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Deep neural networks have dominated speaker recognition, with a sharp increase in performance associated with increasingly complex models. This comes at the cost of transparency, which poses serious problems for informed decision making. In response, an intrinsically interpretable scoring approach, BA-LR, was recently presented. This method uses an attributebased bottom-up representation of speech, linked with a transparent scoring scheme. For the sake of explainability, the present work adds an analysis of the nature of the attributes, by selecting and quantifying the contributions of the phonetic variables that describe it. We propose two methods based on statistical and surrogate models, respectively. The results reveal that the speech attributes are each well described by a set of descriptive variables. This allows us to propose the first transparent scoring scheme in speaker recognition, where the weights of the phonetic variables contributing to each decision item are known.

Introduction

Automatic speaker recognition (SR) systems typically rely on deep neural networks, in particular ResNet [START_REF] Nagrani | Voxceleb: Large-scale speaker verification in the wild[END_REF] and ECAPA-TDNN [START_REF] Desplanques | Ecapa-tdnn: Emphasized channel attention, propagation and aggregation in tdnn based speaker verification[END_REF]. Using models trained on large datasets, these systems efficiently extract speaker embeddings from speech. These embeddings are then compared using similarity metrics to evaluate whether two recordings belong to the same or different speakers. Despite their success in terms of reported error rates, these automatic SR systems do not provide explainable information, as to what is captured in the speaker representation, how it is encoded, and how it is used during the decision making process. This lack of transparency and explainability becomes problematic when considering the judicial domain, as laws evolve, and even more critical in applications such as forensics.

Addressing this issue, recent works in the speech domain used probing classifiers [START_REF] Chowdhury | What do end-to-end speech models learn about speaker, language and channel information? a layer-wise and neuron-level analysis[END_REF] to reveal speaker-related information encoded in the learned representation, such as accent [START_REF] Prasad | How accents confound: Probing for accent information in end-to-end speech recognition systems[END_REF], style [START_REF] Elloumi | Analyzing learned representations of a deep asr performance prediction model[END_REF], dialectal/non-dialectal [START_REF] Chowdhury | What does an end-to-end dialect identification model learn about non-dialectal information?[END_REF], identity, channel, and transcription [START_REF] Raj | Probing the information encoded in x-vectors[END_REF][START_REF] Wang | What does the speaker embedding encode?[END_REF]. Other works analyzed the presence of phonemic information along neural network layers [START_REF] Nagamine | Exploring how deep neural networks form phonemic categories[END_REF][START_REF] Belinkov | Analyzing phonetic and graphemic representations in end-to-end automatic speech recognition[END_REF][START_REF] Belinkov | Analyzing hidden representations in end-to-end automatic speech recognition systems[END_REF][START_REF] Shon | Frame-level speaker embeddings for text-independent speaker recognition and analysis of end-to-end model[END_REF]. Such work typically requires finely labeled data, which is a critical and expensive resource that is rarely available. In a different avenue, [START_REF] Beguš | Interpreting intermediate convolutional layers of generative cnns trained on waveforms[END_REF] studied the presence of acoustic features in model layers in order to identify how the network encodes this information. Often inspired by computer vision, explainable AI (XAI) techniques have also been used in speech processing, such as gradient-based techniques [START_REF] Krug | Neuron activation profiles for interpreting convolutional speech recognition models[END_REF][START_REF] Krug | Analyzing and visualizing deep neural networks for speech recognition with saliency-adjusted neuron activation profiles[END_REF][START_REF] Markert | Visualizing automatic speech recognition -means for a better understanding?[END_REF][START_REF] Li | Reliable visualization for deep speaker recognition[END_REF] and Shapley values [START_REF] Syed | Data valuation for acoustic models in automatic speech recognition[END_REF][START_REF] Sivasankaran | Explaining deep learning models for speech enhancement[END_REF]. However, these works are unable to propose informed decision schemes, such as which information is captured by SR systems and what is its contribution during decision making process.

