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Abstract

We study the asymptotic Maslov index for surface diffeomorphisms. Roughly speaking,
this quantity is the limit of the average rotational velocity of tangent vectors which evolve
under the action of the differential of the diffeomorphism. For twist maps on the annulus,
we prove that the set of points of zero index has Hausdorff dimension at least one. In the
framework of conservative twist maps, we show that every bounded instability region has a
positive Lebesgue measure set of points with non zero index. Finally, we study such index
in the presence of periodic hyperbolic points with transverse homoclinic intersections,
providing examples of points at which the asymptotic Maslov index does not exist.






Résumé

Nous étudions l'indice de Maslov asymptotique pour de difféomorphismes de surface. En
mots, cette quantité est la limite de la vitesse angulaire moyenne des vecteurs tangents
qui évoluent sous l'action de la différentielle du difféeomorphisme. Pour des applications
déviant la verticale de 'anneau, nous montrons que ’ensemble des points d’indice nul
a une dimension d’Hausdorff supérieure ou égale a 1. Dans le cadre des applications
déviant la verticale conservatives, nous prouvons que chaque région d’instabilité bornée a
un ensemble de mesure de Lebesgue positive de points d’indice non nul. Finalement, nous
étudions cet indice en présence de points périodiques hyperboliques avec intersections
homoclines transverses, en donnant des exemples de points auxquels I'indice de Maslov
asymptotique n’existe pas.
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Notations

T : 1-dimensional torus R/Z

T? : 2-dimensional torus R?/Z?

A : unbounded annulus T x R

p:R — T : universal covering of the 1-dimensional torus

px Id:R? — A : universal covering of the annulus

p1,p2 © projections over R? on the first and second coordinates

P1,D2 : projections over A on the first and second coordinates

Diff '(M, N) : set of C* diffeomorphisms from M to N

R(a,) : rotation in R? centered at a of angle ¢

7, : translation in R? of vector v

O(u,v) : oriented angle between the non zero vectors u, v

I =(f;);: isotopy joining the identity to f = f;

X : reference continuous vector field to fix the trivialization

v(I)(x,&,-) : oriented angle function between X (f;(x)) and D f;(x)€ (Def. 1.1.1)
o(I)(x,&,-) : lift of the oriented angle function v(I)(x,¢&, )

Torsion, (I, z,£) : torsion at finite time n of x with respect to the vector { (Def. 1.1.2)

Torsion,, (f,z,£) : torsion at finite time n of = with respect to the vector £ when it is
independent from the chosen isotopy
Torsion(I,z) : torsion of the orbit of z (Def. 1.1.3)
Torsion(f,z) : torsion of the orbit of # when it is independent from the chosen isotopy
Torsion(/, 1) : torsion of the f-invariant measure p (Def. 1.1.4)
)

Torsion(f, p) : torsion of the f-invariant measure p when it is independent from the
chosen isotopy

GL(2,R) : linear group of degree 2 of R

GL*(2,R) : subgroup of GL(2,R) of matrices with positive determinant
H : constant horizontal vector (1,0)

X : constant vertical vector (0, 1)

2 :R? - T? : universal covering of the 2-dimensional torus

CC(U,zx) : connected component of U containing z

E;, E} : stable and unstable subspaces of a hyperbolic point ¢

W=(q), W"(q) : stable and unstable manifolds of the point ¢



Wit (@), Wi .(q) : local stable and unstable manifolds of the point ¢
O(x, f) : orbit of z with respect to f
B(x) : n-dimensional ball of radius r and centre x

Br(x) : closure of the n-dimensional ball of radius r and centre

Linking, (I, z,y) : linking number at finite time n of the points z,y € R? z # y (Def.
1.2.1)

Linking(I,z,y) : linking number of x,y € R? x # y (Def. 1.2.1)
A : diagonal in R*, ie. {(21,22) € R*: 2y = 25}

dimy(U) : Hausdorff dimension of the set U

Iy(-) : characteristic function of the set U

Z(f) : union of invariant continuous graphs of conservative twist map f on A (Notation
3.1.2)

A (f) : complement set of .Z(f) in A (Notation 3.1.2)

V. vertical line passing through the point =

¥ (x) : vertical subspace in T,R?, i.e. ker(Dpir, g)

(Zn)nez : configuration for F lift of a conservative twist map (Def. 3.2.2)
ZL((xn)nez) : Aubry diagram of (x,,),ecz (Def. 3.2.3)

C(2) : set of configurations (x,,),ecz such that (z,,x,.1) € Z Vn

A set of minimizing configurations (Def. 3.2.7)

A (D) . set of minimizing configurations among C'(2) (Def. 3.2.7)
p((n)nez) : rotation number of the minimizing configuration (z,),ez (Prop. 3.2.7)
M, : set of minimizing configurations with rotation number p

q : hyperbolic fixed point for f& = §

p @ transverse homoclinic point of ¢ for fV = §

O. : adapted neighborhood of ¢ for O(p, f) with respect to £ (Def. 4.2.3)
U. : adapted neighborhood of {¢} U O(p, f) with respect to e (Def. 4.2.4)
H(U.,j): fN-invariant horseshoe in U, for p (Def. 4.3.2)

A(U.) : maximal f-invariant set in U. (Notation 4.2.3)
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Introduction

Let us consider a symplectic smooth dynamical system. This thesis looks after rela-
tions between some properties of the dynamical system and the possible values of the
so-called asymptotic Maslov index.

Roughly speaking, on surfaces this quantity describes how vectors asymptotically “turn”
under the action of the differential of the dynamical system (see [BB13]).

In higher dimensions, the asymptotic Maslov index is defined in the symplectic framework,
for example for Hamiltonian flows and when looking at action over Lagrangian subspaces
(see [CGIPO3] and [AFO08]).

Although the notion of Maslov index was first introduced by V. I. Arnold in [Arn67],
the definition of asymptotic Maslov index has first appeared in the work of D. Ruelle in
[Rue85] in 1985.

In this thesis we are interested in asymptotic Maslov indices for surface diffeomorphism.
Different names denote the same notion: asymptotic Maslov index, Ruelle’s rotation num-
ber, Béguin and Boubaker’s torsion, ...From now on, we refer to it as torsion.

Let S be a parallelizable (not necessarily compact) Riemannian surface, that is a
Riemannian surface whose tangent bundle is trivial. Examples of parallelizables surfaces
are the annulus A = T x R, the annulus with a finite number of holes, the torus T?, the
disk D? (eventually with a finite number of holes), .. .. Instead, neither the 2-dimensional
sphere S? nor a compact surface without boundary with genus g > 2 are parallelizable.
Let I = (f,)ier be an isotopy in Diff *(S) joining the identity Idg to fi = f and such
that fi1., = fi o f. The tangent bundle inherits the dynamics through the differential
Df;,: TS — TS. Fix a Riemannian metric, an orientation and let X : S — T'S be a non
vanishing continuous vector field.

For x € S and v € TS \ {0} we consider the continuous oriented angle function

Ry st v(l)(z,v,t) :=0(X(fi(x)),Dfi(x)v) € T,
where 0(u, v) denotes the oriented angle between the two non zero vectors u and v. Let
Ry st—o()(z,v,t) €R

be a continuous determination of the oriented angle function 6. For n € N the n-finite
time torsion at (x,v) € T'S is
6<I)(x> v, TL) — 6([)(*1'7 v, 0)

Torsion, (I, z,v) = .
n

The torsion at the orbit of x, denoted as Torsion(/, x), is the limit

lim Torsion, (I, z,v),
n——+0oo
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whenever it exists. The torsion at the orbit of = does not depend on the vector v € T.,.S.
Moreover, it is independent of the point of the orbit at which we calculate it. In addition,
when it exists, the torsion does not depend on the chosen Riemannian metric (see Propo-
sition 1.1.4). The torsion a priori depends on the vector field X (see Proposition 1.1.5).
In many cases, the torsion (already at finite time) is independent from the chosen iso-
topy I = (f;):, see Remark 1.1.3 and Proposition 1.3.2. Whenever it is the case, we
will denote the torsion (respectively finite time torsion) as Torsion(f,x) (respectively
Torsion, (f, z,v)).

If i is a f-invariant Borel probability measure with compact support, then its torsion is

Torsion(/, 1) = /Torsion([,a:) du(z).
S
Ruelle proved that for such a measure p, for almost every point, the torsion exists. Thus,
the torsion of p is well-defined.
From now on, when not specified, we will consider a constant reference vector field X.
The notion of torsion of measures has been studied by Gambaudo and Ghys in [GG97|
in the framework of C! diffeomorphisms on the 2-dimensional disk D?. Let p be a Borel
probability measure on D?. Gambaudo and Ghys have shown that the torsion of y is a
homogeneous quasi-morphism on the set of diffeomorphisms of the disk that are the iden-
tity near the boundary 9D? and preserve the measure u (see Proposition 2.8 in [GGI7]).
Moreover, they have also proved that the torsion is invariant by topological conjugacy,
assuming that the measures are without atoms (see Theorem 2.11 in [GGI7]).
The notion of torsion of f-invariant measures has also been discussed by Conejeros, who
in his PhD thesis (see [Conl5|) has compared it to his notion of fibered rotation number.

The set of zero torsion value points is useful to understand certain dynamical behav-
iors.
In [MNO2| Matsumoto and Nakayama prove that for every C*° diffeomorphism f of
T? isotopic to the identity there exists a f-invariant probability measure p such that
Torsion(f, p) is null.
For conservative twist maps on the annulus, the structure of some null torsion sets, called
Aubry-Mather sets, has been studied by Mather (see [Mat82a| and [Mat91|) and Angenent
(see [Ang88|) through a variational approach.
Through a more topological point of view in [Cro03], Crovisier has obtained results for
non-conservative twist maps on A. He has proved that for any rotation number there
exists an Aubry-Mather set of null torsion (see Theorem 1.2 in [Cro03|).

In Chapter 2 we introduce the notion of negative-torsion map on the annulus. We
study the zero torsion set for negative-torsion maps. On the annulus, the torsion does not
depend on the chosen isotopy (see Proposition 1.3.2), so we omit it in the notation. We
consider a constant reference vector field X.

Definition. A negative-torsion (respectively positive-torsion) map f : A — A is a C!
diffeomorphism isotopic to the identity such that for every z € A it holds

Torsion; (f, z,x) <0 ( respectively > 0),

where x is the vertical vector (0, 1).
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The notion of negative-torsion map coincides with the definition of positive tilt map, as
presented in [Hu98| and [GR13|. Moreover, the same negative-torsion maps can be defined
through the notion of positive/negative paths presented in [Her83] and in [LC88].
Examples of negative-torsion maps are positive twist maps. A positive twist map f : A —
A is a C! diffeomorphism isotopic to the identity such that for any lift F' : R? — R? of f
and for any x € R the function

Y= p1o F (ZL’ ) y)

is an increasing diffeomorphism of R, where p; denotes the projection over the first coor-
dinate.

The interest for twist maps has largely spread all along the literature (see for example
[LCI1|, [Mat82a|, [Mat91l] and [Mos86]) and, as mentioned before, several authors have
studied their connection with the notion of torsion.

By the twist property of f, at every point the image of the vertical vector through D f
lies in the right half-plane. At every point the torsion at time 1 with respect to the vector
X = (0,1) is negative. This property is already remarked in [Cro03| and in [LC91|. Actu-
ally, a more precise estimation can be given.

Theorem A. Let f : A — A be a positive twist map. For any z € A and for any
n € N,n # 0 it holds

1
Torsion,(f,z,x) € (—§,O> :

An immediate outcome is the following

Corollary A. Let f : A — A be a positive twist map. Then for any z € A, where the
torsion exists, it holds

Torsion(f, z) € {—%,O} )

We will prove that for negative-torsion maps the Hausdorff dimension of the set of zero

torsion points is greater or equal to one. This result follows from the following Theorem,
for which we need the definition of essential curve.

Definition. An essential curve vy : T — A is a C° embedding such that v(T) is not homo-
topic to a point.

Theorem B. Let f: A — A be a negative-torsion map. Let v : T — A be a C* essential
curve. Then there exists at least one point z € (T) such that

Torsion(f,z) = 0.

Corollary B. Let f: A — A be a negative-torsion map. Then

dimy({z € A: Torsion(f,z) =0}) > 1.

The same results hold also for positive-torsion maps.



Question: can we give more precise results over the Hausdorff dimension of the set of
zero torsion points?

We obtain as a by-product of the proof of Theorem B a version of Birkhoff’s theorem for
negative-torsion maps.

Theorem C. Let f : A — A be a negative-torsion (respectively positive-torsion) map. Let
v:T — A be a C" f-invariant essential curve such that fy, is non wandering. Then ~(T)
is the graph of a Lipschitz function over T.

What about points of non zero torsion? Béguin and Boubaker in [BB13] have given
conditions to assure the existence of orbits with non zero torsion. In particular, they have
shown that if f is an area-preserving diffeomorphism of the disk with compact support
(which is not the identity), then f has an orbit with non zero torsion (see Theorem A
in [BB13]). Moreover, if f is a diffeomorphism of T? whose rotation number set has not
empty interior, then f has an orbit with non zero torsion (see Theorem B in [BB13]).

In their work, Béguin and Boubaker use the relation between the linking number and the
torsion of points in the lifted framework.

In the setting of the plane R?, for any x,y € R? x # y the linking number of x and y is
the asymptotic angular velocity of the vector f;(y) — fi(x).

In Chapter 1 we study the link between these two quantities for a C! diffeomorphism on
R2. We focus on the following question: for a given isotopy, assuming that the linking
number of two points x,y is not zero, does there exist at least a point z on the segment
connecting x and y such that its torsion is also not zero?

We state the following result, where the torsion is calculated with respect to a constant
reference vector field.

Theorem D. Let I = (fi):c0,1) be an isotopy in Diff *(R?) joining Idg> to fi = f. Assume
that there exist two points x,y € R? x # y such that

Linking,(I,z,y) =1 € R.
Then there exists a point z € [x,y] so that

Torsiony (I, z,y —x) = L.

Passing to asymptotic quantities, we deduce the following

Corollary C. Let I = (fi)icjo be an isotopy in Diff Y(R?) joining Idg: to fi = f. Assume
that there exist two points x,y € R% x # y such that

Linking(I,x,y) =1 € R.

Suppose that |, o [ ([, y]) is relatively compact, where [x,y] denotes the segment joining
the two points.
Then there ezists a f-invariant Borel probability measure p so that Torsion(I, u) = 1.

The following question is due to F. Béguin:

vi



Question: let zy be a fixed point. Assume that the set of points = such that the asymp-
totic linking number of (xq, z) is not null has positive Lebesgue measure. Does the set of
points with non zero torsion have positive Lebesgue measure?

The link between torsion and linking number, i.e. Theorem D, together with Theorem A
in the framework of positive twist map, enables us to obtain results over linking number
of points for lifts of twist maps.

Corollary D. Let F : R? — R? be a lift of a positive twist map and let [ = (Fy); be
the isotopy joining the identity to F', obtained as a lift of an isotopy on A. Let zy, 2z €
R2, 2, # 25 be such that their linking number exists. Then
- 1

Linking(I, z1, z) € [—5,0} .
This result was already known by Le Calvez for periodic orbits and then, through the
C! closing Lemma, also for F-invariant measures, but our corollary generalizes it, holding
true for any couple of points for which the (asymptotic) linking number exists.
A similar argument holds also for lifts of negative-torsion (respectively positive-torsion)
maps, that is for any lift of a negative-torsion (respectively positive-torsion) map the link-

ing number of any couple of points (whenever it exists) is non positive (respectively non
negative).

We then consider conservative twist maps, that is
Definition. A twist map f is conservative if f*\ — X is an exact 1-form, where A = ydz.

In particular, a conservative twist map preserves the Lebesgue measure. Concerning points
with non zero torsion, in the framework of conservative twist maps, we show that bounded
instability regions have sets of positive Lebesgue measure where the torsion is not null.
In particular, in Chapter 3 we analyse the torsion of bounded connected components of
the complementary set of Z(f), where Z(f) denotes the union of all f-invariant essential
curves of A. We prove the following

Theorem E. Let f : A — A be a conservative (positive) twist map. Then any bounded
connected component of A\ Z(f) has a positive Lebesgue measure set of points of not zero
torsion.

More precisely, we discuss the two possible types of bounded connected components of
A\ Z(f). In particular, for a bounded essential subannulus we prove the following result.

Theorem F. Let f : A — A be a conservative twist map. Let U C A be a f-invariant
essential subannulus which is the interior of its closure and which is bounded. Then the
torsion is zero for almost every point in U if and only if fii is CO-integrable.

We say that fii is C%-integrable if there exists a partition of U into continuous essential

f-invariant curves. We wonder if a similar result could hold true in a different setting: the
following question is due to J.-P. Marco.
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Question: if the torsion is null on a dense Gj set, is the dynamics C°-integrable?

An analogous result can be obtained also for Tonelli Hamiltonian flows on T*T" as an
outcome of results in [CGIP03| and in [AABZ15].

The discussion for instability periodic disks largely relies on Green bundles techniques, as
presented in |Greb8| and [Arnl0).

We can then ask the following

Question: in bounded instability regions we always have not negligible (from a Lebesgue
measure point of view) sets of not zero torsion. Is it a feature of almost every point of
instability bounded regions? That is, is the set of points with non zero torsion of full
Lebesgue measure within instability regions?

Another question concerns unbounded instability regions.

Question: are there examples of an unbounded instability region for a conservative twist
map such that the torsion is zero at Lebesgue-almost every point of the region?

The notion of torsion is given through a limit. Through Ruelle’s result, we have already

remarked that the torsion exists at almost every point. It is so natural asking what about
points at which the torsion does not exist.
In Chapter 4, we consider a C' diffeomorphism f isotopic to the identity with hyperbolic
periodic points admitting transverse homoclinic intersections (on R? A or T?). We do
not ask that f is either conservative or a twist map or a negative-torsion map. We are
interested in the associated horseshoe.

Definition. Let f be a C! diffeomorphism. A horseshoe H is a uniformly hyperbolic set
for fN (for some N > 0) such that the dynamics of f~ on the horseshoe is conjugated to
a shift dynamics on {0, 1}%. The orbit of the horseshoe is vaz_ol FH(H).

After recalling the construction of the horsehsoe dynamics for transverse homoclinic points
of intersections, we prove that the torsion at points of the horseshoe can be calculated
from the symbolic dynamics associated to it.

Denote as (0;())icz the sequence in {0, 1}# associated to a point x in the horseshoe.

Theorem G. There exist a, A € R such that for any x in the horseshoe it holds!

{limit points of (Torsion,(f,))nen} = { limit points of (a + A—Zizl 51(‘%)) } .
n neN

Interesting outcomes follow when A # 0. In particular, we can deduce that:

(1) any value in [a,a + A] is realized as torsion of some points in the horseshoe. Refer-
ing to [HH86|, any irrational value within such an interval is the torsion value of
uncountable many disjoint Cantor sets. Moreover, for any « in [a,a + A] the set of
points of torsion value « is dense in the horseshoe;

1. In the notation of torsion we do not make explicit the choice of the tangent vector because the
asymptotic torsion does not depend on it and for lightening the notation.
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(7i) the set of points at which the torsion does not exist contains a dense Gy subset of
the horseshoe;

(#4i) any value in [a, a+ A] is the torsion of a f-invariant ergodic measure whose support
is contained in the orbit of the horseshoe.

Using multifractal analysis (see [Pes97| and [BS00]), we can prove that the set of points
of the horseshoe at which the torsion does not exist has positive Hausdorff dimension.

If fis C%, then the condition A # 0 is equivalent to the fact that a given finite time
torsion is cohomologous to a constant.

Due to a recent result of Buzzi, Crovisier and Sarig (see [BCS]), for a C* diffeomorphism
on A or on R? the existence of a transverse homoclinic point of intersection always implies
the existence of a horseshoe such that A # 0.

The presence of transverse homoclinic intersections leads to the discussion of the topo-
logical entropy of the system. Actually, we can deduce that for a C* diffeomorphism on
the bounded annulus or on the compact disc, by using Katok’s result in [Kat80|, if the
torsion exists everywhere then the topological entropy has to be null. A natural question
is thus the following.

Question: does the converse hold true? Can we characterise the positiveness of the topo-
logical entropy in terms of non existence of the torsion at some points?

Further natural questions concern the study of asymptotic Maslov index for (confor-
mally) symplectic dynamics in higher dimensions. For example, can we obtain results over
the Hausdorff dimension of zero torsion set in higher dimensions? What about asymptotic
Maslov index and horseshoes in higher dimensions?
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Introduction

Nous allons considérer un systéme dynamique symplectique lisse. Cette thése s’inté-
resse aux relations entre les propriétés du systéme dynamique et les possibles valeurs de
I'indice de Maslov asymptotique.

Grosso modo sur une surface, l'indice de Maslov asymptotique décrit comment les vec-
teurs “tournent” sous l'action du systéme dynamique différentiel (voir [BB13]).

En dimension supérieure, 'indice de Maslov asymptotique est défini dans le cadre sym-
plectique, par exemple pour des flots hamiltoniens et pour 'action sur des sous-espaces
lagrangiens (voir [CGIP03| et [AF08]).

Bien que la notion d’indice de Maslov ait été introduite par V. I. Arnold in [Arn67], la
définition d’indice de Maslov asymptotique est apparue pour la premiére fois dans le tra-
vail de D. Ruelle en [Rue85] en 1985.

Dans cette thése on s’intéresse a l'indice de Maslov asymptotique pour des difféomor-
phismes de surfaces. Plusieurs noms indiquent la méme notion : indice de Maslov asymp-
totique, nombre de rotation de Ruelle, torsion de Béguin et Boubaker,. .. Dorénavant, on
I’appellera torsion.

Soit S une surface riemannienne parallélisable (pas forcément compacte), ¢’est-a-dire
une surface riemannienne dont le fibré tangent est trivial. Par exemple, 'anneau A = T xR
(éventuellement avec un nombre fini de trous), le tore T?, le disque (éventuellement avec
un nombre fini de trous) sont des surfaces parallélisables. Par contre, ni la sphére S? ni
aucune surface compacte sans bord de genre g > 2 ne sont parallélisables. Soit f un
difféomorphisme de S de classe C! isotope a I'identité. Soit I = (f;);cr une isotopie sur
Diff 1(S) qui joint Idg & fi = f et telle que fi4, = f; o f. Le fibré tangent hérite de la
dynamique grace a la différentielle Df; : T'S — T'S. Fixons une métrique riemannienne
et une orientation sur S. Soit X : S — T'S un champ de vecteurs continu qui ne s’annule
jamais.

Soit x € S et v € TS\ {0}. On considére la fonction d’angle orienté continue

Ry 3t = o(l)(z,0,t) = 0(X(fi(x)), Dfi(z)v) € T,
ou f(u,v) est 'angle orienté entre les deux vecteurs non nuls u et v. Soit
Ry >t o(I)(x,v,t) €R

une détermination continue de la fonction d’angle orienté 6. Pour n € N la torsion au
temps fini n de (z,v) € T'S est

o(I)(z,v,n) —o(I)(z,v,0) .

Torsion, (I, x,v) =
n

La torsion de l'orbite de x, notée Torsion(/,x), est la limite

lim Torsion, (I, z,v),
n——+00
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lorsqu’elle existe. La torsion de 'orbite de x ne dépend pas ni du vecteur v € T,S ni
du point de l'orbite ou elle est calculée. De plus, lorsqu’elle existe, la torsion ne dépend
pas de la métrique riemannienne choisie (voir Proposition 1.1.4). La torsion ne dépend a
priori que du champ de vecteur X (voir Proposition 1.1.5).

Dans de nombreux cas, la torsion (déja en temps fini) est indépendante de l'isotopie
choisie I = (f;);, voir Remarque 1.1.3 et Proposition 1.3.2. Chaque fois que c’est le cas,
nous notons la torsion (la torsion en temps fini) comme Torsion(f, z) (Torsion, (f,z,v)).
Si 4 est une mesure de Borel f-invariante avec support compact, alors sa torsion est

Torsion (I, pn) = / Torsion (I, z) du(x).
S

Ruelle a montré que pour cette mesure p et pour presque tous les points, la torsion existe.

Donc, la torsion de p est bien définie.

Dorénavant, on fixe un champ de vecteur de référence X constant.

La notion de torsion des mesures a été étudiée par Gambaudo et Ghys en [GG97| pour des

difféomorphismes C* du disque 2-dimensionnel D?. Soit i une mesure borélienne de proba-

bilité de D%. Gambaudo et Ghys ont montré que la torsion de p est un quasi-morphisme

homogéne sur ’ensemble des difféomorphismes du disque qui sont l'identité proche du

bord OD? et préservent la mesure ;1 (voir Proposition 2.8 en [GGI7]). De plus, ils ont

aussi prouvé que la torsion est invariante par conjugaison topologique, en supposant que

les mesures sont sans atomes (vois Théoréme 2.11 en [GGIT]).

La notion de torsion des mesures f-invariantes a été discuté par Conejeros qui, dans sa

theése (voir [Conl5|), I’a comparé a sa notion de nombre de rotation fibré.

L’ensemble des points de torsion nulle est utile pour comprendre certaines caractéristiques
dynamiques.

Matsumoto et Nakayama (voir [MNO02]) montrent que pour tout difféomorphisme de classe
C>® f de T? isotope a l'identité, il existe une mesure de probabilité f-invariante p telle
que Torsion(f, ) = 0.

Pour des applications conservatives déviant la verticale de ’anneau, les ensembles de tor-
sion nulle, appelés ensembles d’Aubry-Mather, ont été étudiés par Mather (voir [Mat82a|
et [Mat91]) et par Angenent (voir [Ang88|) en utilisant une méthode variationelle.
Grace a un point de vue topologique en [Cro03|, Crovisier a obtenu des résultats pour
des applications non conservatives déviant la verticale. Il a montré que pour tout nombre
de rotation, il existe un ensemble d’Aubry-Mather de torsion nulle (voir Théoréme 1.2 en

[Cro03]).

Dans le chapitre 2 on introduit la notion d’application de torsion négative dans 1’an-
neau. On étudie 'ensemble de torsion nulle des applications de torsion négative. Sur
I’anneau, la torsion ne dépend pas de l'isotopie choisie (voir Proposition 1.3.2), donc nous
I’omettons dans la notation. Rappelons que nous considérons un champ de vecteur de
référence X constant.

Définition. Une application de torsion négative (positive) f : A — A est un difféomor-
phisme C! isotope a lidentité telle que pour tout z € A

Torsiony (f,z,x) <0 (>0),

ou x est le vecteur vertical (0,1).
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La notion d’application de torsion négative correspond a celle d’application tilt positive
(voir [Hu98] et [GZ04]). De plus, les applications de torsion négative peuvent étre définies
avec la notion de chemin positif/négatif présente en |[Her83] et |[LCS8S|.

Des exemples d’applications de torsion négative sont les applications déviant la verticale
a droite. Une application déviant la verticale a droite f : A — A est un difféomorphisme
C! isotope a lidentité telle que pour tout relevé F': R? — R? de f et pour tous z € R la
fonction

y = pro F(z,y)

est un difféomorphisme croissant de R, ot p; est la projection sur la premiére coordonnée.
L’intérét pour les applications déviant la verticale s’est développé en littérature (voir
[LCI1|, [Mat82a], [Mat91] et [Mos86]) et, comme mentionné ci-dessus, plusieurs auteurs
ont étudié leurs connections avec la notion de torsion.

Pour la propriété déviant la verticale de f, en chaque point I'image du vecteur vertical
par Df est dans le demi-plan & droite. En chaque point la torsion au temps 1 par rapport
au vecteur x = (0,1) est négative. Cette propriété a déja été remarquée en [Cro03| et
[LC91|. A vrai dire, cela donne une estimation plus précise.

Théoréme A. Soit f : A — A une application déviant la verticale a droite. Pour tout
z € A et pour toutn e Nyn#£0 on a

1
Torsion,(f, z,x) € <—§,O> .

Une conséquence immédiate est

Corollaire A. Soit f : A — A une application déviant la verticale a droite. Alors pour
tout z € A, quand elle est définie, on a

Torsion(f, z) € [—%,O} :

On montre que pour une application de torsion négative la dimension de Hausdorft de
I’ensemble des points de torsion nulle est supérieure ou égale a 1. Ce résultat vient du
théoréme suivant pour lequel on introduit la définition de courbe essentielle.

Définition. Une courbe essentielle v : T — A est un plongement de classe C° tel que
~(T) n’est pas homotope & un point.

Théoréme B. Soit f : A — A une application de torsion négative. Soit v : T — A une
courbe essentielle C*. Alors il existe au moins un point z € (T) tel que

Torsion(f,z) = 0.

Corollaire B. Soit f : A — A une application de torsion négative. Alors

dimy({z € A: Torsion(f,z) =0}) > 1.

xiil



Le méme résultat est valable pour des applications de torsion positive.

Question : peut-on donner des résultats plus précis sur la dimension de Hausdorff de
I’ensemble des points de torsion nulle ?

Comme sous-produit de la preuve du Théoréme B on obtient une version du théoréme de
Birkhoff pour des applications de torsion négative.

Théoréme C. Soit f: A — A une application de torsion négative (de torsion positive).
Soit v : T — A une courbe essentielle C' invariante par f et telle que f, est non errante.
Alors ~(T) est le graph d’une fonction lipschitzienne sur T.

Que peut-on dire des points de torsion non nulle? Béguin et Boubaker en [BB13] ont
donné des conditions pour assurer l'existence des orbites de torsion non nulle. Ils ont
montré que si f est un difféomorphisme du disque & support compact qui préserve 1’aire
(qui n’est pas I'identité), alors (f,D?) a une orbite de torsion non nulle (voir Théoréme A
in [BB13|). De plus, si f est un difféomorphisme de T? tel que son ensemble de nombre
de rotation a un intérieur non vide, alors (f, T?) a une orbite avec torsion non nulle (voir
Théoréme B en [BB13]). Dans leur travail, Béguin et Boubaker utilisent la relation entre
le nombre d’enlacement et la torsion des points dans le cadre du relevé.

Dans R?, pour tous z,y € R%, 2 # y le nombre d’enlacement de = et y est la vitesse
rotationnelle asymptotique du vecteur f;(y) — fi(x).

Dans le chapitre 1 on étudie le lien entre ces deux quantités pour un difféomorphisme C*
de R?. On considére la question suivante : pour une certaine isotopie et supposant que le
nombre d’enlacement des deux points x, y est non nul, existe-t-il au moins un point z sur
le segment qui joint x et y tel que sa torsion soit aussi non nulle ?

Rappelons que la torsion est calculée par rapport a un champ de vecteur de référence X
constant.

Théoréme D. Soit I = (f)icjo1) une isotopie dans Diff '(R?) qui joint Idg> & f1 = f.
Supposons qu’il existe deux points x,y € R?, x # y tels que

Linking,(I,z,y) =1 € R.
Alors il existe un point z € [x,y| tel que

Torsiony (I, z,y —x) = L.

En considérant les quantités asymptotiques, on montre le corollaire suivant.

Corollaire C. Soit I = (fi)icjo1] une isotopie dans Diff '(R?) qui joint Idgz & f; = f.
Supposons qu’il existe deux points x,y € R x # vy tels que

Linking(I,z,y) =1 € R.

Supposons que |, ey [ ([2,y]) est relativement compact ot [x,y] est le segment qui joint
les deux points. Alors il existe une mesure boréllienne de probabilité f-invariante u telle
que Torsion(I, ) = 1.
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La question suivante est due a F. Béguin :

Question : soit xy un point fixe. Supposons que I'’ensemble des points z tels que le
nombre d’enlacement asymptotique de (zg,x) est non nul, posséde une mesure de Le-
besgue positive. Est-ce que ’ensemble des points de torsion non nulle posséde une mesure
de Lebesgue positive ?

Le lien entre torsion et nombre d’enlacement, i.e. le théoréme D et le théoréme A dans
le cadre des applications déviant la verticale a droite, nous permet d’obtenir le résultat
suivant.

Corollaire D. Soit F' : R? — R? un relevé d’une application déviant la verticale ¢ droite
et soit I = (F}); une isotopie qui joint l'identité a F', obtenue comme relevé d’une isotopie
sur A. Soient 21, 2o € R?, 2y # 2o tels que leur nombre d’enlacement existe. Alors

1
Linking(I, z1, z5) € [—5,0] .

Ce résultat était déja connu par Le Calvez pour des orbites périodiques et donc, grace au
C! closing lemma, aussi connu pour des mesures F-invariantes. Notre corollaire est bien
une généralisation car il est valable pour tout couples de points pour lesquels le nombre
d’enlacement (asymptotique) existe.

Un résultat similaire est vrai pour des relevés d’applications de torsion négative (de tor-
sion positive), c¢’est-a-dire pour un relevé d’une application de torsion négative (positive)
le nombre d’enlacement de tout couple de points (ot il existe) est non positif (non negatif).

Nous considérons des applications déviant la verticale conservatives, c’est-a-dire

Définition. Une application déviant la verticale f est conservative si f*A — A\ est une
1-forme exacte ot A\ = ydzx.

En particulier, une application déviant la verticale conservative préserve la mesure de Le-
besgue. Concernant les points de torsion non nulle, dans le cadre des applications conser-
vatives déviant la verticale, on montre que les régions d’instabilité bornées ont un ensemble
de mesure de Lebesgue positive ol la torsion est non nulle.

Dans le chapitre 3 on étudie la torsion des composantes connexes bornées du complemen-
taire de Z(f), ot Z(f) est 'union de toutes les courbes essentielles f-invariantes sur A.

Théoréme E. Soit f : A — A une application déviant la verticale (a droite) conserva-
tive. Alors chaque composante connexe bornée de A\ 7 (f) a un ensemble de mesure de
Lebesgue positive de points de torsion non nulle.

Plus précisément, on discute les deux types de composantes connexes bornées possibles de
A\ .7 (f). En particulier, pour un sous-anneau essentiel borné on prouve le résultat suivant.

Théoréme F. Soit f : A — A une application déviant la verticale conservative. Soit
U C A un sous-anneau essentiel f-invariant qui est l'intérieur de son adhérence et qui

est borné. Alors la torsion est nulle presque partout sur U si et seulement si fiy est CO-
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intégrable.

On dit que fjy est C-intégrable s'il existe une partition de U en courbes essentielles
continues f-invariantes. Nous nous demandons si un résultat similaire est valable dans un
cadre différent. La question suivante est due a J.-P. Marco.

Question : si la torsion est nulle sur un ensemble G5 dense, est-ce que la dynamique est
CYintégrable ?

Un résultat similaire est valable pour des flots hamiltoniens Tonelli sur 7*T" comme
conséquence des résultats en [CGIP03] et [AABZ15].

La preuve pour des disques d’instabilité périodiques s’inspire des fibrés de Green (voir
[Gre58] et [Arnl0]).

Question : le Théoréme E affirme que dans toute région d’instabilité bornée, I’ensemble
des points de torsion non nulle est Lebesgue-non négligeable. Sa mesure de Lebesgue est-
elle égale a celle de toute la région d’instabilité bornée ?

Une autre question concerne les régions d’instabilité non bornées.

Question : y a-t-il des exemples de région d’instabilité non bornée pour une application
déviant la verticale conservative telle que la torsion est nulle pour Lebesgue-presque tout
point de la région ?

La notion de torsion est donnée par une limite. Grace au résultat de Ruelle, on a déja
remarqué que la torsion existe presque partout. Il est donc naturel de se demander ce
qu’on peut dire des points ou la torsion n’existe pas.

Dans le chapitre 4, on considére un diffeomorphisme f de classe C! isotope a l'identité
avec des points périodiques hyperboliques qui ont des intersections homoclines transverses
(sur R% A ou T?). On ne suppose pas que f est conservative ou une application de torsion
négative. Nous nous intéressons au fer a cheval associé.

Définition. Soit f un difféomorphisme de classe C!. Un fer a cheval H est un ensemble
uniformément hyperbolique pour f& (pour quelque N > 0) tel que la dynamique de fV
restreinte au fer a cheval est conjuguée a la dynamique du décalage sur {0, 1}Z. L’orbite
du fer a cheval est U~ fi(H).

Aprés avoir rappelé la construction d’un fer a cheval pour des points d’intersection ho-
mocline transverse, on montre comment calculer la torsion des points du fer & cheval en
utilisant la dynamique symbolique associée.

Notons (8;(7))iez la suite en {0, 1}Z associée au point z du fer a cheval.

Théoréme G. Il existe a, A € R tels que pour tout x dans le fer a cheval on a

s
{waleurs d’adhérence de (Torsion,(f,))nen} = { valeurs d’adhérence de (a + 5@) }
neN

Il y a des conséquences intéressantes quand A # 0. En particulier, on en déduit que :
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(1) chaque valeur en [a,a + A] est réalisée comme torsion de certains points du fer a
cheval. Grace a [HH86], chaque valeur irrationnelle de cet intervalle est la torsion
d’une famille non dénombrable d’ensembles de Cantor disjoints. En plus, pour tout
a € [a,a + A] 'ensemble des points de torsion « est dense dans le fer a cheval ;

(7i) D'ensemble des points ou la torsion n’existe pas contient un G5 dense du fer a cheval ;

(77i) chaque valeur dans [a, a4 A] est la torsion d’une mesure ergodique f-invariante dont
le support est contenu dans l'orbite du fer a cheval.

Gréce a 'analyse multifractale (voir [Pes97] et [BS00]), on peut montrer que l'ensemble
des points du fer a cheval ol la torsion n’existe pas, a une dimension de Hausdorff positive.
Si f est de classe C2, alors A = 0 mais si et seulement si une certaine torsion en temps
fini est cohomologue & une constante.

En utilisant un résultat récent de Buzzi, Crovisier et Sarig (voir [BCS]|), pour un difféo-
morphisme de classe C* de A ou de R? D'existence d’'un point d’intersection homocline
transverse implique toujours I'existence d’un fer a cheval tel que A # 0.

La présence des intersections homoclines transverses nous ameéne a parler de ’entropie
topologique du systéme. En fait, on peut montrer pour un difféomorphisme de classe C*°
de I'anneau borné ou du disque compact, grace a un résultat de Katok (voir [Kat80]), que
si la torsion existe partout alors I’entropie topologique est nulle.

Question : est-ce que 'inverse est vrai? Est-ce qu’on peut caractériser I’entropie topo-
logique positive par le fait qu’il y ait des points ot la torsion n’existe pas?

D’autres questions concernant 1’étude de l'indice de Maslov asymptotique pour des
dynamiques (conformément) symplectiques en dimension supérieure se posent. Peut-on
retrouver le résultat sur la dimension d’Hausdorff en dimension supérieure ? Que peut-on
dire de I'indice de Maslov asymptotique des fers a cheval en dimension supérieure ?
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Chapter 1

Torsion and linking number

Denote as T the quotient space R/Z and as
p:R—T

Tz +— x mod 1

the universal covering of the 1-dimensional torus T.
We use the notation A for the product space T x R and

pxId:R? = A

(z,y) — (z mod 1,y)

for the universal covering of the annulus A. In the case of some possible ambiguity, a point
of the annulus is denoted by z = (7,y) € A, while z = (z,y) € R? refers to a lift of z over
R2.
The functions

m:A—-T, (Z,y)—7T (1.1)

P A—=R, (Z,y)—y (1.2)

are the projections over the first and the second coordinates, respectively; the coordinate
projections of R? are denoted as py, po.
The 2-dimensional torus is the quotient space

T? := R?/7Z°.

All along the work, the counterclockwise orientation of the plane is chosen.

Once provided a Riemannian metric! and an orientation, the oriented angle between two
non-zero vectors u,v € R? is well defined as an element of T. A measure of the angle is
an element of R whose image through p coincides with the oriented angle.

The notation R(a, ) refers to the rotation of the plane R? of center a € R? and angle 1),
while 7, denotes the translation on the plane by the vector v € R2.

A fundamental notion will be that of isotopy:

Definition 1.0.1. Let M, N be differential manifolds and let f,g : M — N be in
Diff '(M, N).

An isotopy (¥1)iejo,y) joining f to g is an arc in Diff '(M, N) such that 1 = f,7; = g and
which is continuous with respect to the weak or compact-open C* topology on Diff * (M, N).

1. If not specified we are endowing R? with the standard Riemannian metric.



Definition 1.0.2. Let I C R be an interval. A continuous determination of an angle
function ¢ : I — T is a continuous lift of ¢, i.e. a continuous function ¢ : I — R such that
6(s) is a measure of the oriented angle 6(s) for any s € I.

We remark that a necessary and sufficient condition for the existence of a continuous
determination is the continuity of its angle function.

1.1 Definition of torsion and first properties

Let S be a connected Riemannian parallelizable surface, i.e. a connected Riemannian sur-
face whose tangent bundle is trivial. Denote as T'S, the set {(z,£) : z € S, £ € T,,S\{0}}.
We fix an orientation and we endow S with a Riemannian metric: the notion of oriented
angle between two non zero vectors of the same tangent space is well-defined. The nota-
tion TS refers to the unitary tangent bundle.

Remark 1.1.1. The choice of an orientation and of a reference continuous vector field X
over S that never vanishes is equivalent to that of a trivialization diffeomorphism. Indeed,
on every tangent space we define the endomorphism J

J: T, —1T,5

as a rotation of angle %1 according to the fixed orientation. It holds that J? = —Id.
For any z € S, (X (x), JX(x)) provides a direct basis of the tangent space. A trivialization
diffeomorphism is so given by

TS 5 (z;aX(z) + 8IX (2)) 5 (20, B) € S x R
where a, f € R are the coordinates with respect to the basis (X (z), JX(x)).

Let I = (fi)tepo1] be an isotopy joining the identity to f; = f. We then extend the
isotopy for any positive time in the following way: let ¢ € R, then the C! diffeomorphism
ft +S — S is defined as

fi = f{t} ° thJ

where {-}, |-] denote the fractionary and integer part of ¢, respectively.

Notation 1.1.1. With an abuse of notation, we also denote the extended isotopy as

I= (ft)t-

In addition, we fix a reference vector field X that never vanishes (see Remark 1.1.1).
Suppose that X (z) has unitary norm for any x € S. We will make explicit the choice of
X when needed. We recall the notation §(u,v) for the oriented angle between two non
zero vectors v and u.

Our definition of torsion, the one given by Béguin and Boubaker in [BB13], actually co-
incides with Ruelle’s notion of rotation number (see |Rue85|).

Definition 1.1.1. Let S be a parallelizable surface and let I = ( f¢):cj0,1) be an isotopy in
Diff !(S) joining the identity Idg to fi = f. Then, we define the function v(I) as follows:

v(l): TS, xR —T
(z,€,t) = 0 (X (fi(2)), Dfi(x)E) .

2

(1.3)



Fix then (z,£) € T'S, and, since the angle function v(/)(z,&,+) is continuous, consider a
continuous determination 9(/)(z,&,-) : R — R of it.

Definition 1.1.2. Let S and f be as above. Let x € S and £ € T,S \ {0}. Consider
v(I)(x,&,-) and 0(1)(z,&,-) as in Definition 1.1.1. Then, for any n € N, n # 0 the torsion
at finite time n is

Torsion,, (I, x,§) := % (o(I)(x,&n) —o(I))(x,&,0)). (1.4)

Definition 1.1.3. Let S and f be as above. Let x € S. Assume that the quantity
Torsion,, (I, x, ) converges as n — +oo for some £ € T,.S \ {0}. The torsion of the orbit
of x is then

Torsion ([, x) := nl_l)gloo Torsion,, (I, z, §). (1.5)
Whenever the limit exists, the previous quantity does not depend on the chosen lift of
the angle function (see Proposition 1.1.1) or on the non zero vector of the tangent space
(see Proposition 1.1.3). Moreover, it does not depend on the point of the orbit at which
we calculate it.

Definition 1.1.4. Let S and f be as above. Let pu be an f-invariant Borel probability
measure on S. Assume that g or I = (f;); has compact support?. Then, the torsion of
the measure p is

Torsion (I, ) := /Torsion([,x)d,u(x). (1.6)
s
Remark 1.1.2. This integral is well defined. Indeed
Torsion(I,z) = lim Torsion, (I, z,§)
n—+400

and

Torsion, (I, z,§) = ZTorsmnl (I, f(z), Df'(x)§) =

= —ZTorsmnl ,5y) o fz(iv £)

where we set

f. 'S - TS
(£.6) (f( ) Df(x)¢ ) (1.7)

IDf(x)E]l

Lift u to p,, a f.-invariant Borel probability measure on T1S as follows. Denote as Leb
the normalized Lebesgue measure on S'. Define for n € N

2. By asking that I = (f;); has compact support, we demand that for any ¢ € [0, 1] the support of f;
is in a compact set, independent of t.



Each 7, is a probability measure on T1S whose projection on S is y. By the compact
hypothesis on the support of 4 or of the isotopy, we can extract a subsequence (7, )ren
converging to ji,. Then pu, is a f,-invariant Borel probability measure on TS,
Notice that

Torsion (I, -,-) € L*(j.)

thanks to the assumption on the support of u or of I = (f;);. We deduce by Birkhoff’s
Ergodic Theorem that the function Torsion([,-) is defined p-a.e. and in L'(p).

The following propositions highlight some interesting properties of torsion concerning
the choice of the continuous determination, of the tangent vector and of the isotopy.

Proposition 1.1.1. For any (x,§) € TS, the quantities
Torsion, (I, x,§) VYneNn#0

Torsion(I,x) = lilf Torsion,(I,x,§) when it exists
n—-+0oo

do not depend on the choice of the continuous determination of the angle function v(I)(z,&,-).
Let I' = (g¢): be another isotopy joining the identity to f. There exists an integer k € 7
independent of x € S and £ € TS \ {0} so that

Torsion,(I,x,&) = Torsion,(I',x,&) + k VYneNn#£0
Torsion(I,x) = Torsion(I',x) + k.

The proof is an immediate consequence of the continuity of the involved functions and
the property of f of being isotopic to the identity.

Remark 1.1.3. In many cases the torsion (already at finite time) does not depend on the
chosen isotopy. If S = R? and f has compact support, up to consider compact-supported
isotopies, the torsion does not depend on the chosen I = (f;);, see Remark 1.3.2 or
[BB13]. Actually, it is an outcome of the fact that the group of C' diffeomorphisms of
R? homotopic to the identity with compact support is simply connected, see [Sma59],
[Hir76] and [Kupl19]. Also if S = T? or S = A, then the torsion is independent from
the chosen isotopy (see [BB13| or Proposition 1.3.2 and Remark 1.3.1). In the framework
of C* diffeomorphisms, if S is a compact connected Riemannian parallelizable surface,
eventually with boundary, which is neither the disk nor the bounded annulus nor the
torus, then the torsion does not depend on the chosen isotopy. This is an outcome of
Gramain’s results in [Gra73|. With these hypothesis the group of C* diffeomorphisms
that are homotopic to the identity is contractible. Therefore there is only one homotopy
class of isotopies.

Proposition 1.1.2. Fiz x € S and define the following functions
II:R—T,S
s+ cos(2ms) X (x) + sin(27s) J X (x) (1.8)
and
wl,z) :RxR—T
(s,t) = 0 (X(fi(2)), D fe(x)IL(s)) .

Then, there exists a unique continuous determination of w(I,x), denoted as W : R xR —
R, such that W(0,0) = 0. Moreover

(1.9)



(1) W(-,0) = Idg(-).
(13) For any t € R, W(-,t) is an increasing homeomorphism of R.
(i17) For any s,t € R, W(s+ 3,t) = W(s,t) + 1.
Proof. By the continuity of the isotopy with respect to the compact-open C!' topology,

the function w([l,x) is continuous. There is a unique continuous determination W such
that W (0,0) = 0, since by fixing the value of W in a point we are selecting the lift.

RxR

\/

Notice that

W(,0):R - R
s+ W(s,0)
isalift of R > s— w(l,z)(s,0) = 0(X(z),I1(s)) = p(s). Since W(0,0) = 0, W(-,0) is the

identity of R.
Let us introduce the following function

n:T—1T,S

€ — cos(2m&) X (x) + sin(27€) J X ().

For any fixed ¢ € R, the function W (-,¢) : R — R is a continuous lift of the angle function

m(-,t): T—T
§—0 (X(ft($)), th($)ﬁ(f)) .

As D f;(x) is linear and preserves the orientation, m(-,t) is an orientation preserving circle
homeomorphism such that m(& + %, t)y =m(&, )+ % Hence, its lift W (-, ) is an increasing
homeomorphism of R.

The functions (s,t) — W(s,t) + 3 and (s,t) — W(s +
m(s,t) + 3 that coincide for (s,t) = (0,0), hence W (s + 3
commutes with the translation of % for any t € R.

,t) are two lifts of (s,t) —
t) = W(s,t) + 3, i.e. W(,t)

4+ 1
27
)

0
From Proposition 1.1.2 we deduce the following

Lemma 1.1.1. Let f : S — S be a C' diffeomorphism isotopic to the identity. Let v € S
and &1,& € TS\ {0}. Let v(I)(x, &, -),0(1)(x, &, ) be continuous determinations of the
angle functions v(I)(x, &, ), v(I)(x, &, -), respectively.
If

6(I>("E7 517 O) > @(I)(ZL’, 527 0)7

then for any t € R

3(I)(z,€1,1) > 0(1)(x, &, ).



