there exist a splitting E1 ⊕ E2 = TUM and a cone field (Cη

x)x∈U where

Cη
x = {v ∈ TxM : v = v1 + v2, v1 ∈ E1

x, v
2 ∈ E2

x,
∥∥v2
∥∥ ≤ η

∥∥v1
∥∥}

such that

(i) for any x ∈ U it holds dimE1
x = d1 and dimE2

x = d2;

(ii) for any x ∈ U ∩ f−1(U) it holds Df(x)Cη
x ⊂ Cηδ

f(x);

(iii) for any x ∈ U

— for any v ∈ Cη
x it holds ‖Dfm(x)v‖ ≥ 1

ξ
‖v‖;

— for any w /∈ int(Cη
x) it holds ‖Df−m(x)w‖ ≥ 1

ξ
‖w‖.

Let Λ be a hyperbolic set. From Proposition A.0.1 in Appendix A, it satisfies the cone
field property with respect to some constants η ∈ R+, δ, ξ ∈ (0, 1),m ∈ N∗. Then the
proof of Fact B.0.1 is the proof of the following

Proposition B.0.1. For any 0 < ζ < min(1− δ, 1− ξ) there exists a neighborhood U of
Λ such that U satisfies the cone field property for η, ξ + ζ, δ + ζ,m.

Denote as Eu⊕Es the hyperbolic splitting of Λ. Remark that such splitting is continuous
(see Remark A.0.3). In order to prove Proposition B.0.1, we first extend continuously the
splitting Eu ⊕ Es on a neighborhood of Λ.
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Lemma B.0.1. There exist a neighborhood W of Λ and continuous functions

W ∋ x 7→ Eu
x ∈ TxS and W ∋ x 7→ Es

x ∈ TxS

which coincide with the unstable and stable subspaces respectively on the hyperbolic set Λ.

Lemma B.0.1 is then a particular case of the following

Proposition B.0.2 (Proposition 2.7 in [CP15]). Any continuous linear bundle E ⊂ TΛM
over a compact set Λ ⊂M admits a continuous extension to a neighborhood of Λ.

Proof. Denote as d the dimension of the subspace E(x) for any x ∈ Λ. Up to discuss each
set of components of Λ with the same dimension of E, we can assume that the dimension
d is the same for any x ∈ Λ.
For each x ∈ Λ there exists ε = ε(x) > 0 and a chart φx : Bm

ε (x) → Rm from the
m-dimensional ball centered at x of radius ε such that for any y ∈ Bm

ε (x) ∩ Λ

Dφx(y)E(y)

is transverse to {0} × Rm−d. For any y ∈ Bm
ε ∩ Λ denote as

Lxy : R
d → Rm−d

the linear map such that Dφx(y)E(y) = Graph(Lxy). By the continuity of the linear bun-
dle E, the linear maps Lxy depend continuously on y ∈ Bm

ε (x) ∩ Λ.
Since Λ is compact, by Tietze-Urysohn’s Theorem (see [Die81]), we can extend continu-
ously y 7→ Lxy on Bm

ε (x) by extending each of the coordinate of the linear map.

In particular, we are extending it continuously on Bm
ε
2
(x). Thus, we have extended the

bundle E on Bm
ε
2
(x) in a continuous way so that it remains a graph with respect to the

coordinates determined by the chart φx.
Consider for any x ∈ Λ the ball Bm

ε(x)
4

(x). Since Λ is compact, we extract a finite covering

of Λ
N⋃

i=1

Bm
εi
4
(xi) ⊃ Λ,

where εi = ε(xi). In particular

Λ ⊂
N⋃

i=1

Λi,

where Λi := Bm
εi
4

(xi) ∩ Λ. For any i ∈ J1, NK we highlight the corresponding chart

φxi : B
m
εi
(xi) → Rm

and observe that Λi ⊂ Λ ∩ Bm
εi
2

(xi).

Let us show by induction that we can extend continuously the linear bundle E on a
neighborhood of Λ1 ∪ · · · ∪ Λn.
Let n = 1 and consider Λ1. Since Λ1 ⊂ Bm

ε1
(x1), we have already extended continuously

E(y) for any y ∈ Bm
ε1
(x1) as graph of the linear map Lx1y .

Let now 1 ≤ n < N . Assume by induction hypothesis that we have extended continuously
the bundle E on an open neighborhood V of Λ1 ∪ · · · ∪ Λn. Denote as E ′ : V → TVM
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such an extension and observe that E ′
|Λ1∪···∪Λn

= E.
Consider now Λn+1. If Λn+1 ∩ (Λ1 ∪ · · · ∪ Λn) = ∅, then, up to restrict V , we find a
neighborhood U of Λn+1 contained in Bm

εn+1
(xn+1) and such that V ∩ U = ∅.

We extend E continuously on the neighborhood V ∪ U of Λ1 ∪ · · · ∪ Λn+1 as follows:

E(y) =





E ′(y) if y ∈ V

Graph(Lxn+1
y ) if y ∈ U.

Assume now that Λn+1 ∩ (Λ1 ∪ · · · ∪ Λn) 6= ∅. Up to restrict the neighborhood V , we can
assume that for any y ∈ V ∩Bm

εn+1
2

(xn+1) the subspace E ′(y) (i.e. the continuous extension

of the bundle on V ) remains a graph with respect to the coordinates determined by the
chart φxn+1 . Denote so as Graph(Lxn+1

y ) the subspace E ′(y) for any y ∈ V ∩Bm
εn+1

2

(xn+1).

Denote as V ⊂ V and as W open neighborhoods of Λ1 ∪ · · · ∪ Λn and of ∂V respectively
such that their closures are disjoint. Define a continuous function ψV :M → [0, 1] so that

(i) ψV (y) = 1 for any y ∈ V ;

(ii) ψV (y) = 0 for any y ∈ (M \ V ) ∪ W ;

(iii) ψV (y) ∈ (0, 1) for any other y.

Denote as B an open neighborhood of ∂Bm
εn+1

2

(xn+1) whose closure is disjoint from Λn+1.

Define a continuous function ψn+1 :M → [0, 1] so that

(i) ψn+1(y) = 1 for any y ∈ Λn+1;

(ii) ψn+1(y) = 0 for any y ∈ (M \Bm
εn+1

2

(xn+1)) ∪ B;

(iii) ψn+1(y) ∈ (0, 1) for any other y.

Consider then, when defined, the linear map

Ly :=
1

ψn+1(y) + ψV (y)

[
ψn+1(y)L

xn+1
y + ψV (y)L

xn+1
y

]
.

Extend so the bundle E as E ′′ on Ṽ := (V ∪ Bm
εn+1

2

(xn+1)) \ (W ∩ B) as follows

E ′′(y) :=





E ′(y) if y ∈ Ṽ \Bm
εn+1

2

(xn+1)

Graph(Lxn+1
y ) if y ∈ Ṽ \ V

Graph(Ly) if y ∈ Ṽ ∩ V ∩ Bm
εn+1

2

(xn+1).

The set Ṽ is a neighborhood of Λ1 ∪ · · · ∪ Λn+1. The extension E ′′ is continuous because
for y ∈ Ṽ ∩ V ∩ Bm

ε
2
(xn+1) it holds ψn+1(y) + ψV (y) 6= 0 and because for y ∈ ∂V ∩

Bm
ε
2
(xn+1) (respectively for y ∈ ∂Bm

ε
2
(xn+1)∩V ) it holds that Graph(Ly) = Graph(Lxn+1

y )

(respectively Graph(Ly) = Graph(Lxn+1
y )). Moreover for y ∈ Λ ∩ V ∩ Bm

ε
2
(xn+1) we have

that Lxn+1
y = Lxn+1

y and so Ly = Lxn+1
y .

The proof is so ended by induction.
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Thanks to Proposition B.0.2, there exists an open neighborhood of Λ where we extend
continuously both the unstable and the stable bundle. Since the splitting is hyperbolic
at Λ and transversality is an open condition, we find a neighbohrood W of Λ where the
splitting Eu + Es is continuous and transversal.

Remark B.0.1. Since the splitting Eu ⊕ Es is continuous on W , we deduce that the
functions

W ∋ x 7→ Cη
x ∩ Sm−1 ∈ TxM

and
W ∋ x 7→ Sm−1 \ Cηδ

x ∈ TxM

are continuous (for any η ∈ R+, δ ∈ (0, 1)).

We proceed now with the proof of Proposition B.0.1.

Proof of Proposition B.0.1. The hyperbolic set Λ satisfies the cone field property with
respect to η ∈ R+, δ ∈ (0, 1), ξ ∈ (0, 1),m ∈ N∗. Let W be an open neighborhood of Λ
on which we extend continuously the hyperbolic splitting Eu⊕Es (see Lemma B.0.1). In
particular condition (i) of Definition B.0.1 is satisfied.
From Remark B.0.1 we deduce that the function

W ∩ f−1(W ) ∋ x 7→ H (x) := min
v∈Df(x)Cη

x∩Sm−1
d
(
v, Sm−1 \ Cη(δ+ζ)

f(x)

)
∈ R

is continuous. From condition (ii) of Definition B.0.1 for Λ it holds that

min
x∈Λ

H (x) =: ρ > 0.