The Binary-attribute-based likelihood ratio (BA-LR) estimation is a solution initially proposed for forensic application [START_REF] Ben-Amor | Ba-lr: Binary-attribute-based likelihood ratio estimation for forensic voice comparison[END_REF]. It breaks down the SR scoring process into independent sub-processes, where each is dedicated to a specific speech attribute. For a given speech extract, an attribute may be present or absent, which, in turn, is given by a binary value (either 1 or 0). The scoring sub-process outputs a Likelihood Ratio (LR) value calculated for each attribute and for each of the four possible cases (i.e., 00, 01, 10 and 11). Although the BA-LR scoring approach may significantly improve interpretability, it is noteworthy that the attribute extractor utilizes a bottom-up approach and does not provide any additional information on the nature of speech attributes.

The current work aims to fill this gap by exploring the nature of these speech attributes. The prerequisites we set for this work are to not require additional manual labeling, to be able to handle a large amount of data, and to produce a meaningful description for a speech expert. The attributes are intended to be speaker discriminant (i.e., shared only by a subset of speakers). The main principle of the present work consists in comparing two sets of speech extracts: one set composed of speech excerpts where the attribute is detected, i.e., spoken by the group of speakers who share it, and the other set composed of excerpts spoken by other speakers (and where, by definition, the attribute is never present). Through this comparison, our method identifies the phonetic descriptive variables, such as F0, formants, jitter, shimmer, etc, that explain the difference between the two sets, weights them, and provides an in-depth view of the most salient information that characterizes an attribute. Two approaches are presented and evaluated, one employs decision trees as surrogate explainable models and the second relies on a classical statistical test based on a step-wise linear discriminant analysis (SLDA) [START_REF] Stapor | Better alternatives for stepwise discriminant analysis[END_REF].

The outline of the paper is as follows: Section 2 provides an overview of the BA-LR approach, followed by the proposed interpretability methodology of attributes in Section 3. Sections 4 and 5 present the experimental setup and the results, respectively. Conclusion and future work are summarized in Section 6.

BA-LR approach overview

This section presents a description of our BA-LR approach introduced in [START_REF] Ben-Amor | Ba-lr: Binary-attribute-based likelihood ratio estimation for forensic voice comparison[END_REF]. We decompose it here into three main steps as shown in Figure 1: 1. A speech extract X is represented by a binary vector, denoted as "BA-vector", where each coefficient gives the presence [START_REF] Nagrani | Voxceleb: Large-scale speaker verification in the wild[END_REF] or absence (0) of a given speech attribute. The BA-vectors are extracted using a lightly modified X-vector extractor [START_REF] Snyder | X-vectors: Robust dnn embeddings for speaker recognition[END_REF], BA-extractor, which is optimized to produce binary representation. 2. During a test scoring of a given pair (X,Y), a partial Likelihood Ratio (LR) is computed separately for each attribute BAi, using both its behavioral parameters (i.e., Ti, Douti, Dini) and its value in X and Y (11, 00, 01, 10). Ti represents the typicality of the attribute, or how frequently it occurs among speakers (i.e., its discriminative power). Douti is the probability that an attribute is absent from a speech extract while present in other extracts of the same speaker, while Dini is the probability of falsely detecting an attribute in an extract, due to noise, for example. Dini is computed as a combination of a fixed factor Din, and Ti. Ti, Douti, and Din are estimated during the training phase (Figure 1), which are then used to compute the corresponding partial LR values per attribute BAi and each test case (11, 00, 01, 10). The final LR is therefore computed as the product of partial LRs, under the assumption that attributes are independent. 3. The training of the BA extractor is driven only by the speaker label associated with the training data. Thus, the extraction of the speech attributes can be considered as a bottom-up process and no meta-information is available on their nature. [START_REF] Ben-Amor | Ba-lr: Binary-attribute-based likelihood ratio estimation for forensic voice comparison[END_REF] suggested that providing an acoustic and phonetic description of the attributes would be important for enhancing explainability. However, this step has not been previously done. This third step represents the main focus of the present work, which studies the information captured by each attribute and its connection to speech characteristics.

