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ON A FEKETE-SZEGÖ THEOREM

THÉRÈSE FALLIERO

Abstract. We consider again a classical theorem relating capacities and algebraic integers and
the question of the simultaneous approximation of n − 1 different complex numbers by conjugate
algebraic integers of degree n.

This is a preliminary version of a further more complete paper, which will be co-written by Ahmed
Sebbar.

1. Introduction

A classical theorem of Fekete and Szegö [12] says that, given a compact set K in the complex
plane, then

(a) If C(E) < 1, there is an open set U containing K such that there are only finitely many
algebraic integers α having all of their conjugates in U , and

(b) if C(E) ≥ 1, then every open U containing K contains infinitely many such α.

Furthermore Fekete and Szegö proved also that if E is a compact set in the complex plane, stable
under complex conjugation and having logarithmic capacity C(E) ≥ 1, then every neighborhood
of E contains infinitely many conjugate sets of algebraic integers. In [10] V. Ennola solved a
question raised by R. M. Robinson that if ∆ is any real interval of length greater than 4, then
for any sufficiently large n there exists an irreducible monic polynomial of degree n with integer
coefficients all of whose zeros lie in ∆ .

We should emphasize that many diophantine inequalities are reduced to the existence of lattice
points in some convex body [7, Chapter III]. In this direction, it is remarkable that T. Chinburg
[8] reduces the proof of Fekete theorem to an application of Minkowski’s Convex Body theorem [7,
Chapter III] that we recall for later use.

This problem is actually related to a precise form of the Stone-Weierstrass theorem. This classical
theorem states that every continuous function defined on a closed interval [a, b] can be uniformly
approximated by polynomials. A more general statement is if X is a compact Hausdorff topological
space and if C(X) is the algebra of real-valued continuous functions f : X → R, then A subalgebra
A ⊂ C(X) is dense if and only if it separates points.

The question is for which compact set continuous functions can be approximated by polynomials
with integer coefficients? This question is a major one in approximation theory and the literature is
very extensive [13]. Let f be a continuous real-valued function defined on [0, 1], then the sequence
of polynomials (pn) defined by

pn(x) =

n∑
ν=0

f
(ν
n

)(
n
ν

)
xν(1− x)n−ν

converges uniformly to f . This is therefore a constructive proof of the Stone-Weierstrass theorem.
It is due to Bernštĕin. We deduce from this result [14, Theorem 5] that for a continuous real-valued
function f on the unit interval I = [0, 1] to be uniformly approximable by polynomials with integer
coefficients it is necessary and sufficient that it be integer-valued at both 0 and 1.

As was pointed out in [14, Lemma 1], If q is a non constant polynomial with integer coefficients
and I is an interval of length at least four, then ‖q‖ ≤ 2. Hence, clearly, the approximation by
polynomials with integer coefficients on a set E is related to to the capacity of E. Consequently
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2 THÉRÈSE FALLIERO

[14, Theorem 2 ] if the capacity C(I) ≥ 1 the only functions that are uniformly approximable in
I by polynomials with integer coefficients are these polynomials themselves. On the other hand
one can prove the surprising result that any f ∈ L2([a, b]), b− a < 4 can be approximated on the
interval [a, b] by polynomials with integer coefficients.

Theorem 1.1 (Pál). If f is continuous on [−a, a], |a| < 1, and f(0) is an integer then f may be
uniformly approximated thereon by polynomials with integer coefficients.

These problems are at the core of the approximation theory by polynomials with integer coeffi-
cients. It is a classical result, due to Chebyshev that for an interval [a, b]

inf
Q
‖Q(z)‖∞ = 2

(
b− a

4

)n
where Q(X) describes the set of monic polynomials of degree n. Hilbert showed in [15] that if we
restrict to monic polynomials of degree n with integer coefficients, then

inf
Q
‖Q(z)‖L2([a,b]) ≤ C

√
n

(
b− a

4

)n/2
and Fekete showed in [11] the more flexible

inf
Q
‖Q(z)‖∞ ≤ 21− 1

n+1 (n+ 1)

(
b− a

4

)n/2
.

The main objective of this work is the following question suggested by J.P. Serre in [28]. If K is a
compact of C, symmetric with respect to the real axis with C(K) > 1, and if U is an open containing
K, there is a sequence (Pn) of monic polynomials with integer coefficients whose roots are in U and
are such that the associated zeros counting measure δPn converge weakly to equilibrium µK of K.

Organization of the paper: Very succinctly, we give the definitions in the first section, then
we introduce the counting measures in the second section. Minkowski’s theorem will be discussed in
section three. The fourth section is devoted to certain approximations results and the fifth section,
the longest, is devoted to the introduction of certain Riemann surfaces, in relation to certain Jacobi
matrices and the solution of the Serre question.

2. Definitions

2.1. Approximation on intervals. If µ is a measure on C of compact support, its logarithm
potential is defined by

Φµ(z) =

∫
ln(|z − w|−1) dµ(w) .

This integral converges if z 6∈ supp(dµ), and since dµ has compact support, ln(|z−w|−1) is uniformly
bounded below for (z, w) ∈ supp(dµ) × supp(dµ), so the integral for each z ∈ supp(µ) either
converges or diverges to +∞, in which case we set Φµ(z) = +∞.

Potentials enter naturally in studying growth of polynomials as n→∞. For if

Pn(x) =

n∏
j=1

(x− x(n)
j )

then
1

n
ln |Pn(x)| = −Φνn(x)

where

νn =
1

n

n∑
j=1

δ
x
(n)
j

is the counting measure for the zeros x
(n)
j . The function Φµ(z) is bounded below on supp(µ), so

I(µ) =

∫
Φµ(z) dµ(z) =

∫ ∫
K×K

ln(|x− y|−1)µ(x)µ(y)
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is either finite or diverges to +∞. I(µ) is called the potential energy of µ or, for short, the energy
of µ.

Consider a compact K ⊂ C. We consider all probability measures M+,1(K) on K. We say K
has capacity zero if and only if I(µ) =∞ for all µ ∈M+,1(K). We set

v(K) = inf
µ
I(µ)

where µ runs over all positive probability measures supported in K. Then the capacity of K is
defined as C(K) = e−v(K). Its logarithm v(K) is called the logarithm capacity of K.

For a compact K with non-zero capacity there exists a unique positive probability measure µ,
such that I(µ) = ln C(K)−1. This measure µ = µK is called the equilibrium measure of K.

Let us also recall that if (µn)n and µ∞ are probability measures on a compact Hausdorff space
X, (µn)n converges weakly µ∞ if∫

fdµn →
∫
fdµ as n→∞

for every f continuous on X and if f a real valued function defined on a topologic space E, f is
lower semicontinuous at a if

f(a) = lim inf
x→a

f(x) .

