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Abstract
Deep neural networks have dominated speaker recognition,
with a sharp increase in performance associated with increas-
ingly complex models. This comes at the cost of transparency,
which poses serious problems for informed decision making. In
response, an intrinsically interpretable scoring approach, BA-
LR, was recently presented. This method uses an attribute-
based bottom-up representation of speech, linked with a trans-
parent scoring scheme. For the sake of explainability, the
present work adds an analysis of the nature of the attributes,
by selecting and quantifying the contributions of the phonetic
variables that describe it. We propose two methods based on
statistical and surrogate models, respectively. The results reveal
that the speech attributes are each well described by a set of de-
scriptive variables. This allows us to propose the first transpar-
ent scoring scheme in speaker recognition, where the weights
of the phonetic variables contributing to each decision item are
known.
Index Terms: Speaker recognition, Explainability, speech at-
tributes interpretability, phonetic features

1. Introduction
Automatic speaker recognition (SR) systems typically rely on
deep neural networks, in particular ResNet [1] and ECAPA-
TDNN [2]. Using models trained on large datasets, these sys-
tems efficiently extract speaker embeddings from speech. These
embeddings are then compared using similarity metrics to eval-
uate whether two recordings belong to the same or different
speakers. Despite their success in terms of reported error rates,
these automatic SR systems do not provide explainable infor-
mation, as to what is captured in the speaker representation,
how it is encoded, and how it is used during the decision mak-
ing process. This lack of transparency and explainability be-
comes problematic when considering the judicial domain, as
laws evolve, and even more critical in applications such as
forensics.

Addressing this issue, recent works in the speech domain
used probing classifiers [3] to reveal speaker-related informa-
tion encoded in the learned representation, such as accent [4],
style [5], dialectal/non-dialectal [6], identity, channel, and tran-
scription [7, 8]. Other works analyzed the presence of phone-
mic information along neural network layers [9, 10, 11, 12].
Such work typically requires finely labeled data, which is a crit-
ical and expensive resource that is rarely available. In a dif-
ferent avenue, [13] studied the presence of acoustic features in
model layers in order to identify how the network encodes this
information. Often inspired by computer vision, explainable
AI (XAI) techniques have also been used in speech processing,
such as gradient-based techniques [14, 15, 16, 17] and Shapley

values [18, 19]. However, these works are unable to propose
informed decision schemes, such as which information is cap-
tured by SR systems and what is its contribution during decision
making process.

The Binary-attribute-based likelihood ratio (BA-LR) esti-
mation is a solution initially proposed for forensic applica-
tion [20]. It breaks down the SR scoring process into indepen-
dent sub-processes, where each is dedicated to a specific speech
attribute. For a given speech extract, an attribute may be present
or absent, which, in turn, is given by a binary value (either 1
or 0). The scoring sub-process outputs a Likelihood Ratio (LR)
value calculated for each attribute and for each of the four possi-
ble cases (i.e., 00, 01, 10 and 11). Although the BA-LR scoring
approach may significantly improve interpretability, it is note-
worthy that the attribute extractor utilizes a bottom-up approach
and does not provide any additional information on the nature
of speech attributes.

The current work aims to fill this gap by exploring the na-
ture of these speech attributes. The prerequisites we set for
this work are to not require additional manual labeling, to be
able to handle a large amount of data, and to produce a mean-
ingful description for a speech expert. The attributes are in-
tended to be speaker discriminant (i.e., shared only by a subset
of speakers). The main principle of the present work consists
in comparing two sets of speech extracts: one set composed
of speech excerpts where the attribute is detected, i.e., spoken
by the group of speakers who share it, and the other set com-
posed of excerpts spoken by other speakers (and where, by def-
inition, the attribute is never present). Through this compar-
ison, our method identifies the phonetic descriptive variables,
such as F0, formants, jitter, shimmer, etc, that explain the dif-
ference between the two sets, weights them, and provides an
in-depth view of the most salient information that characterizes
an attribute. Two approaches are presented and evaluated, one
employs decision trees as surrogate explainable models and the
second relies on a classical statistical test based on a step-wise
linear discriminant analysis (SLDA) [21].

The outline of the paper is as follows: Section 2 provides
an overview of the BA-LR approach, followed by the proposed
interpretability methodology of attributes in Section 3. Sections
4 and 5 present the experimental setup and the results, respec-
tively. Conclusion and future work are summarized in Section
6.

