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Abstract In this paper we consider a general control system involving a spa-
tially heterogeneous dynamics. This means that the state space is partitioned
into several disjoint regions and that each region has its own (smooth) con-
trol system. As a result, the dynamics discontinuously changes whenever the
trajectory crosses an interface between two regions. In that spatially hetero-
geneous setting (and in contrast with the usual smooth case), a needle-like
perturbation of the control may generate a perturbed trajectory that does not
uniformly converge towards the nominal one, and may lead to the absence
of a corresponding first-order variation vector. The first contribution of this
paper is to illustrate this issue by means of a simple counterexample. Our sec-
ond and main contribution is to provide a modified needle-like perturbation of
the control (adapted to the spatially heterogeneous setting) which generates a
perturbed trajectory that uniformly converges towards the nominal one, and
leads to a corresponding first-order variation vector (which has the particular-
ity of admitting a discontinuity jump at each interface crossing). This is made
possible under several assumptions (including transverse crossing conditions),
by introducing new tools such as auxiliary trajectories and auxiliary controls
and by using a conic version of the implicit function theorem.
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1 Introduction

One essential tool in control theory (among others) is the concept of needle-
like perturbation introduced by Pontryagin et al. [30] in order to derive first-
order approximations of accessible sets, and to establish first-order necessary
optimality conditions, for control systems described by nonlinear differential
equations. A needle-like perturbation is a particular perturbation of the control
(roughly speaking, large for the L∞-norm but small for the L1-norm) which
generates a perturbed trajectory that uniformly converges towards the nominal
one and, above all, leads to a first-order variation quantified thanks to the so-
called variation vector. We refer to Section 2.1 for basic reminders. The subject
of the present work is precisely in line with this perturbation technique, but
in the context of spatially heterogeneous dynamics (see below).

Hybrid control systems have recently attracted a significant attention in
the literature in order to describe control systems exhibiting both continu-
ous and discrete behaviors (see, e.g., [10,12,18,32,33] and references therein).
A particular case is given by control systems described by differential equa-
tions involving heterogeneous dynamics (that is, involving several different
dynamics) where the changes of dynamics are seen as discrete events. These
heterogeneous settings are varied. For example, one can consider temporally
heterogeneous control systems where the changes of dynamics are determined
by the time variable (see, e.g., [6,15,17,27–29]). In this paper we restrict our
attention to spatially heterogeneous control systems where the changes of dy-
namics are determined by the state variable. Precisely, in the spirit of [2–7,
19,22–24], we consider that the state space is partitioned into several disjoint
regions and that each region has its own (smooth) control system. As a result,
the dynamics discontinuously changes whenever the trajectory crosses an in-
terface between two regions. The instants at which the trajectory goes from
one region to another are called crossing times.

Our aim in this paper is to conduct a sensitivity analysis of a general
spatially heterogeneous control system under needle-like perturbations. This
question has received little attention in the literature, except in [19] where an
expression of a variation vector corresponding to a classical needle-like pertur-
bation can be found. This variation vector has furthermore the particularity of
admitting a discontinuity jump at each crossing time. However, in the spatially
heterogeneous setting, and in contrast to what is claimed in [19], a classical
needle-like perturbation may generate a perturbed trajectory that does not
uniformly converge towards the nominal one, and may lead to the absence of a
corresponding variation vector. The first contribution of this paper is to illus-
trate this issue by means of a simple counterexample (see Example 2.1). We
precise here that the error in [19] does not affect the validity of the main part
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of [19] dedicated to convergence results on regularized versions of spatially het-
erogeneous optimal control problems. Nevertheless the above counterexample
shows that the use of needle-like perturbations in the context of spatially het-
erogeneous control systems requires a careful attention and this is the subject
of the present paper.

Hence the second and main contribution of the present work is to pro-
vide a rigorous derivation of the same variation vector obtained in [19], but
by using a modified needle-like perturbation of the control (adapted to the
spatially heterogeneous setting). For this purpose, new tools are introduced,
referred to as auxiliary trajectories and auxiliary controls, which correspond,
roughly speaking, to (smooth) extensions of the restrictions of the nominal
trajectory and of the nominal control to each interval between two consec-
utive crossing times. Next, we apply a classical needle-like perturbation to
a given auxiliary control, generating that way a so-called perturbed auxiliary
trajectory. Under appropriate assumptions (including transverse crossing con-
ditions on the nominal trajectory, similar to the ones considered in [4,19], see
Definition 1), and by using a conic version of the implicit function theorem
(see Lemma 1), we prove the existence of a perturbed crossing time for this
perturbed auxiliary trajectory. This results into a perturbation of both the
initial time and the initial condition of the next auxiliary trajectory, and thus
into a next perturbed auxiliary trajectory. Hence we construct by induction a
series of perturbed auxiliary trajectories, leading by concatenation to a global
perturbed trajectory (corresponding to a perturbation of the nominal one).
This approach addresses the issues raised by Example 2.1 (see Remark 1) and
allows us to state and prove our main result (Theorem 1). This latter asserts
that the perturbed trajectory uniformly converges towards the nominal one,
and establishes the existence of a corresponding variation vector that coincides
with the one announced in [19].

This paper is organized as follows. It contains only one section (Section 2).
In Section 2.1, basic reminders about classical needle-like perturbations and
their use in smooth control systems are provided. In Section 2.2, a general
spatially heterogeneous control system is introduced, together with some ter-
minology and assumptions. The counterexample (Example 2.1), showing that
an adaptation of the needle-like perturbations in that context is required, is
provided. Our main result (Theorem 1) is stated and, since its proof is quite
long and technical, this latter is postponed to the end of the paper (see Ap-
pendices A and B). Nevertheless, for the reader’s convenience, an overview of
this proof is given in Section 2.3 (in order to highlight the new tools and the
main ideas of our approach). Finally a list of comments and perspectives is
provided in Section 2.4.

2 Main result and overview of its proof

We start with some notations and functional framework required all along the
paper. In this work, when (Z,dZ) is a metric set, we denote by BZ(z, ε) the
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closed ball of Z centered at some z ∈ Z and of some radius ε > 0. For any
positive integer d ∈ N∗, we denote by ⟨·, ·⟩Rd (resp. ∥ · ∥Rd) the standard inner
product (resp. Euclidean norm) of Rd. For any subset S ⊂ Rd, we denote by ∂S
the boundary of S defined by ∂S := S\Int(S), where S and Int(S) stand for
the closure and interior of S respectively. Furthermore, for any extended-real
number r ∈ [1,+∞] and any real interval I ⊂ R with nonempty interior, we
denote by:

• Lr(I,Rd) the standard Lebesgue space of r-integrable functions defined
on I with values in Rd, endowed with its usual norm ∥ · ∥Lr .

• C(I,Rd) the standard space of continuous functions defined on I with
values in Rd, endowed with its standard uniform norm ∥ · ∥C.

• AC(I,Rd) the subspace of C(I,Rd) of absolutely continuous functions.

If a function γ : I → Rd admits left and right limits at some τ ∈ Int(I), we
denote by

γ−(τ) := lim
t↑τ

γ(t) and γ+(τ) := lim
t↓τ

γ(t).

Finally, when I = [0, T ] for some T > 0, recall that a partition of the inter-
val [0, T ] is a finite set T = {tk}k=0,...,N such that 0 = t0 < t1 < . . . < tN−1 <
tN = T for some positive integer N ∈ N∗.

2.1 Reminders about classical needle-like perturbations and their use in
smooth control systems

For notions and results presented in this section, we refer to standard mono-
graphs such as [1,11,13,16,30,31] and references therein. Let n, m ∈ N∗ be
two positive integers and T > 0 be a fixed positive real number. Consider the
smooth control system given by{

ẋ(t) = f(x(t), u(t)), a.e. t ∈ [0, T ],

x(0) = xinit,
(CS)

where the initial condition xinit ∈ Rn is fixed and f : Rn × Rm → Rn is a dy-
namics of class C1. As usual in the literature, x is called the state (or trajectory)
and u is called the control. Now, let (x, u) ∈ AC([0, T ],Rn) × L∞([0, T ],Rm)
be a solution to (CS). Roughly speaking, a first-order sensitivity analysis of
the final value x(T ) with respect to control perturbations consists in obtaining
an expression of the limit

lim
α↓0

xα(T )− x(T )

α
, (2.1)

where xα ∈ AC([0, T ],Rn) is a perturbed trajectory associated with some per-
turbed control uα ∈ L∞([0, T ],Rm). It plays a fundamental role in control
theory in order to obtain first-order approximations of the accessible set and
to establish first-order necessary optimality conditions. One of the best-known
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(if not the best-known) control perturbation in the literature is called needle-
like perturbation which consists in taking

uα(t) :=

{
ω for all t ∈ [τ − α, τ),

u(t) otherwise,
(2.2)

where ω ∈ Rm and τ ∈ (0, T ) is a Lebesgue point of the map t 7→ f(x(t), u(t)).
It is well known that the corresponding perturbed trajectory xα uniformly
converges to x as α ↓ 0 and that the limit (2.1) is equal to w(T ), where w ∈
AC([τ, T ],Rn), commonly called variation vector, is the unique solution to the
linear Cauchy problem{

ẇ(t) = ∇xf(x(t), u(t))w(t), a.e. t ∈ [τ, T ],

w(τ) = f(x(τ), ω)− f(x(τ), u(τ)).

Figure 1 illustrates the concept of needle-like perturbation.

t

Rm

ω

ττ − α T

uα

u

(a)

t

Rn

xα

x

τ − α T

(b)

Fig. 1: Illustration of a classical needle-like perturbation of the control (left)
and of the corresponding perturbed trajectory (right).