Figure 1: The overall BA-LR approach methodology following the three steps.

Describing the phonetic nature of the speech attributes

This section presents the core of the current work: a methodology for discovering the nature of the speech attributes of the BA-LR approach. It is important to recall that these attributes are derived from a bottom-up process and that no information is available about their nature. We build our methodology under the assumption that if we can identify phonetic variables that effectively differentiate speech extracts as having (or not) a particular attribute, then these variables are likely to be good descriptors of the attribute.

Description of the methodology

After extracting BA-vectors for each available speech extract, we apply the following three-steps strategy independently for each attribute, as illustrated in Figure 2: For this, we choose a set of M descriptive variables, which can be of any type, as long as they can be computed automatically from speech. For this specific work, we opted to use descriptive phonetic variables, such as F0, formants, jitter, shimmmer, etc., but other variable types are also possible, such as phonemic [START_REF] Ajili | Phonetic content impact on forensic voice comparison[END_REF][START_REF] Lei | A novel scheme for speaker recognition using a phonetically-aware deep neural network[END_REF][START_REF] Wang | On the usage of phonetic information for text-independent speaker embedding extraction[END_REF] or languagerelated ones [START_REF] Lu | The effect of language factors for robust speaker recognition[END_REF]. The values of the variables are then extracted for each speech extract. • The last step, in Fig. 2-c To ensure the relevance of this choice, we use a second method based on a classical statistical test, which is less powerful, but provides a simpler solution. Both approaches are detailed later in this section.

Surrogate model

Good candidates for surrogate models are those that are inherently explainable, capable of giving sufficient separability performance between class 1 and class 0 examples, and easy to train (i.e., stable and not too costly in terms of computing power). We choose a decision tree as surrogate model, since it is known to be fast, simple, and explainable by nature. Specifi-cally, we use TreeExplainer from SHAP toolkit1 , which computes Shapley values [START_REF] Lundberg | A unified approach to interpreting model predictions[END_REF]. Shapley values are used to estimate feature contributions to the classifier predictions following Equation 1, where Xj is a descriptive variable, BAi is the attribute described, and ShapMean(Xj) is the average of Shapley values obtained for Xj across all instances using the BAi surrogate model.

ContributionBA i (Xj) = ShapM ean(Xj) M k=1 (ShapM ean(X k )) (1) 

Statistical test

We select step-wise linear discriminant analysis (SLDA) [START_REF] Stapor | Better alternatives for stepwise discriminant analysis[END_REF] as a statistical method for identifying a linear combination of the explanatory variables that characterize or separate the examples of the two classes 1 and 0. The algorithm begins with an empty list of explanatory variables and then adds variables to it with the highest discriminant power based on Wilks' Lambda value (Equation 2) until the p-value achieves a threshold of 0.01.

Wilk's lambda = det(A) det(A + B) ( 2 
)
where det is the determinant, A is the within class covariance matrix, and B is the between class covariance matrix.

Experimental protocol

In this section, we describe the datasets and protocols used for the experimental validation2 of our proposals.

Data set and protocol

We use four corpora for the experiments: VoxCeleb1&2 [START_REF] Nagrani | Voxceleb: Large-scale speaker verification in the wild[END_REF], SITW [START_REF] Mclaren | The speakers in the wild (sitw) speaker recognition database[END_REF] and VOiCES [START_REF] Nandwana | The voices from a distance challenge 2019 evaluation plan[END_REF], as summarized in Table 1. During steps 1 and 2 of our BA-LR approach (as shown in Figure 1), VoxCeleb2 (Vox2) is used for training the BA-extractor and computing behavioral parameters related to attributes (Ti, Douti, Din). It is also used to discover the nature of attributes (step 3 in Figure 1). VoxCeleb1 (Vox1), SITW, and VOiCES are used for testing only, and have no intersection with Vox2 in terms of speakers. For testing, we use the evaluation protocol of SITW and VOiCES, whereas for Vox1 we select the first ten utterances of each of the 1251 speakers, resulting in 56,295 target pairs (45 per speaker). We balance the number of non-target/target trials for Vox1, SITW, and VOiCES, by randomly selecting a subset of non-target trials. 