Proof. The definitions of o(/)(z, &, ) and (1) (z, s, -) only depend on the vector direc-
tions. Consequently, we consider TS, the set of unitary tangent vectors at z, and assume
&1, & are vectors of unitary norms.

Consider the function II defined in (1.8) and the oriented angle function w(I,z) de-
fined in (1.9) in Proposition 1.1.2. Observe that for any s,t € R we have w(/,x)(s,t) =
v(I)(x,I1(s),t). Let W : R x R — R be the continuous determination of w(/, x) given by
Proposition 1.1.2.

Let s1,$2 € R be such that I1(s;) = &, (s2) = & and

0(I)(2,&,0) =51 and o(I)(x,&,0) = so.

The continuous functions t — o(I)(z,&,t) and t — W(sy,t) are equal because they are
lifts of the same angle function and coincide at ¢ = 0 from point (i) of Proposition 1.1.2.
Similarly, the continuous functions ¢t +— o([)(z, &2, t) and t — W (sa,t) coincide. From
point (iz) of Proposition 1.1.2, since by hypothesis

B(1)(,61,0) = 51 > 53 = 9(1) (2,62, 0)
and since
W(s1,0) =0(I)(2,&,0)  and  W(s3,0) =0(I)(x,&,0),
we conclude that for any ¢ € R it holds
W) (2, &0, t) = W(s1,t) > W(sa,t) = 6(I)(x, &2, 1).
]

Proposition 1.1.3. Let x € S. Assume that for some & € T,S \ {0} the quantity
Torsion,(I,x,&) converges as n — +oo. Then, the torsion of the orbit of x does not
depend on the choice of the tangent vector. In other words, for any vector § € T,S \ {0}
it holds
Torsion(I,x) = lim Torsion,(I,x,&) = lim Torsion,(I,z,J).
n——+00 n——+00
Proof. Consider &,6 € T,,5\ {0} and assume that lim,,, -, Torsion, (1, x, &) exists. Then,
we are going to prove that also lim,,, ., Torsion, (1, x,d) exists and it coincides with the
previous one.
The result easily follows once we prove that
lim |Torsion, (I, z,£) — Torsion, (I, z,d)| = 0.

n—-+o0o

Lemma 1.1.2. Fizx € S. Forn € N;n # 0 and for £,§ € T,,S \ {0} it holds

1
| Torsion, (I, x,&) — Torsion, (I, x,0)| < o (1.10)
n

Proof. The quantity
| Torsion,, (I, x, &) — Torsion, (I, z, )|

can be written as

@)@, n) = o(I)(2,0,n)) = (0(I)(2,&,0) = 5(I)(x,4,0))|.



These quantities do not depend on the chosen determination of the angle function v.
Concerning the relative position of the vectors &, d, four cases can occur:

=k if £, 0 are positively colinear

= % +k if £, are negatively colinear

€ (0, %) + k if (£,9) is a direct basis

e (1) +k if (¢,6) is an indirect basis.

17(])(1’,570) - 6([>(ZE757 0)

At any time, the same four cases can occur and

=k if £, 0 are positively colinear

=14k if £, 6 are negatively colinear

. - =3
oD@, &1) = oD@, 0,8) | (0,1) +k  if (¢,6) is a direct basis

€ (3,1)+k  if (£0) is an indirect basis,
where the integer k € Z is the same for any ¢.
This holds in particular for ¢ = n and, checking all the possible cases, we obtain

(0w m) — (1) ,8,1)) — (1) (,€,0) = 8(1)(,8,0))| < o=

[l
From Lemma 1.1.2 we conclude since
1
0 < lim |Torsion, (I, x,&) — Torsion,(I,z,8)| < lim — = 0.
_n_lglool orsion,, (I, x, &) — Torsion, (1, z, )| Jm o
[l

We discuss now the independence of the torsion from the choice of the Riemannian
metric.

Notation 1.1.2. Fix an orientation of S and a reference continuous vector field X : § —
T'S which never vanishes.
Let g be a Riemannian metric on S and on every tangent space denote as

Jy(z) : T, = T,S

the rotation of angle }l with respect to the given Riemannian metric.
For any « € S, denote as Torsion(g)(/,x) (Torsion,(g)(I,z,€)) the torsion at x for I =
(fi)¢ (the n finite-time torsion at (x,&) for I = (f;);) with respect to the metric g.

Proposition 1.1.4. Let gy, g2 be two Riemannian metrics on S. Let x € S and assume
that Torsion(gy)(I,x) exists. Then

Torsion(g1)(I,x) = Torsion(gs) (I, x).
The proof of Proposition 1.1.4 follows immediately from the following

Lemma 1.1.3. Let g1, 92 be two Riemannian metrics on S. For any (x,§) € TS, # 0
we have for any n € N*

1
| Torsion, (g1)(1, x, &) — Torsion,(g2) (I, z,§)| < —.
n



Proof of Lemma 1.1.3. Fix (z,£) € T'S,& # 0. For any t € R consider the basis of vectors

(X(fi(2)), Jo X (fe(2))) and (X (fu(2)), Jo, X (fi(2))).

Denote J, X (fi(z)) = a(t) X (fi(z)) + B(t)J,, X (fi(z)). For any t € R, the value 5(t) is
positive because the two basis determine the same orientation. Consider now

Dfi(x)€ = ur (1) X (fi(x)) + ua(t) Jg, X (fi(2)) = 021(0) X (fe(2)) + v2(t) Jg, X (fe()),
that is express the vector D f;(z)¢ in the two highlighted basis. In particular

ur(t) = v1(t) + vo(t)ax(t),

us(t) = va () B(t). (1.11)

The oriented angle between X (f;(x)) and D f;(x)§ with respect to the metric g; is
0(t) = arg(ua (t) + iua(t)),

while the oriented angle between X (f;(x)) and D f;(x)¢ with respect to the metric go is
O(t) = arg(vy(t) + tva(t)).

Let R, 3t~ 0(t) € R be the lift of the oriented angle function R, 3 ¢ — 6(t) € T such
that 6(0) € ( -3, %] Let R, 3¢ — O(t) € R be the lift of the oriented angle function

R, >t O(t) € T such that ©(0) € (— 3 %}
Observe that for any n € N* it holds

n Torsion, (g1)(I,z, &) = 6(n) — 6(0)

and
n Torsion,, (¢2)(I, z, &) = ©(n) — 6(0).

Let us discuss the possible cases.

(i) Assume that §(0) = 0. That is, & = X (z). Consequently, we also have 0(0) = 0.

C
From a similar argument we deduce that 6(0) = 1 if and only if 0(0) = 1, because

§ = —X(fi(z)).

(17) Assume that 0(0) € (0,1), that is (X (z), &) determines a positive orientation. Then,
since the two basis determine the same orientation, also ©(0) € (0,1). From a similar
argument we deduce that 6(0) € (—3,0) if and only if 0(0) € (—3.0).

In particular, it holds

)é(O) - 6(0)‘ < (1.12)

N | —

Claim 1.1.1. For the choice of the lifts such that (1.12) holds, for any ¢t € R, we have

N | =

a(t) — é(t)( <

8



treated similarly. Recall that

Dfi()€ = wi() X (fi()) + ua(t) Jo, X (fi(2)) = 02 () X (fi(2)) + v2(8) Jg, X (fi())

and
wy (t) + dug(t) = r(t) ™0 and vy (t) + ivy(t) = R(t) 2O,
where r(t), R(t) > 0. From the absurd hypothesis and from (1.11) we have
5 .5 t 5 R(t
vy (t)+ivy(t) = R(t) ¥ = _R(t) ™0 = _E®) r(t) 2t — _E{Y) (ur(t) +ius(t)) =

r(t) r(t)

= =B 0+ (000 + iva0)3(0)
Equivalently
o) = — D 080 and 01(8) = =0 (5 (0) + va()a(t)

r(t) r(t)

Since r(t), R(t) and f(t) are all positive, we deduce that vy(¢) = 0 and we obtain v, (t) =

—R(t)vl t), which is the required contradiction.
r(t)

[
We then conclude because
|n Torsion,, (¢g1)(1, x, &) — n Torsion, (g2) (I, z,£)| <
< |ém) - &(m)| + [d(0) - B(0)| < 1.
[

Let us discuss now the dependance from the choice of the trivialization. Recall that a
trivialization on a parallelizable surface S is a diffeomorphism ¢ : T'S — S x R? which
allows us to fix a coordinate system on the tangent bundle.

Definition 1.1.5. Let ¢1, 9o be two trivializations. The two trivializations ¢1, ¢s are
homotopic if there exists an homotopy (H¢).ejo,1) such that Hy = ¢y, H; = ¢ and H; is a
trivialization for any ¢ € [0, 1].

Fact 1.1.1. Let ¢1,po be two homotopic trivializations. For i = 1,2 denote as X; the

vector field such that X;(z) = ¢;*(2;1,0) for any x € S. Then for any loop v : [0,1] — S,
~v(0) = ~(1) it holds that

02 (7(1)), X2(v(1)) = 8(X1((0)), Xa(7(0)) = 0,

where 0 is a continuous determination of the oriented angle function
[0,1] 5 ¢ = 0(X1(~(1)), Xa(y(t)) € T.

9



Proposition 1.1.5. Let f : S — S be a C' diffeomorphism isotopic to the identity. Let
I = (fi): be an isotopy joining the identity to f. Assume that I = (f;); has compact
support. Denote as Torsion(pr)(1,+), Torsion(ps)(1,-) the torsion of I = (f;); with respect
to the trivializations ¢y, ¢o respectively. Let x € S and assume that Torsion(¢y)(I,x)
exists. If the trivializations ¢1, g2 are homotopic, then

Torsion(¢p1)(1,x) = Torsion(¢2)(I, ).

Proof. Fix 0 < ¢ < 1. For « € Supp((f;):) = Supp(I) consider a neighborhood U, of =
such that for any y € U, it holds that

0(X1(x), Xa(z)) — 0(X1(y), Xa(y)) € T

admits a measure in (—%, %)

Since Supp(l) is compact by hypothesis, we can extract a finite open covering of such
neighborhoods

Consider then y € Supp(l). Let v € T,,S,v # 0. Recall that the torsion does not depend
on the choice of the tangent vector (see Proposition 1.1.3). Look now at the oriented angle
function

Ry >t = 0(X1(fi(y), Dfi(y)v) — 0(Xa(fi(y)), Dfi(y)v) = 0(X1(fily)), Xa(fi(y))) € T.

Let t — 0(X1(f,(y)), X2(f:(y)) be a continuous determination of such angle function. Fix
n € N. Then
|n Torsion,,(X1) (I, y,v) — n Torsion, (Xs) (I, y,v)| =

= 100X (" (1)), Xa (" (1)) = 6(X1 (1), Xa(y))]- (1.13)

Since the cover |JY, U,, is finite, there exist i € [1, N] such that f(y), f"2(y) € U,.
for some ji, jo € [1, N].

Consider then the loop [ obtained by concatenating (f:(v))icfj; n—j») and a path v from
Y(0) = f*2(y) to y(1) = f"'(y) contained in U,..

Since the trivializations determined by X, X5 are homotopic, the variation of the angle
between X; and X, along the loop [ is null (see Fact 1.1.1). Such angle variation is

(A2 (), Xa ("2 () = B (P (), Ko F () +

+ (81 (1(1)), X2(1(1))) = (X1 (1(0)), X>(7(0)))

Since the path + is contained in U,. and since for any = € U,. we have that 6(X; (z;), Xa(2;))—

0(X:1(z), X2(z)) admits a measure in (—£, £), we deduce that

B0 (1)), Xa(5(1))) = O(X1(3(0)), Xa(7(0))] =

= |0(X1(3(1)), Xa(v(1))) =0(X1 (7)), Xo(23) +0( X0 (7), Xo (7)) —0(X1 (7(0)), Xa2(+(0)))| <
<eE.

10



Consequently

‘ ((n — ja) Torsion,,_;, (X1)(I,y,v) — j1 Torsion;, (X1)({,y,v)) —

— ((n — j2) Torsion,,_;, (X2)({,y,v) — j1 Torsion;, (X2)(I,y,v)) ‘ =

= B0 0). Xl 2 0) - OGP W) Xl P )| <= (L)
Thus, from (1.13), we have that

|n Torsion,, (X1)(I,y,v) — n Torsion, (Xs) (I, y,v)| <

< [0 (7 @), X2 () = B (2 (), X7 () |+
+|1 Torsion;, (X1)(1,y,v) — ji Torsion;, (Xo)(L,y,v)|+
+‘32 TOI‘SiOIljZ (X1>([7 fnij2 (y)7 l)fnij2 (y)v> - j2 TOI‘SiOHj2 (XQ)(L fnih (y)v Dfnih (y)U) ‘ .

Since I = (f;); has compact support by hypothesis and since ji,jo < N, we have that
there exists a constant C' > 0 such that

|71 Torsion;, (X1)({,y,v) — 71 Torsion;, (X2)(I,y,v)| < C
and
|j2 Torsiong, (X1)(I, f"72(y), Df" 7 (y)v) — jy Torsion, (Xo2) (I, f*72(y), Df”*jg(y)v)| <C.
Consequently, from (1.14) we deduce that

2C
I Torsion,, (X1 )(I, y,v) — Torsion,(Xa) (I, y,v)| < = + ==
non
Passing to the limit for n — 400 we deduce that the limit lim,,, ., Torsion,, (X;)(/,y, v)

exists if and only if the limit lim,, ., Torsion, (X3)(/,y, v) exists and in particular
Torsion(X1)(1,y) = Torsion(Xs)(1,y).

The argument can be repeated for any y € Supp(I) and we conclude.
m

Proposition 1.1.5 enables us to give some conditions to assure invariance of the torsion
for C! conjugacy.
Let us fix a Riemannian metric, an orientation and a never vanishing vector field X.

Proposition 1.1.6. Let f : S — S be a C' diffeomorphism isotopic to the identity. Let
I = (f;): be an isotopy joining the identity to f with compact support. Let h : S — S be
a Ct diffeomorphism with compact support such that the trivializations ¢y, ¢y so that for
any x € S

¢1'(2:1,0) = (z, Dh(z)X(x))  and ;' (2;1,0) = (2, X (h(x)))

are homotopic. Denote as H = (ho fyoh™'); the isotopy joining the identity to ho foh™".
Let x € S and assume that Torsion(I,z) exists. Then:

11



(1) Torsion(I,x) = Torsion(H,h(x)), if h is orientation preserving;
(13) Torsion(I,z) = — Torsion(H, h(z)) if h is orientation reversing.

Proof. Let x € Supp(I) and let v € T,S,v # 0. Denote as Ry 3 ¢ — 6(t) € R a continuous
determination of the oriented angle function

R, >t O(X(fi(z)), Dfs(zx)v) € T. (1.15)

(¢) If h is orientation preserving there exists a continuous determination Ry > t
O(t) € R of the oriented angle function

Ry >t = 0(Dh(fi(x)) X (fi(x)), Dh(fi(x)) D fi(x)v) € T (1.16)

such that for any ¢t € R, it holds

We refer to Proposition 1.4.1 and Appendix 1.6 for a detailed proof of the last
statement.
Consequently, for any n € N it holds

n Torsionn (I, z,v) — (é(n> - é(O))‘ - ](e(n) - é(o>) - <@(n) - ém))‘ <1.

Equivalently, Torsion(/,z) exists if and only if the limit lim, w exists
and in particular
Torsion(/,z) = lim w (1.17)
n—-+0o0o n

(43) If h is orientation reversing there exists a continuous determination R, > ¢
O©(t) € R of the oriented angle function

Ry >t = 0(Dh(fi(x)) X (fi(2)), Dh(fu(2)) D fi(x)v) € T

such that for any ¢t € R, it holds
< —-.

For the proof of this last inequality we refer to Proposition 1.6.1 in Appendix 1.6.
Consequently, for any n € N it holds

n Torsion, (I, ¢, v) + (é(n) - 6(0)) ‘ - ] (e(n) - 5(0)) + (@(n) - é<0)) ‘ <1.

Thus, Torsion(7, z) exists if and only if the limit lim,, @(n);(:)(O) exists and
Torsion(/,z) = — lim w (1.18)
n—-+oo n
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We can so calculate the variation of the angle function

t = O(Dh(fi(2)) X (fi(2)), Dh(fi(2))D fi(x)v). (1.19)

Denote as y = h(z),£ = Dh(z)v. Then the angle function in (1.19) is

t = O(Dh(f, o h™ ()X (fi o h™(y)), D(ho fr o h™)(y)€).

By hypothesis the trivializations determined by DhX and X o h are homotopic and f, h
have compact support. Arguing as in Proposition 1.1.5 we can show that, whenever the
limit exists,

lim 6(n) — 6(0) = lim Torsion,(H,y,¢), (1.20)

n—-+oo n n—-+oo

where H = (ho f; o h™'),. Indeed, let us fix n € N. It holds

‘((:)(n) — é(())) — n Torsion, (H,y,£)| =

= [(Dh(f" o b= ()X (f" o h™H(y)), X (ho [* o h™ (y))) = b(DA(h™ ()X (k™ (1)), X (),

where ¢ denotes a continuous determination of the oriented angle function

t = O(Dh(feo K™ (y)) X (feo h™ (), X(ho froh™ (y))).

Since Supp(l) U Supp(h) is compact, we can proceed as in the proof of Proposition 1.1.5.
Follow the path f; o h=!(y) for ¢ € [0,n] and then close it up in a suitable way. By the
fact that the involved trivializations are homotopic (see Definition 1.1.5 and Fact 1.1.1),
passing to the limit for n — 400 we derive then equality (1.20).

Finally, from (1.17), (1.18) and (1.20), we conclude that

Torsion(H, h(zx)) if h is orientation preserving,
Torsion (I, z,v) =

—Torsion(H, h(z)) if h is orientation reversing.

]

Remark 1.1.4. The following remark is due to P. Le Calvez. In the sequel we largely
refer to [Schb7].
Let S be a connected parallelizable Riemannian surface. Any continuous function ¢ :
TS, — T determines a cohomology class « € H'(T'S,,Z) as follows. Recall that (see
for example [God71| or [Hat02]) the first cohomology group H'(T'S,,Z) is isomorphic to
Hom(H,(T'S,),Z) which is isomorphic to Hom(m(7'S,), Z).
Think so at « as the following homomorphism on the first fundamental group of T'S,. Let
~ be a loop in T'S, and let [y] € m1(T'S,) be its homotopic class. Let F : [0,1] — R be a
continuous lift of

[0,1] 5t ¢or(t) €T.

Then o([y]) = F(1) — F(0) € Z. Observe that it does not depend on the choice of the
element v in the homotopic class [v].
Two continuous functions ¢, ¢’ of T'S, in T are cohomologous if ¢ — ¢’ : T'S, — T admits
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a real-valued continuous lift. If two functions ¢, ¢’ are homotopic then they are also co-
homologous (see [GodT71]).

Let us come back to the framework of the torsion. Given a Riemannian metric g on S
and a non singular vector field X on S, we define a continuous function

¢g,X : TS* — T

(2, 6) = 6,(X (), €),

where 6,(u,v) is the oriented angle (with respect to the metric g) between the non-zero
vectors u and v. Remark that if ¢, ¢’ are Riemannian metric on S and if X, X’ are homo-
topic non singular vector fields on S, then ¢, x and ¢4 x+ are homotopic and, consequently,
cohomologous.

Let f:S — S be a C* diffeomorphism isotopic to the identity and let I = (f;);er, be an
isotopy joining Idg to f. Assume that [ has compact support and denote Z the support
of the isotopy.

Let ¢4 x, ¢4 x be cohomologous. Denote the torsion calculated with respect to ¢, x as
Torsion(g, X') and with respect to ¢4 x/ as Torsion(¢’, X’). Then, whenever the torsion
exists, Torsion(g, X)(/,x) and Torsion(g¢’, X")(I, x) will be the same. Indeed, the contin-
uous function ¢, x — ¢4 x» has a real-valued continuous lift F : TZ, — R. In particular,
F is bounded. Consequently

1
| Torsion(g, X)(I,z) — Torsion(¢’, X")(I,z)| = hrf —|F(f"(x), Df"(x))—F(x,&)| =0.
n—+oo N
For a deeper discussion, we recall that we have shown that the torsion does not depend
on the Riemannian metric g on S (see Proposition 1.1.4). Proposition 1.1.5 shows that,
for compact-supported isotopies, the torsion depends only on the homotopy class of the
non singular vector field X.

If we drop the compactness assumption, then the torsion does not depend only on the
cohomology class of the function ¢, x, as shown by the next example.
Let f: R?* — R? be (z,y) — f(z,y) = (z,y + 1) and consider the isotopy I = (f;)ier,
such that for any ¢ it holds f;(z,y) = (x,y +t). Fix the standard Riemannian metric and
the standard orientation. Let X;(z,y) = (1,0) and Xs(z,y) = (cos(27my), sin(27y)). Then

¢X1 : TIRQ — T’ ((l’,y),f) = 0((1’0)75)

and
¢x, 1 T'R* = T, ((x,y),&) = 0((cos(2my), sin(27y)), )

are cohomologous, but for any (z,y) € R? the torsion calculated with respect to X; at
(z,y) is null, while the torsion with respect to X; at (z,y) is —1.

In the sequel we will be interested also in non compact-supported isotopies.

Finally, we remark that on T? the torsion depends only on the cohomology class associated
to ¢g.x. On T? the choice of the standard trivialization corresponds to the choice of the
cohomology class (0,d¢), where we denote as ((z,y),£) a point in T'T?, where we are
identifying T'T? with T? x S*.
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1.2 Notion of linking number

In the setting of R? we refer to [BB13] to introduce the notion of linking number.

Notation 1.2.1. The counterclockwise orientation of R? is considered. Moreover, we fix
the constant vector field X = (1,0) and we denote it as H.

Definition 1.2.1. Let I = (F,); be an isotopy in Diff '(R?) joining the identity to F} = F.
Let us denote A := {(21, 29) € R*: 21 = 25} and define the function

u(l) :(R*\ A) xR — T

(21, 20,1) = 0 (H, Fy(22) — Fy(21)). (1.21)

Fix (21, 22) € R*\ A and consider @(7)(z1, 22,+) : R = R, a continuous determination of
the angle function u(7)(z1, 22, -).
For any n € N,n # 0, the linking number of z; and zy at finite time n is

1
Linking,, (1, z1, 22) := — (@(I) (21, 22, n) — @(L)(z1, 22,0)) . (1.22)
n
The linking number of z1 and zy is
Linking(/, z1, 22) :== lim Linking, (1, 21, 22) (1.23)

n—-+4oo
whenever the limit exists.

Remark 1.2.1. Let F' be as in Definition 1.2.1. Let 1 be a F-invariant Borel probability
measure on R? with compact support. Then, for p-almost every z € R2, the linking
number Linking(/, z,y) exists for u-almost every y € R?\ {z}. Indeed

n—1
1 . .
Linking ([ = lim — » Linking, (I, F'(x), F" —
imking(l,,3) =l 23~ Linking,(1, F(2) /()
1 n—1
= lim — Y Linking,(I,-,-)o F!
niril%nlz_; m lngl( ’ )O *(x,y)

where

F,:R*\A = R*\ A
(z,y) = (F(z), F(y)).
Considering the product measure p x g on R*\ A, which is F,-invariant, observe that
Linkingl(Ia ) ) S Ll(:u X /~4)

since p has compact support. Then, Birkhoff’s Ergodic Theorem tells us that the function
Linking(I, -, -) is defined u x p-almost everywhere and it is in L'(u x p). By Fubini’s
theorem, for p-almost every x € R? the function Linking(7,z,-) is defined p-almost ev-
erywhere.

Properties analogous of those described in Proposition 1.1.3 for the torsion hold true
for the linking number.
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Proposition 1.2.1. Let I = (F,),cr be an isotopy in Diff '(R?) joining the identity
Fy = Idg> to Fy = F. For any points z1, z € R?, 21 # 2o the quantities

Linking, (I, z1, z2) VneNn#0

Linking(I, z1, 2z3) when it exists

do not depend on the choice of the continuous determination of the angle function u(I)(z1, 22, -).
Let I' = (Gy); be another isotopy joining the identity to F'. Then, there exists an integer
k € Z independent of the points z1, 2z € R? so that

Linking, (I, z1, zo) = Linking, (I', 21, z2) + k VneN,n#0
Linking(I, z1, z5) = Linking(I', z1, 20) + k.

As for Proposition 1.1.3, the results of Proposition 1.2.1 follow from the continuity of
the involved functions and from the property of F' of being isotopic to the identity.

1.3 On torsion of C! diffeomorphism of A

1.3.1 Independence of the torsion from the choice of the isotopy
on A

In [BB13|, Béguin and Boubaker show that the torsion is independent of the choice of
the isotopy both for an isotopy with compact support and for a diffeomorphism on the
2-dimensional torus T2. In this Section, we prove the independence of the torsion from
the isotopy for a C! diffeomorphism over the annulus (with no further hypothesis on its
support).

Notation 1.3.1. Consider the unbounded annulus A = T xR. Let I = (f;); be an isotopy
in Diff '(A) joining Id, to f; = f. Let us fix the counterclockwise orientation and consider
as continuous never-vanishing vector field X the constant one H = (1, 0).

Let I = (F}); be the isotopy obtained as the lift of I = (f;); such that Fy = Idge. It joins
the identity Idge to F, where F : R? — R? is a lift of f. We then remark that for any
time ¢ and for any z = (z,y) € R? it holds

Fi(z+ 1,y) = Fi(z,y) + (1,0). (1.24)

As an intermediate step, we first show that the linking number in the lifted setting does
not depend on the choice of the annulus isotopy.

Proposition 1.3.1. Let I = (f;):, I' = (g¢): be two different isotopies in Diff *(A) joining
Idy to fy = g1 = f. Let [ = (F)),I' = (Gy); in Diff '(R?) be lifts of the isotopies
I =(f)e,I' = (g): such that Fy = Gy = Idge.
Then for any z1, 2o € R?, 21 # 2o it holds

Linking, (I, z1, z3) = Linking,(I', z1, z5)

and hence, whenever the limit exists, Linking(I, z1, z) = Linking(I', z1, z2).
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Proof. Recalling the definition of the diagonal in R*, that is

A= {((z,y), () €R": (2,9) = (')},
we define the following functions
Linking, (1) :(R? x R?) \ A = R
(z,2') = Linking, (1, z, 2')
and
Linking, (I') :(R? x R® )\ A - R
(z,2') + Linking, (I, z, 2).

Both these functions are continuous ones. Moreover, for any (z,2’) € (R? x R?)\ A there
exists k = k, ,» € Z such that

Linking, (I, z, 2’) = Linking, (I, z, 2') + k.

Since (R? x R?)\ A is connected, the integer k € Z does not depend on the points (z, z’)
of (R x R?) \ A.

Consider then points z # 2’ such that 2z’ = z + (1,0). To fix the ideas, let us choose
z=1(0,0), 2" = (1,0). Because of (1.24), it holds that

Linking, (1, z, 2') = Linking, (I, z, 2') = 0. (1.25)

By this observation, we conclude that k£ = 0, i.e. the linking number does not depend on
the chosen isotopy.
O

The next proposition proves that the definition of torsion for a C! diffeomorphism
f A — A isotopic to the identity is independent of the choice of the isotopy.

Proposition 1.3.2. Let I = (f;);, I’ = (g;); be two different isotopies in Diff *(A) joining
the identity Idy to fi = g1 = f and let consider the standard trivialization.
Then for any z € A and for any & € T>A \ {0}

Torsiony (I, z,&) = Torsiony (I', z, §). (1.26)
Moreover
Torsion(I,z) = Torsion(I', z) (1.27)
whenever the limit exists.

Proof. Let I = (F,); and I' = (Gy); be the corresponding lifts of the isotopies I = (f;),
and I’ = (g;); to the plane R? such that Fy = Gy = Idge. Let 2 € R? and £ € T,R?\ {0} =
T:A\ {0}. Thanks to the choice of the trivialization, denoting as zZ € A the projection of
z on the annulus, it holds

Torsion, (I, z, &) = Torsion, (1, z, )

and .
Torsion, (I', z,&) = Torsiony (', z, £).
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By Proposition 1.1.1 it holds
Torsiony (I, z,€) = Torsion; (I', 2, &) + k (1.28)

where k € Z does not depend on the point or on the vector since R? is connected.
Recall the functions v, u, used in Definitions 1.1.1 and 1.2.1:

U(f)(z7§, ) :0,1] = T
t— 0 (H,DF,(2)€)

and
u(I)(z,2,):[0,1] = T
t— 0 (H, F, () — Fi(2)),
where H = (1,0). Let us look at 2’ = z 4+ £. Parametrize the segment [z, z + £] by setting
for any s € [0, 1]

2(s) =z + s&.

Modify now the definitions of functions u, v in the following way:

u(I):[0,1] x [0,1] = T
(s,t) — 0 (H, Fy(=(s)) — Fi(2)) s#0 (1.29)
(0,t) = 0 (H, DF,(2)¢)

and

v(I):[0,1] x [0,1] = T

(s,£) = 0 (1, DE,(2(s))¢). (1.30)

Observe that both v(s,t) and u(s,t) are continuous functions, by the continuity of the
isotopy with respect to the weak C' topology in Diff ' (R?).

Since the definition of u(I) coincides with that of v(I) for s = 0 and since u(I) is contin-
uous, for any time ¢ we have that v(I)(0,t) = u(1)(0,t) = lim,_,o+ u(1)(s, ).

The definitions of torsion and linking number do not depend on the chosen lift. So we

select continuous determinations #(I) and @(I) such that 9()(0,t) = a(I)(0,t) for any
time ¢ and similarly o(1")(0,t) = @(I")(0,1).

By Proposition 1.3.1 for any s € [0, 1] it holds

a(I)(s, 1) — a(l)(s,0) = a(I')(s, 1) — a(I')(s,0).
Passing to the limit for s going to 01, we obtain

0(1)(0,1) = 5(1)(0,0) = 5(1')(0,1) — 5(1')(0,0),

that is ) 3
Torsion; (1, z,&) = Torsion; (I', z, £).

We conclude that the integer & in (1.28) is null.
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Remark 1.3.1. With the same techniques, it can be shown that also for a C! diffeomor-
phism over the torus T? isotopic to the identity the torsion is independent of the choice
of the isotopy. Actually, this independence has been already remarked by Béguin and
Boubaker in Section 2 in [BB13|.

Remark 1.3.2. Using the same strategy of the proofs of Proposition 1.3.1 and Proposition
1.3.2, we can show that both the torsion and the linking number (already at finite time)
for a C! diffeomorphism of R? with compact support do not depend on the choice of the
isotopy, up to consider compact-supported isotopies. Indeed, for z1, z, € R?, z; # 25 not
belonging to the support of the isotopy, the linking number (already at finite-time) of
(21, 22) is zero with respect to any compact-supported isotopy.

1.3.2 Invariance under C' conjugacy

The following result concerns the invariance of the torsion for conjugation through C! dif-
feomorphisms of the annulus isotopic to the identity with compact support. With respect
to Proposition 1.1.6, this result does not require that I = (f;); has compact support,
but it holds for an isotopic-to-identity C' conjugation h with compact support. See also
Section 2.9 in [Boul2|. Because of Proposition 1.3.2, the torsion does not depend on the
chosen isotopy on the annulus. Therefore, in the following, we will omit the isotopy in the
notation.

Proposition 1.3.3. Let f,h : A — A be C' diffeomorphisms isotopic to the identity.

Assume that h has compact support. Let z € A and assume that Torsion(f, h™'(z)) exists.
Then
Torsion(h o f o h™', 2) = Torsion(f, h™'(z)).

We start by proving the following lemma which will be used in the proof of Proposition
1.3.3.

Lemma 1.3.1. Let h: A — A be a C* diffeomorphism isotopic to the identity. Then for
any Z € A and any £ € T:A it holds

Torsiony(h™', 2, &) = — Torsiony (h, h"*(2), Dh™ ' (2)€).

Proof. By Proposition 1.3.2, the time-one torsion of ~~! does not depend on the choice of
the isotopy. Therefore, let H = (h;); be an isotopy joining the identity to h and consider
the isotopy H~ ! = (ht_1>te[0,1] where

hil=hi,oh™  Vtelo,1].

The isotopy H~! = (h; '), joins the identity to h™!. Fix z € A and ¢ € T:A.
The function ¢ — 0(H')(z,£,t) is a continuous determination of the oriented angle
function

t = 0(X (b '(2)), Dhy 1 (2)€) = 0(X (hi—o(h™'(2))), Dhn—t(h™(2)) DR~ (2)€).

)
This last oriented angle function is ¢ — v(H)(h™(z), Dh='(2)€,1—t). Choosing a contin-
h="(z

(z
uous determination such that o(H1)(z,&,0) = o(H)(h™'(2), Dh='(2), 1), we conclude
that for any ¢t € [0, 1] it holds

G(HY)(3,6,1) = 0(H)(h~(3), Dh-1(3)€,1 — ).
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Consequently
Torsion; (b1, 2,€) =

I@(Hfl)(f & 1) —o(H1)(2,6,0) =
= 0(H)(h™'(2), Dh™(2)€,0) — 0(H)(h™"(2), Dh™'(2)¢, 1) =
= —Torsmnl(h,h Y(z), Dh 1 (2)¢).
[

Proof of Proposition 1.3.3. Let H = (hy);, I = (f;); be isotopies joining the identity to h, f
respectively. Denote as H™' = (hy_; o hil)te[o,”. To calculate the torsion for ho f o h™1,
thanks to Proposition 1.3.2, we can use the following isotopy G' = (g¢)tcjo,1] joining the
identity to ho f o h™1:

(hy_ 5 0~} for t € [O, %}

gt ‘= f3t71 e} h_l for t e [%, §:|

\hgt_Q ofoh™! fort € [2 1} .
Fix now z € A and £ € T:A. We have
Torsion; (ho foh™', 2, &) = 0(G)(z,&,1) — 9(G)(2,£,0) =

= 0(H)(f o h™'(2), D(f o h™)(2)&,1) = o(H)(f o h™'(2), D(f o h™")(2)&, 0)+
+o(I)(h™(2), D (2)€, 1) = 0(I)(h™}(2), Dh™}(2)€,0)+
+o(H')(2,6,1) — 0(H')(2,€,0).
Since 0(H1)(z,&,1)—0(H1)(z,£,0) = Torsmnl(h 1.2,€), using Lemma 1.3.1, we obtain

Torsion; (ho foh™!, 2, &) = Torsion (h, f o ™' (2), D(f o h™ 1) (2)€)+
+ Torsion, (f, h~*(2), Dh~*(2)¢) — Torsion; (h, A~ (2), Dh™1(2)€). (1.31)

Consequently for n € N

n—1

Torsion, (ho foh™',2,£) = Z Torsion; (ho foh™ ho f'oh™'(2), D(ho f'o h™')(2)€).
Using (1.31) and erasing the corresponding terms, we have

Torsion, (ho foh™ 2 &) = %i Torsion, (f, f* o h™'(2), D(f' o h™')(2)¢)+

—i—% (Torsion (h, f* o h™'(2), D f*(h™"(2))Dh~"(2)§) — Torsion; (h, k=" (2), Dh ™' (2)€)) .

Since = + Torsion;(h,z,v) is continuous, since the support of h is compact and since
outside its support the time-one torsion of A is null, we deduce that

Torsiony (h, f* o h™1(2), Df"(h~'(2))Dh(2)¢) — Torsion (h, h "1 (2), Dh™1(2)¢)
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is bounded (uniformly in n). Passing to the limit for n — 400, we conclude that

Torsion(ho foh™',z) = lim Torsion,(ho foh ' 2,¢) =

n—-+o0o

lim Torsion, (f,h (), Dh™'(2)&)+

n—-+o0o

+ lim 1 (Torsion, (h, f* o h™'(2), Df"(h™"(2))Dh™"(2)§) — Torsion; (h, k™' (2), Dh™'(2)§)) =

n—-+oo N

= Torsion(f, h*(2)).

1.4 Link between torsion and linking number

In [BB13], the authors provide conditions for which the existence of two points with
non-zero linking number implies the existence of a point with non-zero torsion. However,
the value and even the sign of the linking number and of the torsion can be different.
Let z,y € R? be points with linking value [. In Theorem 1.4.1, we claim the existence of
a point with torsion value exactly [. In addition we locate such a point on the segment
joining x and y. We remark that this result can be applied also to the zero value case,
since it does not depend on the value of the linking number. Throughout the section, we
consider torsion with respect to a constant reference vector field (i.e. with respect to the
standard trivialization).

Theorem 1.4.1. Let I = (F})icp, be an isotopy in Diff "(R?) joining Idge to Fy = F.
Assume that there exist two points x,y € R?, x # y such that

Linking,(I,z,y) =1 € R.
Then there exists a point z € [x,y] so that
Torsiony (I,z,y —x) = 1.

At first sight, this result could recall a mean value theorem but the arguments and the
strategies needed in the proof are much more sophisticated and subtle.

First of all, through continuous modifications of the isotopy, we bring ourselves in a
rotation frame of reference, reducing then the discussion to the case [ = 0.

In order to avoid self-intersections of the curve, a passage to the universal covering of the
punctured plane is required: the strategy in doing so is using a polar coordinate frame,
with respect to which one of the endpoints of the segment coincides with the singularity.
Finally, we carefully study the behavior of points in a neighborhood of the singularity =z,
the point previously blown up which corresponds to the origin of the polar coordinate
framework. We then apply the Turning Tangent Theorem (see [DC76|, Chapter 4, Section
5).

Notation 1.4.1. Consider an isotopy I = (F}); : [0,1] — Diff '(R?) joining the identity
to I} = F. With the notation I = (F}); we refer also to the extended isotopy. We refer
to the setting presented in Notation 1.2.1: we fix the counterclockwise orientation and we
are going to measure angles with respect to the vector field H = (1,0).

Given two points z,y € R?, z # y, the notation [z, y| refers to the segment joining the
points.

Denote a point of the segment as z(s) := sy + (1 — s)x for s € [0, 1].
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Sketch of the proof of Theorem 1.4.1. By contradiction, we assume that there is no point
z € [x,y] such that Torsion, ([, z,y — x) = [. Then, by the continuity of the function
z + Torsion; (I, z,y — x) and by the connectedness of the segment, one of the following
cases OCCUr:

(1) for any z € [z,y] it holds Torsion; (I, z,y — x) < [;

(11) for any z € [x,y] it holds Torsion; (I, z,y — z) > .
In Subsection 1.4.2 we show that case (i) leads to a contradiction. Similarly, case (i7)
cannot even occur.

O

A modification of the involved isotopy and the use of Theorem 1.4.1 easily adapt this
result for any finite time n € N. We keep the same notation of Theorem 1.4.1.

Corollary 1.4.1. Assume that there exist n € Nyn # 0 and x,y € R?, x # y, such that
Linking, (I, x,y) =1 € R.
Then there ezists a point z € |x,y] such that

Torsion, (I,z,y —x) = 1. (1.32)

Proof. We are interested in the time interval [0,7n]. Define the isotopy I"™ = (G¢)icpo,1] :=

(Fat)tepo,1]-
Hence, we are time-reparametrizing the initial isotopy. It holds

u(I™, z,y)(t) = u(l,z,y)(nt).

Then, a(I™, z,y)(t) and @(/, z, y)(nt) denote continuous determinations of the same angle
function. Since the (finite time) linking number is independent of the choice of the lift
(see Proposition 1.2.1), we refer to a(I", x,y)(t).
The hypothesis Linking,, (I, z,y) = [ is then equivalent to ask that Linking, (1", z,y) = nl.
By Theorem (1.4.1), there exists z € [z, y| such that Torsion, (I™, z,y — x) = nl. For such
a z it also holds

Torsion,, (I,z,y —z) =1 (1.33)

and this concludes the proof.

[]

We wonder if any such relation is satisfied between asymptotic torsion and asymptotic
linking number: can any results as above hold true even when considering (1.5) in Defini-
tion 1.1.3 and (1.23) in Definition (1.2.1)7

The answer is positive looking at torsion of F-invariant measures, instead of orbits. Pass-
ing to asymptotic quantities, we are going to prove the existence of f-invariant Borel
probability measures p whose torsion, i.e. [, Torsion((f;):, z)du(z), equals [ € R, where
now [ is the asymptotic linking number of two points.

Corollary 1.4.2. Assume that there exist two points x,y € R? x # y such that
Linking(I,xz,y) =1 € R.

Suppose that |, oy F™([z,y]) is relatively compact.
Then there exists a F-invariant probability measure pu such that

Torsion(I, ) = 1.

Moreover, there exist points with torsion greater or equal [ and also points with torsion
smaller or equal [.
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Remark 1.4.1. If F' has compact support, then | J, . F"([z,y]) is always relatively com-
pact.

Proof. From our hypothesis

[ = Linking(/, z,y) = lir+n Linking, (I, z,y)
n—-+0oo

For any fixed n € N, denote [, := Linking,,(/,z,y). By Corollary (1.4.1) there exists
Z, € |x,y] such that
Torsion,, (1, z,,y — x) = .

The notation & refers to the vector y — . Consider the following probability measures on
the unitary tangent bundle T'R?:

n—1
1
=-S5 68, (1.34)

where §(,,) denotes the Dirac measure centered on (z,v) in T'R2. All the supports of
these measures ji,, are contained in the same set

T R?

where

= U Pl

ieN

From the hypothesis, K is compact and so is TER?.
Up to subsequences, the sequence (ji,), converges to a probability measure ji on T'R?
which is invariant with respect to the dynamics on the unitary tangent bundle inherited
from F. The projection p of ji on R? is F-invariant as well.
Finally, refering to Definition (1.1.4) with respect to u, we have

Torsion ([, y1) :/ Torsion(/, x)du(x) =
R2

/ Torsion(I, z)dji(z,v) = / Torsion (I, z,v)dji(x,v) =
TIR? T1R?

= lim Torsion; (I, z,v)dji,(z,v) =
n—-+oo Tle
n—1 ;
DF"(2,)¢
— lim =Y T I, Fi(z), ——2n)S )
Jm 23 orsons (1.2 1 )
= lim Torsion,(/, z,,&) = lim [, =1.
n——+00 n—-+oo

Equality * is a consequence of Birkhoff’s Ergodic Theorem applied to the framework

where
F* s (T'R2, i) — (T'R2, i)

) B DF(x)¢
(0.6 F(0.6) = (F@). g

is a measure-preserving transformation and Torsion (I, -,-) € L'(T'R?, ji). The time av-
erage Torsion(/,-) does not depend on the choice of the tangent vector (see Proposition
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1.1.3) and, by Birkhoft’s Ergodic Theorem (see Theorem 4.1.2 in [KH95]), it exists fi-a.e.,
is measurable, F*-invariant and such that

/ Torsion(I, z)dfi(x,v) = / Torsion; (1, z,v)dfi(z,v).
T1R?

T1R2

As an outcome, there exist points with torsion greater or equal [ and also points with
torsion smaller or equal [.

Arguing by contradiction, suppose that every x € R? has Torsion(I,z) strictly greater
than [. Then

| = Torsion (I, u) = /

RZ

Torsion ([, z)du(x) > / ldu(x) =1
R2
This provides the required contradiction. Analogous argument holds assuming that every
point has torsion strictly less than [.
m

1.4.1 Some consequences for the torus T?

Any diffeomorphism of the torus has an invariant measure with zero torsion: this result
was already known by Matsumoto and Nakayama for C* diffeomorphisms. We present
here a simpler proof which works also with C! diffeomorphisms. Therefore, we weaken the
hypothesis required in [MN02].

Notation 1.4.2. Let
P R? 5 T?

(x,y) = P(x,y) = (x mod 1,y mod1)

be the universal covering of T?. Denote as P(T?) the set of Borel probability measures
over the torus T?. Fix the counterclockwise orientation and consider as reference vector
field X the constant one H.

Let us start by observing that in the case of torus diffeomorphisms the hypothesis of
Corollary 1.4.2 are too strong. Therefore, we state the following

Corollary 1.4.3. Let I = (f,); be an isotopy in Diff *(T?) joining Id to fi = f. Let
I = (F)); in Diff "(R?) be the lift of the isotopy I = (f); such that Fy = Idg2. Assume
that there exist two points x,y € R?, x # y such that Lmking(f,x, y) =1 € R. Then there
exists a f-invariant probability measure p € P(T?) such that Torsion(I, p) = l. Moreover,
there exist points in T? with torsion greater or equal I and also points with torsion smaller
or equal [.

The proof of Corollary 1.4.3 retraces the ideas of the proof of Corollary 1.4.2.

Proof. As in the proof of Corollary 1.4.2, denote I,, = Linking, (I, z,y) and by hypothesis
it holds lim,_, o l, = | = Linking(I,z,%). By Corollary 1.4.1 for any n € N,n # 0 there
exists z, € [z, y] such that Torsion, (I, z,,y — =) = I,.

Thanks to the choice of the trivialization we have that

Torsion, (I, 2 (z,),y — ) = Torsion, (I, z,,y — ) = I,,.
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For simplicity denote Z(z,) as z,. Consider now the probability measures on the unitary
tangent bundle T T?:

Pn 2= 25 i(s.) DFiGn)@—2) )

Being T'T? compact, up to subsequences, (ji,), converges to ji which is a probability
measure on T'T2. The measure i is invariant with respect to the dynamics on TMT? and
its projection on T? y € P(T?) is f-invariant.

Repeating the ideas in the proof of Corollary 1.4.2, we have

Torsion(/, u) = /

’]I‘Q

Torsion(/, x) du(x) = / Torsion; (I, z,v) dfi(x,v) =

T1T2

n—

1
) 1 . il
— nl—lgloo - EO Torsion; <I, 1(Zn)

Dﬂ@w@—x)):
DGy =)l

= nl_l)]gloo Torsion, (I, Z,,y — z) = L.

We easily deduce the existence of points in T? with torsion greater or equal [ (respectively
smaller or equal /).
O

We then deduce as a corollary the result by Matsumoto and Nakayama discussed above.

Corollary 1.4.4. Let f : T? — T? be a C* diffeomorphism isotopic to the identity. Then,
there exists a f-invariant Borel probability measure u € P(T?) of null torsion.

Proof. Let I = (f,); be an isotopy in Diff *(T?) joining the identity to f. Recall that on
T? the torsion does not depend on the chosen isotopy, see Remark 1.3.1. Let I= (Fy):
be the isotopy obtained as the lift of the isotopy I = (f;); such that Fy = Idgz. For any
point (z,y) € R?

Ft($ + ki, y + kfz) = E(x,y) + (]{71, ]{72) V(kj, ]{32) € ZQ,Vt eR,. (135)

Consider now the points z; = (0,0), 22 = (1,0) € R?. For a fixed n € N,n # 0 look at

Linking, (7, 21, 2) = % (D)1, 22.m) — () (21,2,0)))

Since (1.35) holds for every ¢ > 0, the vector F;((1,0)) — F3((0,0)) (in whose direction
we are interested) remains horizontal and so Linkingn(f L 21, 22) = %. By the arbitrari-
ness of n € N we deduce that Linking(f ,21,22) = 0. Applying Corollary 1.4.3 to the
points 21, 2o, we conclude that there exists u € P(T?) which is f-invariant and such that
Torsion(1, ;1) =3Torsion(f, i) = 0.

O

3. Recall that on T? the torsion does not depend on the chosen isotopy (see Remark 1.3.1).
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1.4.2 Proof of case (i) of Theorem 1.4.1

In this section we assume that case (i) of the sketch of the proof of Theorem 1.4.1
(presented in Section 1.4) holds, that is for any z € [z, y] we have

Torsion, (1, z,y — x) < | = Linking, (1, z,y).

We are going to find a contradiction, deducing that this case cannot occur and concluding
so the proof of Theorem 1.4.1.

By continuity of the function and by compactness of the segment, we assume that there
exists € > 0 such that for any point in [z, y]

Torsion; (I, z,y —x) <l —e.
Notation 1.4.3. Denote
{=y—x
and parametrize the segment [z, y] as follows:
[0,1] 3 s 2(s) :== sy + (1 — )z € [z,y] C R*.

Notation 1.4.4. We use the notation introduced in (1.29) and (1.30) in order to modify
the angle functions wu,v. From these, we define linking number and torsion just along
points of the segment [z, y].

Since u,v are continuous and for any ¢ it holds u(0,t) = v(0,t), there exist continuous

lifts @, v of the functions w, v, respectively, such that @(0,t) = (0, t).
By hypothesis for any s € [0, 1]
Torsion; (1, 2(s),&) < | — e = Linking, (I, z,y) — €. (1.36)

Refering to definitions (1.29) and (1.30), inequality (1.36) becomes
(s,1) — 8(s,0) < a(1,1) — a(1,0) — (1.37)
for any s € [0, 1].

Modification of the isotopy I = (F});

First, we modify the given isotopy (F}); to obtain an isotopy H = (H;); such that:

— the point x is fixed for H = (H;):, that is H;(z) = x for any t;

— the linking number of x,y with respect to H is positive, while the torsion of any
point of [z, y] with respect to H is negative.

In other words, we want to pass in a rotated and translated frame.