We have the following property of the potential energy

µ −→ I(µ)

is weakly lower semicontinuous. The lower semi continuity means

µn → µ⇒ lim inf I(µn) ≥ I(µ)

equivalently

(1) I−1((−∞, a]) is closed for all a

(2) I−1((a,∞]) is open for all a.

Before continuing further, we wish to recall some definitions that will be need. Given a bounded
set E in the complex plane, we denote by E(r) the r−neighborhood of E .

Definition 2.1. If E1 and E2 are two bounded sets in C, the difference between E1 and E2 is the
smallest r such that E1(r) contains E2 and E2(r) contains E1.

We will denote this difference by δ(E1, E2), it is small if and only if E1 and E2 are (almost) super
imposable. We will say that E1 is near E2 (and reciprocally). If E is a compact set and (Eν) a family
of sets such that δ(E , Eν) tends to zero as ν tends to ∞ we will say simply that (Eν) tends to E .

We then deduce the lemma

Lemma 2.1. If δ(Kn,K)→ 0 and C(Kn)→ C(K) then µKn → µK .

Proof. As M+,1(K) is compact let η be a weak limit point of µKn . By lower semicontinuity of the
energy I,

I(η) ≤ lim inf I(µKn)

= lim ln(C(Kn)−1)

= ln(C(K)−1),

so η = µK , that is, µKn → µK . �

Note that the inverse is not true δPn → µK and C({zeros of Pn}) = 0.
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3. Algebraic integers with all conjugates in a given compact.

For a set V ⊂ C let PolV be the set of monic polynomials in Z[X] of degree at least 1 such that
all their roots lie in V . If z is an algebraic integer, a root of a polynomial P (X) ∈ PolV , then all
the conjugate of z are in V and we say that z is totally in V .

Let IrrV be the set of irreducible monic polynomials in Z[X] of degree at least 1 such that all
their roots lie in V . for such a polynomial P (X) of degree g let µP be the corresponding probability

measure supported in its roots, µP =
1

g

g∑
i=1

δxi . Now let K ⊂ C be compact. There are two quite

different cases [28], [26], depending on the capacity of K.

(1) If C(K) < 1, then IrrK is finite.
(2) If K ⊂ R is a union of finite number of segments and C(K) > 1, then IrrK is infinite.
(3) If K ⊂ C is Gal(Q̄/Q)-stable and C(K) ≥ 1, then for any open U,K ⊂ U , the set IrrU is

infinite.

3.1. The case of a finite union of intervals. Let E ⊂ R be a finite union of segments with
C(E) > 1 and µE be its equilibrium measure. We have the following theorem ([28] Theorem 1.6.2).

Theorem 3.1 (Serre). There exists a sequence of polynomials Pn ∈ PolE such that µPn → µE.

Then from the Fekete-Szego theorem a natural question, suggested by J.P Serre, arises.

Question 3.1. Let K be a compact of C stable under complex conjugation, of capacity C(K) ≥ 1
and U an open set containing K. Is there a sequence of polynomials Pn ∈ PolU such that µPn → µK?

3.2. Precisions on the properties of K. Let U ⊂ C be a set and let U∗ be the so called
“symmetric kernel” of U consisting of those points of U which belong, together with their conjugates
to U . So U∗ is symmetric with respect to the real axis and naturally C(U∗) ≤ C(U).

M.Fekete [11], [8] proved that if K is a compact of C such that C(K∗) < 1, then there is only a
finite number of irreducible algebraic equations with integer coefficients of the form

zn + a1z
n−1 + ...+ an−1z + an = 0

whose roots lie all in K∗.

Theorem 3.2 (Minkowski’s theorem). Suppose K to be a symmetric, convex, bounded subset Rd.
If vol(K) > 2d, then K contains at least one lattice point other than 0.

There is an extension to general lattices Λ = Zu1 ⊕ · · · ⊕ Zud, where {u1, · · · , ud} is a basis of
Rd. We define vol(Λ) as the volume of the parallelotope{

d∑
i=1

αiui, 0 ≤ αi ≤ 1

}
Theorem 3.3 (Minkowski’s theorem for general lattices). Suppose Λ to be a lattice and K to be a
bounded symmetric convex subset in Rd. If vol(K) > 2d detΛ, then K contains at least a point of
Λ different from 0.

We must perhaps insist that Minkowski’s theorem as well as Motzkin’s theorem on simultaneous
approximation (which in turn depends on two theorems of Kronecker. The first one [20, p.159])
is at the heart of the diophantine approximation and then at the heart of the approximation by
polynomials with integer coefficients. The second one [17] state that if an algebraic integer α and
all of its conjugates are in the closed unit disk D := {z ∈ C : |z| ≤ 1}, then it is either α = 0 or
it is root of unity. This is apparent at [7, Chap III], Feruguson [13, Theorem 1.1] and Chinburg
[8]. For the sake of completeness and in order to see how the different idea articulate we give an
idea of the proof of the first part of Fekete-Szegö theorem. For a ∈ Rn+1 we define the polynomial
fa(z) = a0 + · · · anzn. Let K be a compact such that C(K) < 1, then [8] then

fn(E) = {a = (a0, a1, · · · , an) ∈ Rn+1 \ {0}, | fa(E) |< 1.}
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is an open symmetric convex set, with large volume for a large n. By Minkowski’s theorem, fn(E)
contains some a = (a0, a1, · · · , an) ∈ Zn+1 \ 0}. We fix a such a and we consider the open set

U = {z ∈ C, | fa(z) |< 1}.

If α and its conjugates are contained in U , then fa(α) and its conjugates are contained in the unit
disk D. By the second Kronecker theorem α is one of the many roots of the polynomial fa(z).

Remark 3.1. The idea of using Minkowski’s convex body theorem in this context goes back to
Hilbert [15]. We can rephrase, in a classical way [7], what we said on the proof of the first part
of Fekete-Szegö theorem: Any convex body of volume at least 2n contains at leasr 2n + 1 integral
points. In particular the system of linear inequalities∣∣ n∑

k=1

ak,mx
k
∣∣ ≤ bm, 1 ≤ m ≤ n

with

det (ak,m)1≤k,m≤n 6= 0,

n∏
m=1

bm ≥
∣∣det (ak,m)1≤k,m≤n

∣∣
has a nonzero integral solution.

Now let K be a compact of C of capacity C(K) ≥ 1. Let U a neighborhood of K then U∗ is
a neighborhood of K∗ (with the convention that the empty set is the neighborhood of the empty
set). If C(K∗) < 1 then by continuity of the capacity, there exists V a neighborhood of K such
that C(V ∗) < 1. From what precedes, there exists only a finite number of algebraic integers with
all its conjugate in V . Then to show that there exists an infinity of algebraic integers totally in U ,
we can assume C(K∗) ≥ 1 and finally the hypothesis of K symmetric with respect to the real axis
is natural.
K being a metric compact set, many assumptions can be made on ∂K.