Baseline Vs. BA-LR description

To provide a point of comparison, we utilize a ResNet-based baseline [START_REF] Nagrani | Voxceleb: Large-scale speaker verification in the wild[END_REF][START_REF] Mohammadamini | Learning noise robust resnet-based speaker embedding for speaker recognition[END_REF] with 256-dimensional embeddings as the seed for the BA-LR extractor. The BA-LR extractor adds a thresholding layer dedicated to producing sparse representations. After binarization, 256-dimensional vectors are obtained, which are then pruned to eliminate zero-activity coefficients. This results in a set of 205 BAs in each BA-vector.

Descriptive variables extraction

We use the open-source audio feature extraction toolkit OpenSmile3 in order to compute the descriptive variables. We use the eGeMAPS [START_REF] Eyben | Opensmile: the munich versatile and fast open-source audio feature extractor[END_REF], pre-defined set of 88 descriptive variables, which contains 18 low-level descriptors (LLD) 4 , 7 LLDs of cepstral and dynamic parameters, their corresponding functionals 5 , and several spectral parameters.

Experimental results & Discussions

In this section, we first evaluate the overall performance of our implementation of BA-LR approach in terms of speaker discrimination and generalization capabilities. Then, we address the core of this work: the description of the nature of the speech attributes automatically discovered by the proposed methodology in terms of descriptive phonetic variables. 

Speaker recognition performance

Table 2 shows the equal error rate (EER) and Cllr min/act [START_REF] Brümmer | Application-independent evaluation of speaker detection[END_REF] obtained using our BA-LR system and a X-vector baseline, for the three different test sets. BA-LR achieves a comparable EER for all corpora, with a loss of 1.72% (absolute) in average compared to the baseline 6 . This seems to be relatively moderate with respect to the well-known trade-off between performance and explainability, which, when required, is often observed. The BA-LR approach shows good generalization capability, as indicated by its performance on all test sets, especially for VOiCES, which differs significantly from the training set in terms of both speech content and recording conditions.

Attribute automatic description

We first use the surrogate model (Section 3.2) solution in order to build automatic descriptions of the different attributes in terms of descriptive variables (Section 4.3). The process is performed independently for each attribute. Figure 4 shows the accuracy obtained for all BAs surrogate models on both Vox2 (train set) and Vox1 (test set), ranked by the typicality of the BAs (from lowest to highest). The relatively high accuracy values obtained on train set (between 0.6 and 0.97) and the small difference in accuracy between train and test sets (0.11 on average) indicate a good selection and fit of the surrogate models. A strong inverse correlation is also observed between typicality and accuracy, indicating that the attributes that carry the greatest power to discriminate between speakers are also the best represented by the descriptive variables.

Figure 5 illustrates the contributions of different families7 of variables to each attribute. The attributes are ordered by hierarchical clustering. The differences along the attributes (i.e, BAs)(x-axis) reinforce the hypothesis that the attributes do not encode the same phonetic information. The figure also reveals that some variable families are on average more important than others, even if some exceptions are present for some attributes.

We then apply the SLDA (Section 3.3) method and measure the similarity between the variables selected by both methods. For that, we use the surrogate models to select the variables representing 75% of the contributions using Shapley values and evaluate the intersection with the variables selected by SLDA method. Achieving ≈80% of convergence between both methods strengthens confidence in the attribute description that we obtained. This also shows the value of the surrogate model approach, which allows for more accurate quantification of information via Shapley values. This convergence is illustrated in Figures 3 and6 for a given BA.