Lemma 1.4.1. Let (F}),cp01) be an isotopy in Diff '(R?) joining Idg> to Fy = F. Consider
x,y € R, & # y such that, for a fized € > 0, for any s € [0, 1]

Torsiony ((Fi)i, 2(s), &) < Linking, ((F}):, x,y) — €. (1.38)

Then, there exists an isotopy H = (Hy)iepo.1) in Diff '(R?), such that:
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- HO = ]d]R2 and H := Hl;'
— for any s € [0, 1]

Torsiony (H, z(s),£) < —% <0< % < Linking,(H, z,y);

— Hy(z) = x for any t € [0, 1].

Proof. Define the following continuous function

©:00,1] =R
o(t) == up ((s,t) — 0(s,0)) = max (0(s,t) — 0(s,0)) (1.39)

We remark that ©(0) = 0. The new isotopy is then obtained as follows:
€
H = (Ho)ieo =R (,0() = £5 ) 0 7arwy © (Fi)

where R (z, 1) denotes the rotation of angle ¢ centered at x and 7, denotes the translation
of vector v.

The point z is fixed for the isotopy H = (H;);. Denote as U,V the functions defined in
(1.29) and (1.30) with respect to H, that is

U:[0,1]xR—T

(s,t) = O0(H,H(z(s)) — He(x)) =0 (H,Hi(2(s)) —x) fors#0, (1.40)
(0,t)  +— 0 (H,DH(z)¢) (1.41)
and
V:[0,1]]xR—T
(s,t) — 0 (H, DHi(2(s))¢) (1.42)
where 6 denotes the oriented angle between the two vectors.

Observe that U,V are continuous and that, for any ¢, U(0,t) = V/(0,1).
Define then the quantities U,V from u, v as:

(s, t) = (s, t) — O(t) — tg (1.43)
V(s,t) = (s, t) — O(t) t%. (1.44)

These functions are continuous determinations of the angle functions U and V', respec-
tively.
From the definition of © in (1.39), for every s € [0, 1] and for every ¢ € (0, 1], it follows

V(s t)— V(s,0) < —tg <0.
On the other hand, by hypothesis (1.37), for any s € [0, 1] it holds
V(s,1) = V(s,0) <U(1,1) = U(1,0) — e. (1.45)

27



Let S € [0, 1] be a point at which the mazimum ©(1) is achieved (see (1.39)), i.e.
O(1) =o0(S,1) — 0(S,0).

For such S we have V(S,1) — V(S,0) = —5 and (1.45) still holds true. Therefore

—S <UD =00 - = TL1)-01,025>0.
Hence, for any s € [0, 1]
Vis,1) = V(5,0) < =5 <0< 5 <T(L1) = T(1,0) (1.46)

O

Notation 1.4.5. We will conserve this notation of U,V, U,V throughout the whole sub-
section, until the conclusion of the proof.

Sign concordance of Linking and Torsion for small s

Lemma 1.4.2. Let U and V be the functions introduced in (1.43) and (1.44). There exists
so € (0,1) such that for all s € [0, so] it holds

W&U—U@mg—i<o<mLU—U@m. (1.47)

Proof. By definition of U,V (see (1.43) and (1.44)) it holds
U(0,1) — U(0,0) = V(0,1) — V(0,0).

Recalling the first inequality of (1.46), we have

V&U—V@mg—g

By the continuity of the function s — U(s,1) — U(s,0), we conclude that there exists
so € (0,1) small enough such that

~ ~ €

U(s,1) —U(s,0) < —2

for any s € [0, s¢].

]
Contradiction by using the Turning Tangent Theorem
To sum up, we are considering an isotopy H = (H)ieo,1 in Diff '(R?) such that:
— Ho = IdR2 and H1 = H,
— the point x € R? is fixed with respect to H = (Hy)tejo,1;
— for any s € [0, 1],
V(s,1) = V(s,0) <0< U(1,1) — U(1,0); (1.48)
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— for any s < s,

U(s,1) — U(s,0) < —Z <0< 0U(1,1) - 0U(1,0). (1.49)

By eventually changing the reference system on the plane, assume that x is the origin and
that the first vector of the canonical basis coincides with & =y — x.
Denote

§:= min {s: U(s,1) —U(s,0) = 0}. (1.50)
s€(0,1)

The corresponding z(S) € [z,y] is the first point of the segment for which the lift of the
angle associated to Hy(z(s)) is zero, i.e. U(5,1) — U(5,0) = 0.
Such 5 exists by inequality (1.49) and by continuity of U.
Recall that U(s, 1)—U(s, 0) does not depend on the chosen lift. It is important considering
s as the first point of intersection of the image of the segment at time ¢ = 1 with the first
coordinate axis (which is the segment at time ¢t = 0). Otherwise, we could have no control
on the image of the tangent vector through the isotopy.

The proof is divided into 3 cases: starting with the simpler one, we then move on to

the most general case.

1(s) = Hlzls))p 5

Figure 1.1 — The first case.

First case: As a first simpler case, consider the situation presented in Figure (1.1). That is to
say, suppose that

— the curve made up of H(z(s))|j0,5 and the segment [2(5), z] is a simple, closed,
piecewise regular, parametrized curve.

Denote
v(s) = H(2(5))sep0,3-

According to this notation, the quantity V' (s,1) — V(s,0) is a measure of the angle
between the first coordinate axis direction vector and ~/(s).
By hypothesis -the first inequality of (1.48)- for any s € [0, 1] we have

V(s,1) = V{(s,0) <O0. (1.51)
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The angle V'(5,1) — V(8,0) admits a measure f3; € [0, %] Indeed, in a neighborhood
of z(5), for s < 5, the curve y(s) crosses the first coordinate axis from the bottom
up. So, the tangent vector 7/(5) has a non negative second coordinate and lies in
the upper half-plane.

Look at the continuous determination V'(5,1) — V/(5,0): we have

V(5,1)-V(5,00=8+k ke (1.52)

By inequality (1.51), necessarily
k< -—1. (1.53)

Since the curve made up of (s) and [2(8), ] is simple, closed and piecewise regular,
we can apply the Turning Tangent Theorem on it (see Chapter 4, Section 5 in
[DC76]). We obtain

() (D)=

1 1
ﬁo+k—@0+§—ﬂo+@o+§:1+k:1.

This last equality implies k£ = 0 and contradicts (1.53).

that is

A

/\\ B
x| <\}

M 2(5)

Figure 1.2 — The second case.

Second case: Consider the case presented in Figure (1.2). We allow the curve made up of y(s) :=
H(z(s))|j0,5 and the segment [2(5), 2] to have self-intersections, but we require some
regularity conditions at the origin. *

Define the function I' : [0,5] — RT X R as

[(s) = (T4(s),Ta(s)) = (r(s), U(s,1) = U(s,0)) (1.54)

4. These conditions will be precised later.
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where r(s) = ||H(z(s)) — z|| € RT.
Denote
P:R" xR — R?
(r,0) — (r cos(2m0), r sin(270)).

Notice that P+, is the universal covering of R*\ {(0,0)}. Since PoT' = v, then T
is a lift of v through P. Identifying the plane R? with the complex one C, we have

,.Y(S) — Fl (S>€i27rf‘2(s) )

In other words, (T';(s), Ta(s)

) provide some polar “coordinates”. By hypothesis (1.49)
and by definition of 5 in (1.50),

it holds

U(s,1) —U(s,0) =Ty(s) <0 Vs el0,3). (1.55)

Therefore, the curve I' lies on the low quarter of the half-plane R* x R. Precisely

[i(s) >0, Tys) < Vs € (0, 5),
I (0) = [5(0) <0,
[y (5) = [|2(8) — H7 'y (5) = 0.

Assumption 1.4.1. Throughout this second case, assume that I' is sufficiently
regular at the origin, that is there exists

I"(0) := lim I'(s) # 0.

s—0t

Figure 1.3 — The function I'(s) in the second case.

Notation 1.4.6. Consider the curve in RT x R, made up of
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(7) T'(s) for s € [0, 5;
(77) the horizontal segment {0} x [r(5), 0], followed with decreasing radius;

(i7) the vertical segment [0, U(0,1) — U(0,0)] x {0}, followed downward.

This curve, thanks to Assumption 1.4.1 and thanks to the definition of s in (1.50),
is a simple, closed, piecewise regular curve (see Figure 1.3).

The vector I”(0) is oriented to the right in the plane RT xR. Hence, the angle between
the first coordinate axis direction vector and I"(0) admits a measure 7y € [—1, 1].
Denote as o( the measure contained in the interval [0, %] of the angle between the
first coordinate axis direction vector and I”(s). Such a measure exists since in a
neighborhood of T'(5) the curve I' crosses the first coordinate axis from the bottom
up and so the tangent vector I"(s) lies then in the upper half-plane.

Notation 1.4.7. Denote as
=< (F’) :[0,8] = T

the oriented angle function between the first coordinate axis direction vector and
the vector I"(s).
The notation <(I") : [0, 5] — R refers to the continuous determination of the angle

function < (I") such that <(I'(0)) = no € [—1, 1].

Since o¢ and <(I"(5)) are lifts of the same oriented angle, we have
<(T'(8)=00+j JEL

Apply now the Turning Tangent Theorem to the closed curve highlighted in Notation
1.4.6. We obtain

(Goti—m)+(2—co)+ it (m+l)=1
OoTJ]—To 5 0o 1 Mo 1)~

and so
1+75=1 = 7 =0. (1.56)

Hence
=(I"(5)) = o0. (1.57)

Let us look now at the relation between the tangent vectors of I'(-) and the tangent
ones of y(-) = H(z(-)).
By hypothesis (1.48), it holds

V(s,1)=V(s,0) <0  Vse[0,5] (1.58)

where V(s,1) — V(s,0) is a continuous determination of the angle function between
the first coordinate axis direction vector and «'(s).
Denote

V(5,1) = V(5,0) =By +k  for some k € Z (1.59)
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where 3, is the measure of the angle V/(5,1) —V(5,0) in [0, 5]. Such a measure exists
since in a neighborhood of z(s) the curve v crosses the first coordinate axis from
the bottom up. Hence, the vector 7/(5) has non negative second coordinate.
From (1.58), it holds then

k< -—1. (1.60)

We need now the following:

Proposition 1.4.1. Let I C R be an interval and let M, N be two 2-dimensional
oriented Riemannian manifolds. Denote the tangent projections as wpr : TM — M,
nny : TN — N. Let f : M — N be a local diffeomorphism which preserves the
ortentation and let J, : I — TM, Jy : I — TM be continuous functions such that

7TMOJ1:7TMOJ2. (161)

Suppose that, for any t € I, J;(t) # 0, i = 1,2 and let 0 : I — R be a continuous
determination of the angle function between the image vectors Ji, Js.

Then, there exists a continuous determination © : I — R of the angle function
between the image vectors Df o Ji, Df o Jy such that

8(s) — O(s)| < % Vsel (1.62)

We postpone the proof of this Proposition to Appendix 1.6.
We apply Proposition 1.4.1 to I = (0,5] C R, M = (R \ {0}) x R, N = R?\ {0}
and

f R\ {0}) x R — R*\ {0}

(r,0) — (rcos(2m0), rsin(270)).

Observe that the determinant of D f(r,0) is equal to r and so always positive: this
assures us that f is a local diffeomorphism which preserves the orientation. Consider

Ji: (0,5 — TM = (R*\ {0}) x R x R?
s —=(I(s), (1,0))

and
Jo:(0,5] = TM = (RT\ {0}) x R x R?
s —(T'(s),I"(s)).
Then
DfoJy: (0,5 — TN = (R*\ {0}) x R?
S (’y(s), %)
and

DfoJy: (0,5 — TN = (R*\ {0}) x R?
s = (1(s),7'(s))-
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The function <(I") introduced in Notation 1.4.7 is a continuous determination of
the angle function between J;(s) and J3(s). By Assumption 1.4.1, the function <(I'"")
is continuous at s = 0.

Remind that, by our choice

=(I'(0)) =m0 € l—i ﬂ . (1.63)

Observe that s — (V(s, 1) — V(s 0)> — (U(s, 1) — U(s, 0)> is a continuous deter-
mination of the angle function between D f o Jy(s) and Df o Jy(s). By our choice of
V,U, for any t we have V(0,t) = U(0,t) and in particular

(f/(o, 1) — \7(0,0)) - (U(o, 1) — U(o,o)) —0. (1.64)

From (1.63), (1.64) and the continuity of the involved functions, there exists S > 0
small enough such that

() ~ (Vs - 7(5.0)) — (0(s.1) - 0(5.0)) )| < %

By Proposition 1.4.1, we deduce that for any s € (0, ]
2~ (V1) = 7(5,0)) = (0(s.1) - T(5,0)) )| < %

In particular, at s = 5 by (1.57), (1.59) and (1.50)

2(I(s)) — ((V(g, 1)~ V(50) — (0(51) - U5, 0)))‘ _

1

Claim 1.4.1. The quantity oy — fy is in the open interval (—%, %)

Proof of the claim. Because oy, By € [0, %], the difference oy — 3y is in [—%, %] Argu-

ing by contradiction, suppose that o9 — 5y = %, that is oy = %, Bo = 0. The measure
0p is a lift of the angle between H and I"(5), while fy is a lift of the angle between
~v(35)/]|7(8)|| and ~'(5), which are the vectors Df(I'(5))H and D f(I'(5))I"(5). Since
Df(T'(s)) is a linear function and by inequality (1.65), this case cannot occur. Sim-
ilarly, the case oy — By = —% is excluded.

[

Since og — fy € (=3, 1) and by (1.65), we deduce that k = 0. This inequality con-
tradicts condition (1.60) and we conclude.
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H(Z(S))Ho,g}

Figure 1.4 — The most general case.

Third case: Finally, consider the most general case, presented in Figure (1.4). We allow now the
vector I7(0) not to exist or to be null.

The Turning Tangent Theorem can no more be applied on the curve used in the

second case.

Fix p € (0,T'1(5)) and consider the vertical line r = p in RT x R.

The notations I';(+), ['y(+) refer to the first and second coordinates, respectively, of

the curve I' in R x R. Define then

Sp 1= Sme[%;(]{s : I'(s) = p}. (1.66)

This is a mazimum since I'; is a continuous function considered on a compact

interval [0, 5] where I';(0) = 0 and I'y(5) > p.

Observe that

il_I)ﬂO s, =10

by the continuity of the function I';(+), the compactness of the interval involved and

the fact that s = 0 is the only point for which the first coordinate projection of the

curve vanishes.

Denote as 79 the measure of the angle between the first coordinate axis direction
vector and I"(s,) in the interval [—1, 1]. This choice is possible since by definition
of s, the vector I(s,) is oriented to the right.

Let

< (") :[sp,5] =T
denote the oriented angle between the first coordinate axis direction vector and the
vector I"(s) and denote

<(T): [5,,8] = R

the continuous determination of the angle function such that <(I'(s,)) = ny €

(=4l
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Figure 1.5 — The function I'(s) in the general case.

Claim 1.4.2. If p is small enough, for any s € s, 3]
<)~ (Vs ) - V(5.0)) = (06s,1) - T(5,0)) )| < % (1.67)

Proof of the claim. Recall that lim, ,o+ s, = 0 and functions V,U are continuous.
Moreover, since V' (0,t) = U(0,t) for any ¢,

(\7(0, 1) — V(o,0)> . (U(o, 1) — 0(0,0)> —0.

Then, for any € > 0, there exists p > 0 small enough such that

](wsp, 1) — V(s,, o)) - (U(sp, 1) — U(s,, 0))\ <e.

So, it holds

];msﬂ)) — (V050 1) = V(5,0)) = (UG5, 1) - U(sp,0>))) _ % e

By selecting £ > 0 small enough such that }l +e< %, we have

20 G50)) = (P50 1) = V050, 0)) = (05,1 = U5,0)) )| < 5

By applying Proposition 1.4.1, inequality (1.67) holds for any s € [s,, 5].
O

Denote as oy the measure contained in [0, 3] of the angle < (I'(5)): again, this is
possible because in a neighborhood of I'(5), the curve I" crosses the first coordinate
axis from the bottom up.
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Let By be the measure of the angle V' (5,1) — V/(5,0) contained in [0, %]
Since o and <(I"(5)) are continuous lifts of the angle < (I"(5)), we have

<(I'"(8)) =00 +1 for some [ € Z,

V(5,1)—V(50) =7 (V(g, 1)~ V(s 0)) - (U(g, 1)~ U(s, o)) -
=fo+7 for some j € Z.
By inequality (1.67) it holds

)

()~ ((V(s,1) = 7(5,0)) = (0(,1) = 0(5,0))) | =

. 1
=loo+1=Fo—jl <5 (L68)

By hypothesis (1.48), 7 < —1.

Claim 1.4.3. The quantity oy — (3 is in the open interval (—1,1).

The argument is the same as Claim 1.4.1 in the second case.
Therefore [ = j and so

1< —1. (1.69)

Let us now consider the curve made up of

(i) Ts,.5, positively oriented,;

(1) the horizontal segment {0} x {r: p <r <||2(5) — z||}, followed with decreas-
ing radius;

(73) the vertical segment [I'5(s,), 0] x {r = p}, followed downward.
This curve is a simple, closed, piecewise regular, parametrized one thanks to the
regularity of the polar coordinates away from the origin and to the absence of self-

intersections by the definition of s, (see Figure 1.5).
Apply the Turning Tangent Theorem to this curve. We obtain then

1 1 1
(00+l_770)+(§_UO>+Z+<UO+Z> =1,

that is
1+1=1.

This implies [ = 0, contradicting inequality (1.69).

5. By definition of 5, U(5,1) — U(5,0) is null.
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1.5 Examples

Example 1.5.1 (Time-one flow of pendulum). Fix the standard Riemannian metric and
the standard trivialization on A. Let H = (1,0) be the reference constant vector field.
Consider the dynamical system of the simple pendulum obtained from the Hamiltonian

H:A—-R

2 2
(¢7 T) = H(dja T’) - % - Cosiﬂ_gw) .

Let ¢ : A x R — A be the associated flow (see Figure 1.6). We calculate the torsion of
the time-one flow of the pendulum, i.e. f = ¢(-,1) = ¢;. We consider as isotopy the flow
itself I = (¢¢)¢ = (&(+,t))s. Recall that from Proposition 1.3.2, the torsion (already at
finite-time) does not depend on the choice of the isotopy.

At the fixed point (3,0) for any ¢ the vector (1,—1) is an eigenvector of D¢ (3,0) with
respect to a real positive eigenvalue. That is, the half-line R, (1,—1) is preserved by
Do, (%, O) for any t. Therefore, recalling that the torsion does not depend on the chosen
vector (see Proposition 1.1.3), we have

1 1
Torsion (gbl, (—, O)) = lim Torsion, (¢17 (—70) , (1, —1)) = 0.
2 n—s4o00 2

At the elliptic fixed point (0,0), the differential D¢,(0,0) is a clockwise rotation of angle
t. Therefore, for any vector v € Tg0)A,

Torsion(¢1, (0,0)) = liIJ’I_l Torsion,, (41, (0,0),v) = —1.
n——+0oo

For any other point z of A we are going to calculate the finite-time torsion with respect to
Xu(z) = (%H(E), —%H(Z)), where X denotes the Hamiltonian vector field. Denote

as U the open region contained between the two separatices of the pendulum system.
Let z ¢ U. Denote as ¢(z) = (¢(t),r(t)). Observe that for any ¢ € R the coordinate r(¢)
never changes sign. Equivalently, the vector

Xn(n()) = (m), _M)

2

is always contained either in the right half-plane (if 7(¢) is positive) or in the left half-plane
(if r(¢) is negative). In particular, for any ¢ we have

3DV X (2),1) — 8(1) (5, Xp(3), 0) € (—% %) |

Since the angle variation is bounded for any ¢, we conclude that for any z ¢ U
Torsion(¢y, z) = 0.

Let z € U \ {(0,0)}. The point Z is periodic and we denote as T'(Z) the period of Z.
Observe that the vector Xpy(¢:(z)) is turning clockwisely once over a time interval of
length 7'(z). Therefore

QNJ(I)(E, XH(2)7T(2)) - ﬁ(l>(27 XH(E)vo) =-1
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Figure 1.6 — The dynamical system of the pendulum of Example 1.5.1.

and for any n € N*
o(I)(z, Xyu(2),nT(2)) —o(I)(z,Xu(2),0) = —n.
By the compactness of the orbit of z and of the interval [0,T'(Z)], we conclude that

Torsion(¢y, z) = lirf Torsion, (¢1, zZ, X (2)) =
n—-—+00

~ lim - (@(1) (2, Xu(2), [TL)JT(z) - ﬁ([)(Z,XH(Z),T(Z))) et

n—+o00 7, (2

Example 1.5.2 (Example 2 in [MS17]). We discuss the example of the dissipative pen-
dulum presented in [MS17]. That is, the system is obtained by adding a dissipative term
to the classical pendulum system. Its flow is denoted as ¢ : A x R — A, (¢,v9,70) —
o(t; o, m0) = (¥(t),r(t)) and it is defined by

d
aw(t) =7(t)

for A > 0. Denote X g (1(t), r(t)) the vector <r(t), —W - )\T(t)) belonging to Ty r) A.
We ask that A < 2 to assure that D¢,(0,0) is conjugated to a rotation (see the discussion

at the point (0,0) below).

The phase portrait is sketched in Figure 1.7. As in Example 1.5.1, we are going to discuss
the torsion of the time-one flow f = ¢;.

At the fixed point (%, 0) there exists a vector v such that for any ¢ it is an eigenvector of
ngt(%, 0) with respect to a real positive eigenvalue. Therefore

1 1
Torsion <q§1, (—, O)) = lim Torsion, ((bl, (—, O) ,v) = 0.
2 n—-4o00 2
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At the fixed point (0, 0), the differential D¢.(0,0) is conjugated to the matrix

-3t 4 — )\
<e . €0§t> R <(o,0), —tT) , (1.70)

that is to the composition of a contraction and a rotation. We consider a C' diffeomor-
phism A isotopic to the identity with compact support U such that in a neighborhood of
(0,0) it is a change of coordinates so that:

— for any t it holds that D(h o ¢; o h=1)((0,0)) is the matrix in (1.70).

Consequently, we have for any v € T(g0)A

Torsion; (h o ¢1 0 h™*,(0,0),v) = ———"—

and so
4 — )\
—y
From Proposition 1.3.3 (i.e. the invariance of the torsion for diffeomorphisms isotopic to
the identity with compact support on the unbounded annulus), we conclude that

Torsion(h o ¢y o b, (0,0)) = —

4 — \?

Torsion(¢1, (0,0)) = Torsion(h o ¢y 0 h~1,(0,0)) = — 9

Denote as « the value ——”42_’\2.

Figure 1.7 — The dynamical system of the dissipative pendulum of Example 1.5.2.

Let us consider now a point € A\ {(0,0), (3,0)}. Let Z belong to the stable manifold
of (0,0), i.e.
WH(0.0) = (e A Tm a(7) = (0.0}

Recall that U denotes the neighborhood of (0,0) which is the support of the change of
coordinates h introduced above. The time-one torsion of h o ¢; o h™! is continuous with
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respect to the point in A where we calculate the time-one torsion. Fix ¢ > 0. Let V be a
neighborhood of (0, 0) contained in U such that for any x € V for any v € T} A it holds®

| Torsion; (h o ¢y o h™", 2, v) — Torsion (h o ¢y o h™",(0,0),v)| <e. (1.71)

Recall that Torsion;(ho ¢y o h™t (0,0),v) = «a for any v € T(lop)A.
Denote as z = h(Z). Observe that

lim ho¢g,oh ' (2) = lim hoa,(zZ) = h((0,0)) = (0,0).

n—-+oo n—-+oo

Hence, the point z belongs to the stable manifold of (0,0) with respect to h o ¢; o h™1.
Consequently, there exists N € N such that for any n > N it holds

(hogroh™)"(2) = (hog,oh™')(2) €V. (1.72)
Denote as j = ho ¢y o h™(2) € V.
Claim 1.5.1. For n € N we have
Torsion, (ho ¢ o b, §,v) € ( — e, + ).

Proof. For n =1 the claim holds because § € V and from (1.71). Assume the statement
holds true for n — 1. Then

n Torsion,,(h o ¢1 o h™*,,v) = (n — 1) Torsion,,_1(h o ¢y o ™1, ,v)+
Torsion; (ho ¢1 o h™ ho ¢p_y 0o h" (), D(h o ¢p_y1 o h™ 1) (g)v).
From inductive hypothesis it holds
(n — 1) Torsion,,_1(ho ¢y o h™ 1, 5,v) € (n — 1)(a — ), (n — 1)(a +¢)). (1.73)

Because of (1.72), the point h o ¢,,_; o h~ () belongs to V. From (1.71), it holds (up to
renormalize the vector)

Torsion; (ho ¢ o h™ ho¢p_10oh ™ (§),D(ho ¢p_1oh™ (@) € (a —e,a +¢). (1.74)
Consequently, from (1.73) and (1.74),
n Torsion, (h o ¢1 0 b1, 4,v) € (na — ne, na + ne)

and so
Torsion, (ho ¢y o ™, 5,v) € ( — €, + €).

We so deduce that
Torsion(h o ¢y o h™1,9) € (a — &, a0+ €).

By the arbitrariness of ¢ and from the invariance of the torsion along the orbit of z, it
holds
Torsion(h o ¢, o h™!, 2) = Torsion(h o ¢1 0o h ™1, ) = av.

6. We are identifying the unitary tangent spaces T} A and T(lO O)A through the standard trivialization.
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Thanks to the invariance of the torsion for C! conjugation isotopic to the identity with
compact support on the annulus (see Proposition 1.3.3), we conclude that

Torsion(¢y, ) = Torsion(h o ¢1 0 b1, 2) = a.

Let € A\ {(0,0),(3,0)} be a point of the stable manifold of (1,0), i.e. lim;_, ;o ¢¢(Z) =
(%, 0). Recall that a vector v of the stable subspace of ( %, 0) is an eigenvector with respect
to a positive eigenvalue of D(bt(%, 0) for any ¢. Hence

1
Torsion; (¢1, (5,0) ,’U> = 0.

Fix € > 0. By the continuity of the torsion at finite-time and by the local stable manifold
theorem, there exists a neighborhood U of (%,0) such that for any = belonging to the
connected component of U NW*(3,0) containing (3,0) (i.e. the local stable manifold) it
holds

| Torsion; (¢1,x, w,)| < &, (1.75)

where w, € T,W*(3,0). There exists n = n(z) € N such that for any m > n we have that
®m(Z) belongs to the local stable manifold. Hence, by (1.75), for any [ > 0

| Torsion;(¢1, ¢n(Z), we, )| < €.

That is

—e < liminf Torsion (o1, ¢n(T), e, () = lim inf Torsion; (¢, T, wz) <
l—+o00 l—+o00

< lim sup Torsion; (¢, T, wz) = lim sup Torsion;(¢1, ¢, (Z), we, 7)) < €.
=400 =400

By the arbitrariness of £, we conclude that the torsion at z exists and Torsion(¢y,z) = 0.

Remark 1.5.1. Looking at the dynamical system of Example 1.5.2 with reversed time,
we obtain an example where the torsion exists everywhere, the point (0,0) has torsion
value «, while all the other points have null torsion.

Indeed, if a point  belongs to the stable manifold (for ¢; *) of (%, 0), then we can show that
Torsion(¢; !, 2) = 0. The details are the same as those of the torsion of points belonging
to the stable manifold of (3,0) for ¢;.

Let = (¢(0),7(0)) have unbounded orbit. We calculate the torsion with respect to the

vector field - .
Xa(o-fa) = (-0, -CFED ).

where for any s € R we denote ¢s(x) = (¢(s),7(s)). There exists T' > 0 such that for
any t > T the point ¢_;(x) has positive (respectively negative) second coordinate r(—t).
Hence, the vector Xg(¢_¢(x)) is contained in the right half-plane (respectively left half-
plane) for any ¢t > T'. Consequently, its angle variation is bounded and we conclude that
Torsion(¢; !, z) = 0.

Example 1.5.3 (Morse-Smale diffeomorphisms). We are going to calculate the torsion
for a Morse-Smale diffeomorphism on the 2-dimensional torus T?. We start by recalling
the definition of Morse-Smale diffeomorphism on T? and we refer to [Pal68|.
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Definition 1.5.1. A diffeomorphism f : T? — T? is called Morse-Smale if:

(1) the non-wandering set (f) is finite (this implies that Q(f) = Per(f) where Per(f)
is the set of periodic points for f);

(2) all points in Per(f) are hyperbolic;

(3) for any couple of points x,y € Per(f) the stable manifold of x W#(z) intersects
transversally the unstable manifold of y W*"(y).

Proposition 1.5.1. Let f : T? — T? be a C' Morse-Smale diffeomorphism isotopic to
the identity. Then, the torsion exists at every point and the set { Torsion(f,z): z € T?}
18 finite.
Denote as Q(f) = Per(f) = {P.,...,Pn}. We first calculate the torsion at periodic
points.
Lemma 1.5.1. Let P; € Per(f) have period N; € N. If DfNi(P,) has real eigenvalues,
then there exists k € Z such that

k
2N,

Proof. Let v € TpT? be an eigenvector of D f™i(P;). Since its eigenvalue is real, the
subspace Ru is invariant by D fYi(P;). Consequently, there exists k € Z such that

Torsion(f, P;) =

k
N, Torsiony, (f, P, v) = 5

Observe that k& € 2Z if the corresponding eigenvalue is positive, while k € 27 + 1 if the
corresponding eigenvalue is negative. We conclude that

k k
Torsion(f, P;) = ngrfoo Torsion,n, (f, P, v) = ngrfoo 2ZN~ =N

]

Lemma 1.5.2. Let P; € Per(f) have period N; € N. If Df™i(P;) has eigenvalues \, \ €
C\ R, then there exists k € Z such that

k
Torsion(f, P;) = %,
where a = £ arg(\).

Proof. Consider a linear change of coordinates h isotopic to the identity so that the point
P, = h(P;) and D(ho fNioh™1)(F;) is the composition of either a dilatation or a contraction
and a rotation centered at the origin of angle « = + arg(\). In such a framework for any
v € Tp,T? it holds

N; Torsiony, (h o f o h™t, P;,v) = Torsion; (h o fY o h™*, P,v) = a + k,
for some k € Z. From the invariance of the torsion by conjugation of C! diffeomorphisms
orientation preserving (see Proposition 1.1.6), we conclude that
a+k

1 1
Torsion(f, P;) = NTorsion(fNi, P) = NTorsion(h ofNioh™ P) = N
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Actually, we are going to show that
{Torsion(f, z) : z € T?} = {Torsion(f, ;) : P; € Per(f)}.

Since the set of periodic points is finite from the definition of Morse-Smale diffeomor-
phisms, we deduce that the set of torsion values is finite too. For a Morse-Smale diffeo-
morphism we have (see Theorem 2.3 in [Sma67])

= (e,
=1

which is a disjoint union.
We are going to discuss two possible cases.

(1) x belongs to the stable manifold of a periodic point P; such that P, is a saddle point
(with respect to fi). In particular, D f"i(P;) has real eigenvalues A, Ay such that

(74) x belongs to the stable manifold of a periodic point P; such that P; is a sink (with
respect to fNi).

Lemma 1.5.3. Let x € T?. Assume that x € W*(P;) for some N;-periodic hyperbolic
point P; such that P; is a saddle point. Then

k
Torsi — Torsion(f, P) = ——.
orsion(f,x) orsion(f, P;) N
Proof. Since P, is a saddle fixed point for fi, the tangent space Tp, T? admits a hyperbolic
splitting E* & E*. In particular, E*(P;) denotes the stable subspace and it is D f™:-
invariant. Let k € Z be such that

Torsiony, (f, P, v) = g,
where v € E*(P;) (see Lemma 1.5.1). Let ¢ : U — R? be a chart so that P, € U. From
the stable manifold theorem we find a neighborhood U’ C U such that the connected
component of U’ N W#*(P;) containing P;, denoted as W, _(P;), is a C* submanifold, it is
fNiforward invariant and Tp, W} _(P;) = E*(P;).

Fix € > 0. By the continuity of the torsion at finite time N; and by the continuity of

I/VZZC(F)T) 2T — TIWS(‘Pl)u
there exists a neighborhood U” C U’ such that for any x € W _(P;) N U" we have

k
Torsiony, (f, z, w) — 5| <& (1.76)

where w € T,W?*(P).
Let x € W*(P;). There exists n € N such that for any n > n the image fVi"(x) belongs
to U" NW§ _(P;). Denote as z = fVi*(z).

44



Claim 1.5.2. For any n € N it holds

Torsiony,,(f, z, w) — 5’ <e,

where w € T,W?*(F;).

Proof. Let us argue by induction. The case n = 1 is given by condition (1.76). Assume
the claim holds for n — 1, that is

Ni(n — 1)k
‘Ni(n — 1) Torsionn, (n—1)(f, 2, w) — %‘ < Ni(n —1)e.
Then
Nink Ni(n — 1)k
‘Nin Torsiony,,(f, z, w) — n < ‘Nz(n — 1) Torsion, (n—1)(f, 2, w) — %'+
: N;(n—1) N;i(n—1) le
+|N; Torsiony, (f, f (2), Df" (2)w) — 5
; N;(n—1) N;(n—1) Nik
< N;(n — 1)e + |N; Torsiony; (f, f (2), Df" (z)w) — 5 |

Since fM:("=1(2) belongs to U"NW;,.(P;) and since D f:("=1(2)w belongs to Tpnimn- W2 (F),
we apply hypothesis (1.76) and deduce that

Nk

N; Torsiony, (f, fN ™=V (2), DD (2)w) < Nie.

We conclude that

Torsiony,,(f, z, w) — 5‘ <,

as desired. O

From Claim 1.5.2 and from the invariance of the torsion along the orbit of a point, we

have "
Torsion(f,z) — 5‘ <e.

k
Torsion(f, z) — 5‘ =

k

By the arbitrariness of € > 0, we conclude that Torsion(f,z) = Torsion(f, F;) = 5.

]

Lemma 1.5.4. Let x € T?. Assume that x € W*(P;) for some N;-periodic point P; such
that P, is a sink. Then
Torsion(f,x) = Torsion(f, F;).

In order to prove Lemma 1.5.4, it is more convenient using Ruelle’s definition of torsion
and then recall that Béguin and Boubaker’s notion is equivalent. In the sequel we then
refer to [Rue85|.

Consider a diffeomorphism on T? where we fix the standard Riemannian metric and the
standard trivialization. The arguments can be adapted for a parallelizable Riemannian
surface.
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Notation 1.5.1. Denote as GL*(2,R) the subgroup of GL(2, R) of matrices with positive
determinant.
For any A € GL"(2,R) we consider its polar decomposition and we refer to it as

A=U(6(A)) S(A),

where U(6(A)) is the rotation of angle #(A) € T and S(A) is a symmetric positive definite
matrix.

Definition 1.5.2. Let f : T? — T? be a C! diffeomorphism isotopic to the identity and
let I = (f;); be an isotopy joining the identity to f. For x € T? consider the continuous
angle function

R,y 5t~ 0(Df(z)) €T,
where
Dfy(z) =U@(Dfi(x))) S(Dfi(z)).

Denote as R, 3t — O(Dfi(z)) € R a continuous determination of this angle function.
Ruelle’s torsion at x is, whenever it exists, the limit

As remarked by Ruelle in [Rue85]|, for a f-invariant probability measure p (on T?), Ru-
elle’s torsion exists p-almost everywhere. Moreover, as for Béguin and Boubaker’s torsion,
it does not depend on the choice of the continuous determination.

Claim 1.5.3. Let x € T?. Ruelle’s torsion wy(z) exists if and only if Torsion(/, z) exists
and , when they exist, w;(z) = Torsion(/, z).

Proof. Fix x € T?. Let v € T, T?\ {0}: recall that the asymptotic torsion does not depend
on the choice of the tangent vector (see Proposition 1.1.3). For any ¢ € R, we have that
0(Df,(x)) is a measure of the oriented angle between the fixed reference vector field X
and the vector

U(0(Dfi(x)))v = D fu(x) S(D fe(x))"'v

since U(0(DFi(z))) is a rotation of angle 0(Dfi(x)). Consider then the oriented angle
function

R, >t~ 0(Df(x) S(Df(z)) v, Dfi(x)v) €T
and denote as R 5 t — O(t) € R a continuous determination of it. Consequently (refering
to the notations used to introduce Ruelle’s torsion and Béguin and Boubaker’s torsion),
for any n € N we have that

(0D fu(@) = 0010)) = G(D) (@, v,m) = 51 (w,0,0))| = [O(n) = O(O).  (1.77)

We are going now to show that

(1.78)

for any t € R,.
Argue by contradiction and assume there exists ¢ € R, such that )(:)(f) - (:)(0)‘ =2
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Observe that (:)(O) € 7Z. Thus, by contradiction hypothesis, we are assuming that the ori-
ented angle 0(D fi(x) S(D fi(x)) v, D fi(x)v) admits a measure equal to 3. Equivalently,
the vectors D fi(z) S(Dfi(x)) ‘v and D fr(z)v are negatively colinear. Since f; is invert-
ible, it holds that S(Dfi(z)) 'v and v are negatively colinear too. This contradicts the
fact that the matrix S(D fz(z))~! is positive definite and we conclude the proof of (1.78).

From (1.77) and (1.78) we conclude that for any n € N

O(Df(x)) —0(1d)  o(I)(z,v,n) — o(I)(z,v,0)

. - - —]é(m —0(0)| < —.

Passing to the limit for n — 400 we obtain the claimed result.

Proof of Lemma 1.5.4. Consider a compact neighborhood U of P; that is a basin of
attraction of P; for fVi. In particular the omega-limit set (with respect to fVi) w(U) =
{P;}. The restricted dynamical system f™ : U — U is uniquely ergodic. The unique
ergodic fYi-invariant measure is the Dirac’s delta measure dp, concentrated at the point
P;.

Thus, for every ¢ € C(U), the limit of the Birkhoff sum of ¢ converges for every point to
the constant

/U o(x) dop,(x) = 6(P),

see Theorem 6.19 in [Wal82].
Let x € W*(P;). There exists i € N such that for any n > n the point fYi"(z) belongs
to U. Denote as z = fVi"(x). According to Notation 1.5.1 and to Claim 1.77, in order to
calculate the torsion at z we can consider Ruelle’s torsion
0(DfNin(2)) — 6(1d
DN (e) — )

n—-4o0o n

In order to simplify the notation, up to replace f with fi, assume that P, is a fixed point
for f.
Retracing the proof of Ruelle in [Rue85|, we observe that for any A, B € GL"(2,R) it

holds that ‘é(BA) —A(B) — é(A)‘ < 3, where 0 denotes the universal covering of the
angle obtained from the polar decomposition. Fix now m > 0 and write n = km + r for

k> 0,0 <r < m. Observe that

k

B(DS"(2)) = BDS™(2)) = -+ = DS (S0 ()) = BDL ()| < .

In particular, applying Birkhoff’s Ergodic Theorem and since f; is uniquely ergodic, we
deduce that for every z € U

i ODF(2) = 0

n—-4oo n

= 0. (1.79)

Again because of Birkhoft’s Ergodic Theorem and because of the unique ergodicity of the
system, for every z € U we also have that (we are using Claim 1.5.3 at P})

o i 0DFM() 6(d) 6D (P) ~ 8(1d)

k——+o0 km m m
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= Torsion,,(f, P;,w) = Torsion(f, P;), (1.80)
where w € Tp T?.
From (1.79) and (1.80), showing that the sequence <W> is a Cauchy se-
neN

n

0(Df"(2))—0(1d)

n

quence, we conclude that < > converges for every z € U (thanks to the
neN

unique ergodicity) to the same limit as (1.80). That is

k
wy(z) = Torsion(f, z) = Torsion(f, P;) = oL
By the invariance of the torsion along the orbit of a point, we finally conclude that for

every x € W*(P;) (assuming that P; is a fixed point for f) it holds

Torsion( f, x) = Torsion(f, z) = Torsion(f, P;) = ﬁ

[\]

]

From Lemmas 1.5.3 and 1.5.4 we conclude that the torsion exists at every point and that
the set of torsion values is finite and coincides with the set of torsion values of periodic
points.

1.6 Appendix of Chapter 1

We now present the proof of the technical Proposition 1.4.1, used in the discussion
of case (i) of Theorem 1.4.1 (see Subsection 1.4.2). Consider Ji(s), J2(s) for s € I. By
hypothesis my; o J; = 7 0 Jo, so they lie on the same tangent space.

Four different cases can occur:

(1) Ji(s), J2(s) are positively colinear, i.e. Ji(s) = AJa(s) for some A > 0. Hence, the
associated angle function satisfies 6(s) = 0 mod 1 and any continuous determination
0 verifies 0(s) = k for some k € Z.

(2) Ji(s), Jo(s) are negatively colinear, i.e. Ji(s) = AJo(s) for some A < 0. Hence, the

associated angle function satisfies 0(s) = % mod 1 and any continuous determination

0 verifies 0(s) = § + k for some k € Z.

(3) Ji(s), J2(s) are linearly independent and (Ji(s), Jo(s)) is a direct basis. Therefore,
the associated angle function satisfies 6(s) € (0, 3) mod 1 and any continuous deter-
mination 6 verifies 0(s) € (k, 5 + k) for some k € Z.

(4) Ji(s), Jo(s) are linearly independent and (Jy(s), Ja(s)) is a non-direct basis. There-
fore, the associated angle function satisfies 6(s) € (3,1) mod1 and any continuous

determination @ verifies 0(s) € (3 + k, k + 1) for some k € Z.

We denote as ©(s) the oriented angle between D f o Ji(s) and D f o Js(s).

Lemma 1.6.1. Let I C R and let M, N be 2-dimensional oriented Riemannian manifolds.
Let f : M — N be a local diffeomorphism which preserves the orientation and let Jy, Js :
I — TM be continuous functions that never vanish. Assume also that w0 J; = mp 0 Js.
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Let 0,0 : I — T be the oriented angles, respectively, between the image vectors Ji, Jo and
the image vectors Df o Jy, Df o Js.
Then, for any s € I

0(s) — O(s) # % mod 1. (1.81)

We postpone the proof of this lemma and we now prove Proposition 1.4.1.

Proof of Proposition 1.4.1. Let 6 be a chosen continuous determination of the angle @, i.e.
the angle between Jy, J5. Let fix sg € I. Depending on the cases, we have

=k if 0(sg) = 0 mod 1

=k+1 if §(so) = 3 mod 1
€(0,3)+k if 0(so) € (0,3) mod1
€3, 1)+k if O(so) € (3,1) mod 1

29

0(s0)

where k € Z. )
Choose a measure O(sg) of the angle ©(sg) (i.e. the angle between Df o Ji(sg) and
D f o Js(sp)) such that
1
‘9(80) — @(80)‘ < 5
By the continuity of the chosen determination ©, from the relation holding in sg and from
Lemma 1.6.1, for any s € I we conclude

0(s) — O(s)| < 5.
0

Proof of Lemma 1.6.1. As remarked above, only four cases can occur concerning the
relative positions of vectors Ji(s), Jo(s) for any fixed s € I.
We then show that for any s

0(s) — O(s) # % mod 1.

Arguing by contradiction, assume that there exists s so that 6(s) —©(s) = 4 mod 1. Then
the couples of vectors (J1(s), Jo(s)) and (D f o Ji(s), Df o Ja(s)) belong to different cases
and this is a contradiction. Indeed, since f is a local diffeomorphism which preserves the
orientation, looking at the relative position of vectors Df o Ji(s), Df o Js(s), the same
four cases presented above can occur and for any fixed s € I we remain in the same case
as J1(8>, JQ(S).
O
Observe that a similar (adapted) result could be obtained in the case of a local diffeo-
morphism which reverses the orientation.

Lemma 1.6.2. Let I C R and let M, N be 2-dimensional oriented Riemannian manifolds.
Let f: M — N be a local diffeomorphism which inverts the orientation and let Jy, Js :
I — T'M be continuous functions that never vanish. Assume also that wy o0 J; = wpr 0 Js.
Let 0,0 : I — T be the oriented angles, respectively, between the image vectors Jyi, Jo and
the image vectors Df o Ji, Df o J;.

Then, for any s € 1

0(s) + O(s) # % mod 1. (1.82)
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Proof. Only four cases can occur concerning the relative positions of vectors Ji(s), Jo(s)
for any fixed s € I. Argue by contradiction and assume that there exists s € I such that
0(s) + O(s) = 3 mod 1.

Let us discuss the possible cases. If Ji(s) and Jy(s) are positive colinear, then also their
image through D f are positive colinear. That is, both f(s) and ©(s) are null: in particular
6(s) + O(s) cannot be equal to 1 mod 1.

A similar argument excludes the case of Ji(s) and J5(s) being negative colinear.
Assume now that 0(s) € (O, %) Consequently, since f reverses the orientation, the angle
O(s) isin (3,1). Thus

2

6(s) + O(s) (%,1+ %) mod 1.

In particular, §(s) + ©(s) cannot be equal to 1 mod1. A similar argument excludes also
the case of (Ji(s), Jo(s)) giving a non-direct basis and we conclude.

O
From Lemma 1.6.2 we can deduce the following

Proposition 1.6.1. Let I C R be an interval and let M, N be two-dimensional oriented
Riemannian manifolds. Denote the tangent projections as wpr : TM — M,y : TN — N.
Let f : M — N be a local diffeomorphism which reverses the orientation and let J, : I —
TM, Jy: I — TM be continuous functions such that wy; o J; = wpp 0 Js.

Suppose that, for any t € I, Ji(t) # 0,7 = 1,2 and let § : I — R be a continuous
determination of the angle function between the image vectors Jyi, J.

Then, there exists a continuous determination © : I — R of the angle function between
the tmage vectors Df o Ji, Df o Jy such that

6(s) + O(s)] < % vsel. (1.83)

Proof. The proof is almost the same as Proposition 1.4.1. Let 6 be a continuous determi-
nation of 8 and let fix sg € I. Four cases can occur:

where k € Z.

Choose then a measure O(sy) of the angle O(sg), the angle between Df o Ji(sy) and
Df o Js(sg), so that |0(so) + O(so)| < 3. By the continuity of the chosen determinations
and by Lemma 1.6.2, we conclude that for any s € [ it holds

0(s) + ©(s)] < 3.
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Chapter 2

Results on negative-torsion maps

In this Chapter we introduce negative-torsion maps and discuss properties of the set
of points of zero torsion for such maps. We will start by focusing on positive (negative)
twist maps, showing that they are examples of negative-torsion (positive-torsion) maps.
We will state results over the Hausdorff dimension of the set of points of zero torsion for
negative-torsion maps.

We also show that the notion of negative-torsion (positive-torsion) maps coincide with
the notion of positive (negative) tilt maps.

Notation 2.0.1. In the following, the annulus A is endowed with the standard Rieman-
nian metric and trivialization. We fix the counterclockwise orientation and consider as
reference vector field the vertical constant one y = (0, 1). The notation #H refers to the
constant horizontal vector (1,0).

Definition 2.0.1. A C! diffeomorphism isotopic to the identity f : A — A is a negative-
torsion map (respectively positive-torsion map) if for any z € A it holds

Torsion; (f,z,x) <0 (respectively > 0).

Remark 2.0.1. We do not make explicit the choice of the isotopy (and so write Torsion, (f, z, x))
because the torsion is independent of the choice of the isotopy on A (see Proposition 1.3.2).

2.1 Torsion for twist maps

We introduce now the definition of twist map on the annulus A. We refer to [LCI1]
and [Cro03|. In addition, other interesting references are [Mat82a|, [Mat91]| and [Mat82b].

Definition 2.1.1. A positive twist map (respectively negative) f: A — A is a C! diffeo-
morphism isotopic to the identity such that for any lift /' : R?> — R? and for any x € R
the function

Roy—poF(xy) R (2.1)

is a strictly increasing (respectively decreasing) diffeomorphism.
Remark 2.1.1. All over the literature (see [LC91] and [Cro03|), the definition of positive
twist map asks also the further condition that for any lift £ : R? — R? and for any € R

the function
Ro>yrspoF Yoy €R (2.2)

51



is a decreasing diffeomorphism of R. Actually, Definition 2.1.1 implies this condition
and we omit it. Indeed, from (2.1) we immediately deduce, looking at the differential
DF(F~(z,y)) and at its inverse, that for any lift F' and for any z € R the function
y +— p1o F1(x,y) is a diffeomorphism onto its image. Its image is actually the whole R
otherwise there would exist £ € R such that the image of the vertical p; o F'(V{¢)) would
not be the whole R, contradicting condition (2.1).

Example 2.1.1. The C' diffeomorphism
A>(z,y) = (x+yy) €A

is the first simplest example of positive twist map. The annulus is foliated by invariant
circles.

Example 2.1.2. For any a € R, the standard map f,, where
folz,y) = (z +y + asin(27x),y + asin(27z)),

is an example of positive twist map.

2.1.1 Limitedness of torsion for twist maps

The following result provides an estimation for finite-time torsion of positive twist
maps. Recall that on A the torsion does not depend on the chosen isotopy (see Propositio
1.3.2), so we will omit it in the notation.