Definition 3.1. We say that K has a continuous boundary when K is a non empty union of
connected components non reduced to a point.

Recovering K with a finite number of small enough closed balls, we can assume that the boundary
∂K is continuous. From [4, Proposition p. 18 ] we can suppose K with regular boundary of class
C∞. In fact let U be an open set containing K, there exists a C∞ function ϕ in R2 such that

(1) ϕ = 1 on K,
(2) supp (ϕ) ⊂ U .

Then K ⊂ supp (ϕ) ⊂ U with a compact support and with regular C∞ boundary. Let us recall
that a Jordan analytic curve is a closed curve Γ in C which possesses a neighborhood V and a
conformal map ξ from V on {α < |z| < β}, such that the image of Γ by ξ is the circle {|z| = r},
α < r < β. We can also suppose that ∂K is a set of analytic Jordan curves. To see this a first
method is to use [12, Theorem G] . Let K(ρ) be the ρ- neighborhood of K (ρ > 0), there exists ρ
sufficiently small so that K(ρ) ⊂ U . From the preceding theorem, there exists a domain defined by
a lemniscate containing K and contained in K(ρ): for n ≥ n1(ρ), {z, |wn(z)| ≤ νn} where

wn(z) =

n∏
k=1

(z − ζ(n)
k )(z − ζ(n)

k ), νn = max
K
|wn(z)|.

In conclusion this compact set is invariant under complex conjugation and its boundary consists in
analytic Jordan curves.

A second method can be found in [1, p.144]. As an open set of C, U is a natural Riemann open

surface, there exists a sequence of regular subregions (Un), such that Un ⊂ Un+1 and U =

∞⋃
i=1

Un.

We recall the following definition (see for example [4, p.22]),
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Definition 3.2. Let Ω be an open subset of R2. We say that Ω has a regular boundary of class Ck

(k ≥ 1) if for every p ∈ ∂Ω there is a neighborhood Up of p and a diffeomorphism ϕp of class Ck

from Up onto a neighborhood Vp of 0 in R2 such that ϕp(p) = 0,

ϕp(Up ∩ Ω) = Vp ∩ {(x, y) ∈ R : x ≤ 0}
and the Jacobian determinant J(ϕp) is > 0 in Up.

We have (see for example [4, Proposition p. 27]) that for Ω a relatively compact, open subset of
C with piecewise regular boundary (of class Ck, k ≥ 1), there is only a finite number of connected
components of ∂Ω and each of them is a Jordan curve (piecewise Ck).

In conclusion we can always suppose that K is a compact with C∞ boundary, then the number
of connected components of ∂K is finite.

3.3. A generalization of Serre’s method, the case of a compact of R. We use [3, Theorem
13] which characterizes such domains. In these domains are those symmetric with respect to the
real axis and whose intersection with the open upper half plane is simply connected. We can also
find domains such that Γ = (Γ1,Γ2) or (Γ1,Γ2,Γ3) which are invariants under conjugation.

We have to notice that a compact e of R of capacity C(e) ≥ 1 is an example of such domains.
The fact that for all neighborhood U of e in R, there exists a sequence of monic polynomials of
degree > 0, with coefficients in Z, whose all roots are in U , (Pn) such that limµPn = µe will be a
consequence of [28, Theorem 1.6.2 ].

For the convenience of the reader we recall some facts (see for example [29], Chapter 5).

Proposition 3.1. Let e ⊂ R be compact. Let

ẽn = {x ∈ R, dist(x, e) ≤ 1

n
} .

Then

(1) e ⊂ ... ⊂ ẽn+1 ⊂ ẽn ⊂ ... ⊂ R and
⋂
n

ẽn = e,

(2) Each ẽn is a finite union of disjoint closed intervals.

Proof. The point (1) is clear. To show (2) we use the fact that every open set in R is a countable
union of disjoint open intervals. Hence R\e is a disjoint union of maximal open intervals. Since e is
compact, two of these intervals are unbounded and the others {Jk}k∈I , where I is a countable set,

are contained in the convex hull of e. Thus,
∑
k∈I
|Jk| < ∞, so for each n > 0, #{k, |Jk| > 2/n} is

finite. Thus, all but finitely many Jk lie in a given ẽn, showing R\ẽn is finite. Thus, all but finitely
many Jk lie in a given ẽn, showing R\ẽn has finitely many open intervals. It is easy to see that
each of the finite disjoint closed intervals in ẽn must have positive measure.

�

Furthermore we have [27, Theorem 3.9] and [29, Theorem 5.6.1, p. 306]

Theorem 3.4. Let e =
l+1⋃
j=1

ej be an l-gap set with ej = [αj , βj ], αj < βj < βj+1. Then for all m

large, there exist l-gap sets e(m) =
l+1⋃
j=1

e
(m)
j with

(1) ej ⊂ e(m)
j ,

(2) Each e
(m)
j has harmonic measure in e(m) equal to k

(m)
j /m with k

(m)
j ∈ {1, 2, ..., },

(3) For some positive constants C1, C2,

|e(m)
j \ej | ≤ C1m

−1(1)

C(e) ≤ C(e(m)) ≤ C(e) + C2m
−1(2)

Then we have
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Theorem 3.5. Let e ⊂ R be compact. Then there exist en so that e ⊂ ... ⊂ en+1 ⊂ en ⊂ ... ⊂ R
and

⋂
n

ẽn = e holds, and

en ⊂ eintn−1

and each en is the spectrum of some two-sided periodic Jacobi matrix. Moreover

(1) ρen → ρe,
(2) C(en)→ C(e).

Now, we know that en is a finite union of calibrated intervals and then by [27], [28], there exists
a sequence of monic polynomials with coefficients in Z, Pk,en , whose all roots are in en, such that
limk µPk,en = µen . By the diagonal process µe = limj µPkj,enj

.

Remark 3.2. In particular we can release the condition of countinuous boundary in the theorem
9.3 (Bilu, Rumely) of [2].

4. Some approximations

We have the followings theorem [5], [25].

Theorem 4.1 (Rumely). Suppose a compact set E ⊂ C with continue boundary, has capacity
C(E) = 1 and is stable under complex conjugation. Let (αn)n≥1 a sequence of algebraic integers
(αn 6= αm if n 6= m): for all open U containing K, there exists n0 such that for all n ≥ n0, αn
with all its conjugate, O(αn), are in U . Let ∆n the measure

∆n =
1

dαn

∑
β∈O(αn)

δβ ,

then the measures ∆n converge weakly to the equilibrium measure of E, µE.

Theorem 4.2 (Rumely, Bilu ). Suppose a compact set E ⊂ C has capacity C(E) = 1 and is stable
under complex conjugation. If {αn} ⊂ Q̄ is a sequence for which deg(αn) → ∞ and hE(αn) → 0,
then the measures ∆n converge weakly to the equilibrium measure of E.