2.2 Counterexample and main result in a spatially heterogeneous context

Now, in the spirit of [2–7,19,22–24], consider a partition Rn = ∪j∈JXj of the
state space, where J is a family of indexes and where the nonempty open
subsets Xj , called regions, are pairwise disjoint. In this paper we focus on the
spatially heterogeneous control system given by{

ẋ(t) = h(x(t), u(t)), a.e. t ∈ [0, T ],

x(0) = xinit,
(HS)

where the fixed initial condition xinit belongs to some Xj1 (with j1 ∈ J ) and
where the spatially heterogeneous dynamics h : Rn × Rm → Rn is defined
regionally by

∀(x, u) ∈ Rn × Rm, h(x, u) := hj(x, u) if x ∈ Xj ,
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where all the subdynamics hj : Rn×Rm → Rn are of class C1. Note that h(x, u)
is not defined when x /∈ ∪j∈JXj but this fact will have no impact on the rest of
this paper since we will focus on regular solutions to (HS) only (see Definition 1
below and Remark 5 in Section 2.4).

In the above spatially heterogeneous setting, the main difficulty in perform-
ing a first-order sensitivity analysis of the final value x(T ) lies in handling the
changes of dynamics occurring at the interfaces ∂Xj ∩ ∂Xj′ . For this purpose,
as in [19], we will focus only on particular solutions to (HS), called regular,
which satisfy several appropriate properties, including transverse crossing con-
ditions.

Definition 1 A solution (x, u) ∈ AC([0, T ],Rn) × L∞([0, T ],Rm) to (HS) is
said to be regular if the following conditions are satisfied:

(C1) There exists a partition T = {tck}k=0,...,N of the interval [0, T ] such that

∀k ∈ {1, . . . , N}, ∃j(k) ∈ J \{j(k − 1)}, ∀t ∈ (tck−1, t
c
k), x(t) ∈ Xj(k),

with x(0) ∈ Xj(1) (and thus j(1) = j1) and x(T ) ∈ Xj(N).

The times tck, for k ∈ {1, . . . , N − 1}, are called crossing times since they
correspond to the instants at which x goes from the region Xj(k) to the
region Xj(k+1), and thus x(tck) ∈ ∂Xj(k) ∩ ∂Xj(k+1).

(C2) There exist δ > 0 and ν > 0 such that at each crossing time tck:

(i) The control u is continuous over [tck − δ, tck) and over (tck, t
c
k + δ],

and admits left and right limits at tck, denoted by u−(tck) and u+(tck)
respectively.

(ii) There exists a C1 function Fk : Rn → R such that

∀y ∈ BRn(x(tck), ν),


y ∈ Xj(k) ⇔ Fk(y) < 0,

y ∈ ∂Xj(k) ∩ ∂Xj(k+1) ⇔ Fk(y) = 0,

y ∈ Xj(k+1) ⇔ Fk(y) > 0.

In particular it holds that Fk(x(t
c
k)) = 0.

(iii) The transverse crossing conditions

⟨∇Fk(x(t
c
k)), hj(k)(x(t

c
k), u

−(tck))⟩Rn > 0,

⟨∇Fk(x(t
c
k)), hj(k+1)(x(t

c
k), u

+(tck))⟩Rn > 0,

are both satisfied.

Under the conditions introduced in Definition 1 and using implicit function
arguments to handle the interface crossings, the authors of [19] assert (in some
way) the following theorem, providing a first-order sensitivity analysis of the
final value x(T ) which involves a variation vector w admitting a discontinuity
jump at each crossing time. We refer to Section 2.4 for comments on Theorem 1
and on the restrictions imposed by Definition 1.
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Theorem 1 Let (x, u) ∈ AC([0, T ],Rn)×L∞([0, T ],Rm) be a regular solution
to (HS) and consider the notations introduced in Definition 1. Let ω ∈ Rm

and τ ∈ (tcq−1, t
c
q), for some q ∈ {1, . . . , N}, be a Lebesgue point of the map t 7→

hj(q)(x(t), u(t)). Then, there exists a solution (xα, uα) ∈ AC([0, T ],Rn) ×
L∞([0, T ],Rm) to (HS) such that xα uniformly converges to x as α ↓ 0 and

lim
α↓0

xα(T )− x(T )

α
= w(T ),

where w : [τ, T ] → Rn is the variation vector defined by

w(t) :=


wq(t) for all t ∈ [τ, tcq),

wk(t) for all t ∈ [tck−1, t
c
k) and all k ∈ {q + 1, ..., N − 1},

wN (t) for all t ∈ [tcN−1, T ],

where wq ∈ AC([τ, tcq],Rn) is the unique solution to the linear Cauchy problem

{
ẇq(t) = ∇xhj(q)(x(t), u(t))wq(t), a.e. t ∈ [τ, tcq],

wq(τ) = hj(q)(x(τ), ω)− hj(q)(x(τ), u(τ)),

and wk ∈ AC([tck−1, t
c
k],Rn) is defined by induction as the unique solution to

the linear Cauchy problem{
ẇk(t) = ∇xhj(k)(x(t), u(t))wk(t), a.e. t ∈ [tck−1, t

c
k],

wk(t
c
k−1) = wk−1(t

c
k−1) + ξk−1,

for all k ∈ {q + 1, ..., N}, where ξk ∈ Rn is the jump vector defined by

ξk := σk(hj(k+1)(x(t
c
k), u

+(tck))− hj(k)(x(t
c
k), u

−(tck))),

with σk ∈ R defined by

σk :=
⟨∇Fk(x(t

c
k)), wk(t

c
k)⟩Rn

⟨∇Fk(x(tck)), hj(k)(x(t
c
k), u

−(tck))⟩Rn

,

for all k ∈ {q, ..., N − 1}.

In the (sketched) proof of Theorem 1 proposed in [19, Section 2.1.1], the
perturbed control uα used by the authors is a classical needle-like perturbation
of the form (2.2). Our first contribution in the present work is to provide
the next counterexample showing that this approach is not mathematically
correct. Nevertheless we precise here that the error in [19] does not affect the
validity of Theorem 1, but only of its proof in [19]. It does not affect either
the main part of [19] dedicated to convergence results on regularized versions
of spatially heterogeneous optimal control problems.
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Example 2.1 Consider (HS) with n = m = 1, T = 2, the state space parti-
tion R = X1 ∪ X2 with X1 := {x ∈ R | x < 1} and X2 := {x ∈ R | x > 1},
xinit = 0 and h1(x, u) := +u and h2(x, u) := −u for all (x, u) ∈ R×R. Taking
the control u ∈ L∞([0, 2],R) given by u(t) = +1 over [0, 1) and u(t) = −1
over [1, 2], we get the trajectory x ∈ AC([0, 2],R) given by x(t) = t over [0, 2],
with tc1 = 1 as unique crossing time. Note that all conditions of Definition 1 are
satisfied. Now consider a classical needle-like perturbation uα of the form (2.2)
associated with ω = −1 and some τ ∈ (0, 1). We get a perturbed trajec-
tory xα ∈ AC([0, 2],R) satisfying xα(t) ∈ X1 over the whole interval [0, 2] (see
Figure 2). We deduce that xα does not uniformly converge to x as α ↓ 0 and

that the limit limα↓0
xα(T )−x(T )

α does not exist.

t

R
x

tc1 2

1

τ
τ − α

xα

Fig. 2: Illustration of Example 2.1.

The issue highlighted by Example 2.1 is that classical needle-like perturba-
tions do not take into account the perturbation of the crossing times. Hence,
in the spatially heterogeneous context, a careful modification of the needle-
like perturbations is required in order to ensure the validity of Theorem 1.
This is the second and main contribution of the present work. As in [19],
our proof of Theorem 1 is based on implicit function arguments to handle
the interface crossings, but also on new tools, such as auxiliary trajectories
and auxiliary controls, allowing a technical construction by concatenation of
a satisfactory perturbed trajectory xα, associated with a modified needle-like
perturbation uα. To ease the reading, we postpone the detailed proof of The-
orem 1 (with all technicalities) to the end of the paper (see Appendices A
and B). Nevertheless we propose in the next section an overview of this proof,
presenting in a concise way the new tools and the main ideas of our approach.
In particular, the definitions of the perturbed trajectory xα (constructed by
concatenation) and of the modified needle-like perturbation uα are given in
Item 7. Their explicit application to the context of Example 2.1 is provided in
Remark 1 in Section 2.4.
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2.3 Overview of the proof of Theorem 1

This overview is divided into seven major items in which we take care to
highlight at which points the conditions introduced in Definition 1 are used.

1. Let (x, u) be a regular solution to (HS) and consider the notations in-
troduced in Definition 1. For all k ∈ {1, . . . , N}, introduce the auxiliary
control, denoted by ũk, that coincides with u over (tck−1, t

c
k) and that is

continuously extended to a constant function outside (tck−1, t
c
k) thanks to

Condition (C2)(i) (see Figure 3). We refer to the beginning of Appendix B
for the exact definition of ũk.

t

Rm

u

tc1 tck−1 tck tcN−1 tcN

......

(a)

t

Rm

ũk

tc1 tck−1 tck

......

tcN−1 tcN

(b)

Fig. 3: Illustration of an auxiliary control ũk. In this illustration, for simplicity,
we have chosen a control u that is continuous over each interval between two
consecutive crossing times, but this is not mandatory. We only know that u
satisfies the continuity properties given in Condition (C2)(i).

2. Then, for all k ∈ {1, . . . , N}, introduce the auxiliary trajectory, denoted
by z̃k, as the unique solution to the smooth state equation associated with
the dynamics hj(k) only (that is, with the dynamics hj(k) all over Rn,
even outside Xj(k)), with the auxiliary control ũk and with the initial
condition z̃k(t

c
k−1) = x(tck−1). Note that z̃k corresponds to an extension
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of x as illustrated in Figure 4. We refer to the beginning of Appendix B
for the exact definition of z̃k.

t

Rn

z̃k
......

tc1

x

tck−1 tck tcN−1t
c
N

Fig. 4: Illustration of an auxiliary trajectory z̃k.