By the continuity of the function there exists V ⊂ W such that for any x ∈ V ∩ f−1(V )
we have that H (x) > ρ

2
> 0. That is, for any x ∈ V ∩ f−1(V ) it holds that

Df(x)Cη
x ⊂ C

η(δ+ζ)
f(x) ,

i.e. condition (ii) of Definition B.0.1 is satisfied.
Because of the continuity of Dfm with respect to the point and the continuity of the
cones, there exists an open neighborhood U of Λ contained in V such that for any x ∈ U
there exists y ∈ Λ so that x, y belong to the domain of a same chart,

‖Dfm(x)−Dfm(y)‖ < ζ

2(ξ + ζ)

and

dH(C
η
x ∩ Sm−1, Cη

y ∩ Sm−1) <
1

R

ζ

2(ξ + ζ)
,

where R := maxy∈Λ‖Dfm(y)‖ > 0.
So, identifying their tangent spaces through the chart, for any v ∈ Cη

x ∩ Sm−1 there exists
w ∈ Cη

y ∩ Sm−1 so that ‖v − w‖ < 1
R

ζ
2(ξ+ζ)

and consequently

‖Dfm(x)v‖ ≥ ‖Dfm(y)w‖ − ‖Dfm(x)−Dfm(y)‖‖v‖ − ‖Dfm(y)‖‖v − w‖ ≥

≥ 1

ξ
‖w‖ − ζ

2(ξ + ζ)
‖v‖ − ‖Dfm(y)‖ 1

R

ζ

2(ξ + ζ)
≥ 1

ξ
− ζ

ξ + ζ
=
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=
1

ξ + ζ
‖w‖ =

1

ξ + ζ
‖v‖.

That is the first condition of (iii) of Definition B.0.1 holds. Arguing similarly, we obtain a
neighborhood U of Λ contained in U so that also the second condition of (iii) of Defintion
B.0.1 holds.
The set U is so a neighborhood of Λ which satisfies the cone field property for η ∈
R+, ξ + ζ ∈ (0, 1), δ + ζ ∈ (0, 1),m ∈ N∗.

B.0.1 Extension of the Cone Field Property on {q} ∪ O(p, fN)

In Chapter 4 we work with a surface diffeomorphism fN : S → S and the hyperbolic
set Λ = {q} ∪ O(p, fN), where q is a fixed hyperbolic point for fN and p ∈ (W u(q) ⋔

W s(q)) \ {q}. In such a framework we can prove something more.
Let η ∈ R+, δ, ξ ∈ (0, 1),m ∈ N∗ be the constants with respect to which Λ = {q}∪O(p, fN)
satisfies the cone field property. Denote as Eu ⊕ Es = TΛS the hyperbolic splitting of Λ.

Proposition B.0.3. There exists a continuous non singular vector field eu : Λ → Eu
Λ∩S1

(respectively es : Λ → Es
Λ ∩ S1).

Notation B.0.1. In the proof of Lemma B.0.3 we will use the standard Euclidean norm
‖·‖ and denote as 〈·, ·〉 the standard scalar product.

Proof. Let us show the result for the unstable subspace.
Fix 0 < ε <

√
2− 1. By the continuity of the unstable subspace, there exists δ > 0 such

that for any x ∈ Λ, d(x, q) < δ it holds

dH(E
u
q ∩ S1, Eu

x ∩ S1) < ε.

Consider the closed ball B δ
2
(q). There is a finite number n ∈ N of points of Λ which

do not belong to this closed ball. Denote those points as pi, i = 1, . . . , n. Let Ui for
i = 0, . . . , n be open disjoint neighborhoods of B δ

2
(q) and pi respectively, in particular

such that Ui ∩ Λ = {pi} for any i ∈ J1, nK.
Choose euq ∈ Eu

q ∩ S1 and eupi ∈ Eu
pi
∩ S1 for any i = 1, . . . , n. The continuity of the vector

field eu at pi for any i follows immediately.
Let x ∈ Λ ∩B δ

2
(q) = Λ ∩ U0. Define the vector eux so that

∥∥eux − euq
∥∥ = min

v∈Eu
x∩S1

∥∥v − euq
∥∥.

Observe that
∥∥eux − euq

∥∥ < ε. The vector field eu is uniquely defined. Indeed, minv∈Eu
x∩S1

∥∥v − euq
∥∥ =

min{
∥∥eux − euq

∥∥,
∥∥eux + euq

∥∥} and
∥∥eux + euq

∥∥ =
∥∥eux − euq

∥∥+ 4
〈
eux, e

u
q

〉

Since 〈
eux, e

u
q

〉
≥
∥∥euq
∥∥2 −

∣∣〈eux − euq , e
u
q

〉∣∣ ≥ 1−
∥∥eux − euq

∥∥ > 1− ε > 0,

we deduce that
∥∥eux + euq

∥∥ >
∥∥eux − euq

∥∥. This shows that eux is uniquely defined.
Let us show the continuity of eu at x ∈ Λ ∩ U0. Let x ∈ Λ ∩ U0 and fix ε′ > 0. By the
continuity of Eu there exists 0 < δ′ < δ

3
such that for any y ∈ Λ, d(x, y) < δ′ it holds

dH(E
u
x ∩ S1, Eu

y ∩ S1) < ε′.
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Observe that d(y, q) < δ (since d(x, y) < δ
3

and d(q, x) < δ
2
) so it holds

dH(E
u
y ∩ S1, Eu

q ∩ S1) < ε.

By showing that
∥∥eux − euy

∥∥ <
∥∥eux + euy

∥∥ we deduce the continuity of the vector field eu at
x.
We have ∥∥euy + eux

∥∥ =
∥∥euy − eux

∥∥+ 4
〈
eux, e

u
y

〉
.

In particular, since ε <
√
2− 1,

〈
eux, e

u
y

〉
=
∥∥euq
∥∥2 +

〈
eux − euq , e

u
q

〉
+
〈
euy − euq , e

u
q

〉
+
〈
eux − euq , e

u
y − euq

〉
≥

≥ 1−
∥∥eux − euq

∥∥−
∥∥euy − euq

∥∥−
∥∥eux − euq

∥∥∥∥euy − euq
∥∥ > 1− 2ε− ε2 > 0.

That is,
∥∥euy + eux

∥∥ >
∥∥euy − eux

∥∥ and so

∥∥euy − eux
∥∥ = min

v∈Eu
y∩S1

‖v − eux‖ ≤ dH(E
u
y ∩ S1, Eu

x ∩ S1) < ε′.

Consequently, combining Proposition B.0.2 and Proposition B.0.3, we obtain the following

Lemma B.0.2. There exist a neighborhood W of Λ = {q} ∪ O(p, fN) which admits a
continuous extension of Eu and Es and continuous non singular vector fields

e1 : W → Eu
W ∩ S1 and e2 : W → Es

W ∩ S1

such that e1|Λ = eu, e2|Λ = es.

The proof follows the ideas of the proofs of Proposition B.0.3 and we omit it.

238



Appendix C

Geometric Markov partition

In this Appendix we define geometric Markov partitions and discuss the symbolic
dynamics associated to them. Our main references will be [PT93] and [GZ04].
Let S be a surface among R2,A and T2 and let f : S → S be a C1 diffeomorphism. Let
‖·‖ be a norm on S. Let Λ ⊂ S be a hyperbolic set for f . Denote as Es ⊕ Eu = TΛS its
continuous hyperbolic splitting. Let (Cu,η

x )x∈Λ, (C
s,η
x )x∈Λ with 0 < η < 1 be the unstable

and stable cone fields

Cu,η
x = {v ∈ TxS : v = vs + vu, vs ∈ Es

x, v
u ∈ Eu

x , ‖vs‖ ≤ η‖vu‖},

Cs,η
x = {v ∈ TxS : v = vs + vu, vs ∈ Es

x, v
u ∈ Eu

x , ‖vu‖ ≤ η‖vs‖}
such that Λ satisfies the cone field property for f with respect to η ∈ (0, 1), δ, µ ∈
(0, 1),m ∈ N∗ and (Cu,η

x )x∈Λ and such that Λ satisfies the cone field property for f−1

with respect to η ∈ (0, 1), µ ∈ (0, 1), l ∈ N∗ and (Cs,η
x )x∈Λ (see Definition B.0.1 in Ap-

pendix C).
Observe that for any x ∈ Λ it holds Cu,η

x ∩ Cs,η
x = {0}.

Fix 0 < ξ < min(1− δ, 1− µ). By Lemma B.0.1, let U be an open neighborhood of Λ on
which we extend continuously the splitting Es⊕Eu and the cone fields (Cu,η

x )x∈U , (C
s,η
x )x∈U

so that U satisfies the cone field property for f with respect to η ∈ (0, 1), δ + ξ, µ + ξ ∈
(0, 1),m ∈ N∗ and (Cu,η

x )x∈U and so that U satisfies the cone field property for f−1 with
respect to η ∈ (0, 1), δ + ξ, µ + ξ ∈ (0, 1), l ∈ N∗ and (Cs,η

x )x∈U (see Definition B.0.1 in
Appendix C).

We will call (Cu,η
x )x∈U , (C

s,η
x )x∈U the unstable and stable cone fields respectively. Remark

that for any x ∈ U it holds Cu,η
x ∩ Cs,η

x = {0}.

C.1 Definition of geometric Markov partition

Definition C.1.1. Let γ : [0, 1] → U be a C1 embedding. Then γ is an unstable curve if
for any t ∈ [0, 1] it holds

γ′(t) ∈ Cu,η
γ(t).

Similarly, γ is a stable curve if for any t ∈ [0, 1] it holds

γ′(t) ∈ Cs,η
γ(t).
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(ii) Rf−1

jk is a stable subrectangle of Rk;

(iii) f−1(∂uRj) ∩ (intRk) = ∅ and (int f−1(Rj)) ∩ ∂sRk = ∅.