The following result is due to Pritsker [21, Theorem 2.3]

Theorem 4.3. Given any positive Borel measure µ, 0 ≤ µ(C) ≤ 1, that is symmetric about real
line, there is a sequence of complete sets of conjugate algebraic integers such that their counting
measures τn converge weakly to µ.

There exist many sequences of polynomials with their zeros in E, that verify µn → µE.
Let E ⊂ C be compact and infinite. An n point Fekete set is a set {zj , j = 1, ..., n} ⊂ E that

maximizes
qn(z1, ..., zn) =

∏
i 6=j
|zi − zj | .

From the maximum principle for analytic functions, it follows that for all n, the Fekete sets lie on
the outer boundary of E.

The normalized density of Fekete sets converges to dµE , the equilibrium measure for E.

Remark 4.1. Let {Pn} be any sequence of monic polynomials having all their zeros in E and
such that the normalized zero counting measures for Pn converge weakly to µE. If ∂∞E (the outer
boundary of E, that is the boundary of the unbounded component of C\E) is regular (e.g., if it is
connected), then

(1) Pn are asymptotically optimal for the Chebyshev problem:

lim
n→∞

||Fn||1/n = C(E) .

If C(E) > 0 (so that µE is defined), then we also have:
(2) Uniformly on compact subsets of the unbounded component of C\E,

lim
n→∞

|Fn(z)|1/n = exp{−ΦµE (z)} .
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Now we recall two results of approximation. In [20], Theorem 3.2, p. 158 (see also [9] for its
effective version), it is proving that for every n given numbers z1, ..., zn, and every ε > 0, there
exists an irreductible equation with complex integral coefficients α1, ..., αn+1 and with roots ζk,ε
such that |ζk,ε− zk| < ε for k = 1, ..., n. The same is true for real integral coefficients provided that
the numbers z1, ..., zn are symmetric to the real axis.

In [13] (Theorem A.1., p. 147) we have that if α1, ..., αn are a complete set of conjugate
algebraic integers over Q[i], ε any positive number, and z2, ...,zn any complex numbers. Then there
is a polynomial q ∈ Z[i][z] such that

|q(αj)− zj | < ε, 2 ≤ j ≤ n.
We have then the following result ([21] p. 16). Let a sequence of polynomials (Pn) such that
the corresponding normalized zero counting measure for Pn, µn converge to µE . We can suppose
deg(Pn) = n and denote its zeros by z1, ..., zn. Therefore, we can approximate this measure by
a sequence of the counting measures τn+1 for the complete set of conjugate algebraic integers
ζk = ζk,1/n, k = 1, ..., n + 1 by using the theorem of Motzkin. For any n ∈ N, we approximate
each point zk as close as we wish by one of the conjugate algebraic integers ζk, 1 ≤ k ≤ n, obtained
from Motzkin’s theorem, while let the remaining (n + 1)th conjugate algebraic integer ζn+1 → ∞
as n→∞ (see [9] p.160-161 for details). It follows that the resulting measures

τn+1 =
1

n+ 1

n+1∑
k=1

δζk

converge to µE as n→∞.

In fact µn =
1

n

n∑
k=1

δzk → µE , then νn =
1

n

n∑
k=1

δζk → µE . For f continous on E and n sufficiently

large we obtain ∫
fτn+1 =

∫
f

n

n+ 1
νn =

n

n+ 1

∫
fνn → µE .

But as already seen, the polynomial Qn with roots the complete set of conjugate algebraic
integers ζk, has ζn+1 not in E (for n sufficiently large). So the sequence (Qn) doesn’t answer
Serre’s suggestion (Question 3.1).

5. Demonstration of the theorem following Serre.

Let Ω be a plane domain. The boundary of Ω is denoted by ∂Ω = Γ = Γ1 + Γ2 + ... + Γr. In
the following the regularity of K is understood. Note first that which is important in K is the
boundary of the outer component of C\∂K. Then K can be a compact whose boundaries of the
bounded connected components are what ever you want.

Denoting by Ω the outer component of C\∂K, we know that the equilibrium measure of K is
supported on ∂Ω. We denote by ∂Ω = (Γ1, ...,Γr) = Γ.

5.1. The double of a plane domain. Let Ω be a plane domain. We have seen that we may assume
that each boundary component of the boundary of Ω, denoted by ∂Ω = Γ = Γ1 +Γ2 + ...+Γr, Γj is
a smooth analytic curve. Alternatively, one may think of Ω as a plane bordered Riemann surface.
More precisely

Definition 5.1. For each r = 1, 2, ... we shall denote by Ur the class of plane domains whose
boundary consists of r disjoint Jordan curves Γ1,Γ2, ...,Γr which satisfy the following smoothness
condition: with each Γj there is associated a function zj(t) analytic and univalent in a neighborhood
of Γj which maps this neighborhood onto the circular ring 1− δ < |z| < 1 + δ and the curve Γj onto
the circle |z| = 1.

Much of the functions theory on Ω is conveniently described in terms of the Schottky double
Ω̂ of Ω. This is the compact Riemann surface of genus g = r − 1 obtained, when Ω has analytic
boundary, as is henceforth assumed, by welding Ω along Γ, with an identical copy Ω̃. Thus, as a
point set Ω̂ = Ω ∪ Γ ∪ Ω̃. The ”backside” Ω̃ is provided with the opposite conformal structure.
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This means that if z̃ ∈ Ω̃ denotes the oppposite to z ∈ Ω then the map z̃ −→ z̄ is a holomorphic
coordinate on Ω̃. The construction of this double generalizes to any bordered Riemann surface
and the result is always a symmetric Riemann surface, i.e., a Riemann surface provided with an
antiholomorphic involution. In our construction this is the map U : Ω̂ −→ Ω̂ which exchanges z
and z̃ and which keeps Γ pointwise fixed.
The double of a plane domain Ω has a holomorphic atlas consisting of only two charts: the corre-
sponding coordinate function are the identity map ϕ1 : z −→ z on Ω and the map ϕ2 : z̃ −→ z̄ on
Ω̃. When Γ is analytic, both these maps extend analytically across Γ in Ω̂, hence their domains of
definitions overlap and the union covers all Ω̂. Let

S = ϕ2 ◦ ϕ−1
1

be the coordinate transition function. It is analytic and defined in a neighbourhood of Γ in C, and
on Γ it satisfies

S(z) = z̄ (z ∈ Γ).

A function f on Ω̂ is most conveniently described as a pair of functions f1, f2 on Ω, continuously
extendable to Γ, such that

f1(z) = f2(z) (z ∈ Γ).