3. Now let ω ∈ Rm and τ ∈ (tcq−1, t
c
q), for some q ∈ {1, . . . , N}, be a Lebesgue

point of the map t 7→ hj(q)(x(t), u(t)). Consider a classical needle-like per-
turbation of the auxiliary control ũq associated with ω and τ (see Figure 5).
This gives us a perturbed auxiliary trajectory denoted by z̃αq . Since we deal
here with a classical smooth setting (with the dynamics hj(q) only), we can
use standard results from the literature such as the uniform convergence
of z̃αq to z̃q as α ↓ 0, and the existence of a variation vector, denoted by wq,
solution to a linear Cauchy problem with an initial condition at τ given by
to hj(q)(z̃q(τ), ω)− hj(q)(z̃q(τ), ũq(τ)) = hj(q)(x(τ), ω)− hj(q)(x(τ), u(τ)).

t

Rm

ũα
q

tc1 tcq−1

ω

τ − α

τ
tcq

......

tcN−1 tcN

Fig. 5: Illustration of a classical needle-like perturbation of the auxiliary con-
trol ũq.

4. The next step is to prove that the perturbed auxiliary trajectory z̃αq crosses

the interface ∂Xj(q) ∩ ∂Xj(q+1) at some perturbed crossing time t̃q(α) (see
Figure 6). For this purpose, we invoke a conic version of the implicit func-
tion theorem (see Lemma 1) to the map Gq : (α, t) 7→ Fq(z̃

α
q (t)) that can

be applied thanks to Conditions (C2)(i)(ii)(iii) and the construction of ũq.
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In particular, note that ∇tGq is invertible at (0, tcq) thanks to the first
transverse crossing condition in Condition (C2)(iii).

∂Xj(q−1) ∩ ∂Xj(q) ∂Xj(q) ∩ ∂Xj(q+1)

z̃αq

z̃q
x

Fig. 6: The perturbed auxiliary trajectory z̃αq crosses the interface ∂Xj(q) ∩
Xj(q+1) at some perturbed crossing time t̃q(α).

5. From the construction of the perturbed auxiliary trajectory z̃αq , it can be

proved that z̃αq stays inside Xj(q) over (t
c
q−1, t̃q(α)). Indeed, thanks to Con-

dition (C2)(iii), one can prove by contradiction that there exist tcq−1 < s′q <

sq < min{tcq, t̃q(α)}, uniformly with respect to α, such that z̃αq has values

in Xj(q) over (t
c
q−1, s

′
q) and over (sq, t̃q(α)) (see Lemma 3 for technical de-

tails). Then, from the uniform convergence of z̃αq to z̃q = x over [s′q, sq], we
obtain that z̃αq has values in the open set Xj(q) over [s

′
q, sq] also.

6. After having analyzed the perturbations in the region Xj(q) in Items 3, 4,
5, the next step is to analyze the resulting perturbations in the next re-
gionsXj(q+1), . . . , Xj(N). For the reader’s convenience, we will develop here
only the passage to the region Xj(q+1) (the other regions are treated by
induction, see Item 7). In contrast with Item 3 (in which we have proceeded
to a classical needle-like perturbation of the auxiliary control), we will con-
sider here the perturbation of the initial time tcq by t̃q(α) (constructed in

Item 4) and the perturbation of the initial condition x(tcq) by z̃αq (t̃q(α)).
This gives us the perturbed auxiliary trajectory z̃αq+1. This construction
allows us to proceed to a concatenation of the perturbed auxiliary trajec-
tories z̃αq and z̃αq+1 (see Figure 7).

∂Xj(q) ∩ ∂Xj(q+1)

z̃αq
z̃q+1x

z̃αq+1

Fig. 7: Perturbed auxiliary trajectory z̃αq+1 under perturbations of the initial
time and of the initial condition.



12 Térence Bayen, Anas Bouali, Löıc Bourdin

Since we deal here with a classical smooth setting (with the dynamics hj(q+1)

only), we can use standard results from the literature such as the uniform
convergence of z̃αq+1 to z̃q+1 as α ↓ 0, and the existence of a variation
vector, denoted by wq+1, solution to a linear Cauchy problem with an
initial condition at tcq that is the sum of wq(t

c
q) and of an extra term ξq

due to the perturbations of the initial time and of the initial condition.
Note also that, similarly to Item 4, we prove that z̃αq+1 crosses the in-

terface ∂Xj(q+1) ∩ ∂Xj(q+2) at some perturbed crossing time t̃q+1(α) and,
using similar arguments to Item 5, it can be proved that the trajectory z̃αq+1

stays inside Xj(q+1) over (t̃q(α), t̃q+1(α)).
7. Finally, we proceed by induction, region after region, in order to construct

the perturbed auxiliary trajectories z̃αk and the corresponding variation
vectors wk for all k ∈ {q, ..., N}. Then, we construct by concatenation the
perturbed trajectory xα, associated with the modified needle-like pertur-
bation uα, as follows:

xα(t) :=


x(t) for all t ∈ [tc0, t

c
q−1],

z̃αq (t) for all t ∈ [tcq−1, t̃q(α)],
z̃αk (t) for all t ∈ [t̃k−1(α), t̃k(α)] and k ∈ {q + 1, . . . , N − 1},
z̃αN (t) for all t ∈ [t̃N−1(α), t

c
N ],

and

uα(t) :=


u(t) for all t ∈ [tc0, τ − α),
ω for all t ∈ [τ − α, τ),
ũq(t) for all t ∈ [τ, t̃q(α)),
ũk(t) for all t ∈ [t̃k−1(α), t̃k(α)) and k ∈ {q + 1, . . . , N − 1},
ũN (t) for all t ∈ [t̃N−1(α), t

c
N ].

Then we construct the variation vector w : [τ, T ] → Rn by concatenation
as it is defined in Theorem 1. This approach guarantees that xα uniformly
converges to x as α ↓ 0 and that

lim
α↓0

xα(T )− x(T )

α
= lim

α↓0

z̃αN (T )− z̃N (T )

α
= wN (T ) = w(T ).

2.4 A list of comments and perspectives

Remark 1 In the context of Example 2.1, the modified needle-like perturba-
tion uα and the corresponding perturbed trajectory xα, both presented in Item 7
of Section 2.3, are respectively given by

uα(t) =


+1 for all t ∈ [0, τ − α),
−1 for all t ∈ [τ − α, τ),
+1 for all t ∈ [τ, t̃1(α)),
−1 for all t ∈ [t̃1(α), 2],
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and

xα(t) =

 t for all t ∈ [0, τ − α],
−t+ 2(τ − α) for all t ∈ [τ − α, τ ],
t− 2α for all [τ, 2],

where t̃1(α) = 1 + 2α is the perturbed crossing time of tc1 = 1 (see Figure 8).

Here xα uniformly converges to x as α ↓ 0 and the limit limα↓0
xα(T )−x(T )

α
exists and is equal to −2, which is in accordance with the conclusions of The-
orem 1.

t

R
x

tc1 2

1

τ
τ − α

xα

t̃1(α)

Fig. 8: Illustration of Remark 1 (to be compared with Figure 2).

Remark 2 Example 2.1 shows that using needle-like perturbations of the con-
trol in the context of a spatially heterogeneous control system is not trivial.
Actually, perturbing the initial condition xinit in that context is not trivial ei-
ther. Indeed, considering a basic perturbation xinit − α in Example 2.1 leads
also to a perturbed trajectory xα satisfying xα(t) ∈ X1 over the whole in-
terval [0, 2]. Thus xα does not uniformly converge to x as α ↓ 0 and the

limit limα↓0
xα(T )−x(T )

α does not exist. Hence, in the spatially heterogeneous
setting, a perturbation of the initial condition should induce also a perturba-
tion of the control in order to take into account the perturbation of the crossing
times. Such an extension can be achieved by adapting our approach summa-
rized in Section 2.3, and detailed in Appendices A and B, but this is out of the
scope of the present paper and left to the readers.

Remark 3 One main difference between Theorem 1 and the classical smooth
context (see Section 2.1 for reminders) is the discontinuity of the variation
vector w at each crossing time tck. The jump vector ξk arises from the per-
turbation t̃k(α) of the crossing time tck (obtained from the application of a
conic version of the implicit function theorem). Nonetheless this jump vector
can be zero in some particular cases, such as when hj(k+1)(x(t

c
k), u

+(tck)) =
hj(k)(x(t

c
k), u

−(tck)) (see Example 2.1 and Remark 1 for an example). Of course,
the discontinuity jumps of the variation vector w in Theorem 1 can be directly
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correlated with the discontinuity jumps of the costate p arising in Hybrid max-
imum principles stated for spatially heterogeneous optimal control problems
(see, e.g., [4,7,19]). We refer to [9, Remark 2.2.4] for a discussion relating
the discontinuities of the (forward) variation vector w with those of the (back-
ward) costate p.