Fact C.1.1. Let Rj, Rk ∈ R. Then, Rj
f→ Rk if and only if Rk

f−1

→ Rj.

Definition C.1.5. A geometric Markov partition (or a partition through covering rela-
tions) is a finite set R of rectangles {R1, . . . , RN} so that

⋃N
i=1Ri ⊂ U and such that for

any j, k ∈ {1, . . . , N} either Rf
jk = ∅ or Rj

f→ Rk.

Definition C.1.6. Let R = {R1, . . . , RN} be a geometric Markov partition. An admissi-
ble sequence (ji)i∈Z ∈ {1, . . . , N}Z for R is a bi-infinite sequence such that for any i ∈ Z
it holds

Rji

f→ Rji+1
.

C.2 Link between symbolic dynamics and geometric

Markov partition

The main result concerning the relation between symbolic dynamics and geometric
Markov partition is the following Theorem.

Theorem C.2.1. The sequence (ji)i∈Z is an admissible sequence for R if and only if
there exists a unique x ∈ U such that f i(x) ∈ Rji for any i ∈ Z.

Proof of (⇐) of Theorem C.2.1. If there exists a point x such that f i(x) ∈ Rji for any
i ∈ Z, then the sequence (ji)i∈Z is an admissible one since, from the definition of geometric

Markov partition and because Rf
jiji+1

6= ∅ for any i ∈ Z, it holds that Rji

f→ Rji+1
for any

i ∈ Z.

In order to show the other implication of Theorem C.2.1, we first need to introduce some
notations.

Notation C.2.1. Let (ji)i∈Z be an admissible sequence for R. For any k ∈ N let us
denote

Ds
k((ji)i∈Z) = Ds

k :=
k⋂

i=0

f−i(Rji) and Du
k((ji)i∈Z) = Du

k :=
k⋂

i=0

f i(Rj−i
).

Denote as

Ds
∞ := lim

k→+∞
Ds
k =

+∞⋂

i=0

f−i(Rji) and Du
∞ := lim

k→+∞
Du
k =

+∞⋂

i=0

f i(Rj−i
).

The sequence (Ds
k)k∈N is non increasing, that is for any k ∈ N it holds

Ds
k+1 ⊆ Ds

k.

Moreover, all the sets Ds
k are compact. It follows then that Ds

∞ is not empty. Similarly,
also Du

∞ is not empty.

241



The proof of Theorem C.2.1 will be a consequence of the following propositions.

Proposition C.2.1. Let R be a rectangle. Let γ : [0, 1] → R be a stable curve such that
γ(0) ∈ ∂u0R and γ(1) ∈ ∂u1R. Let Γ : [0, 1] → R be an unstable curve such that Γ(0) ∈ ∂s0R
and Γ(1) ∈ ∂s1R. Then there exists a unique x ∈ R such that γ ∩ Γ = {x}.

Proposition C.2.2. The curve Ds
∞ (respectively Du

∞) is C1 and it is a stable (respectively
unstable) curve joining ∂u0Rj0 and ∂u1Rj0 (respectively ∂s0Rj0 and ∂s1Rj0).

Proof of (⇒) of Theorem C.2.1. Let (ji)i∈Z be an admissible sequence for R. From Propo-
sitions C.2.2 and C.2.1, there exists a unique point x ∈ Ds

∞((ji)i∈Z) ∩Du
∞((ji)i∈Z). From

the definition of Ds
∞((ji)i∈Z) and of Du

∞((ji)i∈Z), we conclude that f i(x) ∈ Rji for any
i ∈ Z.

The following result will be used throughout the whole appendix.

Lemma C.2.1. Let R be a rectangle and let x ∈ R. Then for any v ∈ Cu,η
x \ {0} (respec-

tively v ∈ Cs,η
x \ {0}) it holds

Dp1(R
−1(x))DR−1(x)v 6= 0

(
respectively Dp2(R

−1(x))DR−1(x)v 6= 0
)
.

Proof. If by contradiction there exists x ∈ R and v ∈ Cu,η
x \ {0} such that

Dp1(R
−1(x))DR−1(x)v = 0,

then DR−1(x)v belongs to R(0, 1) and so, by the definition of rectangle (see Definition
C.1.2), the vector v belongs to the stable cone Cs,η

x . Since Cs,η
x ∩ Cu,η

x = {0} and v 6= 0,
we obtain the required contradiction.

C.3 Proof of Proposition C.2.1

A key point for the proof of Proposition C.2.1 is an immediate outcome of Lemma
C.2.1.

Lemma C.3.1. Let R be a rectangle and let γ : [0, 1] → R be an unstable (respectively
stable) curve. Then for any t ∈ [0, 1] the vector

DR−1(γ(t))γ′(t)

does not belong to R(0, 1) (respectively R(1, 0)).

From Lemma C.3.1 we deduce

Lemma C.3.2. Let R be a rectangle. Let γ : [0, 1] → R be a stable curve (respectively
an unstable curve). Then, the curve R−1 ◦ γ is the graph of a C1 function of the second
coordinate (respectively of the first coordinate) in [0, 1]2 defined on p2 ◦ R−1 ◦ γ([0, 1])
(respectively defined on p1 ◦R−1 ◦ γ([0, 1])).
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Proof. Let γ be a stable curve in R and consider the curve

[0, 1] ∋ t 7→ R−1(γ(t)) ∈ [0, 1]2.

From Lemma C.3.1, we deduce that the function

[0, 1] ∋ t 7→ y(t) := p2 ◦R−1 ◦ γ(t) ∈ [0, 1]

is a C1 diffeomorphism to its image, that is to p2 ◦R−1 ◦ γ([0, 1]). Consequently, the curve
R−1 ◦ γ is the graph of the C1 function

p2 ◦R−1 ◦ γ([0, 1]) ∋ s 7→ p1 ◦R−1 ◦ γ(y−1(s)) ∈ [0, 1].

Remark C.3.1. Let γ be a stable curve in R such that γ(0) ∈ ∂u0R and γ(1) ∈ ∂u1R.
Therefore, the projection p2 ◦R−1 ◦ γ([0, 1]) is [0, 1]. By Lemma C.3.2, R−1 ◦ γ is a graph
of a function of the second coordinate, defined on [0, 1]. In particular

γ([0, 1]) ∩ ∂u0R = {γ(0)} and γ([0, 1]) ∩ ∂u1R = {γ(1)}.

Let us introduce now the notions of half-cones on a rectangle R.

Notation C.3.1. Let R be a rectangle in U . The positive unstable half-cone at x ∈
R([0, 1]2) is denoted as Cu,η,+

x and it is the connected component of Cu,η
x \ {0} to which

the vector DR(R−1(x))(1, 0) belongs. The negative unstable half-cone at x ∈ R([0, 1]2) is
denoted as Cu,η,−

x and it is Cu,η
x \ ({0} ∪ Cu,η,+

x ).
The positive stable half-cone at x ∈ R([0, 1]2) is denoted as Cs,η,+

x and it is the connected
component of Cs,η

x \{0} to which the vectorDR(R−1(x))(0, 1) belongs. The negative stable
half-cone at x ∈ R([0, 1]2) is denoted as Cs,η,−

x and it is Cs,η
x \ ({0} ∪ Cs,η,+

x ).

Proposition C.3.1. Let γ be an unstable curve contained in R such that γ(0) ∈ ∂s0R
(respectively γ(0) ∈ ∂s1R). Then for any t ∈ [0, 1] the vector γ′(t) belongs to the positive
unstable half-cone Cu,η,+

γ(t) (respectively to the negative unstable half-cone Cu,η,−
γ(t) ).

Let γ be a stable curve contained in R such that γ(0) ∈ ∂u0R (respectively γ(0) ∈ ∂u1R).
Then for any t ∈ [0, 1] the vector γ′(t) belongs to the positive stable half-cone Cs,η,+

γ(t)

(respectively to the negative stable half-cone Cs,η,−
γ(t) ).

Proof. We are going to prove the statement for unstable curves assuming that γ(0) ∈ ∂s0R.
The unstable curve is contained in R. By Lemma C.3.1, for any t ∈ [0, 1] the image

d

dt
p1 ◦R−1 ◦ γ(t) 6= 0. (C.1)

Observe that for any x ∈ R the image Dp1(R−1(x))DR−1(x)(Cu,η
x \ {0}) ⊂ R does not

contain 0. Otherwise we would have Cu,η
x ∩Cs,η

x 6= {0} which is not possible. Since Cu,η,+
x is

connected and by definition it contains DR(R−1(x))(1, 0), we deduce that for any x ∈ R

Dp1(R
−1(x))DR−1(x)Cu,η,+

x ⊂ R+. (C.2)

Similarly
Dp1(R

−1(x))DR−1(x)Cu,η,−
x ⊂ R−. (C.3)
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Consider the function

[0, 1] ∋ t 7→ Dp1(R
−1 ◦ γ(t))DR−1(γ(t))γ′(t) ∈ R.

It is continuous and never vanishes because of (C.1). In particular, it has constant sign.
From (C.2) and (C.3), we deduce that for any t ∈ [0, 1] the vector γ′(t) belongs to the
same unstable half-cone as γ′(0). It is so sufficient showing that γ′(0) ∈ Cu,η,+

γ(t) .
The point R−1 ◦ γ(0) belongs to {0} × [0, 1] because γ(0) ∈ ∂s0R.. Observe that for any
t ∈ (0, 1] it holds p1 ◦R−1 ◦ γ(t) > 0. Consequently

Dp1(R
−1(γ(0)))(DR−1(γ(0))γ′(0)) = lim

t→0

p1 ◦R−1 ◦ γ(t)− p1 ◦R−1 ◦ γ(0)
t

> 0,

where the strict inequality comes again from (C.1). From (C.2) and (C.3), we deduce that
γ′(0) ∈ Cu,η,+

γ(0) , concluding so the proof.