The formal relations to f in terms of the coordinates functions ϕ1 and ϕ2 above are f1 = f ◦ ϕ−1
1

f2 = c ◦ f ◦ ϕ−1
2 ◦ c ,

where c denotes complex conjugation. It follows, for example, that f is meromorphic if and only if
f1 and f2 are meromorphic.
It is useful to note that if two domains in the class Ur are conformally equivalent, then so are their
doubles conformally equivalent. Indeed, the Schwarz refection principle permits an extension of a
conformal homeomorphism between plane domains of the class Ur to a conformal homeomorphis
of their doubles.

We will deal with domain Ω, in the class Ur whose double is a hyperelliptic Riemann surface.
This is equivalent to the fact that Ω can be mapped one-to-one conformally onto the exterior of
a system of slits taken from the real axis ([3]). At first, notably to put on the notations, we
recall some results on the double of the exterior of a system of slits taken from the real axis. Let

E =
⋃r
j=1Ej , Ej = [e2j−1, e2j ] ⊂ R, e1 < e2 < e3 < ... < e2r−1 < e2r. The double of C\E, Ĉ\E,

is the hyperelliptic curve of equation

w2 =

2r∏
i=1

(z − ei) = q(z) ,

where we add two points at infinity ∞+ and ∞−, caracterised by the fact that
w

zr−1
= 1 at ∞+

and −1 at ∞−.
It’s a two-sheeted branched covering space of the sphere P1(C), branched at the 2r points ej . It’s
a topological covering space of C\E.

The covering map πE : Ĉ\E −→ P1(C), π : (z, w) −→ z is a meromorphic function of order two

on Ĉ\E whose only multiple points, each of multiplicity two, are located at the points (ej , q(ej)),
j = 1, ..., 2r.

Let us denote by E∗j the inverse image of Ej in Ĉ\E and E∗ =

r⋃
j=1

E∗j .

5.2. The notion of “calibrated”. In this section we refer to [27]. We will develop the case where

Ĉ\E corresponds to a two-sided r-periodic real symmetric Jacobi matrix.
First, we recall the following terminology. The meromorphic 1-forms on a compact Riemann

surface are called abelian differentials. The abelian differentials which are holomorphic will be
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called of the first kind; while the meromorphic abelian differentials with zero residues will be called
of the second kind. Finally, a general abelian differential (which may have residues) will be called
of the third kind.

We denote by w∞+,∞− the differential of the third kind having a simple pole at ∞+ and ∞−,
with residue −1 and +1 respectively, normalized by∫

αj

w∞+,∞− = 0, j = 1, · · · , 2r.

We recall now the link between w∞+,∞− and the Green function of C\E with pole at ∞+, g(z):

(1) g(z) is harmonic in C\E,

(2) g(z)− ln |z| is harmonic in a neighborhood of ∞+

(3) limz→ζ g(z) = 0 for all z ∈ E.

We shall denote by G(z) the multiple-valued function obtained by adding to g(z) its conjugate.

g(z) = ReG(z) =
G(z) +G(z)

2
.

The derivative of this multi-valued function is clearly single-valued. Hence, G′(z) is a holomorphic
function in C\E.

The functions g and G extend to all of Ĉ\E by reflecting across E, since they vanish on E:

G(T (z)) = −G(z) for z ∈ C\E and T the canonical anti-conformal involution of Ĉ\E. In particular
dG = w∞+,∞− . It is an abelian differential with poles at ∞+ and ∞− and zeros at the λj (the
zeros of G′(z)) and λ∗j ( the points of the copy of C\E corresponding to the λj ∈ C\E).

w∞+,∞− =

∏r−1
j=1(λ− λj)√

q(λ)
dλ = i dp ,

where dp is called the quasimomentum in [16]

1

2π

∫ E2j+1

E2j

dp =
mk

N
, mk ∈ N,

Definition 5.2. A compact set E = [E1, E2]∪[E3, E4]∪· · ·∪[E2n−1, E2n] of the real line is calibrated

if the complex Green’s function G(z) of Ĉ \ E with pole at infinity satisfies the conditions∫ E2k+1

E2k

√
Q(t)dt = 0, k = 1, 2, · · ·n− 1

and ∫ E2k

E2k−1

√
Q(t)dt = ±rkπi

N
, k = 1, 2, · · ·n,

where

Q(t) =
(t− c1)2(t− c2)2 · · · (t− cn−1)2

(t− E1)(t− E2) · · · (t− E2n−1)(t− E2n)
= h(t)2

and r1, · · · rn, N ∈ N, r1 + · · ·+ rn = N .

We observe that if a compact E is calibrated with respect to r1, r2, · · · rn, N it is also calibrated
with respect to kr1, kr2, · · · , krn, kN, k ∈ N∗.

Proposition 5.1. There exists signs εj ∈ {−1,+1} such that

r∑
j=1

εj

∫ e2j

e2j−1

w∞+,∞− = iπ .
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5.3. Approximation of Γ by Γv calibrated. Let K be a compact with C∞ boundary and Ω be
the unbounded component of C\K (i.e. the component of the complement of K which contains
infinity). The boundary ∂Ω consists of r mutually exterior curves. We know that µK fas support
in ∂Ω. K and ∂Ω have same capacity, same equilibrium measure and same potential function (see
for example [30], p.61).

Let f be a conformal application from Ω to C\E where E is the union of r segments taken from

the real axis E =
r⋃
j=1

Ej , Ej = [e2j−1, e2j ] ⊂ R, e1 < e2 < e3 < ... < e2r−1 < e2r. The map f is

such that

f(∞) =∞, 1 ≤ j ≤ r f(Γj) = Ej

We know that C\E = Ker{C\En} and En calibrated. We chose En such that for 1 ≤ j ≤ r we
have Ej ⊂ Ej,n.

We begin by open each interval of E (see for example the ”open up” process in Widom) on the
model

ψ : [−1, 1] −→ {|s| = 1}, ψ(z) = z + (z2 − 1)1/2.

The complement of E, C\E, is conformal to a domain ∆, obtained by opening all the intervals
Ej , ∂∆ = (C1, ..., Cr). The boundary of ∆ is C∞ and symmetric with respect to the real axis. We
denote by Ψ the corresponding conformal map.

We construct in the same way an application from Ej,n (Ej ⊂ Ej,n) j = 1, ..., r on Cj,n near
Cj , on the model

ξ : z ∈ [α, β] −→ z + [(z − α)(z − β)]1/2.

Consequently there exists a conformal application from C\En to ∆n where ∂∆n = (C1,n, ..., Cr,n).
The boundary of ∆n is C∞ and symmetric with respect to the real axis.

Then let denote by Φ = Ψ ◦ f : Ω→ ∆.
In the following section we will denote again Γv by Γ.