Remark 4 In this paper we have considered a certain framework which is, of
course, not the most general possible. We made some choices in order to keep
the presentation as simple as possible, while keeping the essence of our work.
For example, we have assumed that the subdynamics hj : Rn × Rm → Rn are
of class C1, while it is well known in the literature that this regularity can be
relaxed (see, e.g., [14]). Also we have considered autonomous control systems
(that is, independent of the time variable t), while it is clear that our approach
can easily be extended to time-dependent control systems. Below we list some
other possible extensions of our work:

• As in [9,19], a possible extension could be to consider a time-dependent par-
tition of the state space Rn = ∪j∈JXj(t) in order to encompass spatially
heterogeneous control systems with time-evolutive regions. In that context,
one should add continuity conditions on the multifunctions Xj : [0, T ] ⇒
Rn to maintain the applicability of our approach. One could also consider
a space-time partition Rn × [0, T ] = ∪j∈J Yj. Such a generalized context
could encompass, as particular cases, temporally heterogeneous control sys-
tems (see Introduction), as well as spatially heterogeneous control systems
with time-evolutive regions. Note that such an extension could possibly be
addressed by using the classical augmentation technique which consists in
considering the time variable t as an additional state variable xn+1 satis-

fying dxn+1

dt = 1 (see, e.g., [8, Section 1.3.3]).
• One may also consider an extended framework that includes a region-
ally switching parameter (see [9]), meaning that the control system de-
pends on an additional parameter that remains constant in each region
but can change its value when the state crosses an interface. This frame-
work is useful when considering control systems with loss control regions
(see [3,5]). One could also consider, for each region Xj, a subdynam-
ics hj : Rn×Rmj → Rn with possibly different control dimensions mj ∈ N∗.
This generalized context is interesting to deal with spatially heterogeneous
control systems in which the control in one region is fundamentally different
from the control in another region.

• Finally, this paper focuses on single needle-like perturbations, in the sense
that the control is perturbed at only one time τ ∈ (0, T ) and with only
one control value ω ∈ Rm. In the literature, it is well known that multi-
ple needle-like perturbations, for which the control is perturbed at several
times τ1, . . . , τK ∈ (0, T ) and with several control values ω1, . . . , ωK ∈ Rm,
are very useful in optimal control theory to establish first-order neces-
sary optimality conditions in the presence of mixed initial-final state con-
straints (see, e.g., [21]). Therefore the extension of our approach to multiple
needle-like perturbations would be relevant, but would also require a thor-
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ough and rigorous analysis due to the presence (already) of several crossing
times tc1, . . . , t

c
N−1 ∈ (0, T ). This is out of the scope of the present work,

but it constitutes an interesting perspective for further researches.

Remark 5 Theorem 1 deals with regular solutions to (HS) only, which al-
lows us to develop our approach based on implicit function arguments (see
Section 2.3 and Appendices A and B for details) but also induces some re-
strictions. For example, Condition (C1) does not include the possibility of an
infinite number of crossing times (excluding a Zeno-type phenomenon [34]).
Also it does not allow trajectories bouncing against a boundary of a region,
or moving along such a boundary (excluding sliding modes as described for
instance in [2,26]). By the way, this last restriction is the reason why the fact
that h(x, u) is not defined when x /∈ ∪j∈JXj has no impact on the present
work. Also, note that the transverse crossing conditions in Condition (C2)(iii)
have a geometrical interpretation (see Figure 9), excluding the possibility for
the trajectory x to cross the interfaces ∂Xj(k)∩∂Xj(k+1) tangentially. All these
restrictions constitute nontrivial open challenges for further research works.
To conclude this remark, we just mention that the right continuity of the con-
trol after each crossing time tck and the left continuity before the last crossing
time tcN−1 in Condition (C2)(i) are useless in our proof of Theorem 1. We
have adopted these hypotheses for the sake of simplicity of the presentation,
however they can be removed.

∇Fk(x(t
c
k))

x(tck)

Fk = 0

Xj(k)

Xj(k+1)
x

Fig. 9: Geometrical illustration of the transverse crossing conditions (C2)(iii):
the trajectory x does not exit Xj(k) tangentially and does not enter
into Xj(k+1) tangentially.

A Preliminaries for the proof of Theorem 1

As explained in Section 2.3, the proof of Theorem 1 is based on a conic version of the implicit
function theorem (see Lemma 1 in Appendix A.1). It is also based on results concerning
the sensitivity analysis of smooth control systems, not only with respect to needle-like per-
turbations of the control (as in Section 2.1), but also with respect to perturbations of the
initial time and of the initial condition. The aim of Appendix A.2 is to gather these results
in a unified framework. The proof of Theorem 1 will be developed with all technical details
in the next appendix (Appendix B).
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A.1 A conic version of the implicit function theorem

Lemma 1 Let α > 0, tc ∈ R and δ > 0. Consider a continuous map

G : [0, α]× [tc − δ, tc + δ] → R
(α, t) 7→ G(α, t),

satisfying G(0, tc) = 0, such that ∇αG(0, tc) exists and such that ∇tG exists and is contin-
uous over [0, α] × [tc − δ, tc + δ] with ∇tG(0, tc) ̸= 0. Then there exist 0 < β ≤ α and an
implicit function t̃ ∈ C([0, β], [tc − δ, tc + δ]), satisfying t̃(0) = tc and G(α, t̃(α)) = 0 for
all α ∈ [0, β], that is differentiable at 0 with derivative

t̃′(0) = −
∇αG(0, tc)
∇tG(0, tc)

.

Proof Consider the continuous extension G0 : [−α, α]× [tc − δ, tc + δ] → R defined by

∀(α, t) ∈ [−α, α]× [tc − δ, tc + δ], G0(α, t) :=

{
G(α, t) if α ∈ [0, α],
2G(0, t)− G(−α, t) if α ∈ [−α, 0].

From the assumptions of Lemma 1, one can easily derive that G0(0, tc) = 0, ∇αG0(0, tc)
exists and ∇tG0 exists and is continuous over [−α, α]× [tc − δ, tc + δ] with ∇tG0(0, tc) ̸= 0.
Using a classical version of the implicit function theorem (see, e.g., [25, Theorem 9.3] and [20,
Theorem E]), there exist 0 < β ≤ α and an implicit function t̃ ∈ C([−β, β], [tc − δ, tc + δ]),
satisfying t̃(0) = tc and G0(α, t̃(α)) = 0 for all α ∈ [−β, β], that is differentiable at 0 with

derivative t̃′(0) = −∇αG0(0,t
c)

∇tG0(0,tc)
. To conclude the proof, one has just to consider the restriction

of the function t̃ to the interval [0, β] and to use the facts that ∇αG0(0, tc) = ∇αG(0, tc)
and ∇tG0(0, tc) = ∇tG(0, tc).

A.2 Sensitivity analysis of smooth control systems

Let g : Rn × Rm → Rn be a dynamics of class C1. For any triplet θ = (u, r, yr) ∈
L∞([0, T ],Rm) × [0, T ] × Rn, the classical Cauchy-Lipschitz theorem (or Picard-Lindelöf
theorem) ensures the existence and the uniqueness of the maximal solution to the Cauchy
problem {

ẏ(t) = g(y(t), u(t)), a.e. t ∈ [0, T ],

y(r) = yr.

This maximal solution is denoted by y(·, g, θ) and is defined over the maximal interval
denoted by I(g, θ) ⊂ [0, T ]. Recall that the classical blow-up theorem ensures that, ei-
ther I(g, θ) = [0, T ] (in that case we speak of a global solution), either y(·, g, θ) is un-
bounded over I(g, θ). In the sequel we denote by Glob(g) the set of all triplets θ such
that I(g, θ) = [0, T ].

For the technical needs of this section, for any triplet θ = (u, r, yr) ∈ Glob(g) and
any R ≥ ∥u∥L∞ , we denote by M(g, θ, R) ≥ 0 a common bound of ∥g∥Rn , ∥∇xg∥Rn×n

and ∥∇ug∥Rn×m over the compact set K(g, θ, R) := ∪t∈[0,T ]Kt(g, θ, R) where

Kt(g, θ, R) :=
{
(x, v) ∈ Rn × Rm | ∥x− y(t, g, θ)∥Rn ≤ 1 and ∥v∥Rm ≤ R

}
.

Note that (y(t, g, θ), u(t)) ∈ Kt(g, θ, R) for almost every t ∈ [0, T ]. Since Kt(g, θ, R) is
convex, one can easily get that

∥g(y2, v2)− g(y1, v1)∥Rn ≤ M(g, θ, R)(∥y2 − y1∥Rn + ∥v2 − v1∥Rm ),

for all (y2, v2), (y1, v1) ∈ Kt(g, θ, R), for all t ∈ [0, T ].
We are now in a position to state and prove the next continuous dependence result for

the trajectory y(·, g, θ) with respect to the triplet θ.
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Lemma 2 For any triplet θ = (u, r, yr) ∈ Glob(g) and any R ≥ ∥u∥L∞ , there exists ε > 0
such that the neighborhood of θ defined by

N (g, θ, R, ε) :=
(
BL1 (u, ε) ∩ BL∞ (0L∞ , R)

)
×
(
[r − ε, r + ε] ∩ [0, T ]

)
× BRn (yr, ε),

is included in Glob(g). Furthermore, for all triplets θ′ = (u′, r′, y′r) ∈ N (g, θ, R, ε) and
almost every t ∈ [0, T ], it holds that (y(t, g, θ′), u′(t)) ∈ Kt(g, θ, R). Finally the map

F : N (g, θ, R, ε) → C([0, T ],Rn)
θ′ 7→ y(·, g, θ′),

is Lipschitz continuous, in the sense that there exists L(g, θ, R) ≥ 0 such that

∥y(·, g, θ′′)− y(·, g, θ′)∥C ≤ L(g, θ, R)(∥u′′ − u′∥L1 + |r′′ − r′|+ ∥y′′r − y′r∥Rn ),

for all θ′ = (u′, r′, y′r), θ
′′ = (u′′, r′′, y′′r ) ∈ N (g, θ, R, ε).