2. BA-LR approach overview
This section presents a description of our BA-LR approach in-
troduced in [20]. We decompose it here into three main steps as
shown in Figure 1:

1. A speech extract X is represented by a binary vector, denoted



as “BA-vector”, where each coefficient gives the presence (1)
or absence (0) of a given speech attribute. The BA-vectors
are extracted using a lightly modified X-vector extractor [22],
BA-extractor, which is optimized to produce binary represen-
tation.

2. During a test scoring of a given pair (X,Y), a partial Like-
lihood Ratio (LR) is computed separately for each attribute
BAi, using both its behavioral parameters (i.e., Ti, Douti,
Dini) and its value in X and Y (11, 00, 01, 10). Ti repre-
sents the typicality of the attribute, or how frequently it oc-
curs among speakers (i.e., its discriminative power). Douti
is the probability that an attribute is absent from a speech
extract while present in other extracts of the same speaker,
while Dini is the probability of falsely detecting an attribute
in an extract, due to noise, for example. Dini is computed
as a combination of a fixed factor Din, and Ti. Ti, Douti,
and Din are estimated during the training phase (Figure 1),
which are then used to compute the corresponding partial LR
values per attribute BAi and each test case (11, 00, 01, 10).
The final LR is therefore computed as the product of partial
LRs, under the assumption that attributes are independent.

3. The training of the BA extractor is driven only by the speaker
label associated with the training data. Thus, the extraction
of the speech attributes can be considered as a bottom-up
process and no meta-information is available on their nature.
[20] suggested that providing an acoustic and phonetic de-
scription of the attributes would be important for enhancing
explainability. However, this step has not been previously
done. This third step represents the main focus of the present
work, which studies the information captured by each at-
tribute and its connection to speech characteristics.

Figure 1: The overall BA-LR approach methodology following
the three steps.

3. Describing the phonetic nature of the
speech attributes

This section presents the core of the current work: a method-
ology for discovering the nature of the speech attributes of the
BA-LR approach. It is important to recall that these attributes
are derived from a bottom-up process and that no information
is available about their nature. We build our methodology un-
der the assumption that if we can identify phonetic variables
that effectively differentiate speech extracts as having (or not)
a particular attribute, then these variables are likely to be good
descriptors of the attribute.

3.1. Description of the methodology

After extracting BA-vectors for each available speech extract,
we apply the following three-steps strategy independently for
each attribute, as illustrated in Figure 2:

Figure 2: Methodology of an attribute interpretability following
(a), (b), and (c) steps, as applied to each speech attribute

• The extracts are grouped into two sets (Fig. 2-a). The first
set, denoted “S1”, groups the extracts where the considered
attribute is present. The second set, denoted “S0”, contains
the extracts from speakers other than those present in S1 and
where the attribute has a value of 0. In other words, S1 con-
tains positive examples of the attribute pronounced by the set
of speakers who share this attribute, while S0 presents nega-
tive examples pronounced by other speakers, who never had
the attribute. Finally, some randomly selected extracts are
eliminated from S0 to balance the number of extracts in the
two sets in order to avoid bias during the selection process.

• The second step, in Fig. 2-b, is dedicated to describing the
speech extracts. For this, we choose a set of M descriptive
variables, which can be of any type, as long as they can be
computed automatically from speech. For this specific work,
we opted to use descriptive phonetic variables, such as F0,
formants, jitter, shimmmer, etc., but other variable types are
also possible, such as phonemic [23, 24, 25] or language-
related ones [26]. The values of the variables are then ex-
tracted for each speech extract.

• The last step, in Fig. 2-c, is to select the relevant descriptive
variables for the attribute in question and weight them. As
explained earlier, the strategy relies on selecting the variables
that best explain the difference between sets S1 and S0. For
this purpose, we propose two solutions. The first, issued from
the field of XAI, consists in training an intrinsically explain-
able classifier, called a surrogate model, to separate examples
of sets S1 and S0. It uses the descriptive variables extracted
from each training example as features. The most influential
variables are the ones that best describe the concerned speech
attribute. To ensure the relevance of this choice, we use a sec-
ond method based on a classical statistical test, which is less
powerful, but provides a simpler solution. Both approaches
are detailed later in this section.