Theorem 2.1.1. Let f : A — A be a positive twist map. Then, for any z € A and for
any n € N;n # 0, it holds

1
Torsion,(f,Z,x) € (—5,()) .

Remark 2.1.2. In the framework of negative twist maps, an adapted version of Theorem
2.1.1 holds true. Indeed, if f is a negative twist map, then for any z € A and for any
n € N,n # 0 we have

1
Torsion,(f, z, x) € <O, 5) .

Remark 2.1.3. The torsion at any point for a positive twist map f is independent of the
choice of the isotopy I = (f;);, thanks to Proposition 1.3.2.

In Section 2 of [LC91], Patrice Le Calvez proved that any positive twist map f: A — A
can be joined to the identity Id, through an isotopy I = (fi)icp, in Diff'(A) such that
fo =1da, f1 = f and for any ¢ € (0,1] each f; is a positive twist map. We are going to
calculate torsion with respect to this isotopy.

In order to prove Theorem 2.1.1, we first introduce some preliminary steps.

Proposition 2.1.1. Let f: A — A be a positive twist map. For any zZ € A it holds

Torsiony (f, z,x) € (—%,O) . (2.3)

Remark 2.1.4. Proposition 2.1.1 implies that any positive twist map is a negative-torsion
map according to Definition 2.0.1.
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Proof. From Proposition 1.3.2, the torsion does not depend on the choice of the isotopy.
Therefore, we use the isotopy given by P. Le Calvez (see Remark 2.1.3): for any ¢ € (0, 1]
the C! diffeomorphism f; is a positive twist map.
Let I = (F},); be the lifted isotopy of I = (f;); such that Fy = Idge. It joins the identity
to F} = F, a lift of f. The point z = (z,y) € R? denotes a lift of the point z € A.
Look then at

Torsion, (1, z, x).

It is the variation of a continuous determination o(1)(z, x, -) of the oriented angle function
between x and DF;(z)y. Recall that it is independent of the choice of the continuous
determination of the angle function (see Proposition 1.1.1).

By the choice of the isotopy, for any t € (0, 1], f; is a positive twist map. Then, since F;
is a lift of f;, for any = € R the function

Ry proFi(r,y) €R

is an increasing diffeomorphism of R. In particular, its derivative is always positive, that

D(py o Fy)(2)x > 0. (2.4)

For any ¢ € (0,1] the first component of the image vector DFy(z)x is positive. The
vector remains in the right half-plane and it cannot cross the vertical any more. Thus,
the variation

0(1)(z, x,t) = 0(1)(2, X, 0)
has to stay in the interval (—%, O) for any ¢ € (0, 1], thanks also to the continuity of the
lift. We then conclude that

o(I)(z,x,1) —0(I)(z, x,0) = Torsion, (I, z, x) =

= Torsion; (f, z, x) € (—%,0) . (2.5)
]

Proposition 2.1.2. Let f : A — A be a positive twist map. Let Z € A and let £ €
T:A\ {0}. Then it holds
1

Torsiony (f, Z,€) € <—1, 5) . (2.6)
Proof. Let I = (f,); be an isotopy in Diff '(A) joining the identity to f. We use the nota-
tions of Proposition 1.1.2. Then W(0,-) and W (—%, ) are continuous determinations of
v(I)(2,x,-) and v(I)(Z, —x, -) respectively, such that W(0,0) =0 and W (—3,0) = —1.
We assume that ¢ is in the right half-plane. Let us denote 0(1)(2,£, ) a continuous deter-
mination of v(1)(z, &, ) such that 9(1)(z,£,0) = a € [—1,0]. Since 0(I)(Z,&,-) = W(a, -),
by point (i7) of Proposition 1.1.2 it holds

W (—% 1) < (D)5 61) = W(a, 1) < W(0, 1).

This implies

1

W (—% 1) CW(0,0) < 5(1)(5,6,1) — 5(I)(3,€,0) < W(0, 1) — W (—§,o> |
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Because of (iii) of Proposition (1.1.2), we have that W (—1,1) = W(0,1) — 1 and
%% (—%, O) =W(0,0) — % From these equalities and since

Torsiony (f, z,&) = 0(I)(z,£,1) — 9(I)(Z,&,0),
we obtain

W(0,1) — W(0,0) — = < Torsions (f, 2,€) < W(0, 1) — W(0,0) + —.
2 2

By Proposition (2.1.1), W(0,1) — W(0,0) is in (—3,0), hence

1
2

1
—1 < Torsion; (f,z,¢) < 5

If € is in the left half-plane, then —¢ is in the right half-plane and we know that

Torsion, (f, z,€&) = Torsion (f, z,—&) € (—1, %) )

]

Proof of Theorem 2.1.1. The proof of the Theorem is made by induction. The base case,
that is the case with n = 1, is Proposition 2.1.1. Concerning the inductive step, assume
that the statement holds true for n € N.

We use the notation of Proposition 1.1.2, but we add the dependence on the point Wx(s, t).
Then W;(0, -) is a continuous determination of the angle function v(7)(Z, x, -) that satisfies
(by Proposition 2.1.1) W3(0,1) = g € (—%,O), that is

1
Wi () <—%,0> = —5 < Wz(0,1) = Wyz(8,0) < Wy (0,0) =0.

Remark that ¢ — W3(0,1 4 ¢) and ¢ — Wy (5,t) are continuous determinations of
the same oriented angle function and they coincide at ¢ = 0. Thus, the functions ¢ —
W:(0,14t) and t — Wy (8,t) are equal.

By point (i7) of Proposition 1.1.2 we have for any ¢

W (—%,t) < Wyin(B.1) = Wa(0, 1+ 1) < Wys)(0,1).
Using (#ii) of Proposition 1.1.2 it holds
Wiie)(0, 1) % CWL(0,14 ) < Wyes) (0, 1),
For t = n we have
Wiz (0,n) — % — Wiz(0,0) < Wz(0,n + 1) = W5(0,0) < W) (0,n) — Wz)(0,0).
By induction hypothesis, we have
Wi()(0,n) = Wy((0,0) € <—g 0)

and then

!
Wo(0,n+ 1) — W2(0,0) € (—"; ,o) .

Theorem 2.1.1 and Remark 2.1.2 imply the following
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Corollary 2.1.1. Let f : A — A be a positive twist map (respectively a negative twist
map). Let zZ € A be a point at which the torsion exists.
Then . .

Torsion(f,z) € [—5,0] (respectively l(), 5}) . (2.7)
Remark 2.1.5. The independence of the torsion from the chosen isotopy is assured by
Proposition 1.3.2.

Example 2.1.3. Let f : A — A be a positive twist map. Any point of an Aubry-Mather
set with irrational rotation number has zero torsion. This result has been proved by
S. Crovisier in [Cro03| (see Theorem 1.2).

Example 2.1.4. Let f: A — A be a positive twist map. If z € A is a hyperbolic fixed

point such that D f(z) has a negative real eigenvalue, then we have Torsion(f,z) = —3.
To find an example of such a dynamics, consider the fixed point (0,0) € A of the map

(z,y) = [z, y) = (x+y — £sin(27z),y — 2 sin(2mz)) for A € R, A > 4.

o 2

2.1.2 Properties of linking number for lifts of twist maps

Thanks to Theorems 1.4.1 and 2.1.1, we can estimate also the linking number of any
two points in the lifted framework R2. Indeed:

Corollary 2.1.2. Let F': R?> — R? be a lift of a positive twist map (respectively negative
twist map) on A. Let (Fy); be the isotopy joining the identity to F, obtained as a lift of
an isotopy on A joining Id, to the twist map. Let z1, 20 € R%, 21 # 2z be such that their
linking number exists. Then

1 1
Linking((F}), z1, z9) € [—5,0] (respectively [0, 5}) )

This result holds true for any couples of points for which the (asymptotic) linking number
exists.

Notation 2.1.1. On R? we fix the counterclockwise orientation and we consider as ref-
erence vector field the vertical constant one x = (0, 1).

Proof of Corollary 2.1.2. We are going to prove the result for positive twist maps. Let
f A — A be a positive twist map and let I = (f,); be an isotopy in Diff '(A) joining the
identity to f; = f. Let I = (F,); be the lift in Diff'(R?) of I = (f;); such that Fy = Idge.
So it joins the identity to F} = F', which is a lift of f.

Let 21,29 € R%, 2; # 2, and assume that the limit

Linking(/, 21, z,) = lim Linking, (I, 21, z)

n—-+o0o

exists.
For any n € N denote [,, as the quantity Linkingn(I~ , 21, 21)- Fix now n € N. From Corollary
1.4.1, there exists a point z lying on the segment joining 2z; and z,, such that

Torsion,, (I, Z, 29 — zl> =1,.
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We have )
Torsion,, (I, z, X) = Torsion,, (f, Z, x)

where 7 € A is the projection on the annulus of the point z € R2. Therefore Theorem
2.1.1 tells us that

~ 1
Torsion,, (I, z, x) € <—§,O> ) (2.8)

By Lemma 1.1.2, it holds

- ~ 1
‘Torsionn (], 2,29 — zl> — Torsion, (1, z,x)‘ < %
n

and then, by (2.8),
- 1 1 1
n = Torsi n (Ia ’ - ) a8 5 996 |-
{ orsion 2,29 —21) € ( 5 3, 2n>
We deduce that

. = 1 1 1
l, = Linking,, (I, z1, z3) € (—5 — 3 %) _

Since this holds for any fixed n € N, n # 0, passing to the limit, we conclude that

~ 1
Linking(7, 21, 23) € [—5,0} )

]

We also give an estimation of finite-time linking number under some further assump-
tions.

Proposition 2.1.3. Let F : R?> — R? be a lift of a positive twist map and let I = (F}); be
an isotopy joining the identity to F' obtained as a lift of an isotopy on A. Let p; : R? — R be
the projection over the first coordinate. Let z1, zo € R?, 21 # 29 be such that p1(z1) = p1(22).
Then for anyn € N
- 1
Linking, (I, z1, z2) € (—5,0) . (2.9)

Proof. Arguing by contradiction, assume that there exist points 21, zo € R?, z; # 2, with
p1(z1) = p1(2z2) and n € N, n # 0 such that

Linking,, (I, z1, 25) = (2.10)

with either [ smaller or equal —% or [ greater or equal 0. From the condition over the first
coordinate projection, the vector zo — 21 joining the two points is vertical. By Corollary
1.4.1, there exists a point z € R? lying on the segment joining z, and z; such that

Torsion,, (f, 2z, 29 — zl> = Torsion, (I, z, x) = L. (2.11)
The value [ does not belong to the interval (—%, O). This contradicts Theorem 2.1.1 and
we conclude.

]
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Remark that if two points z1, 25 do not have the same first coordinate projection, then

the result of Proposition 2.1.3 does not hold, as shown by the following two examples.

Moreover, Examples 2.1.5 and 2.1.6 show us that the extremal values 0 and —% of the

admissible interval for the linking number in Corollary 2.1.2 can actually be attained.

Example 2.1.5. Consider a lift of a C' diffeomorphism on A (not only lifts of twist
maps): the linking number of any two points z1, zo = 21 + (1, 0) is null.

Example 2.1.6. Let F' : R?> — R? be a lift of a positive twist map on A. Assume that
2o is a hyperbolic (saddle) fixed point such that DF(zy) has a negative real eigenvalue of
modulus strictly smaller than 1. Let z; be a point lying on one of the stable branches of
zo. Then Linking(F, 2o, z1) = —1.
2.1.3 Crovisier’s torsion for twist maps: definition and compari-
son

In [Cro03] S. Crovisier gives another definition of torsion for a positive twist map.
It seems natural to compare the two definitions: we prove that the two definitions are
equivalent and so we deduce that Crovisier’s results hold also refering to our Definition
1.1.3.

As before, we fix the counterclockwise orientation and we consider as reference vector field
on A the constant one y = (0, 1).

Notation 2.1.2. Let f : A — A be a positive twist map. Let z € A. We denote as
0" : T:A\ {0} = (—~1,0] C R

£ 0°(¢)
the measure of the oriented angle between the vertical vector xy and & contained in the
interval (—1,0]. The quantity 6°(Df(z)y) is then the measure of the oriented angle be-
tween x and D f(Z)x contained in the interval (—1,0].
We denote as
0" AN\ {0} — (0°(Df(2)x) — L.O°(Df(2)x)] C R
£ 0'(€)
the measure of the oriented angle between x and Df(Z)¢ contained in the real interval

(0°(Df(2)x) — 1,6°(Df(2)x)].

Definition 2.1.2 (Crovisier’s definition in [Cro03|). Let f : A — A be a positive twist
map. Let Z € A. According to Notation 2.1.2, we define the following function

0:T.A\ {0} > R

&= 0(5) = 0'(8) — 0°(¢)

which is a measure of the oriented angle between £ and D f(Z)¢.
For a given n € Z define

o Zogkgnq 9<ka( ) ) n>0
)= {—9n<Df”<z>f> n<o 212
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Observe that for & € N, the quantity 0(D f*(2)¢) is the difference between 0 (D f*(2)¢) and
0°(Df*(2)€), where °(D f*(2)€) is the measure, contained in (—1, 0], of the oriented angle
between the vectors xy and Df*(z)¢. These vectors lie in the tangent space TresA. On
the other hand, 6'(D f*(2)¢) is the measure, contained in the interval (QD(Df(fk( ))X) -
1,0°(Df(f*(2))x)], of the oriented angle between y and D f*+1(2)¢. These vectors lie in
the tangent space Thri1(5)A.

Proposition 2.1.4. Let z € A and & € T:A\{0}. Let f : A — A be a positive twist map.
Then (see (2.12) in Definition 2.1.2 and (1.4) in Definition 1.1.2)

n Torsion, (f,z,&) = 0,(§). (2.13)

Proof. Let I = (f,); be an isotopy in Diff '(A) joining the identity to f. Remark that the
torsion does not depend on the chosen I. Recall that (see (2.12))

Y. DRI = Y (0D — (D)) -

On the other hand, we have that (see (1.4))
n Torsion, (f,z,§) = Z Torsion; (f, f*(2), Df*(2)¢) =

0<k<n—1

= Y (@) (). DR EIEL) =5 (1) (£4(2), DFF(2),0)) .

0<k<n—1

We prove that for any 0 < k <n—1

01 (DfH(2)€) — 0°(DfH(2)€) = o (1) (f*(2). DFF(2)€,1) — o (1) (Df*(2), Df*(2)€, 0)
and this concludes the proof.
We show it for k = 0 since the proof of the equality of the other terms is the same.
The oriented angles involved are the same. Indeed, 0°(¢) is a measure of the oriented angle
between x and ¢, that is the angle v(I)(z,&,0); 6'(€) is a measure of the oriented angle
between x and Df(2), that is the angle v(I)(z,¢,1).
The quantity 0(1)(z,£,1) —9(I)(z,£,0) does not depend on the chosen lift. We show that,
by choosing the lift so that 9(1)(z, &, 0) = 0°(€), it holds o(I)(z,&,1) = 6'(€). This implies
the required equality.
We refer to the notation of Proposition 1.1.2. We choose the lift so that

0(I)(2,€,0) = 6°(¢) € (—1,0].

Denote s = 0%(£). Then Wy(s,-) = o([ )( ).
Observe that W3 (—1,0) < Wx(s,0) < ( 0). By point (éi) of Proposition 1.1.2 it holds

We(=1,1) <Wz(s, 1) = 0(I)(2,&, 1) < Wx(0,1).
Point (iii) of Proposition 1.1.2 implies that W3(—1,1) = W3(0,1) — 1, so we have
W=(0,1) =1 <o(I)(z,¢,1) < (0 1).

(3

By Theorem 2.1.1 for n = 1 it holds W3(0,1) € —1,0]. Being lifts of the same
angle both contained in (—1, 0], we have W:(0,1) = HO(Df( Z)X)-

We then conclude that W(s,1) = 9(I)(z,&,1) € (=1 +6°(Df(2)x),0°(Df(z)x)] and so
o(I)(z,&,1) = 01(€) being lifts of the same angle both contained in the interval

(=1+6°(Df(2)x), 0°(Df(2)x)]-

o8



Remark 2.1.6. Thanks to Proposition 2.1.4, our torsion (see Definition 1.1.3) at a point
exists if and only if Crovisier’s torsion at that point exists (in particular they are equal).

We recall the result obtained by S. Crovisier in [Cro03]. Since the two definitions
of torsion are equivalent, this result holds true also refering to the torsion presented in
Definition 1.1.3. For the definition of well-ordered sets we refer to [Che85] and [Cro03].

Definition 2.1.3 (Well-ordered set). A set £ C A, not empty and invariant for f, and
its lift £ C R? are said well-ordered if
(i) p1: B — T is injective;
(ii) for any z,2' € E, lifts of points z,7' € E, such that p;(z) < pi(2'), it holds that
pi(F(2)) < pi(F(2)).

Let z € R2. The rotation number of z for F' is, whenever it exists, the limit

lim <p1 o F"(z) —p1(2‘)) .

n—-+oo n

Let £ C R? be a well-ordered set. Then the rotation number of F is the rotation number
of any z € E. It is well-defined and it does not depend on z € E (see [LCI1]).

From Proposition 2.1.4, the following result by Crovisier holds with respect to our torsion
too.

Theorem 2.1.2 (Theorem 1.2 in [Cro03]). Let f : A — A be a positive twist map. Then,
every point of any well-ordered set with irrational rotation number has zero torsion.

2.2 Set of points of zero torsion for negative-torsion
maps
We start by defining an essential curve of the annulus.

Definition 2.2.1. An essential curve is a C’ embedded circle in A not homotopic to a
point.

The main results of this section will be the following

Theorem 2.2.1. Let f : A — A be a negative-torsion map. Then for any C' essential
curve vy : T — A there exists z € y(T) such that Torsion(f,z) = 0.

Corollary 2.2.1. Let f: A — A be a negative-torsion map. Then
dimg({z € A : Torsion(f,z) =0}) > 1,
where dimy denotes the Hausdorff dimension of a set.

We refer to [Fal86] for the definition of Hausdorff dimension of a set. Concerning Theorem
2.2.1, we will first prove the following simpler version.

Theorem 2.2.2. Let f : A — A be a negative-torsion map. Then for any r € R there
exists Z(r) € T x {r} such that Torsion(f,z(r)) = 0.

After it, we will present the proof of Theorem 2.2.1 (which generalizes Theorem 2.2.2).
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2.2.1 Points of zero torsion on simple circle curves
We start by showing some lemmas that will lead us to the proof of Theorem 2.2.2.

Lemma 2.2.1. Let f : A — A be a C! diffeomorphism isotopic to the identity. Let r € R
and n € N*. Then there ezists zZ(r,n) € T x {r} such that

Torsion,(f,z(r,n),H) =0, (2.14)
where H is the horizontal vector (1,0).

Proof. Let F : R? — R? be a lift of f. Let (F), € Diff'(R?) be the isotopy joining the
identity of R? to F, obtained as lift of an isotopy on A joining Id, to f.

Observe that for any ¢t € R, the function F; commutes with the translation by (1,0).
Consequently, for a fixed r € R, for any n € N* it holds (see Definition 1.2.1)

Linking,, ((F}):, (0,7), (1,7)) = 0.
By Corollary 1.4.1 there exists z(r,n) € [0,1] x {r} such that
Torsion,, ((Fy)s, z(r,n), H) = 0,

where H is the positive horizontal vector of norm one. Denoting as z(r,n) € T x {r} the
projection on the annulus of the point z(r,n), we conclude that

Torsion, (f,z(r,n),H) = 0.
0

Remark 2.2.1. Let z(r,n) € T x {r} be the point given by Lemma 2.2.1 applied to a
negative-torsion map f. Then, by Lemma 1.1.2, it holds

1
n Torsion, (f, Z(r,n), x) € (—§,O> : (2.15)
Lemma 2.2.2. Let f : A — A be a negative-torsion map. Let m € N* and let Z € A
be such that m Torsion,(f,z,x) < —g for some k € N*. Then for any n > m it holds
n Torsion,(f,z,x) < —%.

The statement is a consequence of the negative-torsion condition and of the following

Lemma 2.2.3. Let f : A — A be a C* diffeomorphism isotopic to the identity. Let a € A.
Let N € N*, (J)ico,v—1] € N andly=0<1l; < - <ly withl; €N for any i.
Assume that for all i € [0,/ — 1] it holds

(Lix1 — 1;) Torsiony,,, —,(f, f'"(a), x) < —5
Then for any vector £ € T,A\ {0} we have
N1
S /A |
Ly Torsiony , (f,a,§) < —E% + 7
In particular, when & = x we have
N1

Ly Torsiony , (f,a,x) < — 5
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We postpone the proof of Lemma 2.2.3 to Appendix 2.5.

Proof of Lemma 2.2.2. For n = m there is nothing to prove. Fix n > m and apply Lemma
2.2.3 for f at the point z € A with respect to A =21y =m,lys =n, % =k, % = 0. We
can use Lemma 2.2.3 because by hypothesis

k
m Torsion,,(f, z, x) < —5

and because, since f is a negative-torsion map and n —m > 0, it holds
(n —m) Torsion,_,,(f, f"(2),x) < 0.

We conclude that

k
n Torsion, (f, z, x) < —5

]

Lemma 2.2.4. Let f : A — A be a negative-torsion map. Let Z(r,n) € T x {r} be the
point given by Lemma 2.2.1 applied at f. Then for any m € (0,n] it holds

m Torsion,,(f,z(r,n), x) € [— %,O).

Proof. Argue by contradiction and assume there exists m € (0,n] such that

m Torsion,, (f, z(r,n), x) ¢ [— %,O).

In particular, since f is a negative-torsion map, it holds

1
m Torsion,,(f, Z2(r,n), x) < —5

By Remark 2.2.1 we have that n Torsion,(f, z(r,n), x) € (=3,0).
If m = n, then we immediately obtain the required contradiction. If m < n, then by
Lemma 2.2.2 it holds that nTorsion, (f, z(r,n), x) < —3, which provides again an absurd

and we conclude.

]

Notation 2.2.1. Fix r € R. Consider the sequence of points (Z(r,n))neny € T x {7} given
by Lemma 2.2.1. Denote as z(r) € T x {r} a limit point of (Z(r,n))pen+. Such a point
exists since T x {r} is compact.

Lemma 2.2.5. Let Z(r) € T x {r} be a limit point of (2(r,n))nen. Then for any N € N*
it holds

N Torsiony(f,zZ(r), x) € [— %,0)

Proof. Since f is a negative-torsion map, we have that for any N € N*
N Torsiony (f, 2(r), x) < 0.

Fix now N € N*. Let € > 0. Since z(r) is a limit point of the sequence (Z(r,n)),en and by
the continuity of the function z — N Torsiony(f, z, x), there exists n € N, > N such
that

| N Torsiony (f, 2(r), x) — N Torsiony (f, 2(r,n), x)| < €. (2.16)
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Consequently we obtain, from (2.16) and from Lemma 2.2.4,

N Torsiony (f, z(r), x) =

1
= (N Torsiony (f, zZ(r), x) — N Torsiony (f, zZ(r, ), x))+N Torsiony (f, zZ(r, n), x) > 5
By the arbitrariness of £ we conclude that N Torsiony(f, z(r), x) € [—1,0).

]

Proof of Theorem 2.2.2. Fix r € R and consider a point Z(r) € T x {r} which is a limit
point of the sequence (Z(r, n)),en defined in Lemma 2.2.1. By Lemma 2.2.5 for any N € N*
it holds

Torsiony (f, z2(r), x) € [— %,0).

Consequently, as N goes to +o00, we have that Torsion(f, z(r)) = 0.
[l

Proof of Corollary 2.2.1. By Theorem 2.2.2 for any r € R there exists zZ(r) € T x {r} such
that Torsion(f, Z(r)) = 0. Thus, looking at the projection ps over the second coordinate,
we deduce that

p2({z € A : Torsion(f,2) =0}) =R.

We consider now the Hausdorff dimension, denoted as dimy. Recall that if ¢ is Lipschitz,
then, for any set U, dimy(U) > dimg(g(U)) (see Lemma 1.8 in [Fal86]).
Since the projection p, is Lipschitz and since the Hausdorff dimension of R is dimy (R) = 1,
we conclude that dimy({z € A : Torsion(f,z) =0}) > 1.

[

2.2.2 Angle variation along v along a C! essential curve

In this Subsection we explain how to calculate the angle variation of a vector along a
C! essential curve. Such angle variation will be used in the proof of Theorem 2.2.1 and in
Section 2.4.
Let v: T — A be a C' essential curve and let x,y € v(T). Let s1,s, € T be such that
v(s1) = x,7v(s2) = y. Fix 51 € R a lift of s; and let S € R be the lift of sy such that
Sy € (Sl, Sy + 1]
Define the oriented angle function

R,>t— @(’7, Sl)(t) = 0(7‘[,’}// Op(Sl + t)) eT,

where p : R — T is the covering map of T. Equivalently, ©(~, S;)(¢) is the oriented angle
between H and the vector tangent to v at v(p(S1 +1)).
Denote as O(7,.51) : Ry — R a continuous determination of the previous angle function.

Definition 2.2.2. The angle variation along v between z and y is
VCLT’Y(‘ra y) = é(’% Sl)(SQ - Sl) - é(77 Sl)(o)

Remark 2.2.2. The angle variation along v between = and y does not depend on the
choice of the continuous determination ©(vy, Sy).
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Proposition 2.2.1. Let v be a C' essential curve. Let x,y,z € ~(T).

(1)
(2)
(3)

Proof.

Var,(x,y) does not depend on the choice of the lift Sy of s1 € T such that y(s1) = .
Var,(z,z) =
Vary(z,y) + Var,(y,z) = Var,(z, z).

(1) Let s1,s2 € T be such that v(s1) = x,7(s2) = y. Consider two lifts S1,S; + 1
of s; € T. We want to compare

O(7,51)(S = 51) =O(7,51)(0)  and  O(7, 51 +1)(Sy — 1) —O(v, 51 +1)(0),

where Sy € R is the lift of sy contained in (S, S; + 1]. Observe that Sy + 1 is the
lift of s5 contained in (S7 + 1,57 + 2].

Since the angles O(v, 51 + 1)(0) and ©(y, S1)(0) are equal, choose the continuous
determinations such that ©(v, Sy 4 1)(0) = O(y, S1)(0). Since ¢ — O(v, Sy + 1)(€)
and & — (7, S1)(€) are lifts of the same angle function that coincide at & = 0, they
are equal. In particular, ©(v, Sy + 1)(Sy — S1) = ©(7, S1)(S2 — S1). Consequently

O(7,S1 + 1)(Ss — S1) — O(7,S1 + 1)(0) = O(7, S1)(Ss — S1) — O(7, 51)(0)

and we conclude.

Let s; € T be such that v(s;) = x and fix a lift S; € R of s;. Then, the angle
variation Var,(z,z) is

O(v,51)(1) — ©(7, S1)(0).

Consider the change of coordinates
g:A—R*\{(0,0)}

(x,y) — eY(sin(x), cos(x)).
It is a local diffeomorphism that preserves the orientation and it is conformal. The
image g o v(T) is a simple closed C' curve. Let us parametrize it as

[0,1] >t~ goyop(S;+1t) € R*\ {(0,0)}.

Apply now the Turning Tangent Theorem to g o y(T) and obtain that the variation
of the angle
O(H, Dg(v(p(S1 + 1))y (p(S1 +1))) (2.17)

between ¢t = 0 and ¢ = 1 is equal to 6 € {1}, where ¢ depends on the orientation
of the curve g oy(T). Consider now the vector Dg(y(p(S1 +t)))H and calculate the
variation of the angle

0(H, Dg(v(p(S1 + 1)) H)

between t = 0 and ¢ = 1. In particular

Dg(y(p(Sy +1)))H = e (_Czlsﬁz;i) 22;8?)) (1,0) = €7 (cos(2my, ), — sin(27y)),

where (y1,72) = (71(t),72(t)) = v o p(S1 +1t). The angle 0(H, Dg(~(p(S1 + 1)))H)
is so —v1(t). Let T'; be a lift of ;. Since 7 is an essential curve, it holds that
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Iy(t+1) = I'1(t) + d, where 6 € {1} depends on the orientation of the curve
go(T) (see Lemma 2.4.1).

Therefore, the angle variation of the vector Dg(~(p(S; + t)))H between ¢t = 0 and
t =11is 0 € {£1}. Such angle variation is the same as the angle variation of (2.17)
between 0 and 1.

Consequently, the variation of the angle

O(Dg(y(p(S1+1)))H, Dg(y(p(S1 + 1)) (p(S1 +1)))

between t = 0 and ¢ = 1 is null. Since ¢ is conformal we deduce that the angle vari-
ation O(H,~'(p(S1 +t))) between ¢t = 0 and ¢ = 1 is also null. Such angle variation
is ©(7,51)(1) — ©(v,51)(0) and so we conclude that Var,(z,z) = 0.

Let z,y,z € y(T). Fix S; € R such that yop(S;) = z. Let Sy € R, S5 € (51,51 + 1]
be a lift of sy € T such that y(sy) = y and let S3 € R, S5 € (S5, .52 + 1] be a lift of
s3 € T such that y(s3) = z. Consider so the angle functions

Ry 3t O(y,51)(t) = 0(H, 7 (p(S1 + 1)),

Ry 3t O(y,9)(t) = 0(H,~'(p(52 +1))).

Now
Var,(z,y) = O(7,51)(Sy — S1) — O(~, $1)(0),

Vary(y, Z) = é(’)/, SQ)(Sg - SQ) - (:)(7, 52)(0)

Choose the lift such that 0(7,5,)(0) = O(y,51)(Sy — Sy). Then, the lifts £ —
O(7,52)(&) and £ — O(~,S1)(S2 — 51 + &) are measures of the same angle function
that coincide at & = 0, hence they are equal. In particular

O(7,52) (S5 — S2) = O(, 51)(S5 — Sh).
We so obtain
Vary(z,y) + Var,(y, z) =
= 0(7,51)(S2 = S1) = O(7, 51)(0) + O(7, 52) (S5 — S2) — O(7, 52)(0) =
= O(7, 51)(S3 — S1) = ©(7, 51)(0).
If S3 € (S, 51 +1], then this last term is exactly Var,(x, z). If S5 € (S1+1,51 +2],

then 3
O(7,51)(S5 — S1) — O(7, 51)(0) =
= O(7,51)(85 — 1) — O(7,51)(1) + O(y, S1)(1) — O(7, 51)(0) =
= O(7,51)(S3 — S1) = O(7, 1) (1) + Vary (z,x) = Oy, 51)(Ss — S1) — O(7, S1)(1).

Since, from point (1), the angle variation does not depend on the lift of s; € T, it
holds

O(7, 51)(S3 — 51) — ©(v, 51)(1) =
= O(7,8 +1)(S5— S —1) = O(y, S + 1)(0) = Var,(z, 2)

and we conclude.
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Remark 2.2.3. Fix y(s) € 7(T). We observe that the function Ry 3 ¢ — Var,(y(s), v(s+
p(t))) € R is 1-periodic.

Remark 2.2.4. An essential curve v on the annulus is isotopic to either
Tt c(t) = (,0) or T>t— c_yi(t) = (—t,0).
See Proposition 2.4.1 for a deeper discussion.

Proposition 2.2.2. Let v : T — A be a C' essential curve. Let sg,s1 € T,s9 # s
correspond to points of maximal height on vy, that is

Then
Var,(v(so), v(s1)) = 0.

Proof. Let sg,s1 € T,s9 # s1 be such that ps o y(sg) = P2 © ¥(s1) = maxser p2 © Y(s).
Let Sy € R be a lift of sp € T and let S; € (Sp, Sp + 1) be the lift of s; (contained in
(S0, S0+ 1)).

Look now at the lifted framework and denote as I' : R — R? a lift of 7. Consider the points
['(Sp), T'(S1) and build the piecewise C! closed curve ¢ by concatenating the following ones
(see Figure 2.1):

Figure 2.1 — The simple curve built in the proof of Proposition 2.2.2.

- {F(S) s E [SQ/Sl]},
— the vertical segment {(p; o I'(Sp),p2 0 I'(Sp) +&) : € € [0,1]};
— the horizontal segment {(&py o I'(Sp) + (1 —&)proL'(S1), paoy(Se) +1) = £ €[0,1]};

—— the vertical segment {(p; o I'(S1),p2 o I'(S1)+1—¢): £ €[0,1]}.
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Such a piecewise C! closed curve does not have self-intersections because both I'(.Sy) and
['(Sy) are points of maximal height. We are then interested in

Var, (y(s0),7(s1)) = Varp(I'(So), T(51)) = O(T, S0)(S1 — So) — (T, 50)(0).
Claim 2.2.1. If v is homotopic to ¢, then
p1oT(Sy) < p1oT'(S) and I"(So),I'(S)) € Ry H.
If ~ is homotopic to c¢_q, then
p1oT(Sy) > p1oT'(S1) and I"(Sy),I"(S1) € R_H.

Proof. Since both Sy and S are points of maximal height of I' and since I" is C*, both
I'(Sp) and I''(S) are in RH.

By Jordan’s theorem, the closed curve € (see Figure 2.1) separates the plane into two
regions, a bounded one and an unbounded one.

The curve I'(R) does not have self-intersections. Moreover, since I'(Sy), I'(.S1) are points of
maximal height of ', the curve I' cannot lie in {(x,y) € R? : y > pyoT'(Sy) = pao'(S))}.
Thus, I'(R \ [Sp, S1]) cannot intersect €.

Assume that + is homotopic to ¢;. Argue by contradiction and assume that p; o T'(S7) <
p1oT(S) "

IfI'(Sy) € RyH, then, since I'(R \ [Sp, S1]) cannot intersect €, I'((—o0, Sp)) is contained
in the bounded region determined by the closed curve %, which is a contradiction. Indeed,
since v is homotopic to ¢y, for any S € R and any n € N it holds T'(S+n) = I'(S) + (n, 0)
(see case (a) in Figure 2.2).

Thus, I"(Sg) € R_H. Since v is homotopic to ¢y, there exists n € N such that

prol'(So —n) <prol(S)

for every S € [Sp, S1]. In particular, T'([Sy — n,Sp)) lies in the unbounded region deter-
mined by %. Since py o I'(Sy —n) = ps 0 I'(Sp), we can build a closed curve €” as done for
So, S1, starting from Sy — n, Sy (see case (b) in Figure 2.2). The point I'(S;) is contained
in the bounded region determined by %”. Thus, it follows that I'((Sp, +00)) is bounded,
which is a contradiction. We conclude that p; o I'(Sp) < p1 o I'(S1).

Since p; o I'(Sp) < p1 o I'(S1) and since both I'((—o0,Sy)) and I'((S, +00)) cannot in-
tersect €, if I(Sy) € R_H (respectively I(S;) € R_H), then I'((—o0, Sy)) (respectively
I'((S1,4+00))) would be contained in the bounded region determined by the closed curve
% , providing the required contradiction.

The result for v homotopic to ¢_; can be deduced similarly.

[]

In particular, if v is homotopic to c; (respectively to c_;) then the closed curve € is
oriented counterclockwisely (respectively clockwisely).

Apply then the Turning Tangent Theorem to the simple piecewise C' closed curve ¥
described above (see Figure 2.1). Using Claim 2.2.1, we discuss the two possible cases.
If v is homotopic to c¢q, then we have

1 1 1

: - 1
O, S0)(S1 = S0) = O, 50)(0) + 7 + 7+ 7+ =1

1. Observe that the case p; o I'(Sy) = p1 o I'(S1) is not possible because Sy # 57 and I is injective.
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(a) (b)
Figure 2.2 — The contradictions in Claim 2.2.1.

If v is homotopic to c¢_;, then we have
5 A 1
O(T, 50)(S1 = So) = O, 50)(0) = 5 — 7 =7 — 7 = L.

In both cases we deduce that

é(F, So)(S1 — So) — é(F, 50)(0) = Varp(I'(Sy), I'(S1)) = Vary(v(so),v(s1)) = 0.

2.2.3 Points of zero torsion on C! essential curves

Let v : T — A be a C! essential curve. The aim of this subsection is the proof of
Theorem 2.2.1.
Let us begin by introducing some definitions. Let sy € T be a point of maximal height,
that is such that ps o y(sg) = maxser po 0 ¥(s). Fix Sy € R a lift of s.

Definition 2.2.3 (Complexity of a C! essential curve). The complexity of the curve v is

C(y) == sup |Vary(v(p(So)), y(p(So +1)))| = mmax [Var,(v(p(So)), v(p(So + 1)1,

teR4
where p : R — T is the covering map of T.

Lemma 2.2.6. The definition of C() is independent of the choice of so € T such that
P2 ©(s0) = maxpz 0 v(s).

Proof. Let so,5 € T,s9 # 5 be such that py 0 y(sg) = p2 0 ¥(5) = maxserps 0 (s). Let
So € R be a lift of sg and let S be the lift of 5§ contained in (Sy, Sy + 1). From Proposition
2.2.2 it holds that

Varp(I'(Sy), I'(S)) = Vary(v(so), v(5)) = 0. (2.18)

The complexity of the curve v calculated with respect to s is

max |Var, (y(p(3)),7(p(S +1))| .

t€[0,1]
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From (2.18) and by properties (2) and (3) of Proposition 2.2.1, it holds
max |Var,(v(p(S5)), 7(p(S +1)))| = max |[Var, (v(s0), 7(8)) + Var, (v(p(5),7(p(S +1))| =

te[0,1] tel0,1

= max [Var, (v(p(So)), 7 (p(S +1)))| =

te(0,1]

= max ( max _|Vary(v(p(So)),v(p(S + 1))

t€[0,1—S+S0]

e \Vam(wp(so))m(p(g+t)))\) _

— o (_pax | [Var, (080 0050+ 7)) max Var, (S, 2 (0(S0 + 1+ 7)) =

= max [Var,(v(p(So)), v(p(So +7)))| = C(7).

T7€[0,1]

N—

The key step of the proof of Theorem 2.2.1 is the following Proposition.

Proposition 2.2.3. Let v : T — A be a C' essential curve of complexity C(v). Let
n € N*. Then there exists Z(n) = v(s,) € ¥(T) such that

\n Torsion, (f,v(sn),7 (52)] < C(7). (2.19)

We postpone the proof of Proposition 2.2.3 and we will now show how to deduce Theorem
2.2.1 from Proposition 2.2.3.
A first outcome of Proposition 2.2.3 and of Lemma 2.2.3 is the following

Lemma 2.2.7. Let f : A — A be a negative-torsion map. Let K = [2C(vy)] + 2. Let
zZ(n) = v(sn) € v(T) be a point given by Proposition 2.2.3 applied at f. Then for any
m € (0,n] it holds

m Torsion,(f,z(n), x) € [— %,0).

Proof. We start by recalling that, since f is a negative-torsion map, we have that for any
m it holds m Torsion, (f, z(n), x) < 0.
Argue then by contradiction and assume there exists m € (0, n| such that

K
m Torsion,,(f, Z2(n), x) < 5

If m = n then we contradict (2.19) because we would have, using Lemma 1.1.2 and since
K =[2C()] +2,
: / . _ 1 K -1
n Torsion, (f,v(sn), ¥ (sn)) < nTorsion,(f, z2(n), x) + 3< 5 < —C().

Suppose so that m < n. Again because f is a negative-torsion map, we have that

(n — m) Torsion,,_,,(f, f"(z(n)), x) < 0.
Apply so Lemma 2.2.3 for f at Z(n) with respect to A = 2,11 =m,ly =n, ] = K, #; =
0. We obtain
K-1 2C 1
 Torsion (£, 7(s,), 7 (s.)) < — o+ = -EAOIHL g

contradicting (2.19). This concludes the proof.
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The candidate point of zero torsion on the curve v is then a limit point of the sequence
(2(n))nen, built in Proposition 2.2.3. We first estimate the finite-time torsion of such limit
point.

Lemma 2.2.8. Let f : A — A be a negative-torsion map. Let K = [2C(vy)] + 2. Let
Z(o0) € y(T) be a limit point of the sequence (Z2(n))nen built in Proposition 2.2.53. Then
for any N € N it holds

N Torsiony(f,Z(c0), x) € [— %,0).

The proof of Lemma 2.2.8 uses the same ideas as the proof of Lemma 2.2.5.

Proof. Since f is a negative-torsion map, we already know that for any N € N* it holds
N Torsiony(f, Z2(00), x) < 0. Fix now N € N*. Let £ > 0. Since there exists a subsequence
of (Z2(n))nen (that we will still denote as (Z(n)),en) which converges to Z(co) and by the
continuity of the function x — N Torsiony(f, x, x), there exists n € N, > N such that

| N Torsiony (f, z2(c0), x) — N Torsiony(f, z2(n), x)| < €.
Consequently we have, using Lemma 2.2.7,

N Torsiony(f, z2(00), x) =

K

= (N Torsiony(f, Z(00), x) — N Torsiony(f, 2(n), x)) + N Torsiony (f, 2(n), x) > 5
By the arbitrariness of € we conclude that N Torsiony(f, z(c0), x) € [ — £,0).

O]

We can finally prove Theorem 2.2.1.

Proof of Theorem 2.2.1. Consider a C! essential curve and a point z(co) € v(T) which is
a limit point of the sequence (Z(n)),en defined in Proposition 2.2.3. By Lemma 2.2.8 for
any N € N* it holds

Torsiony (f, zZ(00), x) € [—%, 0),

where K = |2C()| + 2 (in particular K is independent of N). Consequently, as N goes
to 400, we have that Torsion(f, zZ(c0)) = 0.
[

Proof of Proposition 2.2.3

We recall that the complexity of a curve ~ is independent of the choice of the point of
maximal height of v (see Lemma 2.2.6).
Let (fi)ier, be an isotopy joining the identity Idy to f. Recall that the torsion does not
depend on the choice of the isotopy (see Proposition 1.3.2). The following notations will
be largely used throughout the proof of Proposition 2.2.3.

Notation 2.2.2. For any ¢t € R, denote as 7; the curve
T3 s = nuls) = filr(s)) € A.
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Consider the function
M!:Ry - R

t— Mﬁ(t) = I?grx@ o Y(s).
For any t € R, denote
Argmaz(pyoy) ={s €T : pyoy(s) = M;L(t)}, (2.20)

that is the set of s € T whose image through 7; achieves the maximal height among 7;(T).
Observe that, since each v; is C!, for any s € Argmaz(ps o ;) the tangent vector ~,(s)

belongs to RH.
For any t € Ry denote as s; an element of Argmaz(ps o ;).

Notation 2.2.3. The function ® : R, — Z is
Ry 3t~ ¢ Torsion,(f,v(s¢), 7 (st)) + Vary(v(so),v(st)) € R. (2.21)

The function ¢ takes values in Z because, thanks to Claim 2.2.1, if v is homotopic to c;
(respectively to c_1) then both D fi(v(s:))7'(s¢) and +/(so) belongs to R, H (respectively
R_H).

The idea of considering points of maximal (respectively minimal) height on a curve is
due to P. Le Calvez (see Section 5 in [LCI1]).
We need now to discuss some properties of the function ®: in particular, we will see that
it is the constant null function.

Lemma 2.2.9. For any t € R, the value ®(t) does not depend on the choice of s; €
Argmazx(pa o y).

Proof. Let s;,5;, € Argmax(ps oY), st # ;. From Proposition 2.2.2 it holds that
Var., (s, 5) = 0. (2.22)
Look now at t Torsion,(f,v(s:),7'(s¢)) and t Torsion,(f,v(5;),7'(5;)). First, remark that
Ry > 7= Var, (v-(s:),7-(5)) € R

is continuous because 7+ f, is continuous in the C! compact-open topology.
In particular, since the torsion at finite-time does not depend on the chosen lift, we
calculate the torsion at v(s;) using the continuous lift

R. 370 3, 1(s0), 7/ (50))(7) + Var,, (1:(s0), % (51)) € R, (2.23)

where 0(f,v(st),7'(s¢))(+) is a continuous lift of the angle function 7+ 0(H, D f-(v(s:))7' (s¢))-

Therefore, the function in (2.23) is a continuous determination of the angle function
T 0(H7 fyfr(gt))

Consequently the value ®(¢) calculated with respect to s, is

t Torsion,(f,v(5:),7'(5)) + Vary(v(so), 7(5:)).

Let us write ¢ Torsion,(f, v(5:),7'(5:)) using the continuous determination in (2.23) and
obtain

O(f,7(50), 7 (80)) () + Vars, (ve(se), 7(5)) — 0(f,7(80), 7' (50))(0) = Viary (y(se), v(5:))+
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+Var,(v(s0),7(5:) =
= t Torsion, (f,v(s), 7 (s1))+
+Vary, (v(se), ve(5:)) — Vary(y(se), v(5¢)) + Vary(v(so),7(5:)) =
= t Torsion,(f,v(s¢), 7 (st)) + Vary, (ve(se), (5:)) + Vary (v(s0), v(s)),

where in the last equality we have used property (3) of Proposition 2.2.1. Finally, since
from (2.22) we have that Var,, (v:(s:), v(5:)) = 0, we conclude that

t Torsion: (f,v(5:), 7' (5¢))+Var,(v(so), ¥(5:)) = t Torsion (f, v(s¢), 7' (s¢))+Var,(y(so), v(st)),

that is ®(¢) does not depend on the choice of s, € Argmax(ps o V).
[

Lemma 2.2.10. The function ® : R, — Z is the constant zero function.

Proof. We are going to show that ® is continuous: since ® takes values in Z and since
®(0) = 0, we will conclude that ® is the constant zero function.

As a first step we are going to consider the function ®j ) : [0,1] — R and to show that
its graph is compact. Since a function from a compact space (here [0, 1]) into an Hausdorff
space (here R) is continuous if and only if its graph is compact (see Theorem 5.6.34 in
[Soh03]), we will conclude that @ ;) is continuous.

Denote for any ¢ € [0, 1]

Ki={seT: se€ Argmax(ps ov)} x {t}

and
K= U K; = U {(s,t): s € Argmaz(pyo~y)} C T x [0,1].

t€[0,1] t€[0,1]
Clearly the set K is bounded. Let us show that K is closed. Let (s,,t,)nen € K be a
sequence converging to (s, t).
The sequence (t,)nen C [0, 1] converges to ¢ € [0, 1].

Claim 2.2.2. s € Argmax(ps o y).

Proof. Assume by contradiction that s does not belong to Argmaz(p;o+;). That is, there
exists § € T such that py 0 94(8) > pa 0 y(s). Denote

p = P2 0%(5) — P2 o(s) > 0.

Since (t, )nen converges to t, since 7 +— f, is continuous for the C! compact-open topology
and since both py and ~ are continuous, there exists n € N such that for anyn € Nyn > n
_ _ _ _ P
max|ps o (x) — P2 © 1, ()| = max|ps o fyoy(x) — pao fi, o v(z)| < 7.
z€eT z€eT 4
By the continuity of py o 44 and since the sequence (s,),en converges to s, there exists
n > n,n € N such that for any n € N.n > n

_ _ P
D2 0 Ye(s) — P2 0 Ye(sn)| < 1

Consequently for n € N,n > n we have

3

=pao(s)+p=

P20V, (8) > P2 0 %(5) — 1

S
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B B B ) ) 3
= (P20 7:(8) — P20 Ve(5n)) + (D2 0 Ve(8n) — P2 © V1, (Sn)) + D2 © V1, (8n) + P>
3
> —g — g + P2 0V, (80) + ZP = D2 ° Y, (8n) + g > D2 0 Yy, (Sn)-

This contradicts the fact that s, belongs to Argmax(ps oy, ) and we conclude.

We deduce so that K is closed and bounded, i.e. it is compact.
Consider now the function

K > (s,t) — (t,t Torsion,(f,v(s),7'(s)) + Vary(v(so),7(s))) € [0,1] x R.

It is continuous and, since K is compact, its image is compact too. Observe that its image
is actually the graph of the function @ ). From what remarked before, since the graph
of ®jp,1) is compact, we have that @ 1) is continuous.
Using the same argument, we deduce that the function ® is continuous on every compact
[0,n] for n € N*. Consequently, the function ® : R, — 7Z/2 is continuous. This implies
(as remarked above) that ® is the constant null function, concluding the proof.

O

We finally prove Proposition 2.2.3.

Proof of Proposition 2.2.53. Fix n € N* and let s,, € Argmax(ps o 7,). By Lemma 2.2.9
the value ®(n) does not depend on the element of Argmaz(pyo~,) and by Lemma 2.2.10
the function @ is the constant zero function. Therefore

®(n) = n Torsion, (f,v(sn), v (sn)) + Var,(v(so), ¥(sn)) = 0.

That is
[n Torsion, (f,7(sn), 7 (s0))| = [Vary(v(s0), v(sn))| < C(v),

ie. Z(n) :==v(s,) € v(T) is the required point.

2.3 Torsion for tilt maps

The main reference for the definition of tilt maps is [Hu98| (see also |[GR13]). We
remark that the notion of tilt map is linked to the notion of positive (negative) paths
presented in [Her83] and in [LCS8S].

2.3.1 Tilt maps on the bounded annulus
Let v be a C' embedded curve v : [0,1] — T x [0, 1] such that
P2o7(0) =0 pron(l) =1,

where Py : T x [0,1] — [0, 1] denotes the projection over the second coordinate and such
that

((0,1)) C T x (0, 1).
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Denote as x the vertical vector (0,1). We define the angle function tilt(y) as follows

tilt(y) :[0,1] = T
t = 0(x, 7' (1)),

where 0(v,u) denotes the oriented angle between v and w with respect to the standard
Riemannian metric and the counterclockwise orientation.