Proof Let θ = (u, r, yr) ∈ Glob(g) and R ≥ ∥u∥L∞ . In this proof, for the ease of notations,
we denote by M := M(g, θ, R). Let us fix ε > 0 such that ε(1 + 2M)eMT < 1 and let
us prove that N (g, θ, R, ε) ⊂ Glob(g). To this aim let θ′ = (u′, r′, y′r) ∈ N (g, θ, R, ε) and
introduce the sets

I1 := {t ∈ I(g, θ′) ∩ [0, r′] | ∥y(t, g, θ′)− y(t, g, θ)∥Rn > 1}
and I2 := {t ∈ I(g, θ′) ∩ [r′, T ] | ∥y(t, g, θ′)− y(t, g, θ)∥Rn > 1}.

If I1 ∪ I2 = ∅, then the solution y(·, g, θ′) is bounded over I(g, θ′), and thus θ′ ∈ Glob(g)
from the blow-up theorem. Therefore, by contradiction, let us assume that I1 ∪ I2 ̸= ∅. In
the sequel we only deal with the case I2 ̸= ∅ (the case where I2 = ∅, and thus I1 ̸= ∅, is
similar). From integral representations it holds that

y(t, g, θ′)− y(t, g, θ) = (y′r − yr) +

∫ t

r′
g(y(s, g, θ′), u′(s))− g(y(s, g, θ), u(s)) ds

−
∫ r′

r
g(y(s, g, θ), u(s)) ds,

for all t ∈ I(g, θ′). Now let t2 := inf I2 ≥ r′. From continuity and definition of t2, we know
that ∥y(t2, g, θ′)− y(t2, g, θ)∥Rn ≥ 1 and thus t2 > r′ since

∥y(r′, g, θ′)− y(r′, g, θ)∥Rn ≤ ∥y′r − yr∥Rn +

∣∣∣∣∣
∫ r′

r
∥g(y(s, g, θ), u(s))∥Rn ds

∣∣∣∣∣
≤ ∥y′r − yr∥Rn +M |r′ − r| ≤ ε(1 +M) < 1.

From definition of t2, we deduce that ∥y(t, g, θ′) − y(t, g, θ)∥Rn ≤ 1 for all t ∈ [r′, t2].
Therefore, since moreover ∥u′∥L∞ ≤ R, we deduce that (y(t, g, θ′), u′(t)) ∈ Kt(g, θ, R) for
almost every t ∈ [r′, t2]. Hence, from integral representations, we get that

∥y(t, g, θ′)− y(t, g, θ)∥Rn

≤ ∥y′r − yr∥Rn +M |r′ − r|+M

∫ t

r′
∥y(s, g, θ′)− y(s, g, θ)∥Rn + ∥u′(s)− u(s)∥Rm ds

≤ ∥y′r − yr∥Rn +M |r′ − r|+M

∫ t

r′
∥y(s, g, θ′)− y(s, g, θ)∥Rn ds+M∥u′ − u∥L1 ,

for all t ∈ [r′, t2]. From the Grönwall lemma we obtain that

∥y(t, g, θ′)−y(t, g, θ)∥Rn ≤ (∥y′r−yr∥Rn+M |r′−r|+M∥u′−u∥L1 )eMT ≤ ε(1+2M)eMT < 1,
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for all t ∈ [r′, t2], which raises a contradiction at t = t2. Thus we have proved that I1∪I2 = ∅
which gives θ′ ∈ Glob(g) but also (y(t, g, θ′), u′(t)) ∈ Kt(g, θ, R) for almost every t ∈ [0, T ].
Hence the proofs of the first two claims of Lemma 2 are complete. Now let us prove the last
claim. For this purpose, let θ′ = (u′, r′, y′r), θ

′′ = (u′′, r′′, y′′r ) ∈ N (g, θ, R, ε). From integral
representations it holds that

y(t, g, θ′′)− y(t, g, θ′) = (y′′r − y′r) +

∫ t

r′′
g(y(s, g, θ′′), u′′(s))− g(y(s, g, θ′), u′(s)) ds

−
∫ r′′

r′
g(y(s, g, θ′), u′(s)) ds,

for all t ∈ [0, T ]. Using similar arguments than before (in particular using the Grönwall
lemma), we get that

∥y(t, g, θ′′)− y(t, g, θ′)∥Rn ≤ (∥yr′′ − yr′∥Rn +M |r′′ − r′|+M∥u′′ − u′∥L1 )eMT ,

for all t ∈ [0, T ], which concludes the proof of the last claim of Lemma 2.

Proposition 1 Consider the perturbation θ̃(α) := (ũ(α), r̃(α), ỹr(α)) of a triplet θ =
(u, r, yr) ∈ Glob(g) where:

• either ũ(α) := u (no perturbation of the control), either ũ(α) is a classical needle-like
perturbation of u given by

ũ(α)(t) :=

{
ω for all t ∈ [τ − α, τ),
u(t) otherwise,

where ω ∈ Rm and τ ∈ (0, T ) is a Lebesgue point of the map t 7→ g(y(t, g, θ), u(t)).
• either r̃(α) := r (no perturbation of the initial time), either r̃(α) satisfies r̃(0) = r and

is differentiable at 0 with derivative denoted by r̃′(0) (in that second context, assume
that r ∈ [0, T ) is a Lebesgue point of the map t 7→ g(y(t, g, θ), u(t)) and, in case of
needle-like perturbation of the control, assume furthermore that r ̸= τ).

• ỹr(α) satisfies ỹr(0) = yr and is differentiable at 0 with derivative denoted by ỹ′r(0).

Then:

(i) There exists α > 0 such that θ̃(α) ∈ Glob(g) for all α ∈ [0, α].
(ii) The perturbed trajectory y(·, g, θ̃(α)) uniformly converges to y(·, g, θ) as α ↓ 0.
(iii) The map

P : [0, α] → C([ς, T ],Rn)

α 7→ y(·, g, θ̃(α)),

with ς := τ in case of needle-like perturbation of the control and ς := 0 otherwise, is
differentiable at 0 and its derivative is equal to w(r̃,ỹr)+wũ, where w(r̃,ỹr) is the unique
solution to the linear Cauchy problem given by{

ẇ(t) = ∇xg(y(t, g, θ), u(t))w(t), a.e. t ∈ [0, T ],

w(r) = ỹ′r(0)− r̃′(0)g(y(r, g, θ), u(r)),

with r̃′(0)g(y(r, g, θ), u(r)) = 0Rn in case of no perturbation of the initial time, and
where wũ is the unique solution to the linear Cauchy problem given by{

ẇ(t) = ∇xg(y(t, g, θ), u(t))w(t), a.e. t ∈ [0, T ],

w(τ) = g(y(τ, g, θ), ω)− g(y(τ, g, θ), u(τ)),

in case of needle-like perturbation of the control and wũ is the zero function otherwise.
(iv) If furthermore ỹr(α) and r̃(α) are assumed to be continuous with respect to α, then
the map (α, t) ∈ [0, α]× [0, T ] 7→ y(t, g, θ̃(α)) ∈ Rn is continuous.
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Proof This proof is dedicated to the case of a needle-like perturbation of the control, together
with a perturbation of the initial time (the other cases are similar and simpler). Let R ≥
∥u∥L∞ +∥ω∥Rm . As in the proof of Lemma 2, we denote by M := M(g, θ, R). Consider ε > 0
provided in Lemma 2. It is clear that θ̃(α) ∈ N (g, θ, R, ε) for sufficiently small α > 0. As
a consequence, from Lemma 2, there exists α > 0 such that θ̃(α) ∈ Glob(g) for all α ∈
[0, α] which concludes the proof of the first item. The second and fourth items are trivial
consequences of the Lipschitz continuity provided in Lemma 2. Now our aim is to prove the
third item. For this purpose we introduce

χα(t) :=
y(t, g, θ̃(α))− y(t, g, θ)

α
− w(r̃,ỹr)(t)− wũ(t),

for all t ∈ [0, T ] and all α ∈ (0, α]. Our aim is to prove that χα uniformly converges to zero
over [τ, T ] as α ↓ 0. For this purpose, we write χα = χα

1 + χα
2 where

χα
1 (t) :=

ỹα1 (t)− y(t)

α
− wũ(t), χα

2 (t) :=
ỹα(t)− ỹα1 (t)

α
− w(r̃,ỹr)(t),

for all t ∈ [0, T ] and all α ∈ (0, α], where we use the notations

ỹα(t) := y(t, g, θ̃(α)), ỹα1 (t) := y(t, g, θ̃1(α)), y(t) := y(t, g, θ),

and θ̃1(α) := (ũ(α), r, yr) ∈ N (g, θ, R, ε), for all t ∈ [0, T ] and all α ∈ [0, α]. Note that, for
almost every t ∈ [0, T ] and all α ∈ [0, α], the five elements

(y(t), u(t)), (ỹα(t), u(t)), (ỹα1 (t), u(t)), (ỹα(t), ũ(α)(t)), (ỹα1 (t), ũ(α)(t)),

belong to Kt(g, θ, R), as well as their convex combinations. Also note that ỹα and ỹα1
uniformly converge to y over [0, T ] as α ↓ 0 from the Lipschitz continuity provided in
Lemma 2. In what follows, as in the proof of Lemma 2, we will use integral representations
and the Grönwall lemma to prove that χα

1 and χα
2 uniformly converge to zero over [τ, T ]

as α ↓ 0. To reduce the notations in integrands, we will use the notation ρ(s) := (y(s), u(s)).