The following result is an outcome of Proposition C.3.1.

Corollary C.3.1. There does not exist γ : [0, 1] → R unstable curve such that γ(0), γ(1) ∈
∂s0R (or ∂s1R).
There does not exist Γ : [0, 1] → R stable curve such that Γ(0),Γ(1) ∈ ∂u0R (or ∂u1R).

Proof. We prove the result for γ unstable curve. Argue by contradiction and assume there
exists an unstable curve contained in R such that γ(0), γ(1) ∈ ∂s0R. The vector γ′(0) points
inside the rectangle R, while γ′(1) points outside R. In particular, γ′(0) and γ′(1) belong
to different unstable half-cone fields. This contradicts Proposition C.3.1 and we conclude.

We can now show Proposition C.2.1.

Proof of Proposition C.2.1. By Lemma C.3.2 and Remark C.3.1 the curve R−1 ◦ γ is
the graph of a C1 function with respect to the second coordinate defined on [0, 1] and
R−1 ◦ Γ is the graph of a C1 function with respect to the first coordinate defined on
[0, 1]. In particular, ∂uR ∩ γ = {γ(0), γ(1)}. The curve γ separates R into two connected
components. Observe that ∂s0R is a subset of one component while ∂s1R is a subset of the
other component. Since Γ joins ∂s0R and ∂s1R, the intersection γ ∩ Γ is not empty.
Let now show that γ and Γ intersect only once. Argue by contradiction and assume there
exist x1 6= x2 belonging to γ ∩Γ. Denote for some t1 < t2 and for some s1 6= s2 the points
Γ(t1) = γ(s1) = x1,Γ(t2) = γ(s2) = x2.
Denote as

t3 = min{t ∈ (t1, t2] : Γ(t) ∈ γ}.
Such t3 is well-defined because, by Lemma C.3.1, the curve Γ is transversal to the curve
γ at Γ(t1). In particular, Γ[t1,t3] is a subset of one of the two components of R determined
by γ. Since by Lemma C.3.1 the curves Γ and γ are transversal at points of intersection,
the vectors Γ′(t1) and Γ′(t3) point towards different components determined by γ. That is,
the couples of vectors (γ(s1),Γ(t1)) and (γ(s2),Γ(t2)) determine opposite orientation. By
Proposition C.3.1, both γ(s1) and γ(s2) belong to the same stable half-cone field and we so
deduce that Γ(t1) and Γ(t2) belong to different unstable half-cone fields. This contradicts
Proposition C.3.1 and we conclude.

244



C.4 Proof of Proposition C.2.2

We will deduce Proposition C.2.2 from the following results. We state these propositions
for Ds

∞, but the analogous statements holds for Du
∞.

Proposition C.4.1. Let (ji)i∈Z be an admissible sequence for R. The set Ds
∞ = Ds

∞((ji)i∈Z)
is the image through Rj0 of the graph of a Lipschitz function of the second coordinate in
[0, 1]2. That is

Ds
∞ = Rj0 ({(h∞(y), y) : y ∈ [0, 1]}) ,

where h∞ : [0, 1] → [0, 1] is a Lipschitz function.

Proposition C.4.2. Let x ∈ Ds
∞ be a point of differentiability of Ds

∞. Then the tangent
vector to Ds

∞ at x belongs to the stable cone Cs,η
x .

Remark C.4.1. By Proposition C.4.1, since Ds
∞ is the image of the graph of a Lipschitz

function, almost every point of Ds
∞ is a point of differentiability at which we can apply

Proposition C.4.2.

Actually, Ds
∞ is contained in the stable manifold of its same points and this implies

that every point of Ds
∞ is of differentiability. Denote as d the distance determined by the

norm ‖·‖.

Proposition C.4.3. Let (ji)i∈Z be an admissible sequence and let x ∈ Ds
∞ = Ds

∞((ji)i∈Z).
There exists N ∈ N such that

Ds
∞ ⊂ f−N(W s

loc,ε(f
N(x))),

where W s
loc,ε(f

N(x)) = {y ∈ S : d(fk(y), fN+k(x)) < ε, ∀k ∈ N}.

Assuming these results hold, we deduce the proof of Proposition C.2.2.

Proof of Proposition C.2.2. By Proposition C.4.1, Ds
∞ is the image through Rj0 of the

graph of a Lipschitz function joining [0, 1]×{0} to [0, 1]×{1}. Since by Proposition C.4.3
the curve Ds

∞ is contained in f−N(W s
loc,ε(f

N(x))) for some n ∈ N, since each local stable
manifold is C1 and f−N is C1 too, we deduce that Ds

∞ is a C1 curve. In particular, the
curve Ds

∞ is differentiable at every point. By Proposition C.4.2, the tangent vector to Ds
∞

at any point belongs to the stable cone. That is, Ds
∞ is a stable curve joining ∂u0Rj0 and

∂u1Rj0 .

C.5 Properties of Ds
∞

The rest of the Appendix concerns the proofs of Propositions C.4.1, C.4.2 and C.4.3,
which describes the structure of Ds

∞. We start by introducing notations and results that
will be used in all the proofs.

Lemma C.5.1. Let γ : [0, 1] → U be an unstable curve (respectively a stable curve).
Assume that f ◦ γ([0, 1]) ⊂ U (respectively f−1 ◦ γ([0, 1]) ⊂ U). Then, f ◦ γ is an unstable
curve (respectively f−1 ◦ γ is a stable curve).
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Proof. We prove the statement for γ unstable curve. The curve f ◦ γ is a C1 embedding.
For any t ∈ [0, 1] the vector γ′(t) belongs to the unstable cone Cu,η

γ(t). Since U satisfies the
cone field property for f with respect to η, δ+ ξ, µ+ ξ ∈ (0, 1),m ∈ N∗ and (Cu,η

x )x∈U and
since γ(t) ∈ U∩f−1(U) for any t ∈ [0, 1], we have thatDf(γ(t))γ′(t) ∈ C

u,(δ+ξ)η
f(γ(t)) ⊂ Cu,η

f(γ(t)).
That is, f ◦ γ is an unstable curve.

Notation C.5.1. Let Ri be a rectangle in R and let x, y ∈ Ri. Let γ : [0, 1] → Ri be a
stable (unstable) curve such that γ(t1) = x, γ(t2) = y for some 0 ≤ t1 < t2 ≤ 1. Then

Lγ(x, y) :=

∫ t2

t1

‖γ′(s)‖ ds.

C.5.1 About the intersection of stable and unstable boundaries

Proposition C.5.1. Let R1, R2 be rectangles such that R1
f→ R2 (respectively R1

f−1

→
R2). Then both f(∂u0R1) ∩ R2 and f(∂u1R1) ∩ R2 (respectively both f−1(∂s0R1) ∩ R2 and
f−1(∂s1R1) ∩R2) are connected.

Proof. Let us show the result for R1
f→ R2 and for f(∂u0R1)∩R2. Since f(R1)∩R2 is not

empty and since (int f(R1)) ∩ ∂uR2 is empty, at least one among f(∂u0R1) and f(∂u1R1)
intersects ∂sR2. Assume that f(∂u0R1) intersects ∂sR2. Since f(∂sR1)∩ (int R2) is empty,
f(∂u0R1) intersects ∂sR2 at least twice.
We say that two points of intersection between f(∂u0R1) and ∂sR2 are successive if, denot-
ing them as f◦R1(x1, 0), f◦R1(x2, 0) with x1 < x2, it holds f◦R1((x1, x2)×{0})∩∂sR2 = ∅.
We call them internally successive if f ◦R1([x1, x2]×{0}) ⊂ R2 and externally successive
otherwise.
Each curve contained in f ◦ R1([0, 1] × {0}) is unstable and so, by Corollary C.3.1, two
internally succesive points of intersection between f(∂u0R1) and ∂sR2 belong to different
components of ∂sR2.
Also f(∂u1R1) intersects the stable boundary of R2. Argue by contradiction and assume
f(∂u1R1) ∩ ∂sR2 = ∅. Consider

xmin = min{t ∈ [0, 1] : f ◦R1(t, 0) ∈ ∂sR2},

xmax = max{t ∈ [0, 1] : f ◦R1(t, 0) ∈ ∂sR2}.
— If f ◦R1(xmin, 0) and f ◦R1(xmax, 0) lie on different components of the stable bound-

ary of R2, then (int f(R1))∩∂uR2 would not be empty, contradicting condition (iii)
of Definition C.1.4 (see (a) of Figure C.2).

— Assume that f ◦R1(xmin, 0) and f ◦R1(xmax, 0) lie on the same component of ∂sR2.
Then either (int f(R1)) ∩ ∂uR2 is not empty (see the (b) of Figure C.2) or there
exists a stable curve γ in R2 connecting two points on f(∂u0R1) and whose interior
is contained in the interior of f(R1) (see (c) of Figure C.2).
In the case (b) of Figure C.2 we contradict condition (iii) of Definition C.1.4. In
case (c) of Figure C.2 f−1 ◦ γ would be a stable curve in R1 whose endpoints lie on
the same component of ∂uR1, contradicting Corollary C.3.1.