Let tilt(7) : [0,1] — R be the continuous determination of the angle function ¢ilt(y) such
that

(2.24)

)0 € -3
From the definition of t/z'\l/t, we deduce the following property.
Lemma 2.3.1. Ift € (0,1] is such that

P2 oy(t) > p2o(s)
for any s < t, then

o € -1

Proof. Consider the lifted framework R x [0, 1] and denote as I' : [0, 1] — R x [0, 1] a lift
of the curve . Observe that also in the lifted framework we have that paoI'(t) > pyoI'(s)
for any s < t.

Denote M = max,cjo4 p10L'(s). Consider then the curve ¢ obtained by concatenating the
following ones (see Figure 2.3)

110)

Figure 2.3 — The curve v built in the proof of Lemma 2.3.1.

(1) {T'(s) = s € [0,1]};
(#7) the horizontal segment {(7,p2 0 T'(t)) : 7 € [p1 o '(t), M + 1]};
(i17) the vertical segment {(M + 1,pyo'(t) —7) : 7 € [0,p2 0 T'(¢)]};
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(iv) the horizontal segment {(M + 1+ p; oI'(0) — 7,0) : 7 € [p1 o T'(0), M + 1]}.

Let us orient the curve ¢ clockwisely. Thanks to the choice of M and since I'((0,1)) C
R x (0,1), the curve ¢ is a piecewise C! closed curve without self-intersections. We are
going to apply the Turning Tangent Theorem at 1) to calculate the angle variation of the
vector tangent to I' between I'(0) and I'(¢): such angle variation is tilt(y)(t) — tilt(~y)(0).
Denote as
— )0 € |5 4]

a = tilt(y 11
the measure of the angle between x and I"(0) contained in [—1,1]. Denote as 3 the
measure of the angle between x and I"(¢) contained in [—%, %] Observe in particular that
B € [—1, 1] because the curve I' crosses the horizontal line R x {p, o I'(t)} at I'(¢) from
the bottom up since we are assuming that ps o I'(t) > pg o I'(s) for any s < t.
In particular then {zvlt(fy) (t) = B + k for some k € Z. Applying so the Turning Tangent
Theorem we obtain

1 1 1 1
— B - = — =1
that is £ = 0. We conclude that {zvlt(fy) (t) = € [, 3] as desired.

]

For any x € T let us denote as V{,) the vertical line passing through the point (z,0),
i.e. {x}x[0,1]. In the framework of the bounded annulus, the vertical V(, o) is parametrized
as

0,13y = Viwoy(y) = (z,y) € T x [0,1].

Definition 2.3.1 (Tilt map of the bounded annulus). A C! diffeomorphism f : Tx [0, 1] —
T x [0, 1] isotopic to the identity is a positive (respectively negative) tilt map of the
bounded annulus if for any z¢ € T it holds

t/zvlt(f © Vigo,0))(y) <0 (respectively > 0), (2.25)
for any y € [0, 1].

Remark 2.3.1. Observe that in [Her83] and in [LC88| a path ~y verifying tfzvlt(’y)(t) <0
(respectively > 0) for any t is called a negative (respectively positive) path. Therefore
every f o V(g0) is a negative path.

Proposition 2.3.1. Let f : T x [0,1] — T x [0,1] be a C* diffeomorphism isotopic to the
identity. Then for any z = (z,y) € T x {0} it holds

Torsiony (f, z,x) = tﬁt(f o V,)(y).

Proof. Refering to the notation introduced in Definition 1.1.2 in Chapter 1, the time-one
torsion at z € T x [0, 1] with respect to x is

{)(fu zaX)(]') - 6(f7ZaX)(0)7

where t — 0(f, z, x)(t) is a lift of the oriented angle function ¢t — 6(x, D fi(2)x).

Consider the vertical V, passing through z = (x,y): we are interested in tilt(f o V). In
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particular, observe that both o(f, z,x)(1) and t/zvlt(f o V,)(y) are measures of the same

angle 0(x, Df(2)x).
Consequently, the function

[0,1] 3 y = ¥(y) := Torsion, (f, (z,y), ) — tilt(f 0 Vieo))(y) € Z

is a continuous function which takes value in Z. Therefore, it is constant.
Let us calculate ¥(0). On one hand, by definition of tilt(f o V(, ), it holds

G o Vo) 0) € |55

On the other hand, since each f;? preserves the boundaries, it holds that for any ¢ € [0, 1]
the angle

0(x, Dfe(x,0)x) € [—%, ﬂ : (2.26)

Since the time-one torsion does not depend on the chosen lift, select the lift
t = o(f,(x,0), x)(t)

such that o(f,(x,0), x)(0) = 0. By the continuity of the lift and because of (2.26), we

deduce that
11

(/.00 € |54

That is —
¥ (0) = Torsiony (f, (z,0), x) — tilt(f o Viz0))(0) =

= 3(f, (2,0), \)(1) = 3(f. (2,0), x)(0) — tilt(f © Vis.0))(0) =
= o(f, (2,0), x)(1) — tilt(f o V.)(0) = 0.

Since V¥ takes values in Z and it is continuous, we conclude that V¥ is the zero constant
function. That is, for any z € T x [0, 1] it holds

Torsion; (f, z,x) = tfz'\l/t(f o V.)(y). (2.27)
]

By the definition of positive tilt map, of negative-torsion map and from Proposition
2.3.1, we immediately deduce the following

Corollary 2.3.1. Let f : T x [0,1] — T x [0,1] be a C' diffeomorphism isotopic to the
wdentity. Then, f is a negative-torsion map if and only if f is a positive tilt map.

Another outcome is the following

Corollary 2.3.2. Let f : T x [0,1] — T x [0,1] be a positive (respectively negative) tilt
map of the bounded annulus. Then for any n € N* it holds that for any z € T x [0, 1]

Torsion,(f,z,x) <0 (respectively > 0).
In particular for any z € T x [0, 1], whenever the limit exists, it holds

Torsion(f,z) <0 (respectively > 0).

2. Where (f¢)¢cjo,1) is an isotopy in Diff Y(T x [0, 1]) joining the identity to f.
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Proof. We proceed by induction. The statement for n = 1 is an immediate consequence
of Corollary 2.3.2 and of the definition of negative-torsion map.

Assume now that the result holds true for n and let us show it for n+1. Fix z € T x [0, 1].
By inductive hypothesis it holds that

n Torsion, (f, z, x) < 0.

By Corollary 2.3.2 and by Definition 2.0.1 we know that Torsion; (f, f"(z), x) < 0 Let us
apply Lemma 2.2.3 for f at z with respect to A = 2,1} =n,ly =1, = J#; = 0. We
conclude that

(n + 1) Torsion,+1(f, 2z, x) <0,

so in particular Torsion, 1 (f, z, x) < 0, as desired.
Whenever the limit exists, it clearly holds that Torsion(f, z) < 0.

]
2.3.2 Tilt maps on the unbounded annulus
Let v be a C! embedded curve v : R — A such that
tl}g}m@ oy(t) =400  and nli)r_noopQ oy(t) = —oo, (2.28)

where py denotes the projection over the second coordinate on A. The angle function
tilt(7y) is defined by
tilt(y) :R—T

t—0(x,7 (1)), (2.29)

where 0(v,u) denotes the oriented angle between v and w with respect to the standard
Riemannian metric and the counterclockwise orientation.

Lemma 2.3.2. Lett € R be such that
paoy(t) >pron(s)  Vs<t

Let 1%5(7) : R — R be a continuous determination of the angle function in (2.29) such
that tilt(v)(t) € [-1, 1]
Let t € Rt #t be such that

p2oy(t) > p2oy(s) Vs < t.
Then tilt(7)(7) is in (-3, 1]

Proof. Let us consider the lifted framework and denote as I' : R — R? a lift of 5. For any

s we have that tz/\l/t(v)(s) = tilt(T")(s). Thus, we will conclude by showing that tilt(I")(t) €

(=53

Assume without loss of generality that ¢ > ¢ (if ¢ > ¢ we argument similarly). Denote

H = min py o ['(s).

s€E[t,F]

Define
t=max{s <t: pyol(s)=H —1}.
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Such # is well-defined because lim, , o ps 0 I'(s) = —oc and by the continuity of py o T
Moreover t < t and for any s € (,#] it holds py o I'(s) > py o I'(f) = H — 1.
Denote

M = max p; o I'(s).

s€[t,]

Consider now two closed simple curve 11,1 built as follows.
Let v, be the piecewise C! closed simple curve obtained by concatenating the following
curves (see Figure 2.4)

O~
Y

'\)‘S

\
Y

~

I (1)

A

7

Figure 2.4 — The curve 1, is the boundary of the red region and the curve 1), is the
boundary of the green region.

(i) {T(s) = s € [, 1]}

(#7) the horizontal segment {(7,p2 o T'(¢)) : 7 € [p1o'(t), M + 1]};
(4ii) the vertical segment {(M + 1,py 0 T'(t) + pyo I'(f) = 7) : 7 € [py o I'(1), py o T'(2)]};
)

(7v) the horizontal segment {(M + 1+ p,o(f) — 7, pyoI(£)) : 7 € [pro'(t), M +1]}.

Let 1 be the piecewise C! closed simple curve obtained by concatenating the following
curves (see Figure 2.4)

(i) {T(s) = s € [, 1]}

(1) the horizontal segment {(7,pa o '(¢)) : 7 € [pro '(¢), M + 1]};

)
)

(431) the vertical segment {(M + 1,pa o I'(£) + ppo T'(#) = 7) : 7 € [py o T'(#),p2 o T(1)]};
)

(v) the horizontal segment {(M + 1+ p,o(f) — 7, pyoI(£)) : 7 € [pro'(), M +1]}.
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The curves 11,1, do not have self-intersections thanks to the definition of ¢ and of M.
We orient these curves 11, 15 clockwisely. Denote now

(a) o € [—1, 3] the measure of the angle 6(x,I"()) contained in [—1, 1]. In particular,

the curve I is crossing at I'(f) the horizontal line R x { H — 1} from the bottom up.

Therefore, o € [—1, 3]

b) B € [—1 1] the measure of the angle (x,I"(t)) contained in [— Observe that
) 2

§ = tilt(T) (1) € [-3,4].

(c) v €[—3,3] the measure of the angle (x,I"()) contained in [—3, 1]. We remark that
also v belongs to [—1, 1]. Indeed, since for any s < it holds py o '(s) < ps o (),
the curve I' is crossing at I'(¢) the horizontal line R x {pyoI'(f)} from the bottom up.

2’2]

Apply the Turning Tangent Theorem to the first curve ;. In particular, since the angle
variation along I';;; does not depend on the chosen lift, we are going to consider tilt(I')
as lift and we obtain

(FIH(D)(0) — (D)D) + (-- _ @) L 7+ (a - i) _ 1

There exists j € Z such that tzlt(F)( {) = a+ j. Thus
B-—a—-j)—F+a—-1=-1,

le. j=0.
Apply the Turning Tangent Theorem to the second curve 1, choosing tzlt( ) as lift to

calculate the angle variation along I'z 5. There exists k € Z such that tilt (D)) = v + k.
We so obtain

(1) () — FiT(T) (1)) + (—i _ u) —-+ (a - A%) Y

(v+k—a)—v+a—-1=-1.
We conclude that k£ = 0. Equivalently

(D) () = () (D) = v € H, ﬂ .

that is

]

Notation 2.3.1. Thanks to conditions(2.28) and to Lemma 2.3.2, the continuous deter-
mination ¢ilt(y)(-) of the angle function in (2.29) such that for any ¢ € R so that

P2 o7(t) > P2 oy(s) Vs <t

it holds tzfjt(fy) (t)yin [—1, ], exists and it is unique. From now on, ¢ilt(y)(-) denotes such
a continuous determination.

For any x € T let us denote as V|, o) the vertical line passing through the point (z,0),
i.e. {z} xR. In the framework of the unbounded annulus, the vertical V{, ¢ is parametrized
as

R3y—=Veo(y) = (z,y) € A,
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Definition 2.3.2 (Tilt maps of the unbounded annulus). A C! diffeomorphism f: A — A
isotopic to the identity is a positive (respectively negative) tilt map of the unbounded
annulus if for any xo € T it holds

tz/\l/t(f © Vigo,0))(y) <0 (respectively > 0), (2.30)
for any y € R.

Example 2.3.1. An example of positive (respectively negative) tilt map (which a priori
is not a twist map) is the composition of positive (respectively negative) twist maps.
Indeed, any composition of positive twist maps is a negative-torsion map (actually it can
be shown that any composition of negative-torsion maps is a negative-torsion map). By
Corollary 2.3.3 we deduce that such a composition is a positive tilt map.

Proposition 2.3.2. Let f : A — A be a C! diffeomorphism isotopic to the identity. Then
for any z € A it holds .
Torsion (f, z, x) = tilt(f o V.)(y).

Proof. Always refering to the notation introduced in Definition 1.1.2 in Chapter 1, the
time-one torsion at z € A with respect to the vertical vector y is

ﬁ(fv Z7X)(1) - 6<f727X>(0)7

where t — 0(f, 2z, x)(t) is a lift of the oriented angle function ¢ — 0(x, D fi(2)x). Con-
sider the vertical V. passing through z = (z,y), i.e. V. = V(5 0) = {2z} x R. We consider

tilt(f o V2).
Observe that both o(f, z, x)(1) and tilt( foV,)(y) are measures of the same angle 6(x, D f(z)x).
Consider then the function

A > z=(z,y) = ¥(z) := Torsion, (f, z, x) — tﬁt(f oV,)(y) € R.

It is a continuous function taking values in Z and so it is constant. We are going to
exhibit a point z € A such that W(z) = 0: thus we can conclude that ¥ is the constant
zero function. In particular, this will imply that, for any (z,y) € A,

Torsiony (f, (x,y), x) = tilt(f © Vie))(y). (2.31)

Consider the C! essential curve T x {0} and its image f(T x {0}). Observe that the
angle variation along T x {0} between any two points z1,z € T x {0} is null, i.e.
Varryqoy(21,22) = 0. Moreover, any point z; € T x {0} is a point of maximal height
of T x {0}.

Refering to (2.20), let Z = (2,0) € T x {0} be such that

(x,0) € Argmax(ps o firxgoy) = {(2,0) € T x {0} : pro f(x,0) = 561%3?0}172 o f(&)}.

As an outcome of Lemma 2.2.10 and of the choice of Z, it holds that
Torsion (f, Z, H) + Varrx oy (21, 2) = Torsion, (f, z,H) = 0,

where z; € T x {0} is no matter which point of (maximal height of) T x {0}.
By Lemma 1.1.3 in Chapter 1, we deduce that

1
| Torsion (f, z, x)| = |Torsion; (f, z, x) — Torsion; (f, z, H)| < 3" (2.32)
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Claim 2.3.1. The point z = (2,0) € T x {0} is such that for any s < 0 it holds

p2o f(2,0) > pyo f(x,s).

Proof. Consider the vertical V{, ) and its image f o V(; ). Assume by contradiction that
there exists s < 0 such that

pQOf(l',S) ZPQOf(xvo)'

On one hand, since f(z,0) is a point of maximal height of f(T x {0}), we deduce that

p2o f(z,s) 2 p2o f(§,0)  VEeT.

Consequently, since f(T x{0}) separates the annulus into an upper and a lower unbounded
regions, it holds that the point f(x,s) lies above or on the curve f(T x {0}).
On the other hand, since f preserves the boundaries, it holds

lim pso f(z,y) = —oc.

Yy——00
We so deduce that the curve f(T x {0}) intersects the curve {f(z,€) : £ < s}. This
contradicts the fact that

(T x{0}) n{(z,§): £<0}t=10

and that f is injective.
O

Therefore, for any s < 0 we have that py o f(z,s) < ps o f(x,0). From the definition of
tilt, this implies that

tilt(f o V,)(0) € l—}lﬂ . (2.33)

Look now at Torsion; (f, (z,0), x): since it does not depend on the chosen lift, assume
that o(f, (z,0), x)(0) = 0 (see Definition 1.1.2 in Chapter 1). Both o(f, (z,0), x)(1) and
tilt(f o V;)(0) are measure of the same angle. So, by the choice of the lift, it holds

O(f, (2,0), x)(1) — tilt(f o V,)(0) = Torsion; (f, (z,0), x) — tilt(f o V;)(0) € Z.

Since from (2.32) we have Torsion; (f, (z,0),x) € (=3, 1) and from (2.33) we have tszt(f o
V2)(0) € [—1, 1], we conclude that

Torsiony (f, (x,0), x) = tilt(f o V,)(0).

Since the function ¥ is constant and ¥ (z,0) = 0, for any z = (x,y) € A it holds ¥(z) = 0,
that is .
Torsion; (f, z, x) = tilt(f o V) (y).

]

From the definition of positive tilt map and of negative-torsion map and from Propo-
sition 2.3.2, we deduce the following

Corollary 2.3.3. Let f : A — A be a C* diffeomorphism isotopic to the identity. Then,
f is a negative-torsion map if and only if f is a positive tilt map.
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As for the bounded case, we obtain the following outcome.

Corollary 2.3.4. Let f : A — A be a positive tilt map of the unbounded annulus. Then
for any z € A and for any n € N* it holds

Torsion,(f,z,x) < 0.
In particular for any z € A, whenever the limit exists, it holds
Torsion(f,z) < 0.

The proof of Corollary 2.3.4 is exactly that of Corollary 2.3.2 and so we omit it.

2.4 Birkhoff Theorem through torsion

Using the tool of torsion, we can prove Birkhoff’s-theorem-like result (see [Bir22| and
[Her83]) in a different hypothesis framework. The idea of using the torsion (i.e. the Maslov
index) in order to prove a Birkhoff’s-theorem-like result was already present in the works
of M. Bialy and L. Polterovich (see [BP89|, [Pol91] and [BP92|). This section arises from
a question by V. Humiliére.

Theorem 2.4.1. Let f : A — A be a negative-torsion (positive-torsion) map. Let v :
T — A be a C* f-invariant essential curve such that f, is non wandering. Then ~ is the
graph of a C* function.

We remark that on one hand we do not require that f is either a twist map or a
conservative map. On the other hand f has to be a negative-torsion (positive-torsion)
map and we require that the dynamics restricted to the C! curve is non-wandering.

Our proof is done by contradiction. We start by stating the main results that will be used
in the proof. Let us first recall the definition of isotopy.

Definition 2.4.1. Let M, N be two smooth manifolds. An isotopy of M in N is an
homotopy H : M x [0,1] — N such that for any ¢ € [0,1] the map H; : M — N,z —
H(z,t) is a C° embedding.

Proposition 2.4.1. An essential curve v : T — A is isotopic to either
T>7— ¢(r) =(7,0) € A or  T>37+ c_i(r)=(—71,0) € A.

Actually, we will show that any C" essential curve (r > 0) is isotopic to either ¢; or to c_;
through an isotopy H : T x [0,1] — A such that for any s € [0, 1] the map t — H(t,s) is
a C" embedding of T in A.

We introduce some notations that will be used in the proof of Proposition 2.4.1.

Notation 2.4.1. Let ' : T — T'(T) C R? be a simple closed curve in the plane. Thanks
to Jordan’s Theorem, R? \ T'(T) has two connected components, a bounded one and
an unbounded one, such that I'(T) is the common boundary. The bounded connected
component is denoted int(T"). The unbounded one is denoted ext(T'). We denote as D?
the closed unit disk. With an abuse of notation, in the sequel we identify R? with the
complex plane.
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Proof. The annulus is diffeomorphic to R? \ {0} through the diffeomorphism
A3 (z,y) = gla,y) = ™ € R?\ {0}.

Let v : T — A be a C" essential curve (r > 0) and let I : T — R? be equal to g o . The
curve I is so a C" simple closed curve in R?. The point 0 € R? belongs to int(T') because
v is an essential curve in A.

We discuss separately the case r =0 and r > 1.

Case r = 0. By Schoenflies Theorem (see Theorem II1.6.C in [Bin83]) there exists a home-
omorphism f : R?> — R? with compact support such that f(int(I')) = D?, where
int(I") is the closure of int(T").

Without loss of generality, we assume that f(0) = 0. Indeed, if this is not the case,
denote as [0, f(0)] the segment joining the origin to f(0) and let n : R? — [0, 1] be
a C* bump function such that ngrz\p2 = 0 and 70, sy = 1.

Let ¢ be the time-one flow of the vector field X = —nf(0). Observe that ¢;(f(0)) =
0 and ¢1ge\p2 = Id. Then, replacing f with ¢; o f, we obtain the required homeo-
morphism.

The homeomorphism G = g~ ' o figz\fo3 0¢ : A — A is such that G(y(T)) = T x {0}.
Moreover, since f has compact support and v(T) is compact, there exists M > 0
such that G(~(t) + (0, M)) = v(¢t) + (0, M) for any t € T.

Consider the isotopy H : T x [0,1] — A

(t,s) — G (y(t) + s(0, M)) — s(0, M).

It joins the curve t — H(t,0) = G o y(t) to the curve . The image of G o y(T) is
T x {0} and so the map ¢ — p; o G o ~(¢) is a homeomorphism of T.
If t = p1oGory(t) preserves the orientation, then it is isotopic to Idr and therefore ~y
is isotopic to c¢;. Otherwise, t — p; o G o y(t) is isotopic to —Idy and so + is isotopic
to c_j.

Case r > 1. By Theorem 8.3.7 in [Hir76] the closed unit disk D? is C" diffeomorphic to int(T).

That is, there exists a C" diffeomorphism f : D* — int(T'). We can assume that f
preserves the orientation, up to replace f with f o R where R(re*™) = re=2m As
done in the r = 0 case, we can suppose that f(0) = 0.

Denote as S* the unit circle in R?. Then ¢ = fol' : T — R?\ {0} is a parametrization
of the unit circle. We construct now an isotopy H : T x [0, 1] — R?\ {0} which joins
¢ to I'. Thus, g~ o H is an isotopy on the annulus joining g~ o ¢ to 7.

Since g7! 0 o(T) = T x {0}, the map ¢ — p; o g~* 0 () is a C" diffeomorphism of
T. If it preserves the orientation, then ~ is isotopic to c¢;. Otherwise,  is isotopic to
C_1.

The isotopy H is obtained by concatenating four isotopies. Since f is at least C!, the
differential D f(0) is in GL(2,R) and so T > ¢t — Df(0)p(t) € R? is a C" embedding
whose image is contained in R?\ {0}.

Since the set of C! embeddings of T in R? \ {0} is open in the strong topology (see
Theorem 1.1.4 in [Hir76]), there exists € > 0 such that every C" function of T in
R?\ {0} which is e-close to t — D f(0)¢(t) in the C'-distance is a C" embedding of

T in R?\ {0}.
Let 7 € (0,1] be such that ¢t ]‘?(r—gf(zf))
T

distance.
The final isotopy is obtained by concatenating the following ones.

is e-close to t — Df(0)¢(t) in the C'-

82



— First we move the C" embedding ¢ up to the rescaled C" embedding 7 using
the isotopy (¢, s) — ((1 — (1 — $)7))e(1).

— Since f preserves the orientation, then Df(0) is in the same component of
GL(2,R) as I,. A path in GL(2,R) provides an isotopy from 7y to 7D f(0).

— Consider the isotopy H : T x [0,1] — R2\ {0}

(t,8) = sf(ro(t)) + (1= s)rDf(0)p(t).

By the choice of € and of 7, each I:I(, s) is a C" embedding and the isotopy
joins 7D f(0)p to f(Ty).
— Finally, consider the isotopy H : T x [0,1] — R\ {0}

(t,8) = [ (1= s)r +5)p(t)) .

It joins f(7p) to foy =T and for any s the map H(-, s) is a C" embedding of
T in R?\ {0}, because f fixes the origin.

]

The following lemmas give us a sufficient condition to deduce that a C! essential curve is
actually the graph of a C! function.

Lemma 2.4.1. Let v: T — A be an essential curve. Then every lift T' : R — R? of v is
such that I'(t + 1) = T'(1) + (6,0), where 6 = 1 if v is homotopic to t — ¢;(t) = (¢,0) and
d = —1 if v is homotopic to t — c_1(t) = (—t,0).

Proof. Let T" be a lift of . For all 7 € R we have that I'(t + 1) = I'(7) + (k, 0), for some
k € Z. Such an integer does not depend on 7 € R. From Proposition 2.4.1 and from the
homotopy lifting property (see [Hat02]), there exists a lift of the homotopy joining ~ to c;
(or ¢_1) which joins I' to a lift of ¢; (or c_;). In particular, denoting as C; the involved
lift of ¢; (or C_; the involved lift of c_;), we have that

Ci(tr+1)=Cy(r) = (k,0)=T(r+1) = T'(7)

(or C_1(t+1)—C_i(7) = (k,0)=T(7+1) = T(7)).

Since C; (respectively C_;) is a lift of c; (respectively of c_;), we have that k£ = 1
(respectively k = —1).
]

Lemma 2.4.2. Let v be a C! essential curve. If v is transversal to the vertical at every
point, then v s the graph of a function.

Proof. Let T be a lift of . We show now that I is the graph of a C! function ¢ : R — R.
Consider the C! function p;ol’ : R — R. Since I is transversal to the vertical (because I' is a
lift of v and ~ is transversal to the vertical by hypothesis), it holds that D(p;ol)(7) # 0 for
any 7 € R. Assume, without loss of generality (the other case can be discussed similarly),
that D(p; oT')(7) > 0 for any 7. Consequently, p; o T is an increasing diffeomorphism to
its image.

By Lemma 2.4.1 and since p; o I' is increasing, we have that for any 7 € R

prol(t+1)=pol(r)+ 1. (2.34)
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From (2.34) and from the continuity of p; o I', we deduce that p; o I'(R) = R. Therefore
prol: R — Ris a C!' diffeomorphism. Denote ¢ = (p; o I')~!. Thus, the C! function

R>s+—ppolog(s) eR

is such that Graph(ps o' o ¢) =T
Let us show now that ps o I" 0 ¢ is 1-periodic. From (2.34) it holds for any 7 € R

¢prol(n) +1=7+1=0¢(piol(r+1)) = d(proT'(r) + 1),

that is ¢ commutes with the translation by 1.
Thus for any s € R we have that

p2olo¢(s+1) =paol'(d(s) + 1) = p2(T'(¢(s)) + (1,0)) = p2 o I' 0 ¢(s)

and we deduce that py o' o ¢ is 1-periodic. Consequently, its projection on the annulus is
well-defined and ~ is the graph of the C! function ¢ : T — R satisfying pop = pyoI' 0 ¢,
where p : R — T is the covering map of T.

O

The following lemma provides an upper bound of the N finite-time torsion along the curve
~. The bound is independent of V.

Notation 2.4.2. Let z € A and let § € (0, 1). Denote
C(x,x,0) = {v € T, A : 0(x,v) or §(—x,v) admits a measure in (—0, 5)}

Lemma 2.4.3. Let f : A — A be a negative-torsion map and let K be a compact f-

invariant set. There ezist € € (0, %) and 0 < & < g such that for any x € K, for any

ve C(x,x,0) (see Notation 2.4.2) and for any N € N* it holds
N Torsiony(f,x,v) < —Z < 0.

We postpone the proof of Lemma 2.4.3 to Subsection 2.4.1.

The third result that we will use to prove Theorem 2.4.1 guarantees us that, in the
framework of negative-torsion (positive-torsion) maps, we can use the angle variation
along the curve v to calculate the finite-time torsion.

Lemma 2.4.4. Let f : A — A be a negative-torsion (positive-torsion) map. Let v : T — A
be a C' f-invariant essential curve. Then for any s € T and for any N € N it holds

N Torsiony(f,7(s),7'(s)) = Var,(v(s),v(5n)),
where fN o y(s) = y(5n).

We postpone the proof of Lemma 2.4.4 to Subsection 2.4.2. We finally prove Theorem
2.4.1.

Proof of Theorem 2.4.1. Argue by contradiction and assume that ~ is not a graph. Then
from Lemma 2.4.2 there exists a point z = 7(t) such that +/(¢) € Ryx. Denote

x if (1) € Ryx

—x if+y(t) e R_x.
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In particular 6(x’,'(t)) is zero.

Let ¢ € (0, %) and § € (0,5) be the parameters given by Lemma 2.4.3 applied at the
f-invariant compact set v(T).

The curve « is C! and it is an embedding. There exists a neighborhood U C T of ¢ such
that for any s € U the oriented angle 6(x’,7'(s)) admits a measure in (=6, ).

Since the dynamics f}, is non wandering, there exists N € N and s € U such that 55 € U,
where 3y is such that f& o y(35) = v(5y).

Let us calculate N Torsiony(f,v(S),7'(5)). From Lemma 2.4.4 we have

N Torsiony (f,7(5),7'(5)) = Vary(4(5), 7(5x))-
Claim 2.4.1. Var,(v(5),v(5n5)) € (—26,20).

Proof. Since both 5 and sy belong to U, we have that both the oriented angles 0(’,7(5))
and 6(x’,7(sy)) admit a measure in (—6,0). Thus, the oriented angle 6(+'(3),~'(5n))
admits a measure in (—26,24).

Since for any s € U the oriented angle 6(x’,~(s)) admits a measure in (-9, 9), since either
5, 5n] or [Sn, 5] is contained in U and since § < 1, we have that either Var, (y(5),v(5x))
or Var,(v(5n),7(5)) is in the interval (—26,20).

By properties (2) and (3) of Proposition 2.2.1 it holds

Varv(’y(gl\f)a 7(5)) = —VCLTW(’}/(E), 7<§N>> + VGTW(V(EN)a ’Y(SN» =

= —Var,(v(5),7(5n))-
In both cases, we have that Var.,(v(5),v(5n)) € (=29, 26).

Consequently, since 6 € (O, %),

. _ _ I € €
N Torsiony (f,7(5),7'(5)) = Var, (v(5),7(5n)) € (‘Za Z) -

From Lemma 2.4.3, we have that N Torsiony(f,7'(5),7(5)) < —%. This is the required
contradiction and we conclude.

O
We highlight the fact that, in order to obtain the result of Theorem 2.4.1, we need to have
information over the dynamics on the curve. Indeed, there exist non conservative positive
twist maps that admit C' essential f-invariant curves which are not graphs of function.
See for example Proposition 15.3 in [LC8S|.

Remark 2.4.1. We have actually shown that the curve « is the graph of a function and
it is always transverse to the vertical. Thus, since v is C!, we deduce that + is the graph
of a Lipschitz function.

2.4.1 An upper bound of N-finite time torsion: proof of Lemma
2.4.3

In order to show Lemma 2.4.3 we first need to prove the following
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Lemma 2.4.5. Let K be a compact f-invariant set. There exist ¢ € (0, %) and 0 <0 < ¢

such that for any © € K and for any v € C(z,x, ) (see Notation 2.4.2) it holds
Torsion (f,x,v) < —g < 0.

Proof. Since f is a negative-torsion map, since K is compact and since the function
TiA > (1,v) = ®(x,v) := Torsion; (f, z,v) € R
is continuous, there exists £ € (0,1) such that for any = € K
®(x, x) = Torsion; (f,z,x) < —e < 0.

Remark that ®(z, x) = Torsion, (f, z, x) = Torsion; (f,z, —x) = ®(x, —x).
Observe that ~1((—o0, —%)) is a neighborhood of {(z, x) : = € K}U{(x,—x): = € K}.
Thus there exists § € (0, §) such that

{(z,v): z€ K,ve C(x,x,0)}

is contained in ®~'((—o0, —5]).

]

Proof of Lemma 2.4.3. Let us proceed by induction. Let 0 € (0, ¢) be given by Lemma
2.4.5. The case for N = 1 is given by Lemma 2.4.5. Assume now that the result holds
for N — 1, i.e. for any y € K and for any w € C(y, x,9) (see Notation 2.4.2) it holds
(N — 1) Torsiony_1(f,y, w) < —%. Equivalently

6(f7yaw)(N_ 1) _6(f>y7w)(0> < -7

NS

Let z € K and let v € C(z,x,d) (see Notation 2.4.2). Since N Torsiony(f,z,v) =
N Torsiony (f,z, —v), assume without loss of generality that the angle 6(x,v) admits
a measure in (—0,0).

Choose a lift so that o(f,z,v)(0) € (=4,9). Then, o(f,z,v)(N —1) < =5 +0 < —5.
Consider now the lift such that o(f, f¥1(x),x)(0) = 02. In particular

O(f 2, 0)(N = 1) < a(f, f¥ (), x)(0).

By Lemma 1.1.1 in Chapter 1, from the choice of the lift and from Lemma 2.4.5 (since
0(x, x) clearly admits a measure in (—4,d)) we have that

3

QNJ(f7:L’,U>(N) < f)(fu fN_l(‘r)7X)(1> = f)(fa fN_l(x)7X)(1> - f)(fu fN_l(‘r)7X)(0> < _5'

Thanks to the choice of the lift o(f, z,v)(-) we deduce that

B(f, 2, 0)(N) = 3(f,2,0)(0) < —= + < —§+§ <-3

and we conclude.

3. Careful! We are considering a lift with respect to a different point in Tk A.

86



2.4.2 Finite-time torsion as angle variation along ~v: proof of Lemma
2.4.4

A first step to prove Lemma 2.4.4 is the following result.

Lemma 2.4.6. Let f : A — A be a negative-torsion map. Let v : T — A be a C!
f-invariant essential curve. Then for any s € T it holds

Torsion; (f,7(s),7'(s)) = Var,(y(s),7(5)),

where foy(s) = y(3).

Proof. Observe that both Torsion; (f,y(s),
same oriented angle 0(~'(s), Df(~(s))Y'(s))

s > 0(7'(s), Df(7(s))7'(s)) and of s — 0('(s
any s € T

7'(s)) and Var,(vy(s),v(5)) are measures of the
= 0(7'(s),7'(5)). Therefore, by continuity of
),7'(5)), there exists k € Z such that for

Torsion; (f,v(s),7'(s)) = Var,(y(s),v(3)) + k. (2.35)

Let z(00) = v(s(o0)) € 7(T) be a point given by Lemma 2.2.8. In particular there exists
K € N such that for any N € N* it holds

K
N Torsiony (f, z(00), x) € [— 5,0). (2.36)
From Lemma 1.1.3 in Chapter 1 we have that for any N € N* it holds
K+11
N Torsiony (f,v(s(00)), 7 (s(00))) € (—T+, 2) : (2.37)

At the same time, from (2.35) and since « is f-invariant, we have that

N-1

N Torsiony (f,7(s(00)), 7' (s(o0))) = Z Torsiony (f, f'o7(s(00)), Df*(7(s(00)))y'(s(00))) =

N-1

= Nk+ Y Vary(4(5),7(5141)),

=0
where for any i € [0, N] the point 5; € T is such that v(5;) = f*(v(s(c0))).

Claim 2.4.2. For any N € N* it holds

S Var, (4(50.1(5e)) = Vars (+(50).7(5).

i=0
Proof. Let us show the claim by induction. For N = 1 there is nothing to prove. Assume
that the claim holds for N — 1, N > 1. Consequently

N-1

Z Vary(7(5:),7(5i+1)) Z Vary(v(8:),7(Si+1)) + Vary (v(sn-1),7(5n)) =
— Var, (+(50), ¥(55-1)) + Var, (1(55-1), 7(5x)).

By property (3) of Proposition 2.2.1, this last quantity is equal to Var,(v(5),v(5n5)) and

we conclude the proof of the claim.
]
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Consequently, for any N € N*

Nk = N Torsiony (£, y(s(50)),7/(s(00))) — Var, (v(s(50)), 7(5x)):

where 5y € T is such that v(5y) = f o y(s(c0)). Refering to Definition 2.2.3, we have
that

[Vary(v(s(00)),7(sn))| < C(7) < Fo0.
This observation, together with (2.37), implies that the application

N*3 N + N Torsiony (f, v(s(00)), 7 (s(c0)) = Var,(v(s(0)),v(5n)) € Z

is bounded. Thus, the only possible case is that k& = 0.

The proof of Lemma 2.4.4 is now an immediate corollary of Lemma 2.4.6.

Proof of Lemma 2.4.4. Let s € T and let N € N. Then, from Lemma 2.4.6,

N Torsiony (f,v(s),7'(s)) =

£
P

= TOI'SiOIll(f7 fZ © ’7(8)7 DfZ(IY(S))’}/(S)) = Z Va’r’y(’y(gi)v ’7(‘§i+1))7

where for any i € [0, N — 1] we denote ~(5;) = f(y(s)).
From Claim 2.4.2 it holds
N-1

> Vary(v(5:),v(5i11) = Vary(y(s), ¥(5x))

=0

Il
o
<.
I
=)

and so we conclude that N Torsiony (f,v(s),7'(s)) = Var,(v(s),v(5xn)), where 55 € T is
such that v(5y) = f~ o7(s).
[
An outcome of Lemma 2.4.4 (already proved by S. Crovisier for twist maps in [Cro03|)
is the following

Corollary 2.4.1. Let f : A — A be a negative-torsion (positive-torsion) map. Let vy :
T — A be a Ct essential f-invariant curve on A. Then, for any s € T it holds

Torsion(f,~(s)) = 0.
Proof. Let s € T. Fix N € N. From Lemma 2.4.4 it holds

_ Vary(y(s),7(3n))

Torsiony (f,7(s),7'(s)) = N ’

where 5y € T is such that v(sx) = f» o ~(s). Consequently, since the complexity of the
curve 7 (see Definition 2.2.3) is bounded, we deduce that

. , C(v)
[Torsionn (f,7(s),7(s))] < =

Consider then the limit as N goes to +o0o and conclude that Torsion(f,v(s)) = 0 for any
seT.
O
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2.5 Appendix of Chapter 2

In this Appendix we prove Lemma 2.2.3.
We recall the hypothesis of the statement. For a € A, A" € N*, (JZ);cpo,.v-1] € N and
lo=0<1l; <---<ly with [; € N we have for any i € [0, 4 — 1]

B (@) s — 1) = (D) 1,0) < ~ 5 (2.39)

Remark 2.5.1. Observe that (2.38) remains true also with respect to the vector —y
instead of x and does not depend on the chosen continuous determination.

Proof of Lemma 2.2.3. Let £ € T, A\ {0}. Assume that £ either has strictly positive first
coordinate or £ is x: we can choose the continuous determination v(I)(a,£,-) so that

1
Lemma 1.1.1 in Chapter 1 tells us that for any ¢t € R we have
B(I)(a.£,1) < 0(1)(a, x. 1) (2.40)

Then we are going to show that for any j € [1,.47] it holds*

-
17(])(@,5,[]‘) < _% (241>
Let us show inequality (2.41) by induction.
(i) Consider j = 1. By (2.38) for i = 0 and by (2.39), we have
8 N . Ho
o(I)(a,x,l1) —v(I)(a,x,0) =0(I)(a,x,l1) < -5 (2.42)

By inequality (2.40) for ¢ = I; and by inequality (2.42) it holds

o(1)(a, &, 1) < —?.

Thus, (2.41) holds for j = 1.

.72.
(¢7) Let consider now j > 1 and assume that 9(1)(a,&,1;—1) < —Z]:TO‘%/ We are going

to show that i1
i 4
i(D)(a..1)) < — =0

We start by choosing the continuous determination o(I)(f4%-1(a), Df'-1(a)¢, ) so
that

0(I)(a, & lj—1) = 0(I)(f7 (a), D= (a)€, 0). (2.43)

4. Observe that this inequality depends on the choice of the continuous determination.
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This is possible since v(I)(a,&,1;—1) and v(I)(f'%-(a), D fli-1(a)&,0) are the same
angle. By the inductive hypothesis we have

2
B (@), DI (a)6.0) < — 20 (2.44)
If 3922 #; € N is odd, choose the continuous determination #(I)(f%-1(a), —x, ) so
that s
X | =2
B0 (@), —,0) = ~ 22 (2.49

Hence inequality (2.44) becomes

o(I)(f7 (a), D=1 (a)€,0) < B(1)(f5*(a), —x. 0).

By Lemma 1.1.1 for t =1; — [,

O(1)(f5=4(a), D=2 (a)é, I — lj_1) < O(1)(f 1 (a), =X, Ij — 1) (2.46)

Inequality (2.38) with respect to —x instead of x for i = j — 1 (see Remark 2.5.1)
gives us

s

oD (0), ~x,0).

o(D)(fr (@), =x. by = L) < =

This, together with (2.45), implies that

J=1 oy
i (2.47)

B ) oy = 1) < — S

By (2.46) and (2.47)

=l
S(I)(ff=(a), DfY (), l; — 1) < _ZZTO' (2.48)
Counsider now the two continuous functions
b= 6(]> (CL, £, lj—l + t)

and
t = o(I)(f=1(a), D=1 (a)é, t).

They are continuous determinations of the same angle function and by (2.43) they
coincide for ¢ = 0. Consequently they are equal at any ¢, in particular for ¢t = [;—1;_;.

So by (2.48)
A
B(1)(a.6.1) < -2
If Zz;g ; € N is even, we choose the continuous determination o(I)(f%-(a), x, )
so that ,
A

S5 (a),x, 0) = — 222

and we repeat the same argument.
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We have so proved inequality (2.41) and we are going to conclude the proof of Lemma
2.2.3.
By inequality (2.41) for j = 4" and by (2.39) we have

B(1)(0, 6 Ly) — 5(1)(a,£,0) < — =0 i, 1 (2.49)

2 2
as desired. If £ = y, then again inequality (2.41) for j = 4" and the equality in (2.39)
imply in particular that

PDyira

: (2.50)

{)(I)(aaXJe/V) - {](I)(CLvXaO) <

Assume now that £ either has strictly negative first coordinate or & is —y. Then —¢
either has strictly positive first coordinate or —¢ is x. From (2.49) we have

N—1
(1) (a, =&, 1y) —9(I)(a,—€,0) < —ZOT‘%/ + %
Since
o(I)(a,& Ly) —o(I)(a,& 0) =0(I)(a, =& Ly) — 0(I)(a, =&, 0), (2.51)
we conclude that
) . Yl ]
o(D)(a, &l y) —0(I)(a,&,0) < —’T + 3

In particular, if £ = —y, then by (2.50) and (2.51) it holds

Z/VI%

B ~x L) = (D) (@ ~x.0) < — ==

This concludes our proof.
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Chapter 3

Points of zero torsion for conservative
twist maps

In this chapter we consider conservative twist maps of the annulus. In particular, we
are interested in the torsion of bounded instability regions of A (both bounded subannuli
and periodic discs). We will show that any bounded instability region contains a subset
of positive measure where the torsion is not null.

3.1 Conservative twist maps and instability zones

The manifold A = T x R is endowed with its standard Riemannian metric and trivi-
lization. Denote as w = dx A dy the area form on A. With an abuse of notation, we denote
as w also the measure associated to the area form on A, i.e. the Lebesgue measure.

Fix the counterclockwise orientation and consider the constant vector field x(z) = x =
(0,1).

We recall that the function p : R — T denotes the universal covering of the 1-dimensional
torus, while p x Idg : R? — A denotes the universal covering of A. Denote as pi,ps :
R? — R the projections over the first and second coordinates, respectively. With an abuse
of notation, denote as py,ps also the projections over the first and second coordinate,
respectively, for the annulus A.

Our main references for this section are [Arnl6|, [Ban88| and [GolO1].

Definition 3.1.1 (Symplectic map). A C' diffeomorphism f : A — A is symplectic if
ffw=w.

Definition 3.1.2 (Conservative map). A C' diffeomorphism f : A — A is conservative
(or exact symplectic) if f*w — w is an exact 1-form.

Notation 3.1.1. All along the section, f : A — A is a conservative twist map.

We briefly recall the notation used for lifts of oriented angle functions. Let I = (f;); in
Diff '(A) be an isotopy joining the identity to f. Define the function

v(l): TA, xR —T

(2, 57 t) = Q(Xv th(l')g),

where TA, = {(2,§) € TA: £ # 0}. Fix (2,£) € TA, and denote as 9(/)(z,§,-) : R - R
a continuous determination of the angle function v(I)(z,¢&, ).
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Remark 3.1.1. Be careful! Although we have chosen a continuous determination o(f) :
TA, x R — R to introduce the torsion, in the sequel sometimes we will be interested
also in considering different determinations o(f)(z,&,-) that are independently defined
for different points (z,&) € TA.,.

We refer to Definitions 1.1.2 and 1.1.3 in Chapter 1 for the notion of (finite-time) torsion.
We recall that the (finite-time) torsion on A does not depend on the choice of the isotopy
(see Proposition 1.3.2 in Chapter 1). Therefore, we will use the notations Torsion(f, z)
and Torsion, (f, z,£) for the torsion and the torsion at finite time.

We refer to [Arn16]| for the following notions.

Definition 3.1.3. An essential curve is a C’-embedded circle in A not homotopic to a
point.

Definition 3.1.4. An essential subannulus of A is a subset of the annulus that is home-
omorphic to A and contains an essential curve of A.

Notation 3.1.2. Denote as .#(f) the union of all the invariant continuous graphs of f
and as A(f) its complement.

We are then interested in the dynamics on A4(f) and in particular in the torsion at points
of A (f). We start by stating the following

Proposition 3.1.1 (Proposition 2.17 in [Arnl6]). Let f be a conservative twist map.
Every connected components of N (f) is either a bounded disc or an essential subannulus
of A.

o When such a component is a disc D, then this disc is periodic i.e. there exists N > 1
such that fN(D) = D. Moreover, the boundary of D is the union of parts of two invariant
continuous graphs that have the same rational rotation number.

o When such a component is an essential subannulus, then it is invariant by f, and each
of the two components of its boundary is either T x {£oo}! or an invariant continuous
graph.

Definition 3.1.5. An instability zone is a connected component of .4(f) which is an
essential subannulus. An instability disc is a connected component of .47(f) which is a
f-periodic disc.

Recall that, with an abuse of notation, we denote as w both the area form on A and the
measure associated, i.e. the Lebesgue measure. The main result of the chapter is then the
following

Theorem 3.1.1. Let f : A — A be a conservative twist map. Let U C A be a bounded
connected component of N (f). Then

w({zeU: Torsion(f,z)#0})>0.

Theorem 3.1.1 is an outcome of Proposition 2.17 in [Arn16]| (here Proposition 3.1.1) and
of the following propositions.

Proposition 3.1.2. Let f : A — A be a conservative tunst map. Let U C A be a bounded
instability zone. Then w({z € U : Torsion(f,z) # 0}) > 0.

1. The boundary is considered in the compactification of A, i.e. in T x R, where R = R U {4o0c}.
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Proposition 3.1.3. Let f : A — A be a conservative twist map. Let U C A be an
instability disc. Then w({z € U : Torsion(f,z) # 0}) > 0.

Proposition 3.1.2 will be an immediate outcome of Theorem 3.2.1 (see Section 3.2), while
the proof of Proposition 3.1.3 is presented in Section 3.3.

Remark 3.1.2. Let f : A — A be a conservative positive twist map. Let us assume
that, whenever it exists, Torsion(f, z) is zero for w-almost every z € A. As an outcome of
Theorem 3.1.1, we deduce that there are neither bounded instability zones nor instability
discs.

An outcome of Theorem 3.1.1 concerning the torsion of measures is then the following

Corollary 3.1.1. Let f : A — A be a conservative positive twist map and let w = dx A dy
be the area form on A. With an abuse of notation, denote as w also the Lebesque measure
on A. Let U be either a bounded instability zone or the orbit of a N-periodic instability
disc D (i.e. X" fi(D)). Then it holds

1
—3 < Torsion(f,0) <0

where & is the normalized Lebesgue measure with respect to U, i.e. &(-) =

Proof. Since for any z € A it holds —% < Torsion(f,2) < 0 (see Corollary 2.1.1) and

2 =

since, from the definition of the torsion of a measure (see Definition 1.1.4), we have

Torsion(f,w) = /

Torsion(f, z) dw(z) = / Torsion(f, z) dw(z),
A

U
we already know that —% < Torsion(f,w) < 0. By Theorem 3.1.1 applied at U, the set
V = {z € U : Torsion(f,z) # 0} has positive Lebesgue measure. Actually, because of
Corollary 2.1.1, it holds V' = {z € U : Torsion(f, z) < 0}.

Recall that by Ruelle’s theorem in [Rue85| the torsion exists at w-almost every z € U. In
particular, the torsion exists and it is null for @-almost every z € U \ V. Consequently

Torsion(f,w) = /

Torsion(f, z) dw(z) = / Torsion(f, z) do(z) =
A

U

= / Torsion(f, z) dw(z) +/ Torsion(f, z) do(z) = / Torsion(f, z) dw(z) < 0.
1% U\V 1%
That is, it holds —3 < Torsion(f,@) < 0. O

3.2 (Y integrability of bounded sub-annuli

We start by introducing some notions and definitions and by presenting the main
result (see Theorem 3.2.1) whose proof will take almost all the section.

Definition 3.2.1. A conservative twist map f is C° integrable if there exists a partition
of A into continuous closed invariant curves not homotopic to a point, any one of which
is a continuous embedding of S! in A.
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Let f : A — A be a conservative positive twist map. Let F' : R? — R? be a lift of f. Refer-
ing to [Ban88|[Sections 1 and 7| (see also [Arn16]|Proposition 1.8] and [Gol01|[Chapter 1,
Section 5A]), there exists a function

h:R> >R
such that
F(:zc )— (X Y) = ——gh(a: X) Y—ih(m X) (3 1)
7y - 9 y_ &c I 9 _aX ) . .