Step 1: Let us prove that χα
1 uniformly converges to zero over [τ, T ] as α ↓ 0. From

integral representations it holds that

χα
1 (t) = χα

1 (τ) +

∫ t

τ

g(ỹα1 (s), u(s))− g(y(s), u(s))

α
−∇xg(ρ(s))wũ(s) ds,

for all t ∈ [τ, T ] and all α ∈ (0, α]. Using a Taylor expansion with integral rest, we obtain
that

∥χα
1 (t)∥Rn ≤ ∥χα

1 (τ)∥Rn

+

∫ t

τ

∫ 1

0
∥∇xg(y(s) + η(ỹα1 (s)− y(s)), u(s))∥Rn×n

∥∥∥∥∥∥∥∥∥∥
ỹα1 (s)− y(s)

α
− wũ(s)︸ ︷︷ ︸

χα
1 (s)

∥∥∥∥∥∥∥∥∥∥
Rn

dη ds

+

∫ T

τ

∫ 1

0
∥∇xg(y(s) + η(ỹα1 (s)− y(s)), u(s))−∇xg(ρ(s))∥Rn×n ∥wũ(s)∥Rn dη ds,︸ ︷︷ ︸

Γ1(α)

for all t ∈ [τ, T ] and all α ∈ (0, α]. The Grönwall lemma leads to

∥χα
1 (t)∥Rn ≤ (∥χα

1 (τ)∥Rn + Γ1(α)) e
MT ,

for all t ∈ [τ, T ] and all α ∈ (0, α]. From the uniform convergence of ỹα1 to y over [0, T ]
as α ↓ 0 and from the dominated convergence theorem, we prove that Γ1(α) converges to
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zero as α ↓ 0. It remains to prove that ∥χα
1 (τ)∥Rn converges to zero as α ↓ 0. From integral

representations it holds that

χα
1 (τ) =

∫ τ

τ−α

g(ỹα1 (s), ω)− g(y(s), ω)

α
ds+

∫ τ

τ−α

g(y(s), ω)− g(y(s), u(s))

α
ds− wũ(τ),

for all α ∈ (0, α]. From the uniform convergence of ỹα1 to y over [0, T ] as α ↓ 0, one can
easily prove that the first term tends to 0Rn as α ↓ 0. Finally, since τ is a Lebesgue point of
the map t 7→ g(y(t), u(t)) and from the value of wũ(τ), the sum of the last two terms tend
to 0Rn as α ↓ 0. The proof of Step 1 is complete.

Step 2: Let us prove that χα
2 uniformly converges to zero over [0, T ] as α ↓ 0. From

integral representations it holds that

χα
2 (t) = χα

2 (r) +

∫ t

r

g(ỹα(s), ũ(α)(s))− g(ỹα1 (s), ũ(α)(s))

α
−∇xg(ρ(s))w(r̃,ỹr)(s) ds,

for all t ∈ [0, T ] and all α ∈ (0, α]. Using a Taylor expansion with integral rest, we obtain
that

∥χα
2 (t)∥Rn ≤ ∥χα

2 (r)∥Rn

+

∣∣∣∣∣∣∣∣∣∣
∫ t

r

∫ 1

0
∥∇xg(ỹ

α
1 (s) + η(ỹα(s)− ỹα1 (s)), ũ(α)(s))∥Rn×n

∥∥∥∥∥∥∥∥∥∥
ỹα(s)− ỹα1 (s)

α
− w(r̃,ỹr)(s)︸ ︷︷ ︸

χα
2 (s)

∥∥∥∥∥∥∥∥∥∥
Rn

dη ds

∣∣∣∣∣∣∣∣∣∣
+

∫ T

0

∫ 1

0
∥∇xg(ỹ

α
1 (s) + η(ỹα(s)− ỹα1 (s)), ũ(α)(s))−∇xg(ρ(s))∥Rn×n ∥w(r̃,ỹr)(s)∥Rn dη ds,︸ ︷︷ ︸

Γ2(α)

for all t ∈ [0, T ] and all α ∈ (0, α]. The Grönwall lemma leads to

∥χα
2 (t)∥Rn ≤ (∥χα

2 (r)∥Rn + Γ2(α)) e
MT ,

for all t ∈ [0, T ] and all α ∈ (0, α]. From the uniform convergences of ỹα and ỹα1 to y
over [0, T ] as α ↓ 0 and from the dominated convergence theorem, we prove that Γ2(α)
converges to zero as α ↓ 0. It remains to prove that ∥χα

2 (r)∥Rn converges to zero as α ↓ 0.
From integral representations it holds that

χα
2 (r) =

(
ỹr(α)− yr

α
− ỹ′r(0)

)
+

(
r̃′(0)g(y(r), u(r)) +

1

α

∫ r

r̃(α)
g(ỹα(s), ũ(α)(s)) ds

)
,

for all α ∈ (0, α]. From differentiability of ỹr(·) at 0, the first term converges to 0Rn as α ↓ 0.
Since r ̸= τ and from the continuity of r̃(·) at 0, we know that the second term can be
rewritten as

r̃′(0)g(y(r), u(r)) +
1

α

∫ r

r̃(α)
g(y(s), u(s)) ds−

1

α

∫ r

r̃(α)
g(y(s), u(s))− g(ỹα(s), u(s)) ds,

for sufficiently small α > 0. Since r is a Lebesgue point of the map t 7→ g(y(t), u(t)) and
from the differentiability of r̃(·) at 0, the sum of the two first terms in the above equation
converges to 0Rn as α ↓ 0. Finally the norm of the last term in the above equation can be
bounded by∣∣∣∣∣ 1α

∫ r

r̃(α)
∥g(y(s), u(s))− g(ỹα(s), u(s))∥Rn ds

∣∣∣∣∣ ≤ M

∣∣∣∣ r̃(α)− r

α

∣∣∣∣ ∥y − ỹα∥C,

which tends to zero as α ↓ 0, thanks to the differentiability of r̃(·) at 0 and from the uniform
convergence of ỹα to y over [0, T ] as α ↓ 0. The proof of Step 2 is complete, which ends the
proof of Proposition 1.

Remark 6 The proof of Theorem 1 (developed in the next Appendix B) is based on several
applications of the results established in the present Appendix A.2, but for smooth control
systems considered on compact intervals of the form [a, b] that are not necessarily [0, T ].
This is, of course, not a difficulty.
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B Proof of Theorem 1

Let (x, u) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm) be a regular solution to (HS) and consider the
notations introduced in Definition 1. For convenience we reduce δ > 0 so that 0 < δ ≤
1
3
mink=1,...,N |tck − tck−1|. Then, for all k ∈ {1, ..., N}, we introduce, following the notations

introduced in Appendix A.2, the auxiliary trajectory z̃k := y(·, hj(k), θk) associated with the
triplet θk := (ũk, t

c
k−1, x(t

c
k−1)), where the auxiliary control ũk ∈ L∞([0, T ],Rm) is defined

by

ũk(t) :=


u+(tck−1), for all t ∈ [tc0, t

c
k−1],

u(t), for all t ∈ (tck−1, t
c
k),

u−(tck), for all t ∈ [tck, t
c
N ],

where the above definition has to be slightly and trivially adapted for the cases k = 1
and k = N . Note that z̃k = x over [tck−1, t

c
k] ⊂ I(hj(k), θk) for all k ∈ {1, ..., N}. We refer

to Figures 3 and 4 in Section 2.3.
From the blow-up theorem and up to reducing δ > 0 again, we will consider in the

sequel that [tck−1 − δ, tck + δ] ∩ [0, T ] ⊂ I(hj(k), θk) for all k ∈ {1, ..., N}. Furthermore, up

to reducing δ > 0 again, we will consider that z̃k(t) ∈ BRn (x(tck−1),
ν
2
) for all t ∈ [tck−1 −

δ, tck−1 + δ] and all k ∈ {2, . . . , N}, and that z̃k(t) ∈ BRn (x(tck),
ν
2
) for all t ∈ [tck − δ, tck + δ]

and all k ∈ {1, . . . , N − 1}.
Furthermore, from Condition (C2)(i) and for any k ∈ {1, . . . , N − 1}, note that ũk

is continuous over [tck − δ, T ] and thus z̃k is of class C1 over [tck − δ, tck + δ] with żk(t) =
hj(k)(z̃k(t), ũk(t)) for all t ∈ [tck−δ, tck+δ]. In particular tck is a Lebesgue point of the map t 7→
hj(k)(z̃k(t), ũk(t)) and it holds that żk(t

c
k) = hj(k)(x(t

c
k), u

−(tck)). Similarly, from Condi-
tion (C2)(i) and for any k ∈ {1, . . . , N − 1}, note that ũk+1 is continuous over [0, tck + δ] and
thus z̃k+1 is of class C1 over [tck−δ, tck+δ] with żk+1(t) = hj(k+1)(z̃k+1(t), ũk+1(t)) for all t ∈
[tck−δ, tck+δ]. In particular tck is a Lebesgue point of the map t 7→ hj(k+1)(z̃k+1(t), ũk+1(t))

and it holds that żk+1(t
c
k) = hj(k+1)(x(t

c
k), u

+(tck)).
We are now in a position to start the proof of Theorem 1. Let ω ∈ Rm and τ ∈ (tcq−1, t

c
q),

for some q ∈ {1, . . . , N}, be a Lebesgue point of the map t 7→ hj(q)(x(t), u(t)).

B.1 Construction of the perturbed auxiliary trajectories and of the perturbed
crossing times

The next proposition uses the notations of Definition 1, the ones introduced in Appendix A.2
and the variation vector w constructed by induction in the statement of Theorem 1.