5.4. How to obtain a polynomial with rationnal coefficients. The aim of this section is to
obtain the following theorem

Theorem 5.1. In the case Γ is calibrated and symmetric with respect to the real axis, the Cheby-
chev polynomial of Γ ∩ H of degree r achieve its maximum at each extremity of Γ ∩ H and has
precisely one zero in each of the r components of Γ ∩H.

Moreover we can achieve that in each neigborhood of Γ ∩H, we can find such a polynomial with
coefficients in Q[i].

From [19], Ĉ\E corresponds to a two-sided r-periodic real symmetric Jacobi matrix, A, and an
algebraic curve of equation {h+ h−1 −∆(z) = 0} with ∆ a real polynomial of degree r, known as
the discriminant. It is usually defined as the trace of the one-period transfer matrix. It is also the
unique polynomial (with positive leading coefficient) such that

σ(A) = {x,∆(x) ∈ [−2, 2]} ,

where σ(A) is the spectrum of the two-sided operator (acting on l2(Z), it is purely absolutely
continuous and of multiplicity two). Let us make more precise the polynomial ∆. Let A be such a
Jacobi matrix, it defines a difference operator of period r with a, b ∈ l∞R (Z), bn 6= 0,

(3) an+r = an, bn+r = bn, n ∈ Z.
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To simplify the notations, we write the operator A as

A =



. . . . . ... . . . .

. . . . . ... . . . .

. . a1 b1 . ... . . . .

. . b1 a2 b2 ... . . . .

. . . . . ... .br−1 . . .

. . . . . ... ar br . .

. . . . . ... . . . .


We denote by B =

r∏
n=1

bn. We consider the solutions of the eigenvalue problem

(4) Au = z u.

It defines a second-order difference euqtion for n = 1, 2, 3, ...,

un+1 = b−1
n ((z − an)un − bn−1un−1) ;

we rewrite (
un
un+1

)
= Un(z)

(
un−1

un

)
,

where

Un(z) =
1

bn

(
0 bn

−bn−1 z − an

)
.

The monodromy matrix Mr(z), called also the one-period transfer matrix, is defined by the funda-
mental matrix

Mr(z) = Ur(z)...U1(z) .

Finally, the Floquet discriminant ∆(z) is given by a trace

(5) ∆(z) = Tr(Mr(z)).

Similarly, the Floquet multipliers m±(z) are the eigenvalues of Mr(z). They are given by

m±(z) =
∆(z)

2
± [∆(z)2 − 4]1/2

2

and are independant of n. They verify

m+(z)m−(z) = 1 , m+(z) +m−(z) = ∆(z) .

{ej , j = 1, ..., 2r} are the points where ∆(λ) = ±2. Indeed, ∆(λ) = 2 at e2r, e2r−3, e2r−4, e2r−7, ...
and -2 at e2r−1, e2r−2, e2r−5, e2r−6, .... Clearly, ∆ is determined by the p points where it is +2 and
one of the points where it is −2, showing the rigidity in possibilities of E. More precisely the
Floquet discriminant ∆(z) given by (5) of a real r−periodic Jacobi matrix is a r−hyperelliptic real
polynomial. More precisely, we have

∆(z)2 − 4 =
1

B2

2r∏
l=1

(z − el)

∆(z)∓ 2 =
1

B

r∏
j=1

(z − e±j ) .(6)

According to [18], [6], the zeros {e+
j }1≤j≤r and {e−j }1≤j≤r are respectively the eigenvalues of the

periodic Jacobi matrix Ã+ and the anti-periodic Jacobi matrix Ã− given by

Ã± =


−a1 b1 ±br
b1 −a2

...
−ar−1 br−1

±br br−1 −ar
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If r is even, we have

e+
1 < e−1 ≤ e

−
2 < e+

2 ≤ e
+
3 · · · ≤ e

+
r−1 < e−r−1 ≤ e

−
r < e+

r .

If r is odd

e−1 < e+
1 ≤ e

+
2 < e−2 ≤ e

−
3 · · · ≤ e

−
r−2 < e+

r−2 ≤ e
+
r−1 < e−r−1 ≤ e

−
r < e+

r .

The set {el}1≤l≤2r coincides with the corresponding sequence (e±j ). We need also to recall the

existence of a regular divisor D on Ĉ\E. Then the divisor D =
∑r−1

j=1 λj has the property that

D+ D̃−∞+−∞− is the divisor of the differential dp on Ĉ\E, which is real positive on E. Then D
is regular ([19], p. 120). Therefore the curve is hyperelliptic of genus g = r−1 with two points∞+

and ∞− at infinity; besides (h) = −r∞ + r∞−. Moreover, the hyperelliptic involution coincides

with (z, h) −→ (z, h−1). h(z) = erG(z). In this case, the fixed points for the anti-holomorphic
involution are given by {p = (z, h), |h(p)| = 1} = E∗ (see [19], p.122), and π(E∗) = R−1([−2, 2]).

The fixed points for the hyperelliptic involution are given by the 2r points where h = ±1,
equivalently ∆ = ±2, i.e. the branched points. A sufficient condition to be mapped one-to-one
conformally onto the exterior of a system of slits taken from the real axis is that Ω is symmetric
with respect to the real axis and Ω ∩H is simply connected.

We will adopt this situation and denote by f a conformal application from Ω to C\E where E

is the union of r segments taken from the real axis E =
r⋃
j=1

Ej , Ej = [e2j−1, e2j ] ⊂ R, e1 < e2 <

e3 < ... < e2r−1 < e2r. The map f is such that

f(∞) =∞, 1 ≤ j ≤ r, f(Γj) = Ej .

Hence the double of Ω, Ω̂ is hyperelliptic ([3]). The covering map πΩ : Ω̂ −→ P1(C) is a branched

covering of order 2. Let us denote by Γ∗j the mirror image of Γj in Ω̂ and Γ∗ =
r⋃
j=1

Γ∗j .

The conformal application from Ω to C\E f , can be extended to conformal homeomorphism of
their double. Let us denote this conformal application by

f̂ : Ω̂ −→ Ĉ\E, p −→ f̂(p) .

The Weierstrass points of Ω̂ and those of Ĉ\E are in one to one correspondence by f . We introduce

α±j = (e±j , h(e±j )), A±j = f̂−1(α±j )

and define H(p) = h(f̂(p))). We will identify, with a small abuse of notations, Z with Z(p) and z

with z(f̂(p)). The maps Z and H have the property stated in [19]. In particular we have for the
divisor

(H) = −r∞+ +r∞− .
We will denote in the same manner D and f̂−1(D), the regular divisor corresponding to the pre-
ceding regular divisor D of the zeros of ∆′.

To simplify the notations, we write the operator C as corresponding to the hyperelliptic surface
following [19]

C =



. . . . . . ... . . . .

. . A1 B′1 . . ... . . . .

. . B1 A2 B′2 . ... . . . .

. . . B2 A3 B′3 ... . . . .