Consequently, also f(∂u1R1) intersects ∂sR2. For the same reason of f(∂u0R1), f(∂u1R1)
intersects ∂sR2 at least twice.
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(a) (b) (c)

Figure C.2

Argue now by contradiction and assume that f(∂u0R1)∩R2 has two connected components
and denote them as C1, C2. Since f(R1) ∩ R2 is connected, f(R1) ∩ R2 is contained in
the connected component of R2 included between C1 and C2. Observe that C1 and C2

are separated by a connected component of f(∂u1R1) ∩ R2. If this is not true, then we
would find a stable curve connecting two points of f(∂u0R1) whose interior is contained
in the interior of R2: its image through f−1 would be a stable curve connecting the
same component of ∂uR1, contradicting Corollary C.3.1. Consequently, f(R1)∩R2 is not
connected, contradicting the fact that f(R1) ∩R2 is a subrectangle.

Proposition C.5.2. Let R1, R2 be rectangles such that R1
f→ R2. Let γ : [0, 1] → R1 be

an unstable curve such that γ(0) ∈ ∂s0R1 and γ(1) ∈ ∂s1R1. Then f ◦ γ([0, 1]) ∩ R2 is a
connected unstable curve joining ∂s0R2 and ∂s1R2.

Similarly, let R1, R2 be rectangles such that R1
f−1

→ R2 and let γ : [0, 1] → R1 be a stable
curve such that γ(0) ∈ ∂u0R1 and γ(1) ∈ ∂u1R1. Then f−1 ◦ γ([0, 1]) ∩ R2 is a connected
stable curve joining ∂u0R2 and ∂u1R2.

Proof. We prove the first statement. Let R1, R2 be such that R1
f→ R2 and let γ be an

unstable curve in R1 joining ∂s0R1 and ∂s1R1. By Lemma C.5.1 any connected component
of the curve f ◦ γ([0, 1]) ∩ R2 is an unstable curve. Since γ joins the two components of
∂sR1 and since f(∂sR1) ∩ (intR2) = ∅ by condition (iii) of Definition C.1.4, the curve
f ◦ γ exits the rectangle R2. Since (int f(R1)) ∩ ∂uR2 = ∅ by condition (iii) of Definition
C.1.4, the curve f ◦ γ can exits the rectangle R2 only trough the stable boundary ∂sR2.
By Corollary C.3.1, every connected component f ◦ γ([0, 1]) ∩ R2 is an unstable curve
joining the opposite components of ∂sR2. Denote Rf

12 = f(R1) ∩R2.
Up to invert the roles of the components of the stable boundary, assume that ∂s0R

f
12 ⊂ ∂s0R2

and ∂s1R
f
12 ⊂ ∂s1R2 and denote

∂s0R
f
12 = R2({0} × [a, b]) and ∂s1R

f
12 = R2({1} × [c, d]),

with [a, b] ⊂ [0, 1], [c, d] ⊂ [0, 1]. From Proposition C.5.1, both f ◦ R1([0, 1] × {0}) and
f ◦ R1([0, 1] × {1}) intersect both ∂s0R

f
12 and ∂s1R

f
12 in just one point. Without loss of

generality (since f(∂u0R1) and f(∂u1R1) cannot intersect), denote

f ◦R1([0, 1]× {0}) ∩ ∂s0Rf
12 = R2(0, a), f ◦R1([0, 1]× {0}) ∩ ∂s1Rf

12 = R2(1, c),

f ◦R1([0, 1]× {1}) ∩ ∂s0Rf
12 = R2(0, b), f ◦R1([0, 1]× {1}) ∩ ∂s1Rf

12 = R2(1, d).
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We want now to build a first-time-intersection map between the f -image of every hori-
zontal curve in R1 and ∂s1R2. Define the C1 function

[a, b]× [0, 1] ∋ (x, τ) 7→ G(x, τ) := p1 ◦R−1
2 ◦ f ◦R1(t(x) + τ, s(x))− 1 ∈ R,

where (t(x), s(x)) = R−1
1 ◦ f−1 ◦ R2(0, x). We are interested into the first τ such that

G(x, τ) = 0. The partial derivative

∂

∂τ
G(x, τ) = (1, 0)D(R−1

2 ◦ f ◦R1)(t(x) + τ, s(x))(1, 0)

is always non zero. Indeed, the vector DR1(t(x) + τ, s(x))(1, 0) belongs to the unstable
cone of R1(t(x)+τ, s(x)) and so its image through Df(R1(t(x)+τ, s(x))) is in the unstable
cone at f ◦R1(t(x)+ τ, s(x)). The vector D(R−1

2 ◦f ◦R1)(t(x)+ τ, s(x))(1, 0) has non zero
first coordinate by Lemma C.2.1.
By the implicit function theorem, there exists a unique C1 function [a, b] ∋ x 7→ τ(x) ∈ R
such that G(x, τ(x)) = 0. In particular

[a, b] ∋7→ S(x) := p2 ◦R−1
2 ◦ f ◦R1(t(x) + τ(x), s(x)) ∈ [c, d]

is a continuous function. Since S(a) = c, S(b) = d and since the function is continuous,
the image S([a, b]) is [c, d].
We deduce that for any s ∈ [0, 1] the curve f ◦R1([0, 1]× {s}) intersects only once ∂s1R2.
Indeed, if by contradiction there is a horizontal leaf R1([0, 1]×{s1}) whose image intersects
twice ∂s1R2, then denoting as f ◦ R1(t1, s1) and f ◦ R1(t2, s1) the first and second points
of intersection (t1 6= t2), we have f ◦ R1(t2, s1) ∈ R2({1} × [c, d]). Since S([a, b]) = [c, d],
we would find (t̄, s̄) with s̄ 6= s1 such that f ◦R1(t̄, s̄) = f ◦R1(t2, s1): this contradicts the
injectivity of f ◦R1.
Consequently, the stable curve f−1 ◦ R2({1} × [c, d]) ∩ R1 is a connected stable curve
joining ∂u0R1 and ∂u1R1.
In order to conclude the proof of Proposition C.5.2, argue by contradiction and assume
there exists an unstable curve γ in R1 such that f ◦ γ ∩R2 is not connected. In particular
f ◦γ intersects twice ∂s1R2. Equivalently, the curve γ, which joins ∂s0R1 and ∂s1R1, intersects
twice the stable connected curve f−1 ◦ R2({1} × [c, d]) which joins ∂u0R1 and ∂u1R1. This
contradicts Proposition C.2.1.

In particular, Proposition C.5.2 implies the following result.

Lemma C.5.2. Let R1
f−1

→ R2
f−1

→ . . .
f−1

→ Rn−1
f−1

→ Rn. Assume that x, y ∈ R1 are such
that f−i(x), f−i(y) ∈ Ri for any i ∈ J0, nK. Let γ : [0, 1] → R1 be a stable curve such that
γ(0) = x, γ(1) = y. Then f−i ◦ γ([0, 1]) is contained in Ri for every i ∈ J0, nK.

Remark C.5.1. The adapted result holds for unstable curves.

Proof. From Lemma C.5.1 each image f−i ◦ γ([0, 1]) ∩ Ri remains a stable curve joining
f−i(x) and f−i(y). If by contradiction there exists ī ∈ J0, nK such that there exists a point
in f−ī ◦ γ([0, 1]) not in Rī, then f−ī ◦ γ([0, 1]) ∩ Rī should have at least two connected
components because its endpoints, f−ī(x), f−ī(y), are in Rī. This contradicts Proposition
C.5.2 and we conclude.
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C.5.2 Ds
∞ as graph of a function: proof of Proposition C.4.1

In order to prove Proposition C.4.1, we focus our attention on (Ds
k)k∈N. We are going

to prove that it is an increasing sequence of stable subrectangles contained in Rj0 . Let
(ji)i∈Z be an admissible sequence.

Lemma C.5.3. Let i ∈ N. Let γ be a stable curve in Rji joining ∂u0Rji and ∂u1Rji. Then
the curve f−i ◦ γ([0, 1]) ∩ ⋂i

l=0 f
−l(Rjl) is a connected stable curve joining ∂u0Rj0 and

∂u1Rj0.

Proof. We proceed by induction. For i = 0 there is nothing to prove. Assume now that
Ri := f−(i−1) ◦ γ([0, 1]) ∩⋂i

l=1 f
−(l−1)(Rjl) is a connected stable curve joining ∂u0Rj1 and

∂u1Rj1 . Since Rj0

f→ Rj1 , then Rj1

f−1

→ Rj0 (see Fact C.1.1). From Proposition C.5.2 it
holds that

f−1(Ri) ∩Rj0 = f−i ◦ γ([0, 1]) ∩
i⋂

l=0

f−l(Rjl)

is a connected stable curve that joins opposite components of the unstable boundary
∂uRj0 .

Remark C.5.2. For any i ∈ N from Lemma C.5.3 and Lemma C.3.2 the curve

R−1
j0

(
f−i ◦ γ([0, 1]) ∩

i⋂

l=0

f−l(Rjl)

)

is the graph of a function with respect to the second coordinate in [0, 1]2.

For any i ∈ N consider the stable curves Rji({0} × [0, 1]) and Rji({1} × [0, 1]). From
Lemma C.5.3

∂s0D
s
i := f−i(Rji({0}×[0, 1]))∩

i−1⋂

l=0

f−l(Rjl) and ∂s1D
s
i := f−i(Rji({1}×[0, 1]))∩

i−1⋂

l=0

f−l(Rjl)

are both connected stable curves. So, they are the image trough Rj0 of the graphs of C1

functions with respect to the second coordinate (see Remark C.5.2). Observe that for any
i ∈ N it holds ∂s0D

s
i ∩ ∂s1Ds

i = ∅.
Up to invert the notations of ∂s0D

s
i and ∂s1D

s
i , we denote

∂s0D
s
i = Rj0(Graph(hji)) and ∂s1D

s
i = Rj0(Graph(gji))

so that for any t ∈ [0, 1] it holds
hji(t) < gji(t).