Proposition 2 There exists α > 0 such that, for all k ∈ {q, ..., N − 1}, there exists a
function t̃k ∈ C([0, α], [tck − δ, tck + δ]) differentiable at 0 with t̃k(0) = tck and

t̃′k(0) = −
⟨∇Fk(x(t

c
k)), wk(t

c
k)⟩Rn

⟨∇Fk(x(t
c
k)), hj(k)(x(t

c
k), u

−(tck))⟩Rn
,

such that the perturbed auxiliary trajectories z̃αk := y(·, hj(k), θ
α
k ) associated with the per-

turbed triplets θαk defined by the induction

θαk :=

{
(ũα

q , t
c
q−1, x(t

c
q−1)) if k = q,

(ũk, t̃k−1(α), z̃
α
k−1(t̃k−1(α)) if k ∈ {q + 1, . . . , N},

for all α ∈ [0, α] and all k ∈ {q, . . . , N}, where ũα
q is the needle-like perturbation of ũq (see

Figure 5 in Section 2.3) given by

ũα
q (t) :=

{
ω for all t ∈ [τ − α, τ),
ũq(t) otherwise,

satisfy:
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• for all k ∈ {q, . . . , N}, it holds that [tck−1 − δ, tck + δ] ∩ [0, T ] ⊂ I(hj(k), θ
α
k ) for all α ∈

[0, α], that z̃αk uniformly converges to z̃k over [tck−1 − δ, tck + δ] ∩ [0, T ] as α ↓ 0, and

lim
α↓0

z̃αk (t
c
k)− z̃k(t

c
k)

α
= wk(t

c
k).

• for all k ∈ {q, . . . , N − 1}, it holds that z̃αk (t) ∈ BRn (x(tck), ν) for all (α, t) ∈ [0, α] ×
[tck − δ, tck + δ], that Fk(z̃

α
k (t̃k(α))) = 0 for all α ∈ [0, α], and that the map α ∈ [0, α] 7→

z̃αk (t̃k(α)) ∈ Rn is continuous over [0, α] and differentiable at 0 with

lim
α↓0

z̃αk (t̃k(α))− z̃k(t
c
k)

α
= wk(t

c
k) + t̃′k(0)hj(k)(x(t

c
k), u

−(tck)).

Proof The case q = N follows directly from Proposition 1. In the sequel we deal with the
case q ∈ {1, . . . , N − 1} and we will proceed by induction over k ∈ {q, . . . , N}. Note that we
will construct α > 0 in the base case and that it will be reduced a finite number of times at
each step of the induction.

Base case k = q. From Proposition 1, there exists α > 0 such that [tcq−1 − δ, tcq + δ] ∩
[0, T ] ⊂ I(hj(q), θ

α
q ) for all α ∈ [0, α], that z̃αq uniformly converges to z̃q over [tcq−1 − δ, tcq +

δ] ∩ [0, T ] as α ↓ 0, and that the map

(α, t) ∈ [0, α]× ([tcq−1 − δ, tcq + δ] ∩ [0, T ]) 7→ z̃αq (t) ∈ Rn, (B.3)

is continuous. Since moreover z̃q(t) ∈ BRn (x(tcq),
ν
2
) for all t ∈ [tcq − δ, tcq + δ], up to reduc-

ing α > 0, we have z̃αq (t) ∈ BRn (x(tcq), ν) for all (α, t) ∈ [0, α] × [tcq − δ, tcq + δ]. We define
now the map

Gq : [0, α]× [tcq − δ0, tcq + δ0] → R
(α, t) 7→ Fq(z̃αq (t)),

where 0 < δ0 < δ is selected such that τ < tcq − δ0 and where Fq is the C1 function provided
in Definition 1.

Let us check that Gq satisfies all the assumptions of Lemma 1. First, Gq is continuous
from the continuity of the map (B.3) and Gq(0, tcq) = Fq(x(tcq)) = 0. Second, for any α ∈
[0, α], we have that ũα

q = ũq is continuous over [tcq − δ0, tcq + δ0]. This implies that z̃αq is of

class C1 over [tcq − δ0, tcq + δ0] and that ∇tGq(α, t) exists with

∇tGq(α, t) = ⟨∇Fq(z̃
α
q (t)), hj(q)(z̃

α
q (t), ũq(t))⟩Rn ,

for all (α, t) ∈ [0, α]×[tcq−δ0, tcq+δ0]. Furthermore, from the continuity of the map (B.3), one
can see that ∇tGq is continuous over [0, α]× [tcq − δ0, tcq + δ0] and, from Condition (C2)(iii),
it holds that

∇tGq(0, t
c
q) = ⟨∇Fq(x(t

c
q)), hj(q)(x(t

c
q), u

−(tcq))⟩Rn ̸= 0.

Finally, from the third item of Proposition 1, we get that

lim
α↓0

z̃αq (t
c
q)− z̃q(tcq)

α
= wq(t

c
q),

which implies that ∇αGq(0, tcq) exists with ∇αGq(0, tcq) = ⟨∇Fq(x(tcq)), wq(tcq)⟩Rn .

We deduce from Lemma 1 that, up to reducing α > 0 (precisely, by taking α = β), there
exists a function t̃q ∈ C([0, α], [tcq − δ0, tcq + δ0]), satisfying t̃q(0) = tcq and Fq(z̃αq (t̃q(α))) = 0
for all α ∈ [0, α], that is differentiable at 0 with

t̃′q(0) = −
⟨∇Fq(x(tcq)), wq(tcq)⟩Rn

⟨∇Fq(x(tcq)), hj(q)(x(t
c
q), u

−(tcq))⟩Rn
.
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From the continuities of the function t̃q and of the map (B.3), we deduce that the map α ∈
[0, α] 7→ z̃αq (t̃q(α)) ∈ Rn is continuous over [0, α]. It remains to prove that

lim
α↓0

z̃αq (t̃q(α))− z̃q(tcq)

α
= wq(t

c
q) + t̃′q(0)hj(q)(x(t

c
q), u

−(tcq)).

For this purpose, using integral representations, we can write

z̃αq (t̃q(α))− z̃q(tcq)

α

=
z̃αq (t

c
q)− z̃q(tcq)

α
+

t̃q(α)− tcq

α

1

t̃q(α)− tcq

∫ t̃q(α)

tcq

hj(q)(z̃q(s), ũq(s)) ds

+
1

α

∫ t̃q(α)

tcq

hj(q)(z̃
α
q (s), ũq(s))− hj(q)(z̃q(s), ũq(s)) ds,

for all α ∈ (0, α]. We already proved that the first term tends to wq(tcq) as α ↓ 0. Since tcq
is a Lebesgue point of the map t 7→ hj(q)(z̃q(t), ũq(t)) and since t̃q is differentiable at 0,

the second term tends to t̃′q(0)hj(q)(x(t
c
q), u

−(tcq)). Finally the third term tends to zero

as α ↓ 0, since z̃αq uniformly converges to z̃q over [tcq − δ, tcq + δ], hj(q) is of class C1 and t̃q
is differentiable at 0. The proof for the base case is complete.

Inductive step. Let k ∈ {q + 1, ..., N} and assume that the induction hypothesis holds
true for all ℓ ∈ {q, ..., k − 1}. The case k = N follows directly from Proposition 1 and from
the induction hypothesis (in particular from the differentiabilities at 0 of the function t̃N−1

and of the map α ∈ [0, α] 7→ z̃αN−1(t̃N−1(α)) ∈ Rn). Therefore, in the sequel, we deal with

the case k ∈ {q + 1, . . . , N − 1} and we will proceed similarly to the base case. Therefore
some details will be omitted.

Thanks to the induction hypothesis ensuring the continuities of the function t̃k−1 and of
the map α ∈ [0, α] 7→ z̃αk−1(t̃k−1(α)), we deduce from Proposition 1 that, up to reducing α >

0, it holds that [tck−1 − δ, tck + δ] ∩ [0, T ] ⊂ I(hj(k), θ
α
k ) for all α ∈ [0, α], that z̃αk uniformly

converges to z̃k over [tck−1 − δ, tck + δ] ∩ [0, T ] as α ↓ 0, and that the map

(α, t) ∈ [0, α]× ([tck−1 − δ, tck + δ] ∩ [0, T ]) 7→ z̃αk (t) ∈ Rn, (B.4)

is continuous. Similarly to the base case, up to reducing α > 0, we get that z̃αk (t) ∈
BRn (x(tck), ν) for all (α, t) ∈ [0, α]× [tck − δ, tck + δ] and we define the map

Gk : [0, α]× [tck − δ, tck + δ] → R
(α, t) 7→ Fk(z̃

α
k (t)).

Similarly to the base case, Gk is continuous, Gk(0, t
c
k) = Fk(x(t

c
k)) = 0 and ∇tGk(α, t)

exists and is continuous over [0, α]× [tck − δ, tck + δ] and

∇tGk(0, t
c
k) = ⟨∇Fk(x(t

c
k)), hj(k)(x(t

c
k), u

−(tck))⟩Rn ̸= 0.

Finally, from the third item of Proposition 1 and from the induction hypothesis (in par-
ticular from the differentiabilities at 0 of the function t̃k−1 and of the map α ∈ [0, α] 7→
z̃αk−1(t̃k−1(α)) ∈ Rn), we get that

lim
α↓0

z̃αk (t
c
k)− z̃k(t

c
k)

α
= wk(t

c
k),

which implies that ∇αGk(0, t
c
k) exists with ∇αGk(0, t

c
k) = ⟨∇Fk(x(t

c
k)), wk(t

c
k)⟩Rn .

From Lemma 1, up to reducing α > 0, there exists a function t̃k ∈ C([0, α], [tck−δ, tck+δ]),

satisfying t̃k(0) = tck and Fk(z̃
α
k (t̃k(α))) = 0 for all α ∈ [0, α], that is differentiable at 0 with

t̃′k(0) = −
⟨∇Fk(x(t

c
k)), wk(t

c
k)⟩Rn

⟨∇Fk(x(t
c
k)), hj(k)(x(t

c
k), u

−(tck))⟩Rn
.
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From the continuities of the function t̃k and of the map (B.4), we deduce that the map α ∈
[0, α] 7→ z̃αk (t̃k(α)) ∈ Rn is continuous over [0, α]. Similarly to the base case, one can prove
that

lim
α↓0

z̃αk (t̃k(α))− z̃k(t
c
k)

α
= wk(t

c
k) + t̃′k(0)hj(k)(x(t

c
k), u

−(tck)),

which completes the proof of the inductive step.