. . . . . . ... B′r−1 . . .

. . . . . . Br−1 Ar B′r . .

. . . . . . ... . . . .


with Ai+r = Ai , Bi+r = Bi , B

′
i+r = B′i , i ∈ Z. Note that being r− periodic, C is bounded.

Following [19], det(CH−ZI) = (−1)r−1Φ0H+Φ1(Z)+(−1)r−1Φ2H
−1, where Φ0 = Πr

i=1B
′
i, Φ2 =

Πr
i=1Bi and Φ1 is a polynomial of degree r, Φ1(Z) = (−1)rZr + ....
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det(CH − ZI) =

∣∣∣∣∣∣∣∣∣∣∣∣

A1 − Z B′1 · · · · · · · · · BrH
−1

B1 A2 − Z B′2 · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · Br−2 Ar−1 − h B′r−1

B′rH · · · · · · · · · Br−1 Ar − Z

∣∣∣∣∣∣∣∣∣∣∣∣
If

∆(i, j) =

∣∣∣∣∣∣∣∣∣∣∣∣

Ai − Z B′i · · · · · · · · · · · ·
Bi Ai+1 − Z Bi+1 · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · Bj−2 Aj−1 − h B′j−1

· · · · · · · · · · · · Bj−1 Aj − h

∣∣∣∣∣∣∣∣∣∣∣∣
some computations yield to the following

Φ1(Z) = ∆(2, r + 1)−B1B
′
1∆(3, r) .

Let α such that α2 =
Φ0

Φ2
. Then

det(CH − ZI) = 0⇐⇒ αH + (αH)−1 +
α

Φ2
Φ1(Z) = 0.

We denote by P1(Z) = − α

Φ2
Φ1(Z) and H1 = αH. The curve{
(Z1, H1); H1 + (H1)−1 +

α

Φ2
Φ1(Z1) = 0

}
is invariant under the transformation (Z1, H1) −→ (Z1, H

−1
1 ), which corresponds to the hyperellip-

tic involution. The fixed points of this hyperelliptic involution satisfy H1 = H−1
1 and are located

on Γ ([?], p. 20). At such a point p0, |H(p0)| = 1. As H1(p0) = ±1 = αH(p0), we conclude |α| = 1.

Let f be an infinite column vector f = (...f−1, f0, f1, ...). Let D acts on f as the shift Dfk = fk+1.
C is assumed to be periodic of period r, this amounts to the commutation relation CS = SC, where
S = Dr.

Following [22], αS + (αS)−1 − P1(C) = and by the analytic functional calculus

σ(C) = P−1
1 (σ(αS + (αS)−1)).

But αS + (αS)−1 is conjugate to S + S−1 , ∆αS + (αS)−1∆−1 = S + S−1 with ∆ = αI. Then

σ(αS + (αS)−1) = σ(S + S−1) = [−2, 2]

and
σ(C) = P−1

1 ([−2, 2]).

H1(Z1) = P1(Z1)±
√
P1(Z1)2 − 4 =

1

P1(Z1)±
√
P1(Z1)2 − 4

and
P−1

1 ([−2, 2]) = {Z1, |H1(Z1)| = 1}.
Consequently if Z1 ∈ σ(C), |H1(Z1)| = |αH(Z1)| = |α| |H(Z1)| = 1. We deduce that |H(Z1)| = 1

and then Z1 ∈ Γ. In conclusion σ(C) ⊂ Γ.
Z and Z1 are two meromorphic function of degree 2 then ([?]), then there exits complex numbers

a, b, c, d such that ad− bc = 1 and Z1 =
aZ + b

cZ + d
.

Looking at infinity, we have f(∞) = ∞, h(∞) = H(∞); H1 = αH then H1(∞) = ∞. Then
when Z =∞, Z1 =∞ and Z1 is of the form Z1 = aZ + b.

P−1
1 ({2}) = {aA+

j + b}, P−1
1 ({−2}) = {aA−j + b}..
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By an argument of connectivity, we deduce that, for exemple σ(C) = P−1
1 ([−2, 2]) = (aΓ + b) ∩

(aH+ b).

Consider then the polynomial Q(Z) = P1(aZ + b). P−1
1 ([−2, 2]) = Q−1([−2, 2]) and

1

ar
Q is the

Chebychev polynomial of Γ ∩H.
Approximating C by rational coefficients, we can construct Cq as close of C as we please

and so, corresponding P1,q as close of P1 as we please, with the coefficient of P1,q in Q[i]. As

σ(Cq) = P−1
1,q ([−2, 2]) = {Z1 = aZ + b, P1,q(Z1) ∈ [−2, 2]}, if aτ and bτ , in Q[i], are closed to a and

b respectively, then {Z1 = aτ Z + bτ , P1,q(Z1) ∈ [−2, 2]} are closed to σ(Cq). Then the polynomial
Qτ (Z) = P1,q(aτZ + bτ ) has its coefficients in Q[i].

On the other hand P−1
1,q ([−2, 2]) = Q−1

τ ([−2, 2]) and for some convenient β ∈ Q[i], such that

Qr(z) = 1
β z

R+· · · , the polynomial βQτ is the Chebychev polynomial of Kτ = K1,τ+K2,τ+...+Kr,τ ,

with Kj,τ closed to the corresponding component in Γ ∩H.

Let us denote by aA±j,q + b the points P−1
1,q {±2}, they are closed to the aA±j + b. Now βQτ

is the Chebychev polynomial of Kτ = K1,τ + K2,τ + ... + Kr,τ and it achieves its extrema at the
extremity of Kj,τ , denoted by aτA

±
j,q,τ + bτ . In summery it oscillates on Kj,τ being extremum at

the aτA
±
j,q,τ + bτ .

5.5. How to obtain integer coefficients. We start with the notations of the preceding section:
The polynomial βQτ is the Chebychev polynomial of Kτ = K1,τ +K2,τ + ...+Kr,τ with coefficients
in Q[i] and it achieves its extrema at the end points of Kj,τ , denoted by aτA

±
j,q,τ + bτ . Moreover

Qr(Kτ ) = [−2, 2] and since it is of degree r, Qr has an unique zero in each Kl,τ , denoted by
ξl, l = 1, ..., r. Let Tn the Chebychev polynomial of [−2, 2], then the polynomial Pn defined by
Pn = β−nTn(Qr) is the Chebychev polynomial of degree nr of Kτ . In fact it verifies clearly

Kτ = β−nTn(Qr)
−1[−2, 2], Qr(Kτ ) = [−2, 2], Qr(aτA

±
j,q,τ + bτ ) = ±2.

Let Bk,n such that Qr(Bk,n) = 2 cos kπn , then Tn(Bk,n) = (−2)k and |Pn| achieves its maximum

at aτA
±
j,q,τ + bτ and the Bk,n. The polynomial Pn has n zeros in each Kj,τ . It enables us to prove

the lemma

Lemma 5.1. µPn converge to the equilibrium measure of Kτ .