The function h is called a generating function of F' and
(i) his a C? function;

(74) h is invariant under translation of (1,1), that is
h(z+1,X +1)=h(z,X)  VY(z,X) € R

(ii7) for any (z,X) € R? it holds 5% <h(z, X) < 0.

Definition 3.2.2. A sequence of real numbers (z,),cz C R” is a configuration for F
if there exists a sequence (y,)necz C RZ such that (z,,¥n)nez is an orbit for F, that is
(Tn, Yn) = F™(x0,0) for any n € Z.

Observe that (x,)necz is a configuration if and only if

0 0

ﬁh(xn_l, z,) + gh(xn,xnﬂ) =0 VnelZ (3.2)
Definition 3.2.3 (Definition 3.6 in [Arn16]). Let (z,)nez C R be a sequence of real
numbers. The union over all n € Z of segments in the plane R? joining (n,z,) to (n +
1,2,41) is called the Aubry diagram of (x,),cz.

We say that the Aubry diagrams of two sequences (&, )nez, (Tn)nez Cross

(1) between n and n + 1 if (2, — Tp) (X1 — Tny1) < 0;

(i) at n € Z if x,, = &, and (2,1 — Tp—1)(Tpy1 — Tny1) < 0.

Notation 3.2.1. Let (z,)nez be a sequence of real numbers. We denote as Z((,)nez)
the Aubry diagram of (z,)nez.

Remark 3.2.1. Observe that two configurations (2, )nez, (Zn)nez such that x,,, < Tp,, Tp,+1 =
Tp,+1 for some n; € Z actually cross at ny + 1 according to point (ii) of Definition
3.2.3. Indeed we are now going to show that z,, o > Z,,+2. Equivalently we have that
Tpy+1 = Tpy+1 and

(:Cm - jTL1)(xn1+2 - jEn1+2) <0.

Denote as (T, Yn)nez, (Tn, Un)nez the orbits for F' corresponding to (x,)nez, (Tn)nez, re-
spectively. Recall that the function R 3 y + p;o F~(z,,11,y) € R is a strictly decreasing
diffeomorphism of R and so its inverse function is strictly decreasing as well. From this and
since = (poF Yz N Y, ), = (proF ! (z NN Ty, Tny < Ty, it
Yni+1 h n1+1, n1 )y Yni+1 b1 ni+1, ny /s 4ny ny

holds Yni+1 > gnﬁ-l'

Now the function R € y +— py o F(x,,41,¥) is a strictly increasing diffeomorphism and,
since Yn,+1 > Un,+1, we conclude that

Ty = P10 F(Tn115 Yni+1) > 010 F(Tpy 41, Uny+1) = Tnysa.
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Definition 3.2.4. Let (z,).cz be a configuration for F.The sequence (&,)nez C RZ,
&n € T, R, is a Jacobi field along the configuration (z,)nez if for all n € Z
82 82 82 2

aanh(xnfla xn)gnfl"' @h(xm $n+1) + Wh(l’n—b mn) gn‘i‘ 020X

h(xna xn+1)£n+l = 0.
(3.3)

Definition 3.2.5. Two points x,;, zy of a configuration (x,),ez, M # N, are called
conjugate points if there exists a non zero Jacobi field (&,)nez along (z,)nez such that

Ev =&n = 0.
Notation 3.2.2. Let z = (z,y) € R? and denote as (z,,, Yn )nez the orbit of z with respect

to F'. We say that z has conjugate points along its orbit if there exist M < N,M,N € Z
such that x,;, zx are conjugate points.

Remark 3.2.2. For every z € R2, the vertical space at z is
¥ (2) := ker (Dpyjq.pz) -

Let M < N, M,N € Z, and let (x,),ez be a configuration for F'. Denote as (., Yn)nez
the orbit associated to the configuration. We remark that, from a geometrical point of
view, two points x,s, xn of the configuration are conjugate if

Y (@n,yn) N DEN "M (@ag, yar) (¥ (2ar, yar)) # {0}

Notation 3.2.3. Denote as a BIES an open subset U C A which is a bounded, f-invariant
essential subannulus.

Remark 3.2.3. Any instability zone is f-invariant. Any bounded instability zone is
a BIES. The boundary of any BIES is the union of two invariant disjoint curves. By
Birkhoff’s theorem, the boundary is actually the union of two disjoint Lipschitz continu-
ous graphs in A (see [Bir22] and Chapter 1 in [Her83]).

The main result of the section concerns the relation between properties of torsion and
CY integrability for a conservative positive twist map.

Theorem 3.2.1. Let f : A — A be a conservative positive twist map. Let U be a BIES
for f. Then the following statements are equivalent:

(¢) fiv is C° integrable;
(ii) the torsion exists and it is null for every z € U;

(i) the torsion is null for w-almost every z € U.

The implication (i7) = (¢ii) of Theorem 3.2.1 is trivial. Let us begin with the proof of the
implication (i) = (i7) of Theorem 3.2.1.

Proof of (i) = (ii) of Theorem 3.2.1. Assume fj;; is C° integrable and consider (z,y) € U.
By the C’-integrability condition, there exists a continuous closed f-invariant curve I' not
homotopic to a point such that (z,y) € I'. By Birkhoff’s theorem (see [Bir22|), the curve
I' is the graph of a Lipschitz continuous function v : T — R. The graph of v, i.e. ', is a
closed well-ordered set and every point of it is an accumulation point of I'. By Corollary
2.4 in [Cro03|, every point of T', so in particular (x,y), has zero torsion, according to
Crovisier’s definition. By Proposition 2.1.4 in Chapter 1, Crovisier’s torsion is equivalent
to Definition 1.1.3. Hence, (z,y) has zero torsion with respect to our definition.
By the arbitrariness of (x,y) € U, we conclude that every point in U has zero torsion.

O
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Sketch of the proof of (iii) = (i) of Theorem 3.2.1. The proof of this last implication
relies on the following two main propositions.

Proposition 3.2.1. Let f : A — A be a conservative positive twist map and let U be a
BIES. If the torsion is zero for w-almost every point of U, then f has no conjugate points
in U.

Proposition 3.2.2. Let f : A — A be a conservative positive twist map and let U be a
BIES. If f has no conjugate points in U, then fi; is C° integrable.

Mostly all the section concerns the proofs of these two main propositions (see Subsection
3.2.1 for the proof of Proposition 3.2.1 and Subsection 3.2.2 for that of Proposition 3.2.2).
Admitting for the moment Propositions 3.2.1 and 3.2.2, the necessary implication follows

immediately.
O

From Theorem 3.2.1 we deduce the following

Corollary 3.2.1. Let f: T x [0,1] — T x [0,1] be a conservative positive twist map on
the bounded annulus. Then, f is C° integrable if and only if the torsion is null at w-almost
every point.

Proof. The function f can be extended to a conservative positive twist map f : A — A
on the unbounded annulus such that -}F|T><[071] = f (see [LCI1]|Chapter 1, Section 2| and
[MF94|[Theorem 8.1]). The interior of the bounded annulus, that is T x (0, 1), is a BIES
for f. Applying Theorem 3.2.1 we conclude.

O

An immediate outcome of Theorem 3.2.1 is also the proof of Proposition 3.1.2.

Proof of Proposition 3.1.2. Let U C A be a bounded instability zone. From Remark
3.2.3 we have that U is a BIES. Since fjy is not C” integrable (from the definition of
the instability zone), we deduce that the torsion is not w-almost everywhere null. That is
w({z € U: Torsion(f,z) # 0}) > 0, as claimed.

O

3.2.1 Proof of Proposition 3.2.1

This section is devoted to the proof of Proposition 3.2.1. Actually, we are going to
show a more general result. That is, the following proposition holds true.

Proposition 3.2.3. Let f : A — A be a conservative positive twist map. Let U C A be
an open invariant set such that w(U) < 4o00. If w-almost every z € U has zero torsion,
then fir has no conjugate points.

The proof of Proposition 3.2.3 is an outcome of the following result.

Proposition 3.2.4. Let f : A — A be a conservative positive twist map. Let z € A be
such that:

(1) z has a conjugate point;
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(17) z has a neighborhood U such that w(U,ezf™(U)) < 4o0.

Then there exists an open neighborhood W, C U of z such that for w-almost every 2’ € W,
it holds Torsion(f,2") < 0.

Let us first show Proposition 3.2.3 by assuming Proposition 3.2.4.

Proof of Proposition 3.2.3. Let us argue by contradiction and suppose there exists z € U
which has a conjugate point. Since U is f-invariant and w(U) < +oo, by Proposition
3.2.4 there exists a set of positive measure where the torsion is strictly negative. This
contradicts the hypothesis and we conclude.
O
The rest of the section concerns the proof of Proposition 3.2.4. Such proof relies on
three main arguments:

(1) the presence of a neighborhood of z of positive measure such that each of its points
has strictly negative finite-time torsion;

(2) a link between the returning time of a point 2z’ to this neighborhood and the torsion
at finite time at 2/;

(3) the use of Birkhoff’s Ergodic Theorem for evaluating returning times of points to
the highlighted neighborhood.

Let us prove now Proposition 3.2.4.

Proof. By hypothesis, the point z € A has a conjugate point. That is (see Remark 3.2.2)
there exists n € N* and k£ € Z such that

n Torsion,, (I, z,x) = 0(I)(z, x,n) — 9(I)(z, x,0) = _k

= (3.4)

Since f is a positive twist map, by Theorem 2.1.1 in Chapter 2, any finite-time torsion
with respect to the vertical vector is strictly negative. Hence k > 1.
Since

t—v(l)(z,x,n+t) and t+— v(])(f"(2),Df"(2)x,t)

are the same angle function, the functions
t—=o(I)(z,x,n+t) and t—=0(I)(f"(2), Df"(2)x,1)

differ by an integer. Since D f"(z)x is a vertical vector from (3.4) and by Theorem 2.1.1,
for any m € N, m > n it holds

o(D(f*(2), D" (z)x, m —n) = o(I)(f"(2), Df"(2)x, 0) < 0. (3.5)

Since the following differences do not depend on the choice of the continuous determina-
tion, we have that for any m € Nym > n

6(])(ZaX7m) - {)(I)<27X7n) =

= o(D)(f"(2), Df"(2)x, m —n) = o(I)(f"(2), Df"(2)x,0).
So, by (3.5)
o(I)(z,x,m) —0(I)(z,x,n) <O0.

99



Consequently for any m € N, m > n we have

o(I)(z,x,m) —0(I)(z,x,0) < —g. (3.6)

Fix now m € N, m > n. By continuity of torsion at finite time with respect to the point,
inequality (3.6) is an open condition and there exists a neighborhood W, C U of z such
that for any y € W,

- - k
The open set W, has positive measure, denoted as w(W,) =: € > 0. We need now to prove
that w-almost every point in W, has negative torsion.
Observe that, by Ruelle’s theorem in [Rue85|, at w-almost every point of U,z f™(U) the
torsion exists. Consequently, also at w-almost every point of W, it exists. Recall that (by
Corollary 2.1.1) the torsion is non positive whenever it exists.

We start now discussing the second main argument of the proof, i.e. the relation
between returning times to W, and finite time torsion.
Let N € N and let us introduce the notation

On: | J f"(U) — N

neL

o (3.8)
r— Oy(z) := Z L, (f™(x)),

where Iy, (-) denotes the characteristic function of the set W,. The function [y evaluated
at x counts how many points of the segment of the orbit (f™(z));ejo,n—17 of « under f™
are in W,.

The following lemma provides us the required link between torsion and returning times
(counted by Oy (z)).

Lemma 3.2.1. For z € W, such that Oy (z) > 2 we have

o(I)(z,x,mN) —o(I)(x,x,0) < —W—Fg. (3.9)
The proof of Lemma 3.2.1 relies on the following rough idea. From inequality (3.7), every
time that the orbit of a point x comes back to I, the torsion gains a negative contribution
(less than —%) over the successive m-lengthed time interval. Hence, when looking at the
variation of a continuous determination of the angle function over a given time interval
N, we consider the f™-orbit of the point x. Each contribution of the torsion between
consecutive points of the f™-orbit with respect to the vertical vector is strictly negative
(see Theorem 2.1.1), but contributions of the torsion corresponding to points coming
back to W, are strictly less than —%. Adding all the contributions, the variation of the
continuous determination over the considered time interval N is strictly less than Oy (x)
times —%.
Actually, when coming back to W, we cannot directly use inequality (3.7) and Theorem
2.1.1 since we are not looking at torsion at finite time with respect to the vertical vector.
We need to prove a more accurate estimation and we will show that, up to add a constant,
the previous rough idea holds.
Lemma 2.2.3 will be the main tool in providing such an estimation and in proving Lemma
3.2.1. Therefore we recall Lemma 2.2.3 here (see Appendix 2.5 for the detailed proof).
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Lemma 2.2.3. Let f : A — A be a C' diffeomorphism isotopic to the identity. Let a € A.
Let A € N*, (J)icpo,.r-1] € NY andly =0< 1l < -+ <ly withl, € N for any i.
Assume that for all i € 0,4 — 1] it holds

y 4
oD (@), x L = ) = 9D (f(a), x,0) < ==~ (3.10)
Then for any vector € € T,A \ {0} we have
N=1 oy,
o(I)(a, & 1y) —9(I1)(a,€,0) < —ZOT‘%/ + % (3.11)
Moreover when & = x we have
N =1 oy
B, L) — (D) (a . 0) < == (3.12)

An outcome of Lemma 2.2.3 is Lemma 2.2.2, that we restate here in the particular frame-
work of positive twist maps (we refer to Lemma 2.2.2 for the proof).

Lemma 3.2.2. Let f: A — A be a positive twist map. Let a € A,n € N*, k € N be such
that

- N k

8@ x,m) — #(D)(a, x,0) < —5.
Then for any l € N, > n it holds

17(])(@,)(, l) —1~}<I)(6L7X,0) _E
We now prove Lemma 3.2.1.

Proof of Lemma 3.2.1. We will show that we can apply Lemma 2.2.3 with respect to f™
in order to bound the quantity

6(I)<I’X7mN) - QNJ(])(‘I:)O 0)

for z € W.,.

We are assuming that = € W, is such that Oy (z) > 2, that is the f™-orbit of the point
x comes back to W, at least another time within the time interval [0, N — 1].

Denote as [; the integer in [0, N — 1] such that f™i(x) is the i-th point of the orbit of x
that comes back to W,. Let us apply Lemma 2.2.3 (used with respect to f™) with a = z,
A =0n(z) —1>1and J = k for any i, where k € N is the positive integer of (3.7).
For any i, since f™i(x) € W,, by (3.7)

(D)™ (@), x,m) = o) (f™" (), x, 0)

and, since l;;1 — [; > 1, from Lemma 3.2.2 we deduce that

2

k
f}([>(fmll(x>7X>m(lz+1_lz>> ( )(fml ( ) ) —5.
From Lemma 2.2.3, recalling that .4~ = Oy(z) — 1, we have (see (3.12))

3
Ov(x)k Kk
2 %

o) (@, x, mly) = o(I)(z, x,0) < —
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Since Oy (x)k € N* and mN > ml_y, applying Lemma 3.2.2, we conclude

O k k
_Ov(@k |

o(I)(x,x,mN) —o(I)(x,x,0) < 5 5

O
The following Lemma concerns the last main argument of the proof and enables us to
conclude.

Lemma 3.2.3. For w-almost every x € W, it holds Torsion(f,z) < 0.

Proof of Lemma 3.2.3. We start by remarking that for w-almost every x € W, the torsion
exists (see [Rue85|). Since DNT(J”) is a Birkhoff’s sum, its limit for NV going to infinity exists

for w-almost every x. Denote
Ay :={z € W, : Torsion(f,z) = 0}.

We are going to prove that w(A;) = 0. Let A be the set U,ezf™"(A;). Then A is
clearly f™-invariant. The set A is contained in U,czf"(U): since by hypothesis it holds
wW(Unezf"(U)) < 400, we have that w(A) < +00. Observe that f™ preserves the measure
wia, defined as wia(-) == w(-NA).

Apply then Birkhoff’s Ergodic Theorem at (A,wj4) with respect to f™ and Iy, (-) €
L'(A,wj4). Then it holds

/ lim 22X () = / Ty (&) dw(z) = w(IW. N A). (3.13)
A N—+o0 N A

Look now at [, Torsion(f,z) dw(z).

On one hand, this integral is null by definition of the sets A; and A and by the invariance
of the torsion along the orbit of a point. On the other hand, we are going to show that
for w-almost every = € A it holds

Torsion(f, z) < R lim ()

3.14
2m N—+oo N ’ ( )

where k € N*,m € N* are the positive integers of (3.7).

By definition of A, for any x € A there exists £ € A; and n = n(z) € Z such that
(@) = a.

Observe that for any N > |n| it holds

On(2)  Onv@|_ |5 (F7(@) 2 I (7 (@) | _ 20

N N N N - N
and so O (2) ()
. NZ) . N\T

By Poincaré Recurrence Theorem (see Theorem 4.1.19 in [KH95|) applied at A with
respect to f and wj4, wjs-almost every z € A is recurrent. Moreover, by definition of A,
and A, the torsion exists at every = € A.

In particular, because the torsion is invariant along the f-orbit of a point, we have

Torsion( f, x) = Torsion(f, T). (3.16)
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Let z € A be a recurrent point. Note that the point Z is recurrent. In particular, there
exists V(7) € N* such that for any N > N(Z) it holds Uy(7) > 2.
Then, applying Lemma 3.2.1 at the point Z, it holds for any N > N ()

On(3k)

N + SV (3.17)

Torsion,,n(f, Z,x) < —

Consequently, from (3.15), (3.16) and (3.17)

Torsion(f, ) = Torsion(f, &) = NlirJrrl Torsion,,n(f, %, x) <
—+400

< lim
N—+o00

— 1

- = m lim )
2m N—+oo N 2m N—+oo N

2mN + 2mN -

That is, for wja-almost every x € A (i.e. for any € A at which the torsion exists and
that is recurrent) inequality (3.14) is satisfied.

Look now back at [, Torsion(f,z)dw(x) = 0. Since (3.14) holds for wys-almost every
xr € A and from (3.13), we have

0= / Torsion(f, z) dw(x) < _k lim O (@) dw(z) = —Ziw(Wz NA)<0.
A

2m A N—+oc0 m

Consequently we have w(W, N A) = 0. We then conclude that 0 < w(A;) =w(W,NA;) <
w(W,NA) =0, that is w(A4;) = 0 as desired.

O
We have so exhibited a neighborhood W, of z where w-almost every point has non zero
torsion. Since f is a positive twist map, by Corollary 2.1.1, whenever it exists, the torsion

is always non positive. We deduce so that w-almost every point in I, has negative torsion.
O

Remark 3.2.4. In Section 3.3 we will need the notion of over-conjugate points(see Defi-
nition 3.3.2). A point z € A has over-conjugate pointsif there exists m € N* such that

Bz, m) = D) (20, 0) <

Observe that Proposition 3.2.4 holds true also if we assume as condition (7) that the point
2 has over-conjugate points.

We wonder if a similar result could hold from a topological point of view. The following
question is due to J.P. Marco:

Question 3.2.1. Let f : A — A be a conservative positive twist map and let U be an
invariant set of finite measure. If the set {x € U : Torsion(f,x) = 0} contains a G dense
set, then is it true that there are no conjugate points?
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3.2.2 Proof of Proposition 3.2.2

In this Section we show that if there are no conjugate points in a BIES U, then fj; is
C%integrable. The proof is an adaptation of the results in [CS96]. In [CS96], Cheng and
Sun work with configurations on the whole unbounded annulus: here our framework is
that of Proposition 3.2.1, that is a bounded domain.

We remark that the same result holds for conservative negative twist map, by changing
f into f1.

The proof largely uses the theory of Aubry-Mather sets as sets of minimizing configura-
tions for an appropriate action functional, as presented in [Ban88|. The hypothesis of not
having conjugate points in U implies that any configuration in the bounded domain is in
some Aubry-Mather set. This implies that the Aubry-Mather set of any given rotation
number (in a suitable interval) is the graph of a continuous 1-periodic function. The pro-
jection over A of such graphs is the desired partition into C° closed f-invariant essential
curves.

The Subsection is organized as follows. First we introduce the framework of configura-
tions on a bounded domain. Among such configurations, we focus on those minimizing the
action functional H (see Definition 3.2.6). Then we show that minimizing configurations
on the bounded domain are actually minimizers on the whole annulus. We need to adapt
to the bounded framework the arguments of [CS96|. In particular, we prove that if there
are no conjugate points in U, then any configuration in the bounded domain is also min-
imizing. We use then the properties of the rotation number of minimizing configurations
as main tool to show that any Aubry-Mather set is a graph of a continuous 1-periodic
function, concluding so our proof.

Framework and notations

Consistently with (3.1), let F' : R* — R? denote a lift of the conservative positive twist
map f and let h : R? — R be a generating function for F, that is

~ Oh(z, X) v — Oh(z, X)

or ' 09X
Notation 3.2.4. Let U C A be a BIES (see Notation 3.2.3). Each component of the
boundary of U is f-invariant and is the graph of a Lipschitz map. This is a theorem due
to G. D. Birkhoff (see [Her83| for a complete proof).

Denote as v1,7, : T — R the continuous functions whose graphs are the lower and upper
component of U respectively. We write then

U={(x,y) € A: y(z) <y <yx)}. (3.18)

Flz,y) =(X,Y) & y=

Denote
U = (p x Idg) 1 (U), (3.19)

where p x Id is the universal covering of A.
Observe that % is the intersection of

U = {(z,y) € R*: I'y(2) <y} and Uy = {(z,y) €R*: y <Ty(x)}, (3.20)

where I'; = v, op fori =1, 2.
For (z,y) € %, the notation (,, Yn)nez = (F"(2,y))nez refers to the orbit of (z,y) with
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respect to F.
Let 2 C R? be the set

P ={(z,X)€R?: pyoF(z,I'1(x)) < X < pyoF(x,Ts(x))}, (3.21)
which is the intersection of

D ={(z,X): pyoF(z,T1(x)) < X} and Z={(z,X): X <poF(z,T3(x))}.

Remark 3.2.5. A point (z,y) € R? belongs to the subset % if and only if the point
(2,X) = (z,p1 0 F(z,y)) € R? is in 2.

On one hand, let (z,y) € %, that is I'1(x) < y < I'y(x). By the twist condition (see
Definition 2.1) it holds

pro F(z,T'1(z)) <proF(z,y) =X < pyoF(z,[y(x)),

iLe. (z,X) € 2.

On the other hand, let (z, X) € 2, that is p; o F(z,T1(x)) < X < pyo F(z,T'y(x)). Again
by the twist condition, the inverse function of y — p; o F((z,y) remains an increasing
homeomorphism. Therefore

i(z) < (pro Fz, ) (X) =y < T(2),
ie. (v,y) e %.
Notation 3.2.5. Denote as C(2) the set of configurations (z,,)nez such that (x,, x,11) €
2 for any n € Z.

Remark 3.2.6. If (z,y) € %, then, by the invariance of U, every point of its orbit
(Tn, yn) = F™(x,y) is in % . This observation and Remark 3.2.5 tell us that for any n € Z
the point (x,,, x,.1) is in Z. Therefore the configuration (x,,), = (p1oF"(z,y)), associated
to the point (x,y) is in C(2).

Minimizing configurations
Definition 3.2.6. For any M, N € Z, M < N, define the action functional Hy; n as

Hyn : RVYH S R

(Trr—1,Taty - - TN, TN 1) HM,N(:EM—l, o TN41) = h(zi, Tit1),

where h : R? — R is a generating function for F.

Definition 3.2.7. Let f : A — A be a conservative positive twist map and let F' :
R? — R? be a lift of f. Let V C R2 The minimizing set .# (V) is the set of sequences
(Zp)nez such that (x,,z,+1) € V for any n € Z and such that for any M, N € Z the
segment (xpr—1,...,2n+1) minimizes the action functional Hj; y among all the segments
(Taro1, -5 Tng) € RY"M¥3 guch that Ty 1 = 2ar 1, Tnp1 = Zny1 and (T, Tpy1) € V
for any n € [M — 1, N +1].
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Denote . (R?) as .# and call it the minimizing set of f.

Remark 3.2.7. Let U C A be a BIES. We refer to the notation introduced in Frame-
work and notations. Let (z,),cz be a sequence in .Z(2). By definition, (z,,z,+1) € 2
for any n € Z and for any M, N € Z, M < N, the segment (xp;_1,...,2n.1) is a local
minimum of the action functional Hys y among segments (Zas_1,...,Zn41) € RN"MT3 50
that Ty 1 = xpr 1, Tn11 = Tny1 and (T, Tpyq) € 2 for any n € [M — 1, N]. Therefore,
for any 7 € Z it holds

Oh(wi—1, i)  Oh(wi, 1)

X T oz

The sequence (z,),ez is actually a configuration for F' (see (3.2)). That is, (z,)nez €

C(2).

=0.

The rest of the paragraph is devoted to the proof that minimizing the action functional

among configurations corresponding to orbits of points in U is equivalent to minimizing
the action functional among configurations corresponding to orbits of points in A.
The next proposition is the core of the argument: the aim of the subsection will descend
as a corollary of it. Proposition 3.2.5 compares configurations of two points, the first one
lying under (or above) a f-invariant essential curve, the other one lying on such a curve,
and having the same first coordinate projection. We will show that for any n > 0 the
images through F” of the two points cannot have same first coordinate anymore.

Proposition 3.2.5. Let f : A — A be a conservative positive twist map and let F : R? —
R? be a lift of f. Let v : T — R be a continuous function whose graph is f-invariant and
letI'=~op. For any x € R if y < '(x) (respectively y > I'(z)) then

pro F™(z,y) < pro F"(z,T(x)) (respectively py o F*(z,y) > py o F*(z,T(x)))
for any n € N*.

Proof. The region U lying below the graph of ~y is f-invariant. Denote % = (px Idg) ' (U)
and consider
G :={(z,X)eR’: X =pio0F(z,I'(x))},

P :={(z,X)€R*: X <pyoF(x,T(z))}.
Denote as (Zn, Yn)nez, (€ny L'(€n) Jnez the F-orbits of (z,y) and (z, ['(x)) respectively, while

(Tn)nez = (1o F"(2,y))nez  and  (§u)nez = (p1o F™(2,T(2)))nez

are their associated configurations. By the invariance of U and of the graph of v and by
adapting Remark 3.2.6, it holds that (z,)nez € C(Z) and (§,)nez € C(¥). Observe that
xo = & = x. We are going to prove by induction that z, < &, for any n > 0, concluding
so the proof (the case y > I'(z) can be treated similarly).

(i) Since xg = & = x and y < I'(z), by the twist condition we have
Ty =p10 F(l‘,y) <p1©° F(x,F(x)) = 61'

(74) Fix now n > 0 and assume that z,, < &,. The function x +— p; o F'(z,'(x)) is the lift
of an orientation preserving homeomorphism of the circle and so it is an increasing
homeomorphism of R. Consequently, by the inductive hypothesis,

p1o F(l‘n, F(I‘n)) <p1©° F(fm F(gn)) = §n+1'
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By the invariance of %, we have that (z,,y,) € %, that is y, < I'(x,). Conse-
quently, by the twist condition, it holds

Tns1 = P10 F(@p,yn) <10 F(2,, () < p1oF(&,T(&) = &ntr.
0

In particular, we deduce that if there exists a continuous function on T whose graph is f-
invariant and, consequently, which bounds an upper and a lower unbounded annuli U, , U_,
then there cannot exist two segments of orbits (2, yn)nefo,ng in Uy and (Z,,, §n)nefo,ny in
U_ such that g = 29,2y = Ty, N > 1.

Reminder 3.2.1. We recall here some previous notations. Let U C A be a BIES. Let
v1,72 : T — A be continuous functions such that

U={(z,y) €A: m(z) <y <)}
Let Iy =vy;opfori=1,2 and let = {(z,y) € R?: Ty(z) < y < I'y(z)}. Denote
7 ={(z,X) €eR*: proF(z,I'(2)) <X <pyoF(z,Iy(2))}

The minimizing set .# is the set of sequences (z,)nez such that for any M, N € Z the
segment (xp_1,...,2y41) minimizes the action functional Hy; y among all the segments
(.’Z’M_l, ce ,NQ— 1) S RN=M+3 guch that Ty—1 = Tap—1 and 57]\[+1 = TN+1-

The minimizing set .#(2) is the set of sequences (z,)nez such that (z,,z,41) € Z for
any n € Z and such that for any M, N € Z the segment (zp;_1,...,2Zy4+1) minimizes the
action functional Hy; y among all the segments (Zy_1,..., N + 1) € RN-M+3 such that
Ty1 =Ty 1, Tny1 = Tny and (Tp, Tpyq) € Z for any n € [M — 1, N 4+ 1].

Denote as C'(2) the set of configurations (x,,),ez such that (x,,z,1) € Z for any n € Z.

The following result descends so as a corollary.

Corollary 3.2.2. Let f : A — A be a conservative positive twist map and let F' : R? — R?
be a lift of f. Let U C A be a BIES. Then #(2) C M .

Proof. Denote as 1,72 : T — R the continuous functions whose graphs are the boundary
components of U. Refering to (3.19), (3.20) and (3.21), we denote

U = {(z,y) €R*: Ty(z) <y < Ty(z)}

and
2 ={(x,X) € R?: pyo F(z,Ty(z)) < X <pioF(x,Iy(x))},

where I'; =~ op for i =1, 2.

We want to show that .# (%) C .#. Argue by contradiction and suppose there exists
(Tn)nez € A (D) not in A . Remark that (z,,),ez is a configuration in C(2). Since (2, )nez
does not belong to .#, there exist M, N € Z, M < N and a segment (Zp;_1,...,Tn41) €
RM=N+3 such that Zp; 1 = a1, TN11 = TNi1, (T, Tnp1) does not belong to Z for at
least an integer n € [M — 1, N] and

HM,N(IEMA, Try.o TN, TN) < HM,N(IL’MA, Ty TN, TNA1)-

Choose (Zpr—1,-..,Zn+1) that minimizes Hysy. It satisfies (3.2). Therefore, we extend
it to a configuration (Z,),ecz in C(R?) (in particular, it is in .#). Observe that by the
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invariance of & for every n € Z it holds (&, T,+1) ¢ Z.
Let (2, Yn)nez and (Zn, Un)nez be the orbits corresponding, respectively, to (x,,)nez and
(Zn)nez. Without loss of generality, assume that

Y1 < Do(xpr1) =Ta(@p-1) < G-

Applying Proposition 3.2.5 we have that xy.1 < Zxy11, which is the desired contradiction.
O

Remark 3.2.8. The minimizing set of f is non empty (see Theorem 3.17 in [Ban88|).
Moreover, Mather proved that any configuration obtained from a point (z,y) € A lying on
a f-invariant essential curve is in the minimizing set of f (see Proposition 2.8 in [Mat91]).
We will show that, for any BIES U, its correspondent minimizing set .# () is non empty
(see Remark 3.2.11).

Proof of C(2) = #(2)

In this paragraph we show that if there are no conjugate points for f in U, then
any configuration is minimizing. We are going to adapt to the bounded framework the
arguments in [CS96].

In particular, the absence of conjugate points will imply that two Jacobi fields along a
configuration cross at most once (see Definition 3.2.3). From this we deduce that any two
configurations in C'(Z) can cross at most once. This will imply that all the configurations
are also minimizers (see Definition 3.2.7).

All along the paragraph we refer to Notation 3.2.4 (see also Reminder 3.2.1).

Notation 3.2.6. Fix a configuration € = (z,,)nez € C(Z) and integers M < N. Consider
then the action functional H)ys y(see Definition 3.2.6) on the set of (N — M + 3)-uples
(Tapr—1.%ar, -+, TN, Tng) such that Ty = Ta—1, Tng1 = Ty
We then consider

HE y : RV S R

(T @) = Wy N (@ars -, BN) = Hun (@1, T, TN, TNg) =
N-1
= h(xM—bj:M) + Z h(fi,‘fzqu) + h(f?N,.TNJrl). (322)
i=M
The (N — M)-uple (xyy, ..., 2y) is a critical point of Hf, . Denote as 47 y (T, - - -, T)

the Hessian matrix of Hf, y evaluated at the (N — M)-uple (Zyy,...,7y). When it will
be clear by the context, we will omit the superscript @ on Hf, v, 757 v

Lemma 3.2.4. Assume that f has no conjugate points in U. Then for any configuration
T = (Tn)nez € C(Z) and for any integers M < N the hessian H3] y is positive definite.

Proof. Since f does not have conjugate points in U, we deduce, for any configuration & =
(Zy)nez such that Ty = xp_1, that %ﬂz\/i[,zv(fM: ..., Zy) does not have zero eigenvalue.
Indeed, if (&ar,...,&N) is an eigenvector of the zero eigenvalue for %ﬁ,N(fM, e EN),
then (0,&,...,&N,0) is a segment of a Jacobi field along & = (%, )nez (see (3.3)). Since
T = (Z,)nez 1s a configuration, by hypothesis it does not have conjugate points. So we
deduce that (&, ...,&N) is the zero vector and we contradict the fact that (£u,...,&N)
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is an eigenvector.

As we will see in Remark 3.2.8 there always exist minimizing configurations in C(2).
By Corollary 3.2.2, they are also minimizing configurations in .#. By Lemma 5.3 in
[Arn16], the Hessian /27 \ evaluated at a minimizing configuration® & = (Zp)nez such
that Zp,_1 = xp/_1 is positive definite. By the continuity of the eigenvalues and by the
connectedness of & (actually of the set of configurations & = (%, ),ez such that T, =
xy-1), we deduce that 7 v (2, . .., 7n) is positive definite too. ]

In Definition 3.2.3 we have introduced the Aubry diagram .Z((¢,)nez) for a sequence of real
numbers (t,)nez and we have explained what it means that two sequences (t,)nez, (Sn)nez
cross. That is, (t,)nez and (S, )nez cross

(1) between n and n + 1 if (t, — sp)(tns1 — Spy1) < O;

(i) at n € Z if t,, = s, and (t,,—1 — Sp—1)(tns1 — Sny1) < 0.

Lemma 3.2.5. Let f be with no conjugate points in U. Let (£,)nez and (Nn)nez be two
different Jacobi fields along the same configuration (x,)nez € C(Z). Then their Aubry
diagrams L ((§n)nez) and L ((Mn)nez) cross at most once.

Proof. The set of Jacobi vector fields along (z,),ez is a vector space. Denote as (¢, )nez
the Jacobi vector field along (z,),ez obtained as the difference of (,)nez and (9,)nez.
That is, for any n € Z we have (, = &, — 1.

We are going to show that, given ((ar—1,Cur, -, (v, (ve1) & segment of the Jacobi field
(Cn)nez along (x,)nez such that

Cv-1>0 and (ny1 >0, (3.23)

then (; > 0 for « = M,..., N. This will imply our lemma: indeed, if by contradiction
the Jacobi vector fields (&,)nez and (1, )nez intersect twice, then we have that (up to
exchange the roles of the fields) there exists M < N such that ny; 1 < {po1, v < Evat
and n; > &; for some i € [M, N]. This would contradict our result.

Let us show that, assuming (3.23), it holds ¢; > 0 for any i € [M, NJ.

Denote as h;;+1 the generating function at the point (x;, ;q1), i.e. hiit1 = h(z, Tiv1)-
Use the definition of Jacobi field (see (3.3)) and write

Cor
x . _
%MJ\I(IM,...,I'N) : —
(N
92%h 2hayr— 8%h
gf,éuﬂ + M_1.M M, M+1 0 o 0
=2 0X 5 0x0X 5 )
O°hnr v+1 O°hpr41,M+2 + O°hny,v+1 O°hyi41, M2
00X Ox2 0X?2 00X
?hpn_ 9%h ?hn_
0 o o N—_1,N NNFL N—_1,N

0x0X Oxz? 0X?2

2. Such minimizing configuration is in C'(2).
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82

- 0rOX h(xM—h OCM)CM—1
0
0
82

_mh@m SUNH)CNH

By (3.23), the first component of this vector is positive and the last one is non negative.
Concerning the matrix 7 y, it is a tridiagonal symmetric matrix that is positive definite
by Lemma 3.2.4: so the diagonal terms are strictly positive. The off-diagonal entries are
striclty negative (since 0*h/0x0X < 0). Its inverse (47 y (a1, . - -, )" is @ symmetric,
positive definite matrix whose entries are all positive (see Section 2.1 in [Meu92| or Section
3.4.1 in Appendix 3.4).

Since

82

0x0X

h($M—1yxM)CM—1
Cur
( ]\?,N('xMw"axN))il = )

0 (N
o2
—mh(@v, $N+1)(N+1)

since all the entries involved are positive, we conclude that (; > 0 for i = M, ..., N.

°

]

Lemma 3.2.6. Assume that f has no conjugate points in U. Let (x,)nez, (Tn)nez be two
configurations in C(2). Then, their Aubry diagrams £ ((xn)nez) and L ((Tn)nez) cross
at most once.

Proof. Argue by contradiction and suppose that 2 ((2,)nez) and Z((Z,,)nez) cross twice.
Without loss of generality, we can assume that there exists Ny € Z, Ny > 1 such that

ro < To T < 19 I, < i’NO. (324)

Let us define the affine functions

fO :[0, 1] — R
t— fo(t) =Ty + t([i‘o — ZL'())

and

f1 : [O, ]_] — R
t— fl(t) =+ t(i‘l — LU1>.

The following claim proves that the segment connecting (xg, 1) to (Zo,Z1) in R? is fully
contained in &. That is, any point on such a segment corresponds to a configuration in

C(2).
Claim 3.2.1. For all ¢ € [0, 1] we have

(fo(t), f1(1)) € 2.
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We postpone the proof of Claim 3.2.1 and we finish now proving Lemma 3.2.6.
We can associate to any (fo(t), fi(t)) € Z the corresponding point

y(t) = (1o F(fo(t),) " (f(t))

and, by Remark 3.2.5, the point (fy(t),y(t)) belongs to % . By the invariance of %, every
point of the orbit for F' of (fo(t),y(t)) is in % and, by Remark 3.2.6, the configuration
corresponding to the orbit is in C'(2). For any ¢ € [0, 1], denote the configuration associ-

ated to (fo(t), y(1)) as (fu(t))nez € C(2).

In the following we exhibit a Jacobi field along a configuration which contradicts Lemma
3.2.5 and this will end our proof.
For any ¢ € [0, 1], being (f.(t))nez a configuration in C(Z), we have that, for any n € Z,

0 0
a_Xh(fn—l(t)7 fn(t>) + %h(fn(t)a fn-i—l(t)) =0.
Differentiate now with respect to ¢ and obtain

5? 52 5? ,
e bt (0, Jal0) Foa(t) + |5z haa (8 Fal0)) + 5P al0), Fra ()] Fo)+

0? / -
T orox h(fu(t), fus1(t)) fria(t) = 0.

For any t € [0,1], the sequence (f}(t))nez is then a Jacobi field along the configuration

(fn (t))nEZ'
Observe in particular (by (3.24)) that

fé(t) =29g—T9>0 and {(t) =11 —21 <0.
Since, again by (3.24),
TNy = fNo(O) < fNo(l) = jNo

there exists ¢ € [0, 1] such that fy () > 0.
Look then at the Jacobi field (f/(f))nez along the configuration (f,(t))nez € C(2): it
holds f5(t) > 0, f,(f) > 0 and f{(#) < 0. Let us discuss the two possible cases.

— If f{(t) <0, the Jacobi field changes sign between 0 and 1 and then, since fy, () > 0,
there is another change of sign somewhere between 1 and Ny + 1.

— If f{(t) = 0, then by the definition of the Jacobi field we have

oM D0 +  eshD. £00) + ez h Al D) ) FO+
82
=T 0. ROVD =

0? 92 /
= 5o (D). D)) + 5 h( (D), LD f3() = 0.

Since - axh < 0, it holds f3(t) < 0. We are so changing sign at 1. Since fy, () > 0,
we have another change of sign between 2 and Ny + 1 and we contradict again
Lemma 3.2.5.
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Proof of Claim 3.2.1. The set 2 is
{(z,X) €R?: pioF(x,Ti(x)) < X < pioF(x,Ta(x))}.
Clearly, (f5(0), £1(0)) = (w0, 1) and (fo(1), fi(1)) = (Zo,#1) belong to &. That is
pr o F(wo, Ty (w0)) < 21 < p1 0 F(xo, a(x0)), (3.25)

JURS F(CE(), Fl(f())) < fl < p19° F(i’o, Fg(f())) (326)
Observe that

Rz poF(z,I'1(x) €R and Rz poF(z,Iy(x)) €R (3.27)

are lifts of orientation preserving homeomorphisms of T. Consequently, they are strictly
increasing and commute with the translation of the quantity 1.
By definition of fy and f, for any ¢ € (0, 1)

Ty < fo(t) <Zog and 1 < fl(t) < 1. (328)

By the strict monotonicity of the functions (3.27), thanks to (3.28) and (3.26) for any
t € (0,1) we have

p1o F(fo(t),T1(fo(t))) < pro F(Zo,'1(T0)) <21 < fi(t).

In particular
pro F(fo(t), [1(fo(t))) < fi(D). (3.29)
In a similar way, by (3.28) and (3.25), for any ¢ € (0, 1)

fi(t) < a1 <pro F(xo, Ia(w0)) < p1o F(fo(t),L2(fo(t)))

In particular
fi(t) < pio F(fo(t),T2(fo(t))) (3.30)

Hence, by (3.29) and (3.30), for any ¢ € [0,1] the point (fo(), f1()):ejo,1) belongs to the
set 9.
O
The main result of this paragraph follows immediately from Lemma 3.2.6.

Proposition 3.2.6. Let f : A — A be a conservative positive twist map and let U
be a BIES. If f has no conjugate points in U then all the configurations in C(Z) are
minimizing, i.e. C(2) = M (D) C M.

Proof. Let x = (z,)nez € C(Z). Argue by contradiction and suppose that (x,)nez ¢
A (). That is, there exist M, N € Z, M < N and a segment (Z,,...,Zy) of another
configuration (Z,,)nez € C(2) (see Remark 3.2.7) with /1 = xp—1,Zn11 = xn41 such
that (see (3.22))

Hﬂ,N(i‘Ma .. ,fN) < Hﬂ,N(‘TJVb .. ,$N>.
The Aubry diagrams Z((z,)nez) and Z((Z,)nez) cross twice at M — 1 and N + 1,
contradicting then Lemma 3.2.6. O]
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Rotation number of minimizing configurations

This “independent” paragraph concerns properties of rotation number of minimizing con-
figurations. They will be used in the next paragraph to conclude the proof of the C°-
integrability. The main reference of the subsection is [Ban88|.

Notation 3.2.7. The function f : A — A is a conservative positive twist map and we
choose a lift I : R? — R? of f.

We start by recalling the following result stated by Bangert (see Corollary 3.16 in [Ban88]).

Proposition 3.2.7. There exists a map p : M4 — R, continuous with respect to the
induced product topology on .4 C R?%, such that

(1) for any (x,)nez for any i € Z it holds
|xi — o — ZP ((xn)nEZ” < ]-a

(13) if (Tn)nez is periodic, that is there exist p,q € N such that x, = x¢ + p, then

p (Talncz) = 2;

(ii1) the function p is invariant by translations, i.e. for any (a,b) € Z* we have
P ((Tn-a +0)nez) = p ((Tn)nez) -

The function p is called the rotation number function and p ((z,)nez) is called the rotation
number of (z,)nez € A .
From condition (i) we immediately deduce that for any (z,)nez € A

p(Zn)nez) = lim 2 (3.31)

In|—+o0 M

Remark 3.2.9. Let v : T — R be a continuous map whose graph is f-invariant and
denote I' = v o p. Then, we can always define the rotation number p for F' of I' as the
rotation number of a configuration associated to a point (x,T'(z)).

Indeed, by Remark 3.2.8, for any point of Graph(I') the corresponding configuration is
minimizing and its rotation number is so well-defined. Moreover, all the points in Graph(T)
provide the same rotation number.

Indeed, let 21, 22 € R be such that 2! < 2% < 2'+1. Consider the associated configurations
(p1o F* (2!, T(2')))nez and (py o F™(2%,T(2?)))pez. For any n € N the application

Rz poF"(z,I'(z)) eR

is a homeomorphism since it is a lift of a homeomorphism of the circle. It is increasing
since py o F™(x,I'(z)) < p1o F"(z,T'(x)) + 1 =pro F*(z + 1,T'(z + 1)).
In particular for any n € N it holds

proF™(xt, T(z")) < proF™(2? T'(2?) < proF™(a' +1,T(z' +1)) = pio F™(2*, T'(z")) +1.

Then - 1
oy o F' (2, T(5')))oeg) = Tim 2@ LT@))

n—-+0o n
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1o F"(JZQ, F(xQ))

< lim_ p = p((p1 o F™(4*,T(?)))nez)
and Pr(a2,T(22)
. . pro F(z, I'(x
p(pr o F" (2% T(2%)))uez) = lim =" <
. plan(xlaF(xl))+1 n/ 1 1
< fry .
< nl_l)I_’I_loo - p((pro F"(x",T'(x")))nez)
That is

p((pro F™ (2", T(2")))nez) = p((pr © F" (2%, T'(2%)))nez)-

Notation 3.2.8. For p € R, let .#, denote the set of minimizing configurations whose
rotation number is p.

We recall a fundamental result in [Ban88| concerning configurations in .#,. See Theorems
4.1, 5.1, 5.3, 5.8 and Page 26 in [Ban88|.

Theorem 3.2.2. Let p € R\ Q. Then configurations in .#, cannot cross.
Let p € Q. Then M), is the disjoint union of three sets AT UM, UM, and configurations
in AP UM (respectively ML U M) cannot cross.

Remark 3.2.10. In the case of p € Q, Theorem 3.2.2 states that, given zy € R, there
are at most two configurations (Z;);ez, (Z;)iez in 4, such that o = 7y = .

We are now going to consider a BIES U. Both its boundary components are bounded.
We will be interested in the rotation numbers realized by orbits of points of U and we will
introduce the definition of twist interval (see Definition 3.2.8). The following proposition
goes back to Birkhoff (see [Bir32|[Section 4]) and will assure us the well-definition and
the “non-degeneracy” of the twist interval.

Proposition 3.2.8. Let ¢y, 99 : T — R be continuous maps whose graphs are f-invariant
and such that for any x € T it holds 11 (x) < 19(x). Denote Wy = 1)1 0 p, Wy = by 0 p and
let 1, w2 be the rotation numbers for F' of Wy, Wy, respectively. Then o1 < @s.

We refer to [Her83] for the proof of Proposition 3.2.8 (see Complement 2.4.4, page 10).
From now until the end of the paragraph we refer to Notation 3.2.4 and to the following

Notation 3.2.9. Let py, p2 be the rotation numbers for F' of I'y, ', respectively, where
I'; =~;0pfori=1,2 and 7,7, are the components of OU.

Remark that by Proposition 3.2.8 it holds p; < p2. We can give the following
Definition 3.2.8. The real interval [py, po] is the twist interval for F' of U.

Proposition 3.2.8 assures us that the twist interval of a BIES does not degenerate into a
point. An outcome of Proposition 3.2.5 is the following

Corollary 3.2.3. Let U be the BIES introduced in Notation 3.2.9. Denote as [p1, p2] the
twist interval for F of U. Then

A< | #,cn

PE[p1,p2]

114



Proof. Let (z,)nez € #(2). By Corollary 3.2.2 it holds (z,)nez € #. We are going
to show that p((x,)nez) is in the twist interval [py, pa]. Let (2,,Yn)nez be the corre-
sponding orbit of the configuration (x,)nez. Apply then Proposition 3.2.5 to the points
(20, ['1(x0)), (o, yo) and (xq, 'a(xp)). For any n > 0 we have

p1o F™(z0,T'1(20)) < @y < p1 o F"(x0, Ta(w0)).

Consequenlty

. p1o F"(xo, ' (20)) . In oy Pro (o, Ta(wo))
=t TR < (5, ) i 22 < g DOTEOTAR)
Hence, (z,)nez € Upe[pl,pg] M. o

Actually, we can say something more precise concerning .# (2).

Lemma 3.2.7. Let U be the BIES introduced in Notation 3.2.4. Let [p1, p2] be the twist
interval for F' of U. Let (x,)nez be a minimizing configuration of rotation number for F
equal to p((zn)nez) € (p1,p2). Then the orbit (x,, Yn)nez corresponding to the configuration
(Zn)nez is in U. Moreover
U 4, c.u2)
pE(p1,p2)

Proof. The set U is the bounded open domain delimited by the graphs of v; and .
Recall that we are assuming that 7, < ~,. Let us show that (zg,y) is above 7, that is
Yo > 71(20).