Proposition C.5.3. Let (ji)i∈Z be an admissible sequence. For any i ∈ N the set Ds
i is a

stable subrectangle of Rj0 and its stable boundary is ∂s0D
s
i ∪ ∂s1Ds

i .

Proof. We proceed by induction. For i = 0 there is nothing to prove. Assume that the
result holds for i ∈ N. Observe that also (ji+1)i∈Z is an admissible sequence. By inductive
hypothesis we have that

i⋂

l=0

f−l(Rjl+1
) = f

(
i+1⋂

l=1

f−l(Rjl)

)
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is a stable subrectangle of Rj1 . Its stable boundary is the union of

f−i(Rji+1
({0} × [0, 1])) ∩

i−1⋂

l=0

f−l(Rjl+1
) and f−i(Rji+1

({1} × [0, 1])) ∩
i−1⋂

l=0

f−l(Rjl+1
),

which contain f(∂s0D
s
i ) and f(∂s1D

s
i ). Denote as R : [0, 1]2 → ⋂i

l=0 f
−l(Rjl+1

) the corre-
sponding C1 embedding.
Consider then

f−1

(
i⋂

l=0

f−l(Rjl+1
)

)
∩Rj0 = Ds

i+1.

Clearly, Ds
i+1 ⊂ Rj0 . Observe that

f(Ds
i+1) =

i⋂

l=0

f−l(Rjl+1
) ∩ f(Rj0) ⊂

i⋂

l=0

f−l(Rjl+1
) = R.

Define the function

Ds
i+1 ∋ x 7→ (p1 ◦ R−1 ◦ f(x), p2 ◦R−1

j0
(x)) ∈ [0, 1]2.

This function is a C1 diffeomorphism and its inverse is the required embedding with respect
to which Ds

i+1 is a rectangle. Indeed, if

(
D(p1 ◦ R−1 ◦ f)(x)
D(p2 ◦R−1

j0
)(x)

)
v =

(
1
0

)
,

then the differential of the inverse function sends (1, 0) in v. Since D(p2 ◦R−1
j0
)v = 0 and

since Rj0 is a rectangle, then from Lemma C.2.1 we deduce that v ∈ Cu,η
x . Similarly, if

(
D(p1 ◦ R−1 ◦ f)(x)
D(p2 ◦R−1

j0
)(x)

)
v =

(
0
1

)
,

then the differential of the inverse functions sends (0, 1) in v. Since Dp1(R1 ◦ f(x)) ◦
DR−1(f(x)) ◦Df(x)v = 0 and since R is a rectangle, then from Lemma C.2.1 Df(x)v ∈
Cs,η
f(x). In particular v ∈ Cs,η

x from Lemma C.5.1.
Observe that ∂uDs

i+1 is the set

{x ∈ Ds
i+1 : p2 ◦R−1

j0
(x) ∈ {0, 1}}

and so it is contained in ∂uRj0 . That is, Ds
i+1 is a stable subrectangle of Rj0 .

Concerning the stable boundary, it is the union of points such that either p1◦R−1◦f(x) = 0
or p1 ◦ R−1 ◦ f(x) = 1. Equivalently, it is the set of points x ∈ Ds

i+1 such that f(x) ∈
∂s
⋂i
l=0 f

−l(Rjl+1
) = ∂sR. Finally, since f−1 (∂sR) ∩Rj0 = ∂s0D

s
i+1 ∪ ∂s1Ds

i+1, we conclude
that the stable boundary of Ds

i+1 is ∂s0D
s
i+1 ∪ ∂s1Ds

i+1.

Summing up, the sequence (Ds
i )i∈N is a non increasing sequence of stable subrectangles

contained in Rj0 . Recall that the left and right stable boundaries of each Ds
i are images

through Rj0 of the graphs of hji , gji .
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Lemma C.5.4. Let i ∈ N. A point x belongs to Ds
i if and only if

p1 ◦R−1
j0
(x) ∈ [hji(p2 ◦R−1

j0
(x)), gji(p2 ◦R−1

j0
(x))].

Proof. Let s ∈ [hji(t), gji(t)]. The point x = Rj0(t, s) belongs to the curveRj0([hji(t), gji(t)]×
{t}), which is an unstable curve inRj0 . Since for any n ∈ J0, iK the points fn◦Rj0(t, hji(t)), f

n◦
Rj0(t, gji(t)) belong to Rjn , by Lemma C.5.2 the image fn ◦ Rj0([hji(t), gji(t)] × {t}) is
contained in Rjn . In particular the point x belongs to f−n(Rjn) for any n ∈ J0, iK, that is
x ∈ Ds

i .
Let x ∈ Ds

i , that is fn(x) ∈ Rjn for any n ∈ J0, iK. Assume by contradiction that
R−1
j0
(x) = (t, s) does not lie between the two graphs of hji and gji . Without loss of

generality, assume that 0 ≤ s < hji(t). The points x,Rj0(hji(t), t), Rj0(gji(t), t) belong to
the unstable curve Rj0([0, 1]× {t}).
Let n̄ ∈ J0, iK be the maximum n ∈ J0, iK such that for any m ∈ J0, nK the point fm(x) be-
longs to the same connected component of (fm◦Rj0([0, 1]×{t}))∩Rjm as fn◦Rj0(hji(y), t)
and fn ◦Rj0(gji(t), t).
Observe that n̄ ≤ i − 1. Indeed, f i ◦ Rj0([hji(t), gji(t)] × {t}) is a curve joining the
opposite components of ∂sRji and f i(x) /∈ f i ◦ Rj0([hji(t), gji(t)] × {t}) (since x /∈
Rj0([hji(t), gji(t)]× {t})).
Denote now the connected component of f n̄ ◦ Rj0([hji(t), gji(t)] × {t}) containing f n̄(x)
as Γ: it is an unstable curve in Rjn̄ . By definition of n̄ it holds that f n̄+1(x) does not
belong to the same connected component of f n̄+1 ◦ Rj0([hji(t), gji(t)] × {t}) ∩ Rjn̄+1 as
f n̄+1 ◦Rj0(hji(t), t) and f n̄+1 ◦Rj0(gji(t), t).
Since by Proposition C.5.2 the image f ◦Γ∩Rjn̄+1 is connected, we deduce that f n̄+1(x) /∈
Rjn̄+1 and, since n̄+ 1 ≤ i, we contradict that x ∈ Ds

i and we conclude.

Lemma C.5.5. For any i ∈ N for any t ∈ [0, 1]

hji(t) ≤ hji+1
(t) < gji+1

(t) ≤ gji(t).

Proof. Argue by contradiction and assume there exists i ∈ N such that there exists
t ∈ [0, 1] so that hji+1

(t) < hji(t). In particular the point (hji+1
(t), t) does not lie between

the graphs of hji and gji . From Lemma C.5.4 Rj0(hji+1
(t), t) does not belong to Ds

i and
consequently it does not belong to Ds

i+1 ⊂ Ds
i . This provides the required contradiction.

Claim C.5.1. The sequences (hn)n∈N and (gn)n∈N converge uniformly respectively to
Lipschitz functions (so almost everywhere differentiable) h∞ and g∞ such that for any
t ∈ [0, 1] it holds h∞(t) ≤ g∞(t).

Proof. The sequences of functions (hji)i∈N, (gji)i∈N defined on [0, 1] are non-decreasing
and non-increasing, respectively, from Lemma C.5.5. By Dini’s Theorem, the sequences
converge uniformly to functions h∞ : [0, 1] → [0, 1], g∞ : [0, 1] → [0, 1] respectively that
are continuous. In particular, it holds for any i ∈ N that hji ≤ h∞ ≤ g∞ ≤ gji .
Observe that the sequence (hji)i∈N is equi-Lipschitz with Lipschitz constant bounded
above by

K = max
x∈Rj0

max
v∈Cs,η

x ∩S1

Dp1(R
−1
j0
(x))DR−1

j0
(x)v

Dp2(R
−1
j0
(x))DR−1

j0
(x)v

< +∞.

Such K is finite because of Lemma C.2.1 and because Rj0 is compact. Consequently, the
function h∞ is Lipschitz with Lipschitz constant bounded above by K . By Rademacher’s
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theorem, the function h∞ is almost everywhere differentiable.
Similar arguments imply that also g∞ is a Lipschitz function with Lipschitz constant
bounded above by

L = max
x∈Rj0

max
v∈Cu,η

x ∩S1

Dp2(R
−1
j0
(x))DR−1

j0
(x)v

Dp1(R
−1
j0
(x))DR−1

j0
(x)v

< +∞

and moreover it is almost everywhere differentiable.

Proposition C.5.4. For any t ∈ [0, 1] it holds h∞(t) = g∞(t).

Proof. Assume by contradiction that there exists t ∈ [0, 1] such that ρ = g∞(t)−h∞(t) >
0. Then for any i ∈ N it holds from Claim C.5.1 that

gji(t)− hji(t) ≥ ρ.