3.2. Surrogate model

Good candidates for surrogate models are those that are in-
herently explainable, capable of giving sufficient separability
performance between class 1 and class 0 examples, and easy
to train (i.e., stable and not too costly in terms of computing
power). We choose a decision tree as surrogate model, since it
is known to be fast, simple, and explainable by nature. Specifi-



cally, we use TreeExplainer from SHAP toolkit1, which com-
putes Shapley values [27]. Shapley values are used to esti-
mate feature contributions to the classifier predictions follow-
ing Equation 1, where Xj is a descriptive variable, BAi is the
attribute described, and ShapMean(Xj) is the average of Shap-
ley values obtained for Xj across all instances using the BAi

surrogate model.

ContributionBAi(Xj) =
ShapMean(Xj)∑M

k=1(ShapMean(Xk))
(1)

3.3. Statistical test

We select step-wise linear discriminant analysis (SLDA) [21] as
a statistical method for identifying a linear combination of the
explanatory variables that characterize or separate the examples
of the two classes 1 and 0. The algorithm begins with an empty
list of explanatory variables and then adds variables to it with
the highest discriminant power based on Wilks’ Lambda value
(Equation 2) until the p-value achieves a threshold of 0.01.

Wilk’s lambda =
det(A)

det(A+B)
(2)

where det is the determinant, A is the within class covariance
matrix, and B is the between class covariance matrix.

4. Experimental protocol
In this section, we describe the datasets and protocols used for
the experimental validation2 of our proposals.

4.1. Data set and protocol

We use four corpora for the experiments: VoxCeleb1&2 [1],
SITW [28] and VOiCES [29], as summarized in Table 1. Dur-
ing steps 1 and 2 of our BA-LR approach (as shown in Fig-
ure 1), VoxCeleb2 (Vox2) is used for training the BA-extractor
and computing behavioral parameters related to attributes (Ti,
Douti, Din). It is also used to discover the nature of attributes
(step 3 in Figure 1).

VoxCeleb1 (Vox1), SITW, and VOiCES are used for test-
ing only, and have no intersection with Vox2 in terms of speak-
ers. For testing, we use the evaluation protocol of SITW and
VOiCES, whereas for Vox1 we select the first ten utterances of
each of the 1251 speakers, resulting in 56,295 target pairs (45
per speaker). We balance the number of non-target/target trials
for Vox1, SITW, and VOiCES, by randomly selecting a subset
of non-target trials.

Table 1: Description of data sets

Train Test
Vox2 Vox1 SITW VOiCES

# of speakers 5,994 1,251 180 100

# of utterances 1,021175 153,516 2883 11,392

# of trials 112,558 7,316 72,886

4.2. Baseline Vs. BA-LR description

To provide a point of comparison, we utilize a ResNet-based
baseline [1, 30] with 256-dimensional embeddings as the seed

1https://github.com/slundberg/shap
2https://github.com/LIAvignon/BA-LR

for the BA-LR extractor. The BA-LR extractor adds a threshold-
ing layer dedicated to producing sparse representations. After
binarization, 256-dimensional vectors are obtained, which are
then pruned to eliminate zero-activity coefficients. This results
in a set of 205 BAs in each BA-vector.

4.3. Descriptive variables extraction

We use the open-source audio feature extraction toolkit OpenS-
mile3 in order to compute the descriptive variables. We use
the eGeMAPS [31], pre-defined set of 88 descriptive variables,
which contains 18 low-level descriptors (LLD)4, 7 LLDs of cep-
stral and dynamic parameters, their corresponding functionals5,
and several spectral parameters.

5. Experimental results & Discussions
In this section, we first evaluate the overall performance of our
implementation of BA-LR approach in terms of speaker dis-
crimination and generalization capabilities. Then, we address
the core of this work: the description of the nature of the speech
attributes automatically discovered by the proposed methodol-
ogy in terms of descriptive phonetic variables.

Table 2: SR performance in terms of EER and Cllrmin/act.

Dataset X-vectors BA-vectors
EER Cllrmin/act EER Cllrmin/act

Vox1 1.37 0.05/0.82 3.7 0.14/0.31

SITW 1.4 0.05/0.82 3.5 0.13/0.28

VOiCES 3.96 0.15/0.87 4.7 0.18/0.46

5.1. Speaker recognition performance

Table 2 shows the equal error rate (EER) and Cllrmin/act [32]
obtained using our BA-LR system and a X-vector baseline, for
the three different test sets. BA-LR achieves a comparable
EER for all corpora, with a loss of 1.72% (absolute) in average
compared to the baseline6. This seems to be relatively mod-
erate with respect to the well-known trade-off between perfor-
mance and explainability, which, when required, is often ob-
served. The BA-LR approach shows good generalization capa-
bility, as indicated by its performance on all test sets, especially
for VOiCES, which differs significantly from the training set in
terms of both speech content and recording conditions.