Consider the configurations (x,,)nez and (p; o F™(xg, T'1(20)))nez. They are both minimiz-
ing configurations (see Proposition 2.8 in [Mat91]). By Lemma 3.1 in [Ban88|, they cross
at most once. Actually they cross at n = 0. Since

lim 2 = p((za)acz) > p = p((pr 0 F"(z, T1(20))Jnez) = lim 21 0E 0 Thlz0)

n—+oo N n—+00 n

for any n > 0 it holds x,, > p; o F™(xo,I'1(x¢)). In particular z1 > p; o F'(x,I'1(z0)) and,
by the twist condition, we have yo > I'1(xg), where (xg, o) is the point corresponding to
the configuration (x,),ez in the lifted framework. Projecting on the annulus, it holds so
Yo > 71(20).
An adapted argument shows that (zg, yo) is below 7o, that is yo < 72(xg). Thus (xo, y0) €
U. By the invariance of U we conclude that the orbit (z,, ¥, )nez is in U.
In particular, if (z,)nez is a configuration in .#, for some p € (p1, p2), then (,)nez €
C(2) and since it is minimizing we deduce that (z,)nez € 4 (2).

]

Remark 3.2.11. Since for any p € R the set .#, is non empty (see Theorem 3.17 in
[Ban88]), since p; < pe by Proposition 3.2.8 and from Lemma 3.2.7, we immediately
deduce that .Z(2) is non empty.

The following lemma gives information about the order of rotation number of configura-
tions having the same zero entry. We will use this property in the following paragraph.

Lemma 3.2.8. Let (z,y'), (z,y?) € A be such that y' < y?. Assume that their corre-
sponding configurations (p; o F™(z,y"))nez, (p1 © F™(x,y?))nez are minimizing. Then

p((pro F™(z,y"))nez) < p((p1 o F™(2,4%))nez)-
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Proof. Denote as (z}),ez, (22 )nez the configurations (p1o F™ (2, y') )nez, (P10 F™ (2, ¥?) )nez,
respectively. Observe that 2 = 23 = x and, since y' < 32, by the twist condition, z} < 2.
By Lemma 3.1 in [Ban88|, minimizing configurations cross at most once and so for any
n > 0 we have z! < z2. We now conclude, since

p(h)nez) = Tm 2 < lim 22 = p((22)pen)-

End of the proof of Proposition 3.2.2

In this paragraph we show that if any configurations in C'(2) is minimizing, then U
admits a partition into continuous f-invariant essential curves.
Let U be a BIES and we refer to Notation 3.2.4. Denote as [p, p2] the twist interval for
F of U (see Definition 3.2.8).
Since any configuration in C(%) is minimizing (see Proposition 3.2.6), we associate a
rotation number to every (2,)nez € C(2), that is to every (z,y) € % .
From Remark 3.2.9, also any configuration (z,),cz whose corresponding point is in 0%
has a well-defined rotation number.

Definition 3.2.9. The function?
R:c%)CR* =R
(@, y) = Z(x,y) ==p((pr o F"(2,y))nez)
is the rotation number function.

In other words, Z(x, y) is the rotation number of the configuration associated to the point
(x,y) € cl(Z) (see Remarks 3.2.5, 3.2.6 and 3.2.9).

Proposition 3.2.9. The function Z : cl(%) — R is continuous.

Proof. Let (z,y) € cl(%) and fix € > 0. We are going to show that there exists § > 0
such that for any (z/,y") € cl(% ) for which

Iz, y) = (=", 9)Il <6

it holds
’%(:pa y) - ‘@(xla y/>| <E.

] + 1. By the continuity of the function p; o F*, there exists d € (0, ) so
y') € cl(% ) for which

(2, y) = (', )l <6

FixieN,i> [2
that for any (2,

it holds

A , 5
[pro F'(w,y) = pro F'(a', )| < 7.
Choose then (2/,y') € cl(%) so that ||(z,y) — (2/,y')|| < J. Denote as (zy)nez, (T),)nez

the corresponding configurations (p; o F"(x,y))nez, (p1 © F™(2',y'))nez which are in

C(2)U{(p1o F"(z,I'1(2))nez : ® € RYU{(p1 o F"(x,['3(2)))nez : « € R}.

3. cl(% ) denotes the closure of % .
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By Proposition 3.2.6, by Corollaries 3.2.2 and 3.2.3 and by Remark 3.2.9, their rotation
numbers are well-defined and contained in [py, po].
By property (i) of Proposition 3.2.7, it holds

1% (z,y) — Z (=", y')| = |p((xn)nez) — (2} )nez)| <

< ploFi(?,y)—m _ploFi(a:",y’)—x’ +2
(3 1 1

By the choice of § > 0 and ¢ € N made above, we have

z—x o Fi(x,y) — p1o Fi(z', o/ 2 & € ¢
|%(x,y)—9?(x',y')|§’ i ‘+‘p1 ( y) ipl ( y)|+g<1+1+§:5-

]

Notation 3.2.10. For any « € [py, po] denote as .#,(2) the set of (minimizing) config-
urations in C'(2) with rotation number equal to a*. Denote as %, C % the set of points
(xz,y) € % whose corresponding configuration is in .#, (). Denote as U, C U the set of
points (z,y) € U such that (p x Idg) ™! (z,y) € %,.

The following lemma assures us that above any point xg € R there is at most one point
in U with prescribed rotation number.

Lemma 3.2.9. Assume that C(2) = # (D). Fiz p € [p1,p2] and xo € R. Then there
cannot exist two different points (xg,y1), (xo,y2) € cl(% ) both with rotation number p.

Proof. Argue by contradiction and assume that both (z¢,y), (zo,7) € cl(% ) have rota-
tion number p. Let us say (to fix the ideas) that y < §. Denote (z.)nez, (22)nez their
corresponding configurations. Both the configurations are minimizing. Indeed, if the cor-
responding point is in %, then by the hypothesis C(2) = .#(2) and since # () C M
(see Corollary 3.2.2), the configuration is minimizing. If the corresponding point is in 0%,
the configuration is minimizing by Proposition 2.8 in [Mat91].

The two configurations cross at n = 0. Let us discuss the value of p.

(i) If p € R\ Q, then, by Theorem 4.1 in [Ban88| (here Theorem 3.2.2), different

configurations in .#, cannot cross and we have the desired contradiction.

(13) If p € Q, choose § € (y,7) so that (xg,y) € % . Its corresponding configuration

is minimizing since C(2) = # (%) C .# and by Lemma 3.2.8 we deduce that its
rotation number is p.
In [Ban88| (see Section 5, Page 26, here Theorem 3.2.2 and Remark 3.2.10), Bangert
shows that above any xy € R there are at most two points whose configurations are
minimizing and have the same rational rotation number. This gives us the required
contradiction.

[]

The property that any configuration in C'(2) is minimizing and Lemma 3.2.9 enable us
to characterize the whole set .Z(Z) in terms of rotation numbers.

4. By Corollary 3.2.3, any minimizing configuration in .# (%) has rotation number in [p1, p2].
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Proposition 3.2.10. It holds

M D)= ) 4,

pE(p1,p2)

Proof. By Corollary 3.2.3 and by Lemma 3.2.7 we know that

U 4 cua2c | 4,

PE(p1,02) pElp1,p2]

Argue by contradiction and assume there exists a configuration (x,)nez in 4 (%) which
does not belong to U,e(p, po)-#,. Consequently, p((zn)nez) € {p1,p2}. Without loss of
generality we assume that p((x,)nez) = p1 (the case po is treated similarly).
Denote (xg,y0) € % the point that corresponds to the configuration (z,),ez. Consider
now the points (xo, o), (€0, ['1(20)): they belong to the closure of % and have the same
rotation number. This contradicts Lemma 3.2.9 and we conclude.

[

The next Lemma shows that for any a € (p1,p2) the projection over the zero entry
po : Mo(P) — R is surjective.

Lemma 3.2.10. Let py : C(2) — R be the projection over the 0-th entry of a configura-
tion in C(Z). For any o € (p1, p2) the projection po(M.(2)) is R.

Proof. Fix a € (p1, p2) and fix g € R. By Remark 3.2.9, we have that Z(xo,'1(z0)) = p1
and Z(xg,T'2(z9)) = po. By the continuity of the function #Z (see Proposition 3.2.9),
there exists yo € (I'1(x0), [2(xg)) such that (zo,y0) € % and Z(zo,y0) = «. Thus, the
configuration associated to the point (xg, 7o) is minimizing with rotation number «.

0

By Proposition 3.2.10, for any a € (p1, p2) we have that #,(2) = ..

In order to show that fj; is C” integrable, we are going to exhibit a partition of U into
continuous invariant essential curves. In particular, this partition will be given by graphs
of functions 7,, o € (p1, p2), each of which corresponds to U, (see Notation 3.2.10).

Proposition 3.2.11. Assume that C(2) = #(2). Then, for any o € (p1, p2) the set U,
1s the graph of a continuous function v, : T — R.

Proof. Fix a € (p1, p2). By Lemmas 3.2.9 and 3.2.10, for any = € R there exists a unique
y = y(x,a) € R such that:

— (zy) €%;
— X(z,y) = a.
Let us define the function
',y R—R
x = y(z, a).

Claim 3.2.2. The function I, is 1-periodic.
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Consider z,z + 1 € R. Since both % and the rotation number function % are invariant
by (1, 0)-translations, it holds (z + 1,y(z,«)) € Z and

Z(x+1,y(x,a)) = p((pro F"(x + 1,y(z,a)))nez) = p((p1 o F"(z,y(z,)))nez + 1) =

= p((p1o F"(z,y(x, @)))nez) = .
Then, thanks to the unicity assured by Lemma 3.2.9, we conclude that y(x, o) = y(z+1, «)
as desired. Equivalently, for any x € R it holds

Tu(z + 1) = To(a).

Define now 7, : T — R as the unique function so that

Iy =7 0p.
In particular, the graph of ~, is the projection over the annulus of the graph of I',.
Claim 3.2.3. The function 7, is continuous.

Let us start by showing that Graph(I',) is closed. This will imply that also Graph(v,) is
closed.

Let (2, ['o(2n))nen be a sequence in Graph(I',) converging to (z,y). By definition of
Iy, each (z,,s(x,)) has rotation number a and so by the continuity of #Z on cl(% ) we
deduce that Z(z,y) = «. In particular, as an outcome of Proposition 3.2.10 we deduce
that (x,y) € % . Since there exists a unique point I',(x) so that Z(z,T,(z)) = «a, we
conclude that y = ', (z), i.e. (z,y) € Graph(I',) and so the graph of I, is closed.

Since Graph(,) is contained in U and U is bounded, we deduce that Graph(y,) is also
bounded. Thus, Graph(~,) is compact. By Theorem 5.6.34 in [Soh03], we then conclude
that ~, is continuous, as desired.

Finally, by the definition of v,, its graph is U,.

We can now prove Proposition 3.2.2.

Proof of Proposition 3.2.2. Let (x,y) € U and let (x,),cz be its corresponding config-
uration. By Proposition 3.2.6, (2n)nez € C(¥) = #(2) C A and so it has rotation
number «a € (py, p2) by Proposition 3.2.10. By definition of U,, the point (z,y) belongs
to U, and so by Proposition 3.2.11 it lies on the graph of ~,.
By the invariance of U and that of the rotation number, the graph of v, is f-invariant.
Finally, let oy, as € (p1, p2), a1 # ao. Then the graphs of ~,, and of v,, cannot intersect.
The graphs of 7,,a € (p1, p2) provide then the required partition of U into continuous
f-invariant essential curves, showing that fii is C’-integrable.

O

3.3 Torsion of instability discs

The main result of this section is Proposition 3.1.3, that we recall here.

Proposition 3.1.3. Let f : A — A be a conservative twist map. Let U C A be an
instability disc. Then w({z € U : Torsion(f,z) # 0}) > 0.
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3.3.1 Zero-torsion set and over-conjugate points

A fundamental tool for our proof is the notion of over-conjugate points. We start
by presenting different definitions of conjugate points, according to what appear in the
literature.

Definition 3.3.1 (conjugate points). The point z € A has a conjugate pointif there exists
n € N* and k € Z such that

k

o(D)(z,x,n) = 0(I)(2, x, 0) = = 5.

Definition 3.3.1 coincides with Definition 3.2.5 and it is used in [CS96] and [Arc16].

Remark 3.3.1. Since f is a positive twist map, by Theorem 2.1.1, any finite-time torsion
with respect to the vertical vector is negative. Hence, in Definition 3.3.1, it holds & > 1.

Definition 3.3.2 (over-conjugate points). The point z € A has a over-conjugate pointif
there exists n € N* such that

Bz, x,m) — D)z x,0) < —.

We will see that the fundamental notion of conjugate points for our purposes is actually
Definition 3.3.2.

Definition 3.3.3 (I-conjugate points). Let I = (f,); be an isotopy in Diff '(A) joining
the identity to f. The point z € A has a [-conjugate pointwith respect to I if there exists

t € Ry such that
1

ﬁ<[)(27X7t) - 17([)(2’,)(,0) = _5'

Definition 3.3.3 is equivalent to the one adopted for example in [AABZ15| within the
framework of Tonelli Hamiltonian flows.

Remark 3.3.2. Since the finite-time torsion on A does not depend on the choice of the
isotopy, Definitions 3.3.1 and 3.3.2 do not depend on I = (f;);. Nevertheless, Definition
3.3.3 depends on the choice of the isotopy.

Remark 3.3.3. Observe that if 2 € A has a conjugate point, then it has also a over-
conjugate point.

If z € A has a over-conjugate point, then it has also a I-conjugate point(with respect to
any isotopy).

Definition 3.3.4 (Local twist map). A C' diffeomorphism isotopic to the identity f :
A — A is a positive (negative) local twist map at (z,y) € A if for any lift F : R* — R?
of f and any lift X € R of x there exists an open interval I C R of y such that

IS¢ poF(X, ) eER

is an increasing (decreasing) diffeomorphism to its image.
A C! diffeomorphism isotopic to the identity f : A — A is a positive (negative) local twist
map on U C A if it is a positive (negative) local twist map at every (x,y) € U.

The following result links the notions of over-conjugate pointsand of local twist maps.
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Proposition 3.3.1. Let f : A — A be a positive twist map (not necessarily conservative)
and let U C A. The following conditions are equivalent:

(1) no points of U have over-conjugate points;
(13) for any n € N* the map f" is a positive local twist map on U.

Observe that U C A can be no matter which subset of A!

Proof. Let us show the two implications.

(1) = (4i) Since f is a positive twist map, by Theorem 2.1.1 in Chapter 2, and since
by hypothesis there are no points with over-conjugate points, it holds that for any
z € U and for any n € N*

1
1)) = D0 € (-5.0).
This implies that for any n € N* we have

D(pyo f")(2z)x > 0.

Consequently, considering z = (z,y) € U, for any lift F': R> — R? of f and for any
lift X € R of z, the function

Ro&—poF'(X,€) eR

has positive derivative at y. Since the function is C', we deduce from the Inverse
Function Theorem that there exists a neighborhood I C R of y so that

I3¢mpoF"(X,6) eR

is an increasing C! diffeomorphism to its image. Hence, by the arbitrariness of z € U,
we conclude that for any n € N* the map f" is a positive local twist map on U.

(17) = (i) Argue by contradiction and assume there exists z € U which has over-conjugate
points, i.e. there exists m € N* such that

(1) (2, x,m) — 5(1)(, X, 0) < _;

We are now going to show the existence of N € N* so that for some (and so any)
lift 'Y of £V it holds

D(py o FN)(z)x <0.

This will allow us to conclude since it is a contradiction with the fact that f% is a
positive local twist map at z € U.

Claim 3.3.1. There exists N € N* such that D(p; o F'V)(2)x < 0.
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It

o(I)(z,x,m) — o(I)(z,x,0) € {_k’ R %}

for some k € Z, then there is nothing to prove since D(p; o F™)(z)x < 0 and so the
required N is m.
Assume so that

(1) (2 x,m) — 5(1) (2, 0) € (—k _ % —k)

for some k € Z. That is, the angle 0(x, Df™(z)x) admits a measure in (—%,O).
Since by hypothesis z has a over-conjugate pointat m, it holds k£ > 1.
Moreover, by Theorem 2.1.1 in Chapter 2, we have that

1
Torsiony (f, z, x) € (—5, 0)

and consequently m > 1. Define now n € N* as the maximum integer in [1,m] so
that

- for any 1 < n < 7 it holds o(I)(z, x,n) — 9(1)(2,x,0) € (—1,0);
- o(I)(z,x,n + 1) — 0(1)(2,x,0) < —3.

We will now show that

o(I)(z,x,n+1)—0(I)(z,x,0) € {—1, —%}

and so D(p; o f"1)(2)x < 0, concluding our proof.
By definition of n, we have that

1
Choose continuous determinations such that
_ 1
A0 =0 and  H(D)( (), ~x.0) = . (3.33)

As observed in Remark 3.1.1, we highlight the fact that we are interested in consider-
ing different determinations v(I)(z,¢, ) independently defined for different (z,&) €
TA.,.

Denote as w the vector D f"(z)x and choose a continuous determination such that

O(1)(f"(2),w,0) = 5(I)(2,x, 7). (3.34)
Consequently, by (3.32), (3.33) and (3.34), we have that

O(1)(f™(2),w,0) > 0(I)(f"(2), =X, 0).
From Lemma 1.1.1 in Chapter 1 we deduce that

o) (f*(2),w, 1) > 0(1)(f(2), —x. 1).
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Since t — 0(I)(f"(2),w,t) and t — v(I)(z, x, 7 + t) are lifts of the same angle
function that coincide at ¢t = 0, we deduce that they are equal. Hence

O(I)(z,x, 1+ 1) > 0(I)(f"(2), —=x. 1).
By the choice of the lifts, since 0(I)(z, x,0) = 0, it holds
o(I)(z,x,n+ 1) —o(I)(2,x,0) =0(I)(z,x,n+ 1) > o(I)(f"(2),—x,1). (3.35)

By Theorem 2.1.1 we have that

HNE), D) = D0 € (<5:0)

so it holds, by (3.33),

o(D(f*(2), =x, 1) > —% +o(D)(f"(2), =x,0) = 1. (3.36)
From (3.35) and (3.36) we conclude that
o(I)(z,x,n+ 1) —0(I)(2z,x,0) > —1.
From the definition of 7, we have that
1< 3 (D) (2 x4+ 1) = 5(1) (21, 0) < _%.

That is, the required integer N is n + 1, concluding so the proof.
O

The following result concerns the link between full-measure zero-torsion sets, conjugate
points and local twist maps.

Proposition 3.3.2. Let f : A — A be a conservative positive twist map. Let U C A be
an open f-invariant set such that w(U) < 400 (where w denotes the Lebesgque measure).
Then the following conditions are equivalent.

(1) The torsion at z is zero for every z € U.
(2) The torsion at z is zero for w-almost every z € U.
(3) No points z € U have over-conjugate points.

(4) For any n € N* the map f™ is a positive local twist map on U.

Proof. (1) = (2) This implication is trivial.
(2) = (3) This implication comes from Proposition 3.2.4 and Remark 3.2.4.
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(3) = (1) Let z € U. Since z has no over-conjugate points, by definition for any n € N*

it holds
1

o(I)(z,x,n) —o(I)(z,x,0) > —3

By Theorem 2.1.1, since f is a positive twist map, it holds also that for any n € N*
0(1)(z,x,n) = 0(I)(2,x,0) <0.
Consequently

Torsion(f,z) = lim o(1)(z,x,n) —v(1)(2 x,0)

n—-+oo n

=0.

(3) < (4) This equivalence is exactly the content of Proposition 3.3.1.

]

Let U C A be an open f-invariant set. As an outcome of Proposition 3.3.2 we deduce that
the torsion at z € U is zero for w-almost every z € U if and only if it is zero for every
zeU.

Remark 3.3.4. Let U C A be an open set such that w(U) < 400 and such that there
exists N € N* so that f¥(U) = U. Denote as

Observe that w({z € U : Torsion(f, z) # 0}) = 0if and only if w({z € Ll : Torsion(f, z) #
0}) =0.
Indeed, assume that w({z € U : Torsion(f, z) # 0}) = 0. Observe that

N-1
{z € d: Torsion(f,z) # 0} = | J{x € f(U): Torsion(f,x) # 0}.
=0
Consequently
N-1

w({z € U: Torsion(f,z) #0}) < w({x € fY(U) : Torsion(f,z) # 0}).

i

Il
=)

Since the torsion is invariant along the f-orbit of the point, for any i € [0, N — 1] it holds
{z € fY(U): Torsion(f,z) # 0} =
={y € U : Torsion(f, f~"(y)) # 0} = {y € U : Torsion(f,y) # 0}.

Hence we conclude because

=

w({z € U: Torsion(f,z) #0}) < - w({z € U: Torsion(f,x) #0}) = 0.

i

Il
o

Consequently, by Proposition 3.3.2 and by this observation, if the torsion is null at w-
almost every point of U then there are no points with over-conjugate pointsin 4l.
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3.3.2 About instability discs: proof of Proposition 3.1.3

In this Subsection we finally prove Proposition 3.1.3, that is

Proposition 3.1.3. Let f : A — A be a conservative twist map. Let U C A be an
instability disc. Then w({z € U : Torsion(f,z) # 0}) > 0.

Remark that, by Proposition 3.1.1, the proof of Proposition 3.1.3, together with Proposi-
tion 3.1.2, concludes the proof of Theorem 3.1.1: every bounded connected component of
A (f) has a positive-measure set of points with non-zero torsion.

The proof of Proposition 3.1.3 is made by contradiction. Assuming that w-almost every
z € U has zero torsion, by Remark 3.3.4 every point in U is free of over-conjugate points.
The absence of over-conjugate pointsallows us to build an invariant foliation in U. The
leaf of the foliation to which z € U belongs is obtained as limit (as n goes to +o0) of
images through f™ of vertical lines passing through f~"(z).

The idea of the construction is inspired by the construction of Green bundles (see [Gre58|
and [Arnl10]), but we work on the surface instead of working on the tangent spaces.

Notation 3.3.1. In the sequel we are going to consider the standard Euclidean distance,
denoted as d.

The construction of the foliation (¥,).cu

We are going to build our foliation in a more general framework.

Hypothesis (H). Let U C A be a non empty open bounded set homeomorphic to an
open disc so that there exists N € N* such that f¥(U) = U and so that

w({z € U : Torsion(f,z) # 0}) = 0.

In order to prove Proposition 3.1.3, we will argue by contradiction and assume that U is
an instability disc such that the torsion is w-almost everywhere null: in particular U will
verify Hypothesis (H) (see Definition 3.1.5).

Remark 3.3.5. Let U C A satisfy Hypothesis (H). Then from Remark 3.3.4 every points
in U is free of over-conjugate points.

Let fix a lift F': R? — R? of f. Recall that p;, p, : R? — R denote the projection over the
first and the second coordinate, respectively. Denote as % C R? a connected component
of the lift of U on R2. In particular, % is an open set, homeomorphic to an open disc and
there exists k& € Z such that

FN(U)=U + (k,0) = {z+ (k,0): z€U}.
Let z € % . Denote as V}?_%z) the connected component of
Vi=niey VET (%) ={(p1(F7"(2)),y) : y e R}NF(%)

which contains F~"(z). Observe that OVISSJZ) C OF (%) and, since VES;Z) is an open

segment in the real line, it holds that 8\/5_07;2) is made up of two distinct points.
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Denote then as ¢, ., the image F ”(Vgﬁz)): observe that for any n € N the point z

belongs to ¥, .. Moreover, the boundary 0%, . is contained in 0% by the invariance of
the boundary.
We start now discussing the structure of these ¥, ..

Lemma 3.3.1. For any z € % and for any n € N* the set 94, ., is the graph of a function
Fn,z . (an,za bn,z) — R;
where (ay, ., b,.) C R.

Proof. By Remark 3.3.5, there are no points with over-conjugate pointsin U. By Propo-
sition 3.3.1 for any n € N* the map f" is a local positive twist map on | J,o; fyu) =

N-1 g4
U 1), 0
Fix now n € N* and consider V;’Eé). The function

p(VESE) 3 € pro " (pi(F"(2)),€) €R

is then an increasing diffeomorphism to its image. Its inverse function is so defined on an
open interval that we denote as (ay ., b, .) C R. Denote such an inverse function as

(0,5, b0) D @ > Fz(x) € pa(VEESIL)

and remark that it remains an increasing diffeomorphism to its image.
Define now the function
Fn,z : (an,za bn,z) — R

x5 Ta(z) = poo F™ (01 (F77(2)), P () .

Thus, by construction, the graph of I',, , is exactly the set ¥, . and we conclude the proof.
n

For the construction of the foliation (¥,).cy we are going to use Green bundles. We
recall here the main definitions.

Notation 3.3.2. Let z € A and let n € Z \ {0}. Let F : R* — R? be the fixed lift of f.
Let 3 € R? be a lift of 2. Denote as

Gn(z) = DU ()P (F7(2)) € T2A,

where 7 (f™"(z)) = kerDpi(f~"(2)) is the vertical line in Ty-n.)A. The slope of G, (%),
when defined, is denoted as s, (z) and so

Gn(2) = {(3,50(2)0) : § € R}.

We observe that, thanks to the trivialization of the tangent bundle, the subspace G, (2)
can be identified with the subspace

DFM(F™"(3))¥ (F"(3)) C T,R>.

In the sequel, with an abuse of notation, we denote as s,(z) both the slope of G,,(z) and
the slope of DF™(F~"(3))¥ (F~"(3)).
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Remark 3.3.6. We will see that the absence of over-conjugate pointsimplies that the
slope s,,(%) is well-defined for every n € N* at every z € U (see Remark 3.3.7).

Notation 3.3.3. For z € U and n € N* denote as 6,(z) the measure contained in
( — %, %} of the oriented angle between the positive horizontal vector H = (1,0) and the
vector

Df*(f7"(2))x € Ty-n(»A,

where x = (0, 1).
We observe (and clarify later, see Remark 3.3.7) that the absence of over-conjugate
pointsimplies that 6,(z) € (-1, 1)

We want now to make explicit the link between s,(2),6,(z) and o(f)(f~"(z),x,n)°. It
holds (see Figure 3.1)

$n(2) = tan (27r (1”)( NU™(2), xan) + i)) = tan (270, (2)) . (3.37)

Indeed, 0,,(2) is a measure of the oriented angle O(H, D f(f~"(2))x), while o(f)(f7"(2), x, n)

v(f(F(2), .0

0(2)

i

Figure 3.1 — The link between s,(z),0,(z) and o(f)(f~"™(z), x,n).

is a measure of the oriented angle

00, Df"(f7"(2))x) = 0(x, H) + 0(H, Df"(f 7" (2))x)-

Consequently
0,(2) — 5()(f"(2), xom) = % +E  forsome k € Z. (3.38)

By the periodicity of the tangent function, we deduce that tan(2w(o(f)(f~"(2), x,n) +
1)) = tan(276,,(2)).

From the definition of s,(z) and of 6,(z), the equality s,(z) = tan(270,(z)) follows
immediately, if we admit also oo as possible values of s,(z).

5. Since the finite-time torsion does not depend on the choice of the isotopy on A (see Proposition
1.3.2), we omit the dependance on I = (f;);.
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Remark 3.3.7. If there are no points with over-conjugate points, then for any z and
any n € N* the value s,(z) is finite. Indeed, by the absence of over-conjugate points(see
Definition 3.3.2), for any z € U and for any n € N* it holds

(N (=), x,n) € (—% + k, k) for some k € Z.

Thus, from the definition of 6,,(z) and from (3.38), we have that

6.(2) € (-ii)

Finally, from (3.37), we conclude that |s,(2)| = [tan(276,,(2))| < +oo.

We recall here the definitions of Green set and Green bundles of f, refering to [Arnl16]
and [Arn10].

The Green set of f is denoted as Green(f) and it is the set of points of A such that along
the whole orbit of these points it holds for any n > 1

S_n() < $_p_1(x) < Spt1() < sp(x).

Definition 3.3.5. If z € Green(f), the two Green bundles at = are subspaces, denoted as
G4 (z),G_(x), contained in the tangent space T, A with slopes s;(x), s_(z), respectively,
where

si(x) = nl_l)lgloo sp(x) and s_(x) = nl_l)r_iI_loo S_p(x).

Let us recall the characterization of the Green bundles presented in Theorem 7 in [Arn16].

Theorem 3.3.1 (Theorem 7 in [Arnl6]). Let f : A — A be a positive conservative twist
map. The following conditions are equivalent:

(i) x € Green(f);
(73) all along the f-orbit of x for any n > 1 it holds sp(x) > s_i(x).
Thanks to this last characterization we deduce the following

Proposition 3.3.3. Let f : A — A be a conservative positive twist map and let U
be an open bounded periodic set homeomorphic to an open disc such that w({z € U :

Torsion(f,z) # 0}) = 0. Then
U C Green(f).

Proof. Fix z € U. From what observed in (3.37), it holds for any m > 1

sm(2) = tan (27r (17( ™), xm) + }l)) | (3.39)

Consider now the slope s_1(2): since the tangent function is m-periodic, it can be defined
also as the tangent of the angle between H and Df~'(f(2))(—x). Thus

s 1(2) = tan (27r (a( FYE), = 1) + i)) | (3.40)
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The function f~! is a negative twist map and so, by Theorem 2.1.1 and Remark 2.1.2, it
holds that

o(f N(f(2),—x,1) € (—% + k, k) for some k € Z.

%) | < +00.

.39) and (3.40) do not depend on
2), x:+) and o(f7)(f(2), —x. )
), =X, t) such that o(f 1) (f(2), —x,0) =

Consequently, |s_1(2)| = |tan (2 (5(/~")(£(2). —x.1
By the periodicity of the tangent function, equalities

(
the choice of the continuous determinations o( f )( m(
Choose the continuous determination of ¢ — v(f~1)(f(z
—5. Therefore, by Theorem 2.1.1 and Remark 2.1.2,

SY(f() —x 1) € (—;,o) | (3.41)

By hypothesis the set of points in U with not zero torsion has zero w measure. By Remark
3.3.4, there are no points with over-conjugate pointsin Uﬁgl fi(U), where N denotes the
period of U. Hence, since for any m > 1 the point f~™(z) belongs to Y ," f/(U), we have
that for any [ € N*

A=) — 5 (2),x.0) € (—%,o) | (3.42)

We are going now to use the characterization of the Green set of Theorem 7 in [Arnl16]
(here Theorem 3.3.1). That is, z € Green(f) if and only if for any n > 1 it holds

sn(z) > s_1(2). (3.43)

Argue by contradiction and assume that there exists n € N* such that s,(z) < s_;(2).
Choose the continuous determination of t — v(f)(f~"(2), x, ) such that o(f)(f~"(2),x,0) =
0. Thus, by (3.42),

WO @) € (5.0, (3.44)
By the contradiction hypothesis, by (3.39) and by (3.40) it holds
tan (27 (5O +7) ) = su(e) <
< 5.4(2) = tan (QW <@( P () =0 1) + i)) . (3.45)
By the choices of the lifts, i.c. by (3.41) and (3.44), we deduce from (3.45) that
Do) <) —x ). (3.46)
Choose a continuous determination of £ — v(f)(z, Df*(f(2))x, ) such that
51 (= DF(F ()0 0) = 5(A( (), o).
Choose a continuous determination of ¢ — v(f)(z, Df~'(f(2))(—x), ) such that
5 (2 DF ) (=30,0) = 5 () —xo ).
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From Lemma 1.1.1 in Chapter 1, since from (3.46)
O(f)(z D (fF7"(2))x,0) < o(f)(z, DfH(f(2))(=x), 0),
we have that
D) D)X 1) < 0(f) (2, DFH(f(2))(=x), 1) (3.47)

Since t — o(f)(f7"(2),x,n +t) and t — 0(f)(z, Df"(f"(2))x,t) are lifts of the same
angle function that coincide at ¢ = 0, we deduce that

o(f)( D2 1) = o(H(" (), x,n + 1). (3.48)

From (3.42) and from the choice of the lift we have

S () xam + 1) € (—%,0) | (3.49)

Consider now o(f)(z, Df ' (f(2))(—x),1). Since f is a positive twist map, by Proposition
2.1.2, we have

O DI IEN0) — DI N0 € (<) @30

Since 9(f)(z, Df 1 (f(2))(—x),0) = o(f 1) (f(2),—x,1) and from (3.41), it holds

B0 (= DI (FE)(=x),0) € (—;,o) |

Consequently, from (3.50), it holds

WO DI 0D € (~55) (351

Observe that o(f)(z, Df~'(f(2))(=x),1) is a measure of the oriented angle between x
and Df(2)Df 1 (f(2))(—x) = —x. That is

6(f)(z,Df_1(f(z))(—X),1):—%—I—k‘ for some k € Z.

From (3.51) we deduce that o(f)(z, Df~(f(2))(—x),1) = —3.
This implies, together with (3.49), (3.47) and (3.48), that

—% <o) xn+1) SO(f)(z D (f(2)(=x): 1) = —5

which is the required contradiction.
We so conclude that for any n > 1 it holds s,(z) > s_;(z). Equivalently, from Theorem 7
in [Arnl6] (here Theorem 3.3.1), z € Green(f).

[
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It holds that every z € JN' fi(U) is in Green(f). Consequently, for any z € Y ;" f(U)
and for any n € N,n > 1 we have that

5-1(2) < 5_p(2) < sp(2) < s51(2). (3.52)
Denote as
K := max max |s_1(2)], max 1s1(2)] |, (3.53)
zed(Uils" £1(U)) zed(Uile" £1(U))

where cl(UY,' f1(U)) denotes the closure of X" f(U).
Remark 3.3.8. Observe that

$-1(2) = tan (% (ﬁ(f‘l)(f(Z), 1)+ 211))

and s1(z) = tan (QW (ﬁ<f)(f_1(z)’ 1)+ i>) '

Since f is a positive twist map and f~! is a negative twist map, from Theorem 2.1.1
and Remark 2.1.2, we deduce that for any z € A both s_1(z) and s;(z) are finite. Since
s_1(2), 51(2) depend continuously on z and since the closure of | ,' f/(U) is bounded,
we conclude that the constant K, defined in (3.53), is finite.

We are now going to show that every function I',, , is a K-Lipschitz function.

Lemma 3.3.2. For every z € % and for every n > 1 the function Iy, , : (an s, bn.) — R
18 K-Lipschitz.

Proof. Fix z € % and n € N*. Consider the function I';, , : (an 2, b,.) = R. Let z,y €
(@n,zybp2), @ < y. By definition of T',, , it holds that F~"(z,I', .(x)), F~"(y,I's.(y)) both

belong to VFQC,;Z), that is the connected component of

VF*”(z) N F_n(%)

that contains F~"(z). Denote now X = pyo F"(z,T,,.(x)),Y =pao F"(y,[.(y)). In
particular

{u(F(2)),0): 5e XV} cVESE c Fo@),

By Proposition 3.3.2 and by Remark 3.3.4, at every point of | J,., fHU) the map f" is a
positive local twist map. As a consequence, it holds that X < Y.
By Cauchy’s mean value theorem, there exists w € (X,Y’) such that

peo F™M(pyo F~™(2),Y) —pgo F™(py o F~"(z), X) _ D(pyo F™)(p1 o F7"(2),w)x

proFr(pio F(2),Y) —pro Fr(pio F~(2),X) D(pioF")(pioF"(z),w)x
(3.54)

Observe that
D(pa o F™)(p1 o F~"(z),w)x

)
D(pyo F*)(pyo F"(z), w)x
From (3.54), by the definition of K (see (3.53)) and from (3.52), it holds

= Sp(p1o F7"(2),w).

(
(20 F"(p10 F7"(2),Y) = py o F"(py o F"(2), X)| <
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< K|pioF"(pro F"(2),Y) —pio F'(pro F7"(2), X)|.
We then conclude remarking that
P2 © Fn(pl o F_n(z)a Y) — P20 Fn(pl o F_n(z)7X) = Fn,z(y) - Fn,z<w)

and
proF'"(proF7"(2),Y) —pro F"(p1o F"(2),X) =y -z,

that gives us the desired inequality
|Fn,z(y) - Fn,z(‘r” < K’y - ZL”
O

Remark 3.3.9. For every z € (J,., F'(%) and every n > 1, each function I, . can be
extended on the closed interval [a,, », b, -] so that L', . is still continuous and K-Lipschitz
(see Section 3.4.2 in Appendix 3.4).

With an abuse of notation, we refer to every such extension still as I',, ..

Remark 3.3.10. For any n > 1 and any z € %, the points (a, ., .(an:)) and
(b2, 'z (bn,2)) are points on the boundary of % .

For a fixed z € %, we focus now on the relations between the graphs I',, , as n > 1
varies.

Proposition 3.3.4. Let z € % . The graphs (Graph(I'y.))n>1, i-€. (9n2)n>1 are well-
ordered (see Figure 3.2). That is

(1) for any x € (p1(2),bn) N (p1(2), buy1z) it holds
Logrz(x) < Ths(2);

(17) for any x € (an., p1(2)) N (@py1., p1(2)) it holds
Dye(2) < Do s (2).

Proof. Fix n > 1 and consider the case (i) (the case (i) can be treated similarly), i.e. let

YIS (pl (Z>7 bn,z) N (Pl (Z>7 bn+1,z)'
Define the function

[p1(2), min(by, »,bpt12)) 2 s V(s) =1 .(s) — Tnpaz(s) € R.

Observe that U(p;(z)) = 0. Since, by Proposition 3.3.3, it holds U C Green(f), we have
that s,,1(2) < s,(2) from the definition of Green(f)®.
That is, by (3.37),

Snp1(2) = tan (27r <17(F)(F_(”+1)(z), X,n+ 1)+ i)) <

< tan (27r (27(F)(F‘"(z), n) + %)) = snl2). (3.55)

6. With an abuse of notation, in order to lighten the notation, we denote as s, (z) both the slope of
Gn((p x Id)(z)) and the slope of DF"™(F~"(2))¥ (F~"(2)).
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Figure 3.2 — The graphs of (I, .),>1 are well-ordered.

Observe that s,(2) = I, (p1(2)) and s,1(2) = I, .(p1(2)) (see Notation 3.3.2). From
the definition of ¥ and since s,11(2) < s,(z) (see (3.55)), it holds that ¥ (p;(z)) > 0.
So there exists § such that [pi(z),p1(z) + 5] C [pi(2), min(b, ., b,11..)] and for any s €
(p1(2),p1(2) + §] it holds W(s) > ¥(py(2)) = 0.

We claim now that for any s € (p;(2), min(by, », by11,.)) it holds W(s) > 0. Argue by
contradiction and assume there exists £ € (p1(z), min(by, ., b,+1..)) such that U (&) < 0.
By the continuity of the function ¥ there exists X € (p;(z), min(b, ., b,11.)) " such that
U(X) = 0. Equivalently, I',, .(X) = T',,11..(X).

Thus, we have that F7"(X, I, (X)) = F7™"(X, [41..(X)).
From the definition of I, , and I', 41, it holds that F~"(X, I, (X)) belongs to Vﬁ%Z

while F"(X, T112(X)) belongs to F(VEGY, ).

)7

Since f is a positive twist map, the image F (ng’;;j{fl)(z)) is a graph over its projection on
the first coordinate and

PV ) NVESE = {F (=)}

F*(”‘i’l)(z z

Since F~™"(X,[,.(X)) = F7™(X,I'41..(X)) is not F'~"(z) because X > p;(z), we obtain
the desired contradiction and we conclude.
O]

The key idea for building our invariant foliation is considering the limit as n — 400
of well-ordered leaves (¥, .),>1 at every z € .

Notation 3.3.4. Let z € % . Denote

a, :=limsupa,. and b, :=liminfb, ..
Nn—s—+00 n—-+4o0o

Since 7 is bounded, there exists C' > such that for every z € % it holds |a,| < C, |b,| < C.

Lemma 3.3.3. Let z € %. Then a, < p1(z) < b,.

7. Actually we have that X € (p1(2) 4+ §, min(by, -, bnt1,2))-
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Proof. Since 7% is open, there exists € > 0 such that the closed ball B.(z) C %. We
are now going to build a “security rectangle” around z whose projection over the first
coordinate is contained in (ay, ., b, ) for any n > 1.

Recall that, from Lemma 3.3.2, every function I';, , is K-Lipschitz. Consider the horizontal
K-cone at z, i.e.

O ={w € R* : |pa(w — 2)| < Kpr(w — 2)|},

and intersect it with 0B.(z), see Figure 3.3. We so obtain the vertices of our “security

Figure 3.3 — How to build the “security rectangle” around z.

rectangle” R C %, which is, for some 0 < 6 < ¢,
R =[pi(2) = 6, p1(z) + 0] x [p2(2) — K0, p2(2) + K] .

By Lemma 3.3.2, every I',, , is K-Lipschitz. We claim now that, for any n > 1, the function
I, . is defined on py (R) = [p1(2) =9, p1(z) +6]. Indeed, assume by contradiction that b, ., <
p1(z) + 0. Since T',, , is K-Lipschitz, we deduce that (b, ., .(bn.)) € R C m Cu.
This contradicts the fact that the point (b, ., I, (b, .)) belongs to the boundary of %
(see Remark 3.3.10).

We so conclude that

a, =limsupa, . <pi1(z) —d <pi1(2) <pi(2) +0 < liminfb, , = b,.

n—s+00 n—r+o00
[l

We start now discussing the convergence of the functions (I';,.),>1, in particular the
pointwise convergence.

Lemma 3.3.4. Let z € % . The sequence (I'y, ,)n>1 converges pointwise on (a,b,).

Proof. Let x € (a,,b,). If p1(2) = x, then the sequence (I, .(x)),>1 is constant and equal
to pa(2).

Assume now that p;(z) # = and denote 1 := min((x — a,), (b, — z)) > 0. We discuss the
two possible cases.
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(1) Let p1(2) < z. By definition of b,, there exists n € N such that

nlg%bmz >b,—n>ux.
So for any m > n it holds that « € (p1(2), b, ) and the function I'y, , is well-defined
at x. By Proposition 3.3.4 the sequence (I'y,.())m>n is decreasing and bounded
(because it is contained in % which is bounded). Therefore, (I',, .(2))m>1 converges.
Denote

I.(z):= lim T, .(x).

n—-4o00

(77) Similar arguments allow us to conclude in the case p;(z) > .

O
So far, we have defined at z € % the function
I, :(a,,b,) >R
v T.(z) = lim T,.(z). (3.56)
n—+00

Lemma 3.3.5. Let z € % . The functionT, : (a.,b,) — R is K-Lipschitz (so in particular
uniformly continuous).

Proof. Let x,y € (a,,b,). There exist 7 € N such that for any n > 7 both x and y are in
(an,m bn,z)

Fix € > 0. Since the sequences (', . (%) )n>n, (In2(¥))n>a converge to I',(z),I',(y) respec-
tively, there exists n € N, n > n such that for any n > n it holds

15 15
’Fz<x) - sz(l')’ < 5 and ‘Fz(y) - Fn,z(y)’ < 5

Consequently for any n > n we have
ICa(z) = Ta(y)] <

< |Fz(x) - Fn,z($)| + |Fn,z($) - Fn,z(y)| + |Fn,z(y) - Fz(y)| < |Fn,2($) - Fn,z<y)| te.

Since for all n > 1 the function I', . is K-Lipschitz, we deduce that |I',(z) — I'.(y)| <
Klx —y| +e.
By the arbitrariness of ¢, we conclude that |I',(z) —I'.(y)| < K|z —y|. That is, T, is
K-Lipschitz (so in particular uniform continuous).

[

We can actually say something more about the convergence of (F"’Zl[m ) bz))nzl and of
(FmZ' (az,pl(z)])nzl’ which are decreasing and increasing sequences, respectively. Indeed, by
Dini’s Lemma (see for example Theorem 7.13 in [Rud76]) it holds

Fact 3.3.1. On any compact subset of (a,,b,) the sequence (I'y, . )n>1 uniformly converges
to the function T',.

Remark 3.3.11. For any z € %, we can extend the function I', on the closed interval
la.,b.] (in an unique way) so that I, : [a,,b,] — R is uniform continuous and K-Lipschitz
(see Section 3.4.2 in Appendix 3.4). With an abuse of notation, we refer to such an
extension still as I',.
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Lemma 3.3.6. Let z € % . The points (a,,1',(a.)) and (b,,T',(b,)) belong to the boundary
of U .

Proof. We are going to show the existence of a sequence (ay, ., 'y, »(an, »))k>1 which
belongs to the boundary of % and converges to (a.,I'.(a.)). Since the boundary of % is
closed, we will then deduce that (a,,T.(a,)) € 0% .

By definition of a,, there exists a subsequence (a,, .)i>1 converging to a,. It is so sufficient
showing that

kggloo Fnk,z(ank,z) = Pz(az)-
By Lemma 3.4.2 in Section 3.4.2, the value I',(a,) is the limit lim,, , ., [',(z,,), where
(Zm)m>1 is a sequence in (a,,b,) converging to a,.
Recall that, by Lemma 3.4.2 in Section 3.4.2, for any n > 1 the functions I',, , : [ay, », by ] —
R and the function T', : [a,,b,] — R are all K-Lipschitz.
Fix now ¢ > 0. Let m € N be such that for any m > m it holds

3

0< Dy =Ty, — Qy < —.
n x a Ve

Let k = k(m) € N be such that for any k > k it holds

and s0 ay, . < a, + B < g

In particular, for any k > k, the function I',, . is well-defined at x,.

Since (I',,.)nen converges pointwise to I',, there exists k € N,k > k such that for any
k > k it holds

£
Tz (@) — Da(@m)| < 3’

Hence, for k > k it holds
Ty 2 (@) — Ta(az)| <

< |l 2@y z) = Uog 2 (@) | + Doy 2 (2) — Te(zm)| + [Ta(2m) — Ta(az)] <
< Klan, » — zm| + g + Kl|zm — al,

where in the last inequality we use the fact that both I',, . and I', are K-Lipschitz on the
closure of their own domain of definition.
Now
Ty (tn,.) — Ta(as)| < K] |+ 2K| (R
ni,z\Any,z 2\Az)| > QAny 2 G a T 3 S 9 3 - 245 €.

Consequently, the sequence (ay, ., Iy, 2(an, »))r C 0% converges to (a,I'.(a,)). Thus,
(a.,T'.(a.)) belongs to the boundary of % .
A similar argument shows that also (b,,T,(b,)) € 0% .

O

Remark 3.3.12. In Lemma 3.3.6 we actually show that there exists a sequence (ayn, », 'n, 2 (G, 2))k>1
(respectively (by, -, I, 2 (bn, ») )k>1) which converges to (a,, ', (a.)) (respectively to (b,,I',(b.))).
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We have so proved that the function
r,:[a,,b,]—R

is uniformly continuous and K-Lipschitz. Its graph is contained in the closure of % and
(az,T.(az)), (b2, T.(b.)) € 0% .

Notation 3.3.5. Denote as S?Z the graph of I, over [a., b,]|. Since z € @ N %, we have
that @ N % # (. The leaf of our foliation ¥, is the connected component of /gz NwU
containing z.

We still denote ¢, as the graph of T, : (a,,b,) — R, although if the domain of I, whose
graph is ¢, could be strictly contained in the inital definition of (a.,b.) (see Figure 3.4).
Denote as cl(¥,) the closure of ¥,: from the definition of ¢,, it holds that cl(¥,) is
9, U {(a,,I'.(a,)), (b, T.(b,))}, where the points (a.,I',(a.)), (b.,T'.(b,)) belong to the
boundary 0% .

b,

]

Figure 3.4 — The closed leaf @ and how to define the leaf ¥..

About intersection of leaves of (4,).cy

In this paragraph we show that some “strict” intersections between different leaves are
not possible.

Definition 3.3.6 (Strict intersection of leaves). Let ¢, = Graph(l',),%.. = Graph(T',)
be leaves of z, 2" € % . The leaves ¥,, 9., intersect strictly if there exists z1,z9 € (a,,b,)N
(a,b,) such that

Iu(xy) < Tu(xy) and I.(x2) > I'y(xe).

Remark 3.3.13. Let 4.,9. be leaves that intersect strictly. Assume that x; < x5 are
such that I',(zy) < I',/(x1) and I',(x2) > I',/(x2). Then there always exists x € (1, 22)
such that T',(z) — I',/(z) = 0.
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Proposition 3.3.5. Let 9.,9.. be different leaves. Then they cannot intersect strictly.

Proof. Argue by contradiction and assume that ¢4,,%,, are different leaves that intersect
strictly. So, by Remark 3.3.13, there exists x1, x9, x € (a,,b.)N(a,,b.) so that (see Figure
3.5)

Lo(xy) = To(xy) >0=T,(z) = T,(x) >T,(xg) — [, (xq).

Since x1,x9 € (a,b,) N (a.,b,) there exists n € N such that for any n > 7 the functions

Figure 3.5 — The contradiction hypothesis of a strict intersection between leaves.

I, Iy are both defined at xy, zo. Moreover, (I',.),>n and (I'y, ./),>n converge, when
defined, pointwise to I', and I',, respectively.
Denote as

e:=1(x1) = Tu(zy) >0 and n:=u(xg) — [(z2) > 0.
Let A = min(e,n) > 0. There exists 7 > 7 such that for any n > 7 it holds

(@) [Tnz(m1) = Ta(r)] < % and [['y, . (72) — T2 (z2)] < %5
(17) |y (21) — Do(2q)] < % and |['y, . (22) — Ty (zg)] < %

Consequently for any n > n it holds

Fn,z(xl) - Fn,z’ (371) =



Similarly, for any n > n we deduce that

A
Lhol(ze) —Tha(z) > ——+n—— > > 0.