The horizontal curve [0, 1] ∋ s 7→ Hi(s) = (sgji(t) + (1 − s)hji(t), t) is sent by Rj0

into an unstable curve that joins the points xi := Rj0(hji(t), t) ∈ f−i(∂s0Rji) and yi :=
Rj0(gji(t), t) ∈ f−i(∂s1Rji). In particular (see Notation C.5.1)

LRj0
◦Hi

(xi, yi) =

∫ 1

0

∥∥∥∥
d

ds
Rj0(Hi(s))

∥∥∥∥ ds ≥

≥ min
s∈[0,1]

∥∥DRj0(s, t)|R(1,0)
∥∥ (gji(t)− hji(t)) > K ρ > 0,

where K := mins∈[0,1]
∥∥DRj0(s, t)|R(1,0)

∥∥ > 0. This length is bounded from below uniformly
in i ∈ N.
Up to choose a subsequence, assume that Rjim = Rj0 for any i ∈ N, where m ∈ N∗ is the
integer with respect to which U satisfies the cone field property (see Definition B.0.1).
For any i ∈ N the points xim, yim belong to

⋂im
l=0 f

−l(Rjl). By Proposition C.5.2 the curve
f l ◦Rj0 ◦ Him is contained in Rjl for any l ∈ J0, imK.
It holds

Lf im◦Rj0
◦Him

(f im(xim), f
im(yim)) =

∫ 1

0

∥∥∥∥
d

ds
f im ◦Rj0 ◦ Him(s)

∥∥∥∥ ds =

=

∫ 1

0

∥∥∥∥∥

[
i∏

l=1

Dfm(f (l−1)m(Rj0(Him(s))))

]
DRj0(Him(s))(gjim(t)− hjim(t), 0)

∥∥∥∥∥ ds ≥

≥ 1

(µ+ ξ)i

∫ 1

0

‖DRj0(Him(s))(gjim(t)− hjim(t), 0)‖ ds =
1

(µ+ ξ)i
LRj0

◦Him
(xim, yim),

because of Condition (iv) of the cone field criterion on vectors of the unstable cone (see
Definition B.0.1). That is

Lf im◦Rj0
◦Him

(f im(xim), f
im(yim)) ≥

1

(µ+ ξ)i
LRj0

◦Him
(xim, yim) >

1

(µ+ ξ)i
K ρ. (C.4)

We show now that the length Lγ(x, y) of any unstable curve γ ⊂ Rj0 such that γ(0) =
x ∈ Rj0 , γ(1) = y ∈ Rj0 is bounded.
The curve R−1

j0
◦γ([0, 1]) is the graph of a function Γ : [p1◦R−1

j0
◦γ(0), p1◦R−1

j0
◦γ(1)] → [0, 1]
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with respect to the first coordinate from Lemma C.3.2. Observe that Γ is a Lipschitz
function and its Lipschitz constant is bounded above by

L := max
x∈Rj0

max
v∈Cu,η

x ∩S1

Dp2(R
−1
j0
(x)) ◦DR−1

j0
(x)v

Dp1(R
−1
j0
(x)) ◦DR−1

j0
(x)v

< +∞,

that is finite because of Lemma C.2.1 and of the compactness of Rj0 .
The function [0, 1] ∋ s 7→ p1 ◦ R−1

j0
◦ γ(s) =: t(s) ∈ [0, 1] is a C1 diffeomorphism. Assume

without loss of generality that t′(s) > 0 for any s. So for any s ∈ [0, 1] it holds R−1
j0

◦γ(s) =
(t(s),Γ(t(s))). Denote as ‖·‖e the standard euclidean norm and let P > 0 be such that
‖·‖ ≤ P‖·‖e. Consequenlty

Lγ(x, y) =

∫ 1

0

‖γ′(s)‖ ds =
∫ 1

0

∥∥∥∥
d

ds
Rj0(t(s),Γ(t(s))

∥∥∥∥ ds =

=

∫ 1

0

∥∥∥∥DRj0(t(s),Γ(t(s)))

(
1,
d

dt
Γ(t(s))

)
t′(s)

∥∥∥∥ ds ≤

≤ max
x∈[0,1]2

‖DRj0(x)‖
∫ 1

0

P
∥∥∥
(
1,
d

dt
Γ(t(s)

)∥∥∥
e
|t′(s)| ds =

= max
x∈[0,1]2

‖DRj0(x)‖P
∫ 1

0

√

1 +

∣∣∣∣
d

dt
Γ(t(s))

∣∣∣∣
2

t′(s) ds ≤ max
x∈[0,1]2

‖DRj0(x)‖P
√
1 + L 2 < +∞.

(C.5)
Choose i ∈ N such that

1

(µ+ ξ)i
Kρ > max

x∈[0,1]2
‖DRj0(x)‖P

√
1 + L 2.

The curve f im ◦Rj0 ◦ Him is an unstable curve contained in Rjim = Rj0 joining f im(xim)
and f im(yim). We have so, by (C.4) and (C.5) and by the choice of i,

1

(µ+ ξ)i
Kρ < Lf im◦Rj0

◦Him
(f im(xim), f

im(yim) ≤ max
x∈[0,1]2

‖DRj0(x)‖P
√
1 + L 2 <

1

(µ+ ξ)i
Kρ.

This is the required contradiction.
We so conclude that for any t ∈ [0, 1]

h∞(t) = g∞(t).

Proof of Proposition C.4.1. From Lemma C.5.4, it holds that Ds
∞ ⊂ Rj0(Graph(h∞)).

Actually, Ds
∞ = Rj0(Graph(h∞)). Indeed, argue by contradiction and assume there exists

t ∈ [0, 1] such that (h∞(t), t) /∈ R−1
j0
(Ds

∞). This means that there exits i ∈ N so that
(h∞(t), t) /∈ R−1

j0
(Ds

i ). Equivalently, there exists i ∈ N such that h∞(t) /∈ [hji(t), gji(t)],
which is the required contradiction. In particular, from Proposition C.5.4, Ds

∞ is the im-
age of the graph of a Lipschitz function h∞ and it joins ∂u0Rj0 and ∂u1Rj0 .

Remark that if (ji)i∈Z is an admissible sequence, then for any n ∈ Z the sequence (ji+n)i∈Z
is admissbile too. The following result concerns the relation between Ds

∞ associated to a
sequence (ji)i∈N and to a shifted one (ji+n)i∈N.
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Lemma C.5.6. Let Ds
∞ = Ds

∞((ji)i∈Z). Then for any n ∈ N

fn(Ds
∞((ji)i∈Z)) ⊂ Ds

∞((ji+n)i∈Z) =
∞⋂

i=0

f−i(Rji+n
).

Proof. We proceed by induction. For n = 0 there is nothing to prove.
Assume now that fn−1(Ds

∞((ji)i∈Z)) ⊂ Ds
∞((ji+n−1)i∈Z) for n ≥ 1. Consider then

f(Ds
∞((ji+n−1)i∈Z)) = f

( ∞⋂

i=0

f−i(Rji+n−1
)

)
= f

( ∞⋂

i=1

f−i(Rji+n−1
)

)
∩ f(Rjn−1).

Since Rjn ∩ f(Rjn−1) ⊂ Rjn , we have

f

( ∞⋂

i=1

f−i(Rji+n−1
)

)
∩ f(Rjn−1) ⊂

∞⋂

i=1

f−i+1(Rji+n−1
) =

∞⋂

i=0

f−i(Rji+n
) = Ds

∞((ji+n)i∈Z).

That is, f(Ds
∞((ji+n−1)i∈Z)) ⊂ Ds

∞((ji+n)i∈Z). By inductive hypothesis we have

fn−1(Ds
∞((ji)i∈Z)) ⊂ Ds

∞((ji+n−1)i∈Z)

and so we conclude

fn(Ds
∞((ji)i∈Z)) = f(fn−1(Ds

∞((ji)i∈Z))) ⊂ f(Ds
∞((ji+n−1)i∈Z)) ⊂ Ds

∞((ji+n)i∈Z).

C.5.3 On points of differentiability of Ds
∞: proof of Proposition

C.4.2

We recall, from Proposition C.4.1, that Ds
∞ is the image through Rj0 of the graph

of h∞, where h∞ is the limit (in the uniform convergence) of the sequence (hn)n∈N (see
Claim C.5.1).

Proof of Proposition C.4.2. Let x ∈ Ds
∞. Denote as (h∞(τ), τ) = R−1

j0
(x) ∈ [0, 1]2. We are

assuming that x is a point of differentiability, equivalently that there exists

h′∞(τ) = lim
h→0

h∞(τ + h)− h∞(τ)

h
.

On [0, 1]2 we use the trivialization given by the projections over the first and the second
coordinates. Define the fuctions

[0, 1]2 ∋ (t, s) 7→ Cs
(t,s) = DR−1

j0
(Rj0(t, s))C

η,s,+
Rj0

(t,s),

that is the image through DR−1
j0

of the positive stable half-cone at Rj0(t, s) (see Notation
C.3.1. There exist m = m(t, s),M =M(t, s) ∈ R such that 1

Cs
(t,s) = {(v1, v2) ∈ T(t,s)[0, 1]

2 : v2 > 0,m ≤ v1
v2

≤M}.

1. By using the trivialization through the projections over the first and second coordinates in [0, 1]2.
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In particular

m(t, s) = min
v∈Cs

(t,s)

p1(v)

p2(v)
and M(t, s) = max

v∈Cs
(t,s)

p1(v)

p2(v)
.

The function p1
p2

is continuous on stable cones of points in Rj0 since, from Lemma C.2.1,

p2 does not vanish on images of stable cones. By the continuity of the cone fields, of DR−1
j0

and of the function p1
p2

restricted to the images of stable cones, the functions

[0, 1]2 ∋ (t, s) 7→ m(t, s) ∈ R and [0, 1]2 ∋ (t, s) 7→M(t, s) ∈ R

are continuous.
Fix ε > 0. There exists h̄ > 0 such that for any 0 < ξ ≤ h̄ it holds

h′∞(τ) <
h∞(τ + ξ)− h∞(τ)

ξ
+
ε

4
.