Conclusion

This study has built on a newly introduced approach for speaker recognition, BA-LR, which highlights the presence or absence of specific speech attributes in speech extracts via the use of a transparent process to decompose the scoring process by attribute. While the BA-LR framework provides an interesting approach to interpreting speaker recognition, its bottom-up process for discovering speech attributes leaves the nature of these attributes unknown, resulting in a lack of explicability. This work has addressed this gap by describing the nature of the attributes contributing to the LR value. To achieve this goal, we have described speech excerpts and attributes by a set of phonetic variables that are easy to extract automatically. We have also proposed the use of decision trees as explainable surrogate models, trained to separate the set of speech excerpts having a given attribute from those that do not. From the surrogate models, we were able to select and weight the most important descriptive variables for each attribute using Shapley values, which differ across attributes. We have evaluated the robustness of our approach by comparing it with a traditional SLDA, and we have achieved clear convergence in terms of variables selection. Overall, our work has opened a new perspective on explainable speaker recognition, represented by the complete architecture described in this paper. This approach departs from traditional SR systems, by taking full advantage of them. However, it is important to note that the integration of human expertise is still required to interpret the combination of phonetic variables in terms of high-level speech features.
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 2 Figure 2: Methodology of an attribute interpretability following (a), (b), and (c) steps, as applied to each speech attribute

  , is to select the relevant descriptive variables for the attribute in question and weight them. As explained earlier, the strategy relies on selecting the variables that best explain the difference between sets S1 and S0. For this purpose, we propose two solutions. The first, issued from the field of XAI, consists in training an intrinsically explainable classifier, called a surrogate model, to separate examples of sets S1 and S0. It uses the descriptive variables extracted from each training example as features. The most influential variables are the ones that best describe the concerned speech attribute.
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 3 Figure 3: Descriptive variable contributions to the BA9 surrogate model, grouped by families.
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 4 Figure 4: Accuracy of BAs surrogate models on Vox2 (train) and Vox1 (test) sets with their associated typicality values.
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 5 Figure 5: Contribution of family variables to BAs (%).

Figure 6 :

 6 Figure 6: Lambda values as a function of the number of selected variables for attribute BA9 (and the first 10 variables)

Table 1 :

 1 Description of data sets

		Train		Test	
		Vox2	Vox1	SITW VOiCES
	# of speakers	5,994	1,251	180	100
	# of utterances 1,021175 153,516	2883	11,392
	# of trials		112,558	7,316	72,886

Table 2 :

 2 SR performance in terms of EER and Cllr min/act .

	Dataset		X-vectors		BA-vectors
		EER Cllr min/act EER Cllr min/act
	Vox1	1.37	0.05/0.82	3.7	0.14/0.31
	SITW	1.4	0.05/0.82	3.5	0.13/0.28
	VOiCES 3.96	0.15/0.87	4.7	0.18/0.46

https://github.com/slundberg/shap

https://github.com/LIAvignon/BA-LR

https://github.com/audeering/opensmile

These include frequency related parameters, such as pitch, jitter, formants, energy related parameters shimmer, loudness, and harmonicsto-noise ratio.

[START_REF] Elloumi | Analyzing learned representations of a deep asr performance prediction model[END_REF] The 20 th , 50 th , and 80 th percentile, the range between the 20 th and 80 th percentiles, and the mean and standard deviation of the slope of rising/falling

signal.[START_REF] Chowdhury | What does an end-to-end dialect identification model learn about non-dialectal information?[END_REF] The BA-LR binary representation is ≈40 times smaller than the x-vector one, which opens up an avenue for performance improvement

The families are: F0 (pitch); F1, F2, F3, (formants); HN (Harmonics-to-noise ratio); Me and St (mean and std of Voice/unvoiced); Vo (VoicedSegmentperSecond); al (alpha ratio); eq (equivalent-sound-level); Ha (Hammarberg index); ji (jitter); lo (loudness); log (logRelF0-H1-A3 ); mf (MFCCs 1-4); sh (shimmer); sl (slope); sp (spectral-flux).