5.2. Attribute automatic description

We first use the surrogate model (Section 3.2) solution in or-
der to build automatic descriptions of the different attributes in
terms of descriptive variables (Section 4.3). The process is per-
formed independently for each attribute. Figure 4 shows the
accuracy obtained for all BAs surrogate models on both Vox2

3https://github.com/audeering/opensmile
4These include frequency related parameters, such as pitch, jitter,

formants, energy related parameters shimmer, loudness, and harmonics-
to-noise ratio.

5The 20th, 50th, and 80th percentile, the range between the 20th
and 80th percentiles, and the mean and standard deviation of the slope
of rising/falling signal.

6The BA-LR binary representation is ≈40 times smaller than the
x-vector one, which opens up an avenue for performance improvement



Figure 3: Descriptive variable contributions to the BA9 surrogate model, grouped by families.

Figure 4: Accuracy of BAs surrogate models on Vox2 (train)
and Vox1 (test) sets with their associated typicality values.

Figure 5: Contribution of family variables to BAs (%).

(train set) and Vox1 (test set), ranked by the typicality of the
BAs (from lowest to highest).

The relatively high accuracy values obtained on train set
(between 0.6 and 0.97) and the small difference in accuracy be-
tween train and test sets (0.11 on average) indicate a good selec-
tion and fit of the surrogate models. A strong inverse correlation
is also observed between typicality and accuracy, indicating that
the attributes that carry the greatest power to discriminate be-
tween speakers are also the best represented by the descriptive
variables.

Figure 5 illustrates the contributions of different families7

of variables to each attribute. The attributes are ordered by hi-
erarchical clustering. The differences along the attributes (i.e,
BAs)(x-axis) reinforce the hypothesis that the attributes do not
encode the same phonetic information. The figure also reveals
that some variable families are on average more important than
others, even if some exceptions are present for some attributes.

We then apply the SLDA (Section 3.3) method and measure
the similarity between the variables selected by both methods.

7The families are: F0 (pitch); F1, F2, F3, (formants);
HN (Harmonics-to-noise ratio); Me and St (mean and std of
Voice/unvoiced); Vo (VoicedSegmentperSecond); al (alpha ratio); eq
(equivalent-sound-level); Ha (Hammarberg index); ji (jitter); lo (loud-
ness); log (logRelF0-H1-A3 ); mf (MFCCs 1-4); sh (shimmer); sl
(slope); sp (spectral-flux).

Figure 6: Lambda values as a function of the number of selected
variables for attribute BA9 (and the first 10 variables)

For that, we use the surrogate models to select the variables
representing 75% of the contributions using Shapley values and
evaluate the intersection with the variables selected by SLDA
method. Achieving ≈80% of convergence between both meth-
ods strengthens confidence in the attribute description that we
obtained. This also shows the value of the surrogate model ap-
proach, which allows for more accurate quantification of infor-
mation via Shapley values. This convergence is illustrated in
Figures 3 and 6 for a given BA.

6. Conclusion
This study has built on a newly introduced approach for speaker
recognition, BA-LR, which highlights the presence or absence
of specific speech attributes in speech extracts via the use of
a transparent process to decompose the scoring process by at-
tribute. While the BA-LR framework provides an interesting
approach to interpreting speaker recognition, its bottom-up pro-
cess for discovering speech attributes leaves the nature of these
attributes unknown, resulting in a lack of explicability. This
work has addressed this gap by describing the nature of the at-
tributes contributing to the LR value. To achieve this goal, we
have described speech excerpts and attributes by a set of pho-
netic variables that are easy to extract automatically. We have
also proposed the use of decision trees as explainable surrogate
models, trained to separate the set of speech excerpts having
a given attribute from those that do not. From the surrogate
models, we were able to select and weight the most important
descriptive variables for each attribute using Shapley values,
which differ across attributes. We have evaluated the robust-
ness of our approach by comparing it with a traditional SLDA,
and we have achieved clear convergence in terms of variables
selection. Overall, our work has opened a new perspective on
explainable speaker recognition, represented by the complete
architecture described in this paper. This approach departs from
traditional SR systems, by taking full advantage of them. How-
ever, it is important to note that the integration of human ex-
pertise is still required to interpret the combination of phonetic
variables in terms of high-level speech features.
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