Proof. The proof follows [29, Theorem B1]. To simplify the notations Kτ is denoted by K. By the
Bernstein-Walsh lemma we have for z ∈ C\K,

(7)
1

nr
log |Pn(z)| ≤ log

 ||Pn|| 1
nr
K

C(K)

− ΦµK(z)

with the remark that limn ||Pn||
1
nr
K = C(K).

Now let dη be a limit point of the normalized density of zeros of Pn(z), dηn and let f be continuous
with support contained in C\K, then

∫
fdηn = 0 because Pn has its zeros in K and if dηn → dη,

then
∫
fdη = 0 and supp(dη) ⊂ K. By the Upper Envelope Theorem [29, Theorem A7]

lim inf
n→∞

Φηn(z) = Φη(z)

for all z ∈ C\K except for z in a polar set. Then letting n→∞ in 7, we get

Φη(z) ≥ ΦµK

for all z ∈ C\K except for z in a polar set. By continuity of Φη and ΦµK in C\K, we have Φη ≥ ΦµK
for all z in C\K. By using [29, Theorem A.21], we have η = µK. Thus, µK is the only limit point
of the zeros, and so the limit is µK. �

With the same proof we deduce that for any l ≥ 1, µP ln → µK. Now, following [12, p 164] and
its notations we consider

Pn(z) = zk +
γ1z

k−1 + γ2z
k−2 + ...+ γk
m

, m ∈ N∗, γj ∈ Z[i].
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Let us denote by b = ak, a ∈ N and by c = b!mb, c > b ≥ a, then (Pn(z))c = zkc + ... and

the coefficients of zkc−1, zkc−2, ..., zkc−b are in Z[i]. We can then determinate complex numbers,

λ
(1)
1 , ..., λ

(1)
k , λ

(2)
1 , ..., λ

(2)
k ,...,λ

(c−a)
1 , ..., λ

(c−a)
k such that the polynomial

Γa(z) = (Pn(z))c +

c−a∑
i=1

k∑
j=1

λ
(i)
j z

k−j(Pn(z))c−a−i(8)

= (Pn(z))c + ∆a(z)(9)

has its coefficients in Z[i]. We have

|Γa(z)− (Pn(z))c| ≤ 2
c−a∑
i=1

k∑
j=1

|z|k−j |Pn(z)|c−a−i

≤ 2
k∑
j=1

|z|k−j |Pn(z)|c−a − 1

|Pn(z)| − 1

|Γa(z)− (Pn(z))c|
|(Pn(z))c|

≤ 2

 k∑
j=1

|z|k−j
 |Pn(z)|−a − |Pn(z)|−c

|Pn(z)| − 1
.

On the lemniscate |Pn(z)| = R2 withR2 > 1 for exampleR2 = M
1
n
n , then withM = max

|Pn(z)|=R2

k∑
j=1

|z|k−j ,

|Γa(z)− (Pn(z))c| ≤ 2M

Ra2(R2 − 1)
|Pn(z)c|

≤ 1

2
|Pn(z)c| < |Pn(z)c|

for a sufficiently large. By Rouché’s theorem, in each Kj,τ , Γa has nc zeros near from the nc zeros
of (Pn(z))c. After clarifying the earliest ”near”, we conclude that limµΓa = µK.

5.6. End of the proof. We will need the following result

Lemma 5.2. Let K be a compact set of C, then

(1) If Tn is the Chebychev polynomial of K, then Tn is the Chebychev polynomial of K̄,
(2) C(K) = C(K̄).

Proof. It is clear that the second point will follow from the first, but also from the fact that if Pn
a monic polynomial of degree n then

‖Pn||∞,K = ||Pn‖∞,K̄ .
�

Again in this first part we withdraw the ν symbol. We are going to prove that

µKτ → µΓ+ ,

where Γ+ = Γ ∩ H. For this we use lemma 2.1. By construction δ(Kτ ,Γ
+) → 0 . Now σ(C) =

P−1
1 ([−2, 2]) = aΓ+ + b and then C(σ(C)) = |a|C(Γ+).

We recall that for a r-periodic Jacobi matrix J , the capacity of its spectrum is the
1

r
th power

of the product of the diagonal coefficients. Since the rational coefficients of Cq approximate those
of C, we have C(σ(Cq))→ C(σ(C)). Since C(σ(Cq)) = C(aΓq + b) = |a|C(Γq), then C(Γq)→ C(Γ+).
Moreover

C(Kτ ) = C( 1

aτ
(aΓq + b− bτ )) =

|a|
|aτ |
C(Γq),

hence C(Kτ )→ C(Γ+).
Hence we have found a sequence of monic polynomials with integer coefficients (Θλ)λ such that

µΘλ → µKτ . By the diagonal process we conclude that µΘλ → µΓ+ .
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The second step is to verify that limµPn = µΓ− where Γ− = Γ\Γ+.

The third step is to remark that PnP̄n is a monic polynomial with integer coefficients and that
limn δPnP̄n = 1

2(δΓ+ + δΓ−). Which follows from the definition of δPnP̄n and the previous results.

The ultimate step is to verify that 1
2(δΓ+ + δΓ−) = δΓ. For this we look at the energy. Let

µ1 = 1
2δΓ+ and µ2 = 1

2δΓ−

I(
1

2
(δΓ+ + δΓ−)) = I(µ1) + I(µ2) + 2

∫
Φµ1(x) dµ2(x)

=
1

4

1

ln(C(Γ+))
+

1

4

1

ln(C(Γ−))
+ 2

∫
Φµ1(x) dµ2(x) .

From the beginning we have that C(Γ+) = C(Γ−) = C(Γ). Moreover as Γ+ and Γ− are disjoint
we have that on Γ−, Φµ1(x) ≤ 1

2
1

ln(C(Γ+))
. Finally

I(
1

2
(δΓ+ + δΓ−)) ≤ I(δΓ+∪Γ−) = I(δΓ) ,

and by definition of the equilibrium measure I(1
2(δΓ+ + δΓ−)) = I(δΓ) .
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[22] Năıman, P. B., On the theory of periodic and limit-periodic Jacobi matrices. Soviet Math.Dokl., 3:383-385, 1962.
[23] Robinson. R. M., Conjugate algebraic integers in real point sets. Math.Zeitschr., 84:415–427, 1964.
[24] Robinson, R.M. Intervals containing infinitely many sets of conjugate algebraic units. Annals of Math. (2),
80:411-428, 1964.

[25] Rumely, R., On Bilu’s equidistribution theorem. Contemporary Math., 237(1999),159-166
[26] Rumely, R., Capacity Theory With Local Rationality: The Strong Fekete-szegö Theorem on Curves Mathemat-
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