B.2 Admissibility of the perturbed auxiliary trajectories

Our objective in this section is to prove that each perturbed auxiliary trajectory z̃αk is admis-

sible, in the sense that it is with values in the open setXj(k) over the interval (t̃k−1(α), t̃k(α))
between the two consecutive corresponding perturbed crossing times. This result is formal-
ized in Proposition 3 that is based on the next preliminary lemma.

Lemma 3 Consider the framework of Proposition 2. Then, up to reducing α > 0, the
following properties are satisfied:

1. There exists s′q−1 ∈ (tcq−1, t
c
q−1 + δ] such that z̃αq (t) ∈ Xj(q) for all (α, t) ∈ [0, α] ×

(tcq−1, s
′
q−1] (and for all (α, t) ∈ [0, α]× [tcq−1, s

′
q−1] if q = 1).

2. For all k ∈ {q, ..., N − 1}, there exists sk ∈ [tck − δ, tck) such that z̃αk (t) ∈ Xj(k) for

all (α, t) ∈ [0, α]× [sk, t̃k(α)).
3. For all k ∈ {q, ..., N − 1}, there exists s′k ∈ (tck, t

c
k + δ] such that z̃αk+1(t) ∈ Xj(k+1) for

all (α, t) ∈ [0, α]× (t̃k(α), s
′
k].

4. There exists sN ∈ [tcN − δ, tcN ) such that z̃αN (t) ∈ Xj(N) for all (α, t) ∈ [0, α]× [sN , tcN ].

Proof This proof does not require induction. We will prove each item separately. Note that
we will reduce α > 0 in each item.

Proof of the first item. Note that z̃αq = z̃q = x (with values in Xj(q)) over (t
c
q−1, τ −α].

Therefore one can easily conclude the first item by taking s′q−1 := min{tcq−1 + δ, τ − α}.
The case q = 1 is similar.

Proof of the fourth item. Since z̃αN uniformly converges to z̃N = x (with values in the
open set Xj(N)) over [tcN − δ, tcN ] as α ↓ 0, one can easily conclude the fourth item by
reducing α > 0 and by taking sN = tcN − δ.

Proof of the second item. Let k ∈ {q, ..., N−1} and 0 < δ0 < δ be fixed such that τ < tcq−
δ0. Recall that z̃αk (t) ∈ BRn (x(tck), ν), and therefore z̃αk (t) ∈ Xj(k) if and only if Fk(z̃

α
k (t)) <

0, for all (α, t) ∈ [0, α]×[tck−δ0, tck+δ0]. Also recall that t̃k(α) tends to tck as α ↓ 0. Therefore,

for any sk ∈ [tck − δ0, tck), there exists 0 < β(sk) ≤ α such that sk < t̃k(α) ≤ tck + δ0 for

all α ∈ [0, β(sk)]. By contradiction assume that

∀sk ∈ [tck − δ0, t
c
k), ∀0 < β ≤ β(sk),

∃α ∈ [0, β], ∃t ∈ [sk, t̃k(α)), Fk(z̃
α
k (t)) ≥ 0. (B.5)

Let sk ∈ [tck − δ0, tck) and 0 < β ≤ β(sk) and consider the pair (α, t) given in (B.5).

Since Fk(z̃
α
k (t̃k(α))) = 0 (see Proposition 2), we obtain that

Fk(z̃
α
k (t̃k(α)))− Fk(z̃

α
k (t)) ≤ 0.

Since z̃αk is of class C1 over [tck − δ0, tck + δ0], note that the above inequality can be rewritten
as

1

t̃k(α)− t

∫ t̃k(α)

t
Ψk(s) ds ≤

1

t̃k(α)− t

∫ t̃k(α)

t
Ψk(s)− Ψα

k (s) ds,

where
Ψk(s) := ⟨∇Fk(z̃k(s)), hj(k)(z̃k(s), ũk(s))⟩Rn ,
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and

Ψα
k (s) := ⟨∇Fk(z̃

α
k (s)), hj(k)(z̃

α
k (s), ũk(s))⟩Rn ,

for all s ∈ [tck − δ0, tck + δ0]. Since ũk is continuous at tck, note that tck is a Lebesgue point

of Ψk. Therefore, when making tend sk → tck and β → 0, we make tend α → 0, t̃k(α) → tck
and t → tck and thus the left term of (B.2) tends to ⟨∇Fk(x(t

c
k)), hj(k)(x(t

c
k), u

−(tck))⟩Rn . It

remains to prove that the right term of (B.2) tends to zero when α → 0, t̃k(α) → tck and t →
tck. For this purpose, recall that z̃αk (t) ∈ BRn (x(tck), ν) for all (α, t) ∈ [0, α]× [tck − δ, tck + δ]

and that ∇xFk is uniformly continuous over the compact set BRn (x(tck), ν) (since Fk is of
class C1). Therefore, since z̃αk uniformly converges to z̃k over [tck − δ, tck + δ] when α → 0,

one can easily prove that the right term of (B.2) tends to zero when α → 0, t̃k(α) → tck
and t → tck. Hence we have obtained that

⟨∇Fk(x(t
c
k)), hj(k)(x(t

c
k), u

−(tck))⟩Rn ≤ 0,

which raises a contradiction with Condition (C2)(iii). Therefore we have proved the negation
of (B.5) which is given by

∃sk ∈ [tck − δ0, t
c
k), ∃0 < β ≤ β(sk), ∀α ∈ [0, β], ∀t ∈ [sk, t̃k(α)), Fk(z̃

α
k (t)) < 0.

This concludes the proof of the second item by reducing α > 0 to β.

Proof of the third item. The proof is similar to the proof of the second item.

Proposition 3 Consider the framework of Proposition 2. Then, up to reducing α > 0, the
following properties are satisfied:

1. z̃αq (t) ∈ Xj(q) for all (α, t) ∈ [0, α]×(tcq−1, t̃q(α)) (and for all (α, t) ∈ [0, α]×[tcq−1, t̃q(α))

if q = 1).

2. z̃αk (t) ∈ Xj(k) for all (α, t) ∈ [0, α]× (t̃k−1(α), t̃k(α)) and all k ∈ {q + 1, ..., N − 1}.
3. z̃αN (t) ∈ Xj(N) for all (α, t) ∈ [0, α]× (t̃N−1(α), t

c
N ].

Proof This proof does not require induction. Let us prove the second item only. The other
items can be proved similarly (and note that α > 0 is reduced in each item). Let k ∈
{q + 1, . . . , N − 1}. From Lemma 3, we know that:

• there exists s′k−1 ∈ (tck−1, t
c
k−1 + δ] such that z̃αk (t) ∈ Xj(k) for all (α, t) ∈ [0, α] ×

(t̃k−1(α), s
′
k−1].

• there exists sk ∈ [tck − δ, tck) such that z̃αk (t) ∈ Xj(k) for all (α, t) ∈ [0, α]× [sk, t̃k(α)).

Now recall that z̃k = x over [tck−1, t
c
k] and that x(t) ∈ Xj(k) for all t ∈ (tck−1, t

c
k) and

thus for all t ∈ [s′k−1, sk]. Since Xj(k) is an open set and z̃αk uniformly converges to z̃k
over [tck−1−δ, tck+δ] as α ↓ 0, one can easily see that, up to reducing α > 0, one has z̃αk (t) ∈
Xj(k) for all (α, t) ∈ [0, α]× [s′k−1, sk]. We finally deduce that z̃αk (t) ∈ Xj(k) for all (α, t) ∈
[0, α]× (t̃k−1(α), t̃k(α)). The proof of the second item is complete.

B.3 End of the proof

As explained in Section 2.3, we define by concatenation the perturbed trajectory

xα(t) :=


x(t) for all t ∈ [tc0, t

c
q−1],

z̃αq (t) for all t ∈ [tcq−1, t̃q(α)],

z̃αk (t) for all t ∈ [t̃k−1(α), t̃k(α)] and k ∈ {q + 1, . . . , N − 1},
z̃αN (t) for all t ∈ [t̃N−1(α), t

c
N ],
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associated with the modified needle-like perturbation

uα(t) :=


u(t) for all t ∈ [tc0, τ − α),
ω for all t ∈ [τ − α, τ),
ũq(t) for all t ∈ [τ, t̃q(α)),
ũk(t) for all t ∈ [t̃k−1(α), t̃k(α)) and k ∈ {q + 1, . . . , N − 1},
ũN (t) for all t ∈ [t̃N−1(α), t

c
N ].

From the construction and the results obtained in Propositions 2 and 3, one can easily see
that (xα, uα) ∈ AC([0, T ],Rn)×L∞([0, T ],Rm) is a (perturbed) solution to (HS), admitting
the t̃k(α) as (perturbed) crossing times, where we have introduced t̃k(α) := tck for all k ∈
{1, . . . , q − 1}. The uniform convergence of xα towards x as α ↓ 0 follows from the uniform
convergence of z̃αk to z̃k over [tck−1−δ, tck+δ]∩ [0, T ] for all k ∈ {q, . . . , N} as α ↓ 0, from the

convergence of t̃k(α) to tck for all k ∈ {q, . . . , N − 1} as α ↓ 0, and from the equality z̃k = x
over [tck−1, t

c
k] for all k ∈ {q, . . . , N}. Finally, from Proposition 2, it also holds that

lim
α↓0

xα(T )− x(T )

α
= lim

α↓0

z̃αN (tcN )− z̃N (tcN )

α
= wN (tcN ) = w(T ).

This concludes the proof of Theorem 1.
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