By the continuity of M =M(t, s), there exists a neighborhood U of (h∞(τ), τ) such that
for any (t, s) ∈ U it holds

M(t, s) < M(h∞(τ), τ) +
ε

4
.

Fix now 0 < ξ̄ < h̄ such that

Graph(h∞|[τ,τ+ξ̄]) := {(h∞(τ + ξ), τ + ξ) : ξ ∈ [0, ξ̄]} ⊂ U.

Since U is open, let ρ > 0 be such that

{(t, s) ∈ [0, 1]2 : d((t, s), Graph(h∞|[τ,τ+ξ̄]) < ρ)} ⊂ U. (C.6)

Recall that the sequence (hn)n∈N converges uniformly to h∞. Therefore, there exists n̄ ∈ N
such that for any n ≥ n̄ it holds

‖hn − h∞‖C0 < min

{
ξ̄ε

4
, ρ

}
. (C.7)

Observe in particular that, by (C.6) and (C.7), for any n ≥ n̄ for any ξ ∈ [0, ξ̄] we have
that

(hn(τ + ξ), τ + ξ) ∈ U. (C.8)

Consequently for any n ≥ n̄ it holds

h′∞(τ) <
h∞(τ + ξ̄)− h∞(τ)

ξ̄
+
ε

4
<
hn(τ + ξ̄)− hn(τ) +

ξ̄ε
2

ξ̄
+
ε

4
=

=
hn(τ + ξ̄)− hn(τ)

ξ̄
+

3

4
ε = h′n(τ + ξ) +

3

4
ε,

for some ξ ∈ [0, ξ̄]. Since hn is a stable curve and since (hn(τ + ξ), τ + ξ) ∈ U from (C.8),
it holds that

h′n(τ + ξ) ≤M(hn(τ + ξ), τ + ξ) < M(h∞(τ), τ) +
ε

4
.

So we obtain

h′∞(τ) < h′n(τ + ξ) +
3

4
ε < M(h∞(τ), τ) + ε.
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By the arbitrariness of ε we conclude that h′∞(τ) ≤M(h∞(τ), τ). Similarly we show that
h′∞(τ) ≥ m(h∞(τ), τ).
Therefore, the vector v tangent to the graph of h∞ at (h∞(τ), τ), which belongs to
R+(h

′
∞(τ), 1), satisfies

p1(v)

p2(v)
= h′∞(τ) ∈ [m(h∞(τ), τ),M(h∞(τ), τ)].

Equivalently, the vector v belongs to Cs
(h∞(τ),τ). So its image DRj0(h∞(τ), τ)v, which is the

vector tangent to Ds
∞ at x = Rj0(h∞(τ), τ), belongs to the stable cone Cs,η

x (in particular
it belongs to the positive stable half-cone at x) and we conclude the proof.

C.5.4 Ds
∞ is C1: proof of Proposition C.4.3

Let x ∈ Ds
∞. Observe in particular that its future orbit is contained in U and so its

local stable manifold is well-defined: we will denote it as W s
loc,ε(x), where ε > 0 can be

chosen uniformly for any x such that f i(x) ∈ U for any i ∈ N.

Proof of Proposition C.4.3. Argue by contradiction and assume that for any N ∈ N it
holds

Ds
∞ 6⊂ f−N(W s

loc,ε(f
N(x))).

That is, for any N ∈ N there exists yN ∈ Ds
∞ such that fN(yN) /∈ W s

loc,ε(f
N(x)). Fix now

n ∈ N such that
max
R∈R

max
x∈[0,1]2

‖DR(x)‖P
√
1 + P2 <

ε

(µ+ ξ)n
, (C.9)

where P > 0 is the constant such that ‖·‖ ≤ P‖·‖e 2 and

P = max
R∈R

max
x∈R

max
v∈Cs,η

x ∩S1
Dp1(R

−1(x))DR−1(x)v

Dp2(R−1(x))DR−1(x)v
.

The constant P is finite because, from Lemma C.2.1, Dp2(R−1(x))DR−1(x)v is not null
and because

⋃
R∈R R is compact. Let ynl ∈ Ds

∞. Then there exists k ≥ 0 such that 3

d(fnl+k(ynl), f
nl+k(x)) ≥ ε. (C.10)

Denote as γ the curve contained in Ds
∞((ji)i∈Z) joining ynl and x. Consider fk ◦ γ:

by Lemma C.5.6 it is contained in Ds
∞((ji+k)i∈Z) and it joins fk(ynl) and fk(x). The

sequence (ji+k)i∈Z is also admissible. Denote as H∞ the Lipschitz function such that
Rjk(Graph(H∞)) = Ds

∞((ji+k)i∈Z). From Proposition C.4.1, the function H∞ is Lipschitz
and so it is almost everywhere differentiable.
Let fk(ynl) = Rjk(H∞(t0), t0), f

k(x) = Rjk(H∞(t1), t1). Up to invert the roles, assume
that t0 < t1.
Let us calculate the length of fk ◦ γ. That is

Lfk◦γ(f
k(ynl), f

k(x)) =

∫ t1

t0

∥∥∥∥
d

ds
Rjk(H∞(s), s)

∥∥∥∥ ds ≤

2. ‖·‖e is the standard Euclidean norm.
3. l ∈ N is the constant given by the cone field property.
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≤
∫ t1

t0

‖DRjk(H∞(s), s)‖‖(H ′
∞(s), 1)‖ds ≤ max

x∈[0,1]2
‖DRjk(x)‖

∫ t1

t0

P
√

1 + (H ′
∞(s))2ds ≤

≤ max
x∈[0,1]2

‖DRjk(x)‖P
√
1 + J 2 < +∞, (C.11)

where

J = max
x∈Rjk

max
v∈Cs,η

x ∩S1

Dp1(R
−1
jk
(x))DR−1

jk
(x)v

Dp2(R
−1
jk
(x))DR−1

jk
(x)v

< +∞.

The constant J is finite because of Lemma C.2.1 and because of the compactness of Rjk .
In particular, the length of fk ◦ γ is bounded.
Write the curve fk ◦ γ as f−nl(fnl(fk ◦ γ))). Consequently

Lfk◦γ(f
k(ynl), f

k(x)) = Lf−nl(fnl+k◦γ)(f
k(ynl), f

k(x)).

By Lemma C.5.6 the curve fnl+k ◦ γ is contained in Ds
∞((ji+nl+k)i∈Z) and joins fnl+k(ynl)

and fnl+k(x). In particular, fnl+k ◦ γ is the image through Rjnl+k
of the graph of a func-

tion H̃∞, from Proposition C.4.1. The function H̃∞ is almost everywhere differentiable
and at every point of differentiability (H̃∞(t), t) it holds DRjnl+k

(H̃∞(t), t)(H̃ ′
∞(t), 1) ∈

Cs,η

Rjnl+k
(H̃∞(t),t)

by Proposition C.4.2. Denote as

fnl+k(ynl) = Rjnl+k
(H̃∞(s0), s0) and fnl+k(x) = Rjnl+k

(H̃∞(s1), s1).

Up to invert the roles, assume that s0 < s1.
From (C.10), we have

Lfnl+k◦γ(f
nl+k(ynl), f

nl+k(x)) =

=

∫ s1

s0

∥∥∥DRjnl+k
(H̃∞(s), s)(H̃ ′

∞(s), 1)
∥∥∥ds ≥ d(fnl+k(ynl), f

nl+k(x)) ≥ ε. (C.12)

We obtain so

Lfk◦γ(f
k(ynl), f

k(x)) = Lf−nl◦fnl+k◦γ(f
−nl(fnl+k(ynl)), f

−nl(fnl+k(x))) =

=

∫ s1

s0

∥∥∥∥
d

ds
f−nl(Rjnl+k

(H̃∞(s), s))

∥∥∥∥ds =

=

∫ s1

s0

∥∥∥∥∥

n−1∏

i=0

Df−l(f−il(Rjnl+k
(H̃∞(s), s)))DRji+nl+k

(H̃∞(s), s)
(
H̃ ′

∞(s), 1
)∥∥∥∥∥ds.

Since at every point of differentiability the vector DRjnl+k
(H̃∞(s), s)

(
H̃ ′

∞(s), 1
)

belongs

to the stable cone field and from the cone field property satisfied by U (see Definition
B.0.1), it holds that

Lfk◦γ(f
k(ynl), f

k(x)) ≥ 1

(µ+ ξ)n

∫ s1

s0

∥∥∥DRjnl+k
(H̃∞(s), s)(H̃ ′

∞(s), 1)
∥∥∥ds.

That is, from (C.12),

Lfk◦γ(f
k(ynl), f

k(x)) ≥ 1

(µ+ ξ)n
Lfnl+k◦γ(f

nl+k(ynl), f
nl+k(x)) ≥ ε

(µ+ ξ)n
. (C.13)
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By the choice of n ∈ N in (C.9) and from (C.11) and (C.13) we obtain

ε

(µ+ ξ)n
≤ Lfk◦γ(f

k(ynl), f
k(x)) ≤ max

x∈[0,1]2
‖DRjk(x)‖P

√
1 + J 2 ≤

≤ max
R∈R

max
x∈[0,1]2

‖DR(x)‖P
√
1 + P2 <

ε

(µ+ ξ)n
,

which is the required contradiction.
We conclude so that there exists N ∈ N such that Ds

∞ ⊂ f−N(W s
loc,ε(f

N(x))).
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