A A
3 3 3
Fix now n > n. Because of the continuity of the function & — I, .(§) — I',, . (€) and since
Lyz(xy) = Th(zy) > 0>y (22) — Iy (22), we deduce that there exists X € (1, 22)
such that both I';, , and I';, ,» are defined at X and I, ,(X) — T, ./(X) = 0.
From the definitions of I', .,I', .», we have exhibited a point of intersection between
F™(Vp-n(z)) and F*(Vp-n(z)).
That is, the vertical lines Vp-n(;) and Vp-n(.) intersect at some point and thus they must
coincide. We deduce so that the leaves Graph(T', ) and Graph(T', /) coincide, contra-
dicting the fact that I',, ,(z1) # [y (1) and Ty, o (xg) # T o (22).

[

About the invariance of leaves of (¥4.).cy

We discuss now the dynamics over each leaf and we will show the invariance of the
foliation. That is

Proposition 3.3.6. Let z € % . Then F(9.) = 9p().

Remark 3.3.14. In the previous sections we have built the leaves of the foliation ¢, for
z € % . The construction can be done for any z € F*(%) for i € [0, N — 1], where N is
the period of U.

Proof. We are going to prove that F/(¥.) C ¥p(.). Once we will prove this inclusion, we
can conclude. Indeed, if by contradiction there exists a point in ¥p(;) \ F(%.), then, since
we are assuming that F(¥,) C 9p(.), it holds that F(a.,I';(a.)) or F(b.,I'.(b.)) is in
the open set F'(7%/). This contradicts the fact that {(a,,I".(a.)), (b,,1.(b.))} C 0% (see
Lemma 3.3.6 and Notation 3.3.5) and that F(0%) = 0(F(%)).

Argue by contradiction and assume that there exists w € F(¥,) but w ¢ ¥p(.). Actually,

—

we can say that w ¢ ?FB Indeed, if w would belong to 9r(.)\ %p(-), then it should belong
to:

— either the boundary of F(%), contradicting the hypothesis of being in F(¥4,) C
F(% ) and the fact that F(%) is open;

— or to a connected component of @ N F (%) which does not contain F(z). Since
F' is a homeomorphism and by the definition of ¥,, this contradicts the fact that
w € F(%.) and that F(¥.) remains connected and contains F'(z).

In particular, w = F(z,I",(z)) for some z € (a,,b,). Without loss of generality we can
assume that = # p;(z2).
Denote

d(w,9p) = inf d(w,() > min d(w,() =:1¢>0.
CE€Dr(z) (€%r e

By the uniform continuity of F on %, there exists § > 0 such that for any r,s € % so
that d(r,s) < 0 it holds that d(F(r), F(s)) < 3.

There exists 7 € N such that for any n > n we have

x € (anz,bnz) and Tz (x) = Tu(x)] < 0.
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Consequently for any n > i we have®
€

Assume now that pi(z) < & < b,. For any n € N, when defined, it holds
() <Thqr.(x) < T.(2). (3.57)

For any n > n denote X (n) = py o F'(z,I',.(x)). From (3.57) and since F is the lift of a
positive twist map, for any n > 7 it holds X(n + 1) < X (n).

The sequence (X (n)),>n is decreasing and bounded (since F/(%) is bounded). Therefore,
it converges and we denote as

X := lim X(m)<X(n) Vn > n.

m—+oo -

Observe that for any n > n the point F(z,T', .(z)) belongs to
F'"  (Vpon(z) = F*™ (Vi (r(2y)) = Graph(Tnia pes))-
Hence, for any n > n it holds

X(n) c (an+1,F(z),bn+1,F(Z))

and
F(I, Fn,z(m)) = (X(n)> Fn+1,F(Z)(X(n))) .

Because of the absence of over-conjugate pointsand because of Proposition 3.3.2, for any
m > 1 the function f™ is a positive local twist map at every point. Thus, since we are
assuming that p;(z) < z and since f" is a local positive twist map, for any n > 7 it holds
that

pro F7"(z) < pyo F"(x,I.(x)).

Since also f™*! is a local positive twist map and since p; o F~"(2) = p; o F~"(x,T,, .()),
we deduce that
pi(F(2)) =pro F"™(F(2)) < pyo F"Y(F"(x,T,.(r))) = X(n).
Since for any n > n it holds
X < X(?’L) < bn+1,F(z)7 (358)
we conclude that

pl(F<Z)) < X < lim inf anF(Z) = bF(z)-

n—-+o0o

The function I'p() is so defined at X and so (X, I'py (X)) € ?FQ
Consider now

—

d(w, (X, Tp) (X)) = d(w, ) =€ > 0. (3.59)

For any n > n we have
d(w, (X, Tp) (X)) = d(F(z,T.(x)), (X, Tpe) (X)) <

< d(F(x, Ux(2)), 2, Uy 2(2)) + d(F (2, Tn 2(2)), (X, Tre (X)) <

8. Recall that we are considering the standard Euclidean distance, see Notation 3.3.1.
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< % +d(X(n), Tny1,re) (X (0))), (X, Tp) (X)) <

< - 4+d(X(n),X) +d(Thi1,p:)(X(n),Lpey (X)) <

OOI(‘f)

< g +d(X(n), X) + d(Lpp1,7¢:) (X (1)), Trgr,p(2) (X)) + A1, 72) (X), T (X))

Every I'yy1 p(:) is K-Lipschitz (see (3.53)) and, since (X n))neN converges to X, there
exists n > n such that for any n > 7 it holds d(X(n), X) < Hence

1+K
d(X(n), X) + d(Tnt1,r2) (X (n)), Tns,p2) (X)) <
Therefore for n > 1 we have that
2
d(w, (X, FF(z) (X))) < 55 + d(FHLF(z) (X), FF(z) (X)) (360)

If X < bp(.), then by the pointwise convergence of (I'yi1 p(z))nen towards I'p(.y there
exists N > n such that for any n > N it holds

d(Lri1,72)(X), Tp (X)) <

Wl M

Consequently for n > N, from (3.59) and from (3.60), we conclude that

2
£ < d(w, (X,Tr(y (X)) < 5 + d(Tnsrr (X), Tr (X)) <,

obtaining so the required contradiction.
Suppose now that X = bp(.). Let (ym)men be a sequence in (ap(.), br(.)) converging to
br(z)- In particular it holds that I'p(.)(X) = I'p() (bp(z)) = 11H1m—>+oo Lr) (Ym)-
Fix now m € N so that

€ 5

A(Ym, b)) < and  d(Tpe)(ym), Tre)(bre)) < =

: 3.61
9K 9 (3:61)

Remark that for any m it holds y,, < X = bp(,) = liminf, b, r(z). Consequently, for
any n > n, from (3.60) and (3.61), we have

2
e <d(w, (X,I'p)(X))) < 3¢t A(T1,7()(X), Tp() (X)) <

<

[GVRI

8—i_d<Fn-i-1,F(z) (X)’ Fn-‘rl,F(z) (ym))+d(rn+l,F(z) (yﬁl>a I-‘F(z) (yrh))+d(FF(z) (y’rﬁ)7 FF(z) (X)) <
2 €
< 3¢ + Kd(X,ym) + dTpi1,p¢) (Ym), Tre) (ym)) + 9 <

2 2
< gs + §€ + d(Lyg1,7() (Y1) FF(z)(ym))-

By the definition of a, and b, there exists N € N, N > n such that for any n > N we
have that ys € (an,z, bp2).

By the pointwise convergence of (I'y11,p(2))nen to I'pzy at 4, there exists N > N such
that for any n > N it holds

Ne RO
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Therefore, we conclude that for n > N

2 2
£ < d(w,(X,Tre (X)) < ze+ 5o + g —e,

that is the required contradiction.
The case pi(z) > x can be discussed similarly and so we conclude the proof.

We are interested in the dynamics over the instability disc on the annulus.

Notation 3.3.6. Let z € . The closed leaf cl(¥,) divides % into two (simply) connected
components because % is homeomorphic to an open disc and because ¢, C % and
(cl(Z.)\9Y.) C 0% (see Theorems V.11.7 and VL.5.1 in [New61]).

Denote as %, + the connected component lying above ¢%,, i.e. the connected component
containing

VECH = {(p(2),y) € VO . y > py(2)).

Denote as %, _ the connected component lying below ¢,, i.e. the connected component
containing

Veer = {(pi(2),y) € VIO 1y < pa(2)}.

See Figure 3.6.

Figure 3.6 — The connected components %, y and %, _.

Similarly, the notations (F(% ))p(z),+ and (F (%)) p(z),— refer to the connected components
of F(% )\ 9r.) lying, respectively, above and below the leaf ¥p.).

Proposition 3.3.7. F(%.+) = (F(%))rz),+ and F(U..—) = (F(%))r(z),--

Proof. By Proposition 3.3.6 we have that F(¥.) = %p(.). Since F' is a homeomorphism,
two cases can occur. Either

F(U.+) = (F(%))pe)+ and F(U. ) = (F(%))r).-

or

F(U.+.) = (F(%))r(z),- and F(%.—) = (F(%))r() +
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Let © € (a.,b,) be such that x > pl(z) Let n € N be such that € (as.,bs.) and
p1 0 F(z, T () = X(0) € (arcs, b))
By the definition of I',(z) and of ( m(a:))neN we have that I'; ,(z) > T',(z). Thus the
point (z,I';.(x)) belongs to %, .
Since f™ is a positive local twist map for any m € N (in particular for 72,7+ 1) we deduce
that

p2o F7(a, Ty o(x)) > pao 77 (2)

and consequently
X(n):=proF(x,I;.(x)) > po F(z). (3.62)

From (3.62), since F'(Graph(I's.)) = Graph(I'si1,p(2)) and since X(n) € (ap(.), bp(s)), we
deduce that
L1, (X () 2 Tre) (X ().

Actually, since F(x,I';.(z)) does not belong to ¥p(.), it holds that I'si1 p) (X (7)) >
I'p2)(X(n)). Equivalently

(X(7), Tar1.r() (X (1)) = F(2,T5..(2) € (F(%))p(z).+-

Since we have exhibited a point of %,  whose image through F'is contained in (F(%))r(2),+,
we conclude that

F(U.y) = (F(U))ri+  and  F(%.-) = (F(%))r@),-
]

We are now going to show that the projection on the annulus of every leaf ¥, is
f-periodic.

Proposition 3.3.8. Let p x Id : R? — A be the projection on the annulus and let U =
(p x 1d)(% ). For any Z € U C A there exists M € N such that

(b % 1d)Gpwns) = (0 x 1d)(%.)
where N is the period of U and z € % s the lift of Z.

Proof. We work on the lifted framework. Let 2/,2" € |, F*N(%). In R? we say that
two leaves ¥,/, 9. are t-equivalent if there exists k € Z so that

G+ (k,0) = {z+ (k,0): © €D} =%,

Clearly, two leaves are t-equivalent in R? if and only if their projections p x Id on the
annulus coincide.

Fix z € 7. Argue by contradiction and assume that for any M € N the leaves ¢, and
YNy are not t-equivalent. In particular, &, and ¥pn (. are not t-equivalent, that is

G+ (k,0) # Gpn(sy = FN(4.),

where k € 7Z is such that FN(z) € % + (k,0) (so it depends on the lift F'). The last
equality is Proposition 3.3.6.
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Claim 3.3.2. If ¢, and 9pn (. are not t-equivalent, then
(%Z,Jr + (k7 0)) N (FN<6Z/>>FN(,Z),+ = @

Proof. From Proposition 3.3.5, since different leaves cannot intersect strictly, it holds that
either (%4 + (k,0)) C (FN(%))pv(2)+ o (FN(U))pn o)+ C (s + (k,0)) or the two
components are disjoint (see Figure 3.7).

If (FN(%))pw (), is (strictly) contained in % 4 + (k,0) (see (a) in Figure 3.7), then

% +(k,0)

% +(k,0)

()
Figure 3.7 — The three possible cases discussed in Claim 3.3.2.

W((FN(U)) pw (24) < w(We ) (3.63)

Indeed, if there exists w € %, + (k,0) and w ¢ (FN(%))pn(2) 4+ (e. w & Gpn(.), then
we have that w((FN(%))pv () +) < w(%.,+) because w is positive on open sets.

Ifevery w € %, +(k, ON(FN (%)) pn(2) 4 is contained in (FN(%)) pn ()  N(FN (%)) (2 4
then every such w has to be in %~ ) because it cannot belong to OF(%).

Consequently, it holds

(FN(%))FN(z),Jr C .+ (k,0) C (FN(OZ/))FN(Z),-F UGpne) C(FN()) v 2y 4

Since %..4 + (k,0) is open, we have that %, + (k,0) = (FN(%)) pv () +-

Thus, we deduce that ¢, + (k,0) = %pn~(,), contradicting the hypothesis that the two
leaves are not t-equivalent.

Assuming so (3.63), from Proposition 3.3.7, we conclude that

W(EN(U.1)) = w(FY(U ) pn o) 4) < (W),
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contradicting the fact that F' is conservative. The same argument holds if %,  + (k,0) C
(FN(%))pn ()4 (see (b) in Figure 3.7).
We conclude that (%4 + (k,0)) N (FN(%))pv(2),+ = 0 (see (¢) in Figure 3.7).

[

Arguing similarly, for any 7, 7 € N, # j, since by contradiction every @pin .y and Gp,n .
are not t-equivalent, from Claim 3.3.2 we have that

((F™N(@)) ey 4+ (i = 5),00) N (FN(2)) o) 4 = 0.

Since F' is conservative and since w is invariant by translations, we obtain that
W) =Y w(F™N(U))pivie) 1) = +00,
ieN

which contradicts the fact that w(% ) is finite.

Proof of Proposition 3.1.3

We finally prove Proposition 3.1.3. That is, any instability disc has a subset of positive
measure whose points have non zero torsion.

Proof of Proposition 3.1.3. Argue by contradiction and assume that w-almost every z € U
has zero torsion. Equivalently, U C A satisfies Hypothesis (H). We can so build the folia-
tion (¥,).cy made up of periodic leaves.

Let % be a connected component of (p x Id)~!(U). Fix z € % . Let M € N be such that

(p X Id)(gz) = (p X Id)(gFMN(z))y

that is the leaves &, and %pun(,) are t-equivalent. Let k& € Z be such that FMN (%) =
U + (k,0). Consequently
gz + (k’, O) - gFMN(z)~ (364)

By Proposition 3.3.2 and by Remark 3.3.4, every f" is a positive local twist map, in
particular for n = M N.

Consider V%% (i.e. the connected component of V,N% containing z) and FMN (V).
Since fMY is a positive local twist map, the image FMN (V%) is a “partial” graph and

Pa(VECY 3 4 pyo FMN(py(2),y) € R

is an increasing diffeomorphism to its image.

According to Notation 3.3.6, %, and %._ denote the two connected components of
U \ 9, lying respectively above and below ¥,.

From Proposition 3.3.7 we deduce that

FYN( ) = (FYN(U ) poan o) 4
and, since from (3.64) we have that ¢, + (k,0) = Fpun (., we conclude that
%z,-F + (ka O) - FMN(%Z,—F)'
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In particular
FMNVCECHy c 9, + (k,0) and FMN(VEY™) Cc 4. + (k,0).

Denote now as %, p and %, 1, the connected components of % \VZCC’% that lie respectively
locally on the right and locally on the left of the vertical segment V%

Let ¥ = .+ N W, g, see Figure 3.8. Since F is conservative, it holds that w(¥) =
w(FMN ().

Figure 3.8 — The set ¥V = W, r N U. +.

Claim 3.3.3. p;(FMN(2)) < pi(2) + k.

Proof of Claim 3.3.3. Argue by contradiction and assume that p;(z) + k < p;(FMY(2)).
Observe that FMY(¥) is one of the four connected components of

(% + (k. 0) \ (%: + (k, 0)) U FYN (VD).

From Proposition 3.3.7 we know that FMN(¥) C %, , + (k,0).
Moreover, since fM¥ is a positive local twist map and it preserves the orientation, the
image FMN(#, ) is the connected component of (% + (k,0)) \ FMN(VCC?) that lies
locally below FMN(VCC#) (which is a partial graph).
Since FMY is a positive local twist map and by contradiction hypothesis, for any ¢ € V.¢¢+
it holds

p1o FMN(C) > pro FMN(2) > py(2) + k.

That is, the image FMN(VCCH) is contained in % g + (k, 0).

Consequently we have that FMN (%) C ¥ + (k,0). Actually it is strictly contained since
FMN(VC0H) is a partial graph.

Thus, w(FMYN(¥)) < w(¥) and this contradicts the fact that F' is conservative.

Consider now the set %, _ N#. 1. Arguing as in Claim 3.3.3 for ¥, we deduce that
pL(FMN(2)) > pi(2) + k.
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This provide us a contradiction. The absurd was assuming that w-almost every z € U has
null torsion and we conclude that

w({z e U: Torsion(f,z) # 0}) > 0.

3.4 Appendix of Chapter 3

3.4.1 About tridiagonal symmetric positive definite matrices

This Section of the Appendix is devoted to prove a technical fact about tridiagonal,
symmetric, positive definite matrices that is used in Lemma 3.2.5. Let us introduce the
following notation.

Notation 3.4.1. The set T'SP(n) is the set of matrices A € M,,(R) which are tridiagonal,
symmetric, positive definite and whose off-diagonal terms are all negative. That is, a
matrix A € T'SP(n) is of the form

aq ﬁl 0 . 0

61 (0] 52 e 0
A= 0 52 (0%} . 0 ,

S S

0 cee e 671—1 (7%

where a; > 0 for all ¢ € [1,n] and 3; <0 for all ¢ € [[1,n — 1].
Lemma 3.4.1. Let A € TSP(n). Then its inverse matriz A~' has all positive entries.

Proof. Let us prove the result by induction over n € N*.
For n = 1 we are considering a scalar a;. Clearly its inverse ai is positive since a; > 0.

Assume the statement holds true for matrices in TS P(n). Let us show it for matrices in
TSP(n+1). Consider a matrix B in T'SP(n + 1), i.e.

0
B= o |,

B
0 ... 0 BTL Op+1

where A € TSP(n), 5, < 0 and «,,1 > 0. Its inverse matrix is also symmetric and
positive definite: denote it as
Clv
( vt |y ) ’

where C' € M,(R), v € R" and v € R. Then we have

0

A : Clwv
0 "Ut v - I[n—i-la
B

0O ... 0 ﬁn Opt+1
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where 1,1 is the identity matrix of size n + 1. Equivalently

0
O :
AC+ (0 W) Av+ |
( ant 0 :]InJrl-
Bny
(0 . 0 5n)c+an+lvt Apt17

Consequenly, since ay,1 > 0 and «a,,117 = 1, we deduce that v > 0.
Since

X 0
Av+ | -~ | =|:]eRr?
0 0
Bry
we have that
0
v=A""! :
0
_ﬁn'y

Since — 3,y is positive and since all the entries of A~! are positive by inductive hypothesis,
we deduce that all entries of the vector v are positive.

We also have that
<O)(n—1)><n _
10+ (%) =1,
Consequently
O
_ 41 -1 [ Vm-1)xn
C=A"+A ( 5ot )
Since all the entries of A~! are positive by inductive hypothesis and since all the entries
of the vector —3,v" are positive, we conclude that also all the entries of C' are positive.
That is, the inverse matrix of B has all positive entries.

[]

3.4.2 Extension theorem

In this Section of the Appendix we recall a useful classical result on extension theorems
that is largely used in the construction of the foliation (%.).cy in Section 3.3.2 to extend
the functions I'), , on boundary points.

Lemma 3.4.2. Let X be a complete space and let E C X. Let f: E — R be a uniform
continuous K -Lipschitz function. Then there exists a unique extension f : E — R of f
which is uniform continuous and K -Lipschitz.

Proof. Define the function f as follows:

f(z) ifxeFlE

T = i f) ity e B\ E.
y—T
yerR

We start by showing the following
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Claim 3.4.1. For z € E\ E the limit lim f(y) € R exists.

Yy—T
yek

Let x € E\ E and let (x,),en C E be a sequence converging towards . In particular,
(n)nen is a Cauchy sequence and consequently (f(z,))nen is a Cauchy sequence too. De-
note as g € R the limit of (f(z,))nen. Let (2])nen be another sequence in E' converging
to z. Fix e > 0.

By the uniform continuity of f, there exists 6 > 0 so that for any z,w € E, d(z,w) < 0 it
holds that | f(z) — f(w)| < e. Since both (z,)nen and (z)),en converge to x, the distance
d(zy,2!) is tending to 0 as n goes to +o00. Let 7 € N be such that for any n > 1 we have
d(zp, ) < 6. Consequently for any n > 7 it holds that |f(x,) — f(2!,)| < €. By the arbi-

trariness of &, we conclude that lim,, , o f(2},) = ¥. Equivalently, the limit lim,,, f(y)
yerR
exists.

The function f is so well-defined and it is continuous. This implies its uniqueness. We
can now prove the following

Claim 3.4.2. The function f is uniform continuous.
Argue by contradiction and assume there exists g9 > 0 such that for any § > 0 there are
z,y € E so that d(x,y) < 0 and ‘f(x) — f(y)} > £o.

Since f is uniform continuous, at least one among x and y has to be in E \ E.

Let 6o > 0 be such that for any z,w € FE, d(z,w) < dy it holds |f(z) — f(w)| =
F(2) - Flw)| < 2. *

Fix now ¢ = %0. Let z,y € FE be the points such that, by contradiction hypothesis,

d(w,y) < % and |f(z) = f(y)| > eo.
Let (2n)nen, (Un)nen be sequences in E converging respectively to x and y. In particular,
let n € N be large enough such that

8 )
d(z,x,) < ZO and  d(y,y,) < ZO'

Since both z,, and y,, belong to E, by the uniform continuity of f, we have that |f(z,) — f(y,)| <
€ because d(Tp, yn) < do. )
Up to choose a bigger n, by the continuity of f, we can also assume that

= 3 €o

[f(2) = Fle)] < and [ F(y) = Flya)] < -

Consequently

o < |f(x) = Fy)| < | () = Flan)| + 1 f(@n) = Flun)| + | Fln) = f)] < —,

which is the required contradiction.

Since f is K-Lipschitz, we can also deduce the following
Claim 3.4.3. The function f is K-Lipschitz.

Indeed, let z,y € E and let (2,)nen, (Yn)nen be sequences in E converging to x,y respec-
tively.
Fix € > 0. There exists n € N such that for any n > n it holds

d(x,x,) < = and  d(y,yn) <

7 (3.65)

<
4K’
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where K is the Lipschitz constant of f. Moreover, by the continuity of f, there exists
n € N such that for any n > n we have

|f(x) = fzn)| <= and  [f(y) — flyn)| <

A~ ™
|

Then for any n > max(n,n) we have
|f(@) = f()] < [|F(@) = flan)| + | F(zn) = Flyn)| + [ f(yn) = Fy)] < g+|f(xn) — f(ya)|
Now, since x,,y, € E and since f is K-Lipschitz, it holds that

| (2n) = fyn)| < Kd(2n, yn)-

Consequently, from (3.65),

- € €
(@) = F)] < 5+ Kd(@n, ya) < 5+ k (d(wn, 2) + d(@,y) + d(y, ya)) < Kd(z,y) + <.
From the arbitrariness of £, we conclude that |f(z) — f(y)| < Kd(z,y), that is also f is

K-Lipschitz.
O
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Chapter 4

Torsion of horseshoes

Let S be a surface among R?, A, T?: endow S with the standard Euclidean metric and
the standard trivialization. Fix the counterclockwise orientation of the plane R? and the
constant vector field H = (1,0).

Let f:S — S be a C! diffeomorphism isotopic to the identity. In particular, f preserves
the orientation. For any z € S, we denote as O(z, f) the orbit of = with respect to f.
Recall that, if N C S and x € N, we denote as CC(N, z) the connected component of N
containing x.

If S = R?, we make the further assumption that f has compact support.

We briefly recall the notions of (finite-time) torsion. Let I = (f;);cr be an isotopy joining
the identity to f in Diff'(S). For any (x,v) € T'S,v # 0, we recall the notation of the
oriented angle function

Ry s>t v(l)(x,v,t) =0(H,Df(x)v) € T.

Let R 5 t — 9(I)(z,v,t) € R be a continuous determination of the previous angle
function. The torsion at finite time n € N;n # 0 at (z,v) is then

Torsion, (I, z,v) := — (0(I)(x,v,n) — 0(I)(x,v,0)).

SRS

The (asymptotic) torsion at x € S is the limit, when it exists,

Torsion ([, x) := nl_lﬁloo Torsion,, (I, x,v).

Remark 4.0.1. The torsion, both at finite-time and asymptotic, does not depend on
the choice of the continuous determination (see Proposition 1.1.1 in Chapter 1). The
(asymptotic) torsion does not depend on the choice of the tangent vector v € T,.S \ {0}
(see Proposition 1.1.3 in Chapter 1). Moreover, the torsion does not depend on the choice
of the isotopy if S = T? (see Section 2 in [BB13] and here Remark 1.3.1 in Chapter 1) or if
S = A (see Proposition 1.3.2). If f : R? — R? has compact support then the torsion does
not depend on the choice of the isotopy as long as we consider isotopies with compact
support ! (see Section 2 in [BB13]). Therefore, in the sequel we omit the dependance on
the isotopy.

Let g € S be a periodic hyperbolic point for f. Let N > 0 be the period of ¢ for f. In

1. An isotopy I has compact support if for any ¢t € [0,1] the support of f; is in a compact set,
independent of .
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the sequel, we will largely use classical results about hyperbolic sets that are recalled in
Appendix A.
Assume p € S is a point of transverse homoclinic intersection of O(q, f) not belong-
ing to the orbit of ¢. Without loss of generality (see Fact A.0.1), we assume that p €
(W*(q) h W=(q)) \ {q}-
Let A1, A2 be the eigenvalues of D fV(q) : T,,S — T,S. By the existence of p we have that
A1, A2 € R and

0 < |A] <1< |Agl.

Up to consider f2 instead of f, we can assume that \; and A\, are both positive.
Concerning the torsion at finite time N at ¢, since the fields of half-lines of the stable and
unstable directions are preserved (because the eigenvalues of D f(q) are positive), there
exists k € Z such that

N Torsiony(f,q,v) = N Torsiony(f,q,w) =k (4.1)

forv € B}, w € E}, where Ey /* denotes respectively the unstable and the stable subspace
in T5,5.

Notation 4.0.1. To simplify the notation, from now on when not specified we consider
the dynamics of fV so that ¢ is a hyperbolic fixed point for f&¥ and we denote as f the
diffeomorphism fV to lighten the notation.

In particular, concerning the N-time torsion for f at ¢, we have that

N Torsiony (f, q,v) = Torsion, (f, q,v) = k, (4.2)

forveE}jorveE;.

4.1 Statement of the main results

In this introductive section we state the main theorem of the chapter and present the
main corollaries and outcomings.
The point ¢ is a fixed hyperbolic point for § with transverse homoclinic intersections. To
simplify the notation, assume that Torsion, (f, ¢, v) = 0, where v € E'.
Let p € W"(q) h W*(q),p # q be a suitable transverse homoclinic point, i.e. such that:

— the point p belongs to the local stable manifold of ¢,

— the unstable manifold (respectively the stable manifold) at p has almost the same
slope as B (respectively E?): to be precise, we compare slopes of the images of

T,W"(q) and Ej through the differential of a chart.

See (a) of Figure 4.1.

We are going to construct a horseshoe, i.e. a uniformly hyperbolic set for some {* such
that §* restricted to the horseshoe is conjugated to a shift dynamics, as follows. See
Section 4.3. Consider a small rectangle R which contains the fixed point ¢ and the point
of homoclinic intersection p and which stretches along the local stable manifold. Then,
there exists n € N such that §"(R) strecthes along the unstable manifold and contains the
homoclinic point p. We focus on the two connected components of f*(R) N R containing
p and ¢. Denote them as V; and Vj respectively. See (b) of Figure 4.1. We consider then
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Figure 4.1

the f-invariant set H = [, (Vo U V1). The set H is a uniformly hyperbolic set for "
such that (H,f") is conjugated to the shift dynamics ({0,1}%,5) (see Proposition 4.3.2).
That is, we associate to every z € H a sequence (6;(2))iez = (0;)icz € {0, 1} such that

f"(z) € V..

Our aim is so calculating the torsion at points of the horseshoe H. Since the asymptotic
torsion does not depend on the tangent vector, we calculate the torsion for f at finite
time n at points of H with respect to vectors belonging to the unstable subspace. The
unstable subspace is well-defined because H is hyperbolic. Moreover the unstable suspace
is invariant for Df".

Consider the angle variation of the vector tangent to the unstable manifold varying be-
tween ¢ and p. Such angle variation admits a measure which is either almost null or almost
equal to % The unstable angle variation of (g, p) is the integer m € Z such that the angle
variation of the vector tangent to the unstable manifold between ¢ and p is almost equal
to .

The key point of our result is showing that for any © € H we have that

n Torsion, (f,z,v) is almost equal to %51 (x),

where the vector v belongs to the unstable subspace of x.
Using then a non trivial induction argument, we deduce the main theorem (see Theorem
4.4.1 and Corollary 4.4.1).

Theorem. Let §: S — S be a Ct diffeomorphism isotopic to the identity. Let ¢ € S be a
fized hyperbolic point with transverse homoclinic intersections. Assume that Torsion(f, q) =
0. Let p € W¥(q) h W*(q) be a suitable transverse homoclinic point. Let H be the asso-
ciated horseshoe. Let m € 7 be the unstable angle variation of (q,p). For any x € H the
set of limit points of the sequences?

l .
(Torsion(f, z))1en and <% Zz‘—ol5z(x) ) -

2. We do not make explicit the vector with respect to which we calculate the torsion to simplify the
presentation of the main result.
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Zé:l 0; (x)

: exists and,

are the same. The torsion of x exists if and only if the limait lim; ., o
whenever it exists,

!
5
Torsion(f,x) = % lEHloo M

We highlight the role played by the unstable angle variation m. Indeed, if m = 0, then
the torsion exists and it is null (i.e. equal to Torsion(f,q)) at every point of H. In order
to have non trivial torsion values, we are interested in the cases when m # 0.

Observe that if there are points x1, x5 € H whose torsion values are different, then the
unstable angle variation of (g, p) is non null. Moreover, if there are two periodic points of
H with the same period, the first one with reflexion 3, the second without, then again the
unstable angle variation is non null.

We then state some interesting outcomings when the unstable angle variation m is non
null. See Section 4.6.

Corollary A. Let m # 0. For any [a, B] C [0,m] there exists x € H such that the set of
limit points of (Torsion(f, x))ien is |, 5].

Corollary B Let m # 0. For any « € [0,m] the set of points of H whose torsion equals
a is dense in H.

In particular, if m is non null, then we have examples of points where the torsion does
not exist.

Corollary C. Let m # 0. The set of points of H at which the torsion does not exist
contains a dense Gs-subset of H.

Some consequences can be deduced also concerning torsion of measures.

Corollary D. Let m # 0. For any o € [0, m] there exists an ergodic f-invariant measure
p with compact support such that Torsion(f, u) = «.

If S =R?or S = A, then there are conditions to obtain transverse homoclinic points with
non zero unstable angle variation. See Lemma 4.5.3 and Remarks 4.5.1 and 4.5.2.

Proposition A. Let S be either A or R?. Let§: S — S be a C' diffeomorphism isotopic to
the identity. Assume that there is a periodic hyperbolic point q with transverse homoclinic
intersections. Suppose that

— every homoclinic intersection s transverse,
— orfisC™.

Then there exists a point p of transverse homoclinic intersection such that the unstable
angle variation of (q,p) is non null.

3. That is, the differential of ¥ at the point, where N is the period of the point, has negative
eigenvalues.
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Through Proposition A and using Katok’s result (see [Kat80]) which links topological
entropy and transverse homoclinic intersections, we obtain sufficient conditions concern-
ing the torsion to have dynamics with null topological entropy %,

Corollary E. Let S be either T x [0,1] or D% Let §: S — S be a C**¢ diffeomorphism
(e > 0) such that:

— every homoclinic intersection of a hyperbolic periodic point is transverse,
— orf s C™.

If the torsion exists everywhere, then hyp,(f) = 0.

4.2 Choice of an adapted neighborhood for transverse
homoclinic intersections
Fix
O<e< i
12°
This will be the maximum error that we will admit in calculating torsion at finite-time.

4.2.1 Choice of an adapted neighborhood of ¢

The main aim of this Subsection is selecting a suitable neighborhood of the fixed
hyperbolic point.

Lemma 4.2.1. There exists a neighborhood O of q and a chart ¢ : O — R? such that
(i) o(q) = (0,0);
(i1) 6(0) € (~1,1)%;

(iii) H(CC(W*(q) N O, q)) = {0} x (=1,1) and ¢(CC(W"(q) N O, q)) = (—1,1) x {0}.

o
o
Proof. Let E; and E be the stable and unstable subspaces of Df(q), respectively. Let
¥ : O — (—1,1)? be a chart such that 1(q) = (0,0) and

Dip(q)T,W*(q) = R x {0} and  Dy(q)T,W?(q) = {0} x R. (4.3)

Recall that both W*(q) and W*(q) are C' 1-dimensional immersed submanifolds. So, up
to restrict the neighborhood O, there exist C' diffeomorphisms to their images

v:(=1,1) = O, r:(-1,1)—0

such that v(0) = I'(0) = ¢, v(—1,1) = CC(W"(q) N O,q) and I'(—=1,1) = CC(W?*(q) N

0,q).
Let p1, p2 : R?2 — R be the projections over the first and the second coordinate respectively

and consider then p; oo~y :(—=1,1) > Rand ppotpoI': (—1,1) — R. Since both

Dpi (1 07(0)) o Dip(7(0))7'(0)  and  Dps(¢ o '(0)) o Di(I'(0))I(0)
are not zero, by the inverse function theorem there exists 6 > 0 such that

protory:(=6,0) =R, peotpol:(=4,0) = R
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are C! diffeomorphisms to their images. Up to decrease § > 0 (since p; ot o~y(0) = pyotho
['(0) = 0), we can assume that p; opoy(—4,0) C (—=1,1) and pyotp o T'(=6,0) C (—1,1).
The functions ¢ oy : (—§,5) — R? and ¢p o' : (—6,6) — R? are graphs of functions in
the first and the second coordinates, respectively, of R?. That is, there exist C! functions

gu: (—1,1) — (—1,1), gs: (—=1,1) — (—1,1)

so that

Y oas) S (T gu(2)) : w e (=1,1)}
and

Y oTyss € {(9:s(w),y): ye (=11}
In particular it holds that ¢,(0) = ¢g5(0) = 0 and, by (4.3), ¢/.(0) = ¢.(0) = 0.
Consider then the function ® : (—1,1)> — R? which deforms the standard vertical-
horizontal foliation into the foliation made up of vertical translations of the graph of g,
(function in the first coordinate) and of horizontal translations of the graph of g, (function
in the second coordinate), see Figure 4.2.

A vertical
foliation
horizontal
foliation
D
y graph(g,)
graph(g,)

Figure 4.2 — Deformation of vertical-horizontal foliations into graph(gs)-graph(g.) folia-
tions.

That is
d : R? - R?
(z,y) = ®(z,y) = (x4 95(y), ¥ + gu(z)).

Observe that D®(0,0) = I, * and so by the inverse function theorem there exists a neigh-
borhood W of 0 € R? such that W C (—1,1)* and @y is a C' diffeomorphism to its
image. By considering then

=0 oy T (B(W)) - R,

4. Where I, denotes the 2-dimensional identity matrix.
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we obtain a chart that verifies the required conditions. n

Let O be a neighborhood of ¢ and ¢ a chart given by Lemma 4.2.1. For any =,y € O we
identify the tangent spaces 7,5 = T,,S = R? through the chart ¢.

Notation 4.2.1. Let O be a neighborhood of ¢ given by Lemma 4.2.1 and let z,y € O.
Let £ C TS and F' C TS be 1-dimensional subspaces. The angle between F and F' is
denoted as 0(F, F') and it is

0(E, F)=[0(v,v')| = minlw_(v,w){,

where 0(v,w) 1= 0(H,v) — O(H,w)® and where 0 is the measure of the oriented angle ¢

contained in [ —1,1).

Condition 4.2.1. Let O be an open neighborhood of ¢ given by Lemma 4.2.1. Assume
that

(i) forany z € CC(W?(q)NO, q) the angle 0(E;, T,W?*(q)) admits a measure in (—
(ii) for any x € CC(W*(q)NO, q) the angle 0( £, T,W*(q)) admits a measure in (—

);
).

Condition 4.2.2. Let O be an open neighborhood of ¢ given by Lemma 4.2.1. Assume
that there exists 0 < § < § so that O C Bs(q) = {r € O : d(x,q) <} 6,

)

)

INTORINITG
N TGO RN 0

CCW"(q)NO,q) =Wp.s(q)

and
CCW*(q)NO,q) =W;,.s(a),

where W3 5(q), Wi, 5(q) are the local stable and unstable manifolds of ¢ respectively for
f (see the Local (Un)Stable Manifold Theorem, here Theorem A.0.1).

Remark 4.2.1. Let O be a neighborhood of ¢ satisfying Condition 4.2.2. Remark that
f*(z) € O for any n > 0 if and only if x € W} _5(¢q) and f™"(z) € O for any n > 0 if and
only if & € W, 5(4).

Definition 4.2.1. Let O be a neighborhood of ¢ satisfying Condition 4.2.2. A future-
first-entry point for O is a point x € O(p, f) such that

(1) x € Wi 5(q) € O;
(i) §'(x) & Wi s(0)-
A past-first-entry point for O is a point = € O(p, f) such that
(i) z € Wi.5(q) C O;
(i) §(x) & Wige,5(a)-

5. Recall that 8(H,v) is the oriented angle between the non zero vectors H,v with respect to the
standard Riemannian metric and orientation.
6. The distance d on O is the one inherited from the fixed metric.
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Remark 4.2.2. Let O be a neighborhood of ¢ satisfying Condition 4.2.2. Then the future-
first-entry and past-first-entry points for O (with respect to O(p, f)) are well-defined and
unique.

Recall that the set {¢} U O(p,f) is hyperbolic for § (see Fact A.0.2). Define now the
functions

{duo(p.f) 22— EnS'e ) G(TS)NS!,
z€{qtuO(p,f)

{guop.fa2—ENns'e | GTS)ns,
z€{q}uO(p,f)

where G1(7,5) is the Grassmannian of the 1-dimensional subspaces in T.S. They are
continuous functions with respect to the Hausdorff distance.
Define for i = u, s the functions (see Notation 4.2.1)

{¢}UO(p,f) € x— O(RH,EY) €T,

{¢} UO(p,f) € x — O(RH,E) € T.

Observe that these functions are continuous.

Condition 4.2.3. Let O be an open neighborhood of ¢ satisfying Condition 4.2.2. Since
the angle function is continuous with respect to the vectors, there exists 6 > 0 so that if
v,w € T'O, ||v]| = ||w|| =1 and ||[v — w|| < 17, then the oriented angle

O(w,v) =0(H,v) — 0(H,w)

admits a measure in (—%, i)

Assume that for every z € O(p, f) "Wy, 5(q) the connected component CC(W*(q) N O, )

is 7 — C' close to W 5(q) and for every z € O(p,f) N W, 5(¢) the connected component
CC(W*(q) N O,x) is n —C* close to Wi, 5(q).
We refer to Definition A.0.5 in Appendix A for the notion of n — C* close.

Remark 4.2.3. Observe in particular that Conditions 4.2.1 and 4.2.3 imply that
— for every x € O(p, f) N Wy, 5(q) the angle 0(E;, E;) admits a measure in (-3, 5);

— for every x € O(p, f) N Wi, 5(q) the angle 0(EY, E}) admits a measure in (-3,

).

Lemma 4.2.2. Let q be a fixed hyperbolic point for f and let p be a transverse homoclinic
point for q. There exist two continuous vector fields e*, e®

N

{a} U O, f) 22— e € Ey NS

{gyuO(p,f) 2z el € EENS.

Let O be an open neighborhood of q satisfying Conditions 4.2.1, 4.2.2 and 4.2.3. Then for
any * € ({q} UO(p,§)) N (Wi.s(q) UWSL. 5(q)) the angles 0(ey, ex) and 0(ef, e;) admit a

o
measure m (—5,5).

7. We are identifying tangent spaces at different points of O through the chart.
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The ideas of the proof of Lemma 4.2.2 are the same of those of the proof of Lemma 4.2.4.
Hence, we send to the proof of Lemma 4.2.4 in the following Subsection.
Let us introduce the cone field property (with respect to f).

Definition 4.2.2. A set U C S satisfies the cone field property for n € Ry, £,0 €
(0,1)NR, m € N* if there exist a splitting E* @ E* = TS and a cone field (C7) ¢y where

C'={veT,S: v=ov'+v° v € B v e E? HUQH < 17Hv1||}
such that

(i) for any z € U it holds dimE! = dimFE? = 1;
(i1) for any x € U N~ 1(U) it holds Df(x)C" C C;éi);
(13i) for any x € U
— for any v € C? it holds || Df"(z)v| > %HUH,

— for any w ¢ int(C?) it holds || Df ™ (z)w]|| > 2|lw]].

q
Condition 4.2.4. Let O be a neighborhood of the fixed hyperbolic point ¢ which satisfies
the cone field property.

We refer to Appendix B for a detailed discussion of the open cone field property.

Condition 4.2.5. Let O be an open neighborhood of ¢ satisfying Condition 4.2.2 such
that
O(pv f) no C VVlf)c,(F U VVZZC,(S‘

That is the f-orbit of p intersects O only along the local stable manifold of ¢ and the local
unstable manifold of q.

Condition 4.2.6. Let O be an open neighborhood of ¢ such that for any z € ({¢} U
O(p,§)) N O it holds

DO | ™

|Torsion1(f, z,ey) — Torsion, (f, g, e;‘)‘ <

and
| Torsion, (f, z, e3) — Torsion; (f, ¢, )| <

DO ™

For the following condition we refer to [Con75| and [Mos73|.

Condition 4.2.7. Let O be a neighborhood of ¢ given by Lemma 4.2.1 and satisfying
Conditions 4.2.2 and 4.2.3. Let p,f(p) € O be respectively future-first-entry and past-
first-entry points for O (see Definition 4.2.1).

Refering to the chart of Lemma 4.2.1, assume that ¢(p) € {0} xR, ¢(§7M(p)) € R, x{0}.
Suppose that the set RV is contained in O, where RV is the image through ¢! of the
intersection of the following sets (see Figure 4.3-(a))

— {2 >0,y >0};
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— Ipo—graph(ug) := {(z,y) : y < up(x)}, i.e. the set of all points that lie on or below
the graph of ug, where the graph of uy denotes ¢(CC(W*(q) N O,p));

— Left—graph(so) := {(x,y) : © < so(y)}, i.e. the set of all points that lie on or at the
left of the graph of sy, where the graph of sy denotes ¢(CC(W*(q) N O, §M(p))).

From now on, for sake of simplicity we omit the chart ¢ in our notation. Therefore, we
speak of first and second coordinates also on the neighborhood of gq.

Notation 4.2.2. Let O be a neighborhood of ¢ satisfying Condition 4.2.7. Let p, {(p) €
O be respectively future-first-entry and past-first-entry points for O (see Definition 4.2.1).
For any i > 0 we have that f'(p) € Wj, 5(¢) and §~*9(p) € W}, ;(q). Moreover, by Con-
dition 4.2.3, for any ¢ > 0 it holds

— CC(W"(q)NO,f(p)) is a graph with respect to the first coordinate and we denote
it as the graph of u;;

— CO(W*(q)NO,f M+ (p)) is a graph with respect to the second coordinate and we
denote it as the graph of s;.

We denote then for any i > 0 (see Figure 4.3-(a))
RV (i) = {x > 0,y > 0} N Ipo—graph(ug) N Le ft—graph(s;),

where

- Ipo—graph(ug) = {(x,y) : y < u(z)} is the set of all points that lie on or below the
graph of ug (that is CC(W"(q) N O, p));

- Left—graph(s;) = {(x,y) : « < s;(y)} is the set of all points that lie on or at the left of
the graph of s; (that is CC(W*(q) N O, f~MFIN(p))).

We similarly denote for any ¢ > 0 (see Figure 4.3-(b))

RH (i) = {x > 0,y > 0} N Ipo—graph(u;) N Le ft—graph(sy),

where

- Ipo—graph(u;) = {(x,y) : y < u(x)} is the set of all points that lie on or below the
graph of u; (that is CC'(W"(q) N O,§(p)));

- Left—graph(so) = {(z,y) : * < so(y)} is the set of all points that lie on or at the left
of the graph of sy (that is CC(W#(q) N O, (p))).

Remark 4.2.4. Let O be a neighborhood of ¢ and let p,§~*(p) be respectively future-
first-entry and past-first-entry points for O with respect to which Condition 4.2.7 holds.
Remark then, refering to Notation 4.2.2, that

(RV(i))izo and (RH(i))izo

are both decreasing sequences of sets contained in O.
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(a) (b)
Figure 4.3 — Example of vertical rectangles RV (i) and of horizontal rectangles RH (7).

Definition 4.2.3. Let ¢ € S be a fixed hyperbolic point for § and let p € (W¥(q) rh
We(q))\ {¢}- Fix 0 <e < &.

A neighborhood O of ¢ satisfying Conditions 4.2.1, 4.2.2,4.2.3,4.2.4,4.2.5,4.2.6 and 4.2.7,
with respect to ¢ is called an adapted neighborhood of ¢ for O(p,f) with respect
to ¢.

Lemma 4.2.3. Let g € S be a fized hyperbolic point for § and let p € (W"(q) h W*(q)) \
{¢}. Fiz0<e < % and let W be an open neighborhood of q. Then there exits an adapted
neighborhood O, of q for O(p,f) with respect to € contained in W.

Proof. Let O be a neighborhood of ¢ given by Lemma 4.2.1: up to shrink O, we can
assume it is contained in W. In particular, CC(W?(q) N O, q) is sent by a chart ¢ on
{0} x (—=1,1) and for any x € CC(W?(q) N O,q) it holds D¢(z)T,W*(q) = R(0,1).
Because of the continuity of the angle function and because the stable manifold W*(q) is
a C! immersed submanifold, there exists a neighborhood O; C O of ¢ such that for any
r € CC(W*(q) N O1,q) the angle

0(E;, T,W*(q))

admits a measure in (—%,

any x € CC(W"(q) N Oy, q

). Similarly, we find a neighborhood Oy C O; such that for
the angle

NN

0(Eq, T:W*(q))

admits a measure in (—%,%). That is, O, satisfies Condition 4.2.1. Remark that any
neighborhood of ¢ contained in Oy still satisfies Condition 4.2.1.

Apply the Local (Un)Stable Manifold Theorem at ¢ for f (see Theorem A.0.1). Then,
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there exists a neighborhood O3 C O of ¢ satisfying Condition 4.2.2. That is CC(W*"(q) N
O3,q) = Wj.5(q) and CC(W?(q) N O3,q) = W;;,. 5(q) for some 0 < ¢ < 5. This condition
is verified for any neighborhood of ¢ contained in O3, up to decrease 9.

Thanks to the A\-lemma (see Theorem A.0.3) we find a neighborhood Oy C O3 that verifies
also Condition 4.2.3. Again, we remark that such a condition still holds true if we shrink
the neighborhood of the hyperbolic point.

The point ¢ is hyperbolic and so in particular it satisfies the cone field property (see
Proposition A.0.1). Such a criterion is an open condition in S (see Appendix B). Hence,
there exists a neighborhod Os of ¢ contained in Oy verifying the cone field property, that
is satisfying Condition 4.2.4. Observe that we can extend the cone field property by asking
that for any

z € O(p.f) N 05N [CC(W*(g) N Os,q) UCC(W*(q) N Os,q)]
the stable and unstable splitting is exactly
T.W?3(q) ® T,W"(q).

The connected component CC(Os, q) is a neighborhood of ¢ which satisfies all the condi-
tions 4.2.1, 4.2.2, 4.2.3 and 4.2.4.

Since lim,, 1+ f"(p) = ¢, there is a finite number of points of O(p, f) which do not belong
to CC(W"(q) N Os,q) U CC(W?*(q) N Os,q). Therefore we find a neighborhood Og of ¢
contained in C'C(Os, q) such that all the previous conditions hold and such that

O(p, f¥) N O € CC(W*(q) N Og,q) UCC(W?*(q) N Og, q).

That is, Og satisfies also Condition 4.2.5.
Since the vector field e* (respectively e®) is continuous (see Lemma 4.2.2) and since the
torsion at finite time is continuous, also the function

x +— Torsion, (f, z, ey) ( respectively = — Torsion (f, x, €’))

is continuous. So, there exists a neighborhood O of ¢ contained in Og such that it satisfies
Condition 4.2.6. Observe that O; satisfies also Conditions from 4.2.1 to 4.2.4.
The intersection O(p,f) N O7 is contained in CC(W*(q) N Og,q) U CC(W"(q) N O, q).
There is a finite number of points of O(p,f) N O; which <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>