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Sur toutes variétés riemanniennes, on explicite le Laplacien covariant conforme, agissant sur tous les (champs de) tenseurs covariants symétriques d'ordre deux. Ce dernier étant jusqu'à présent exprimé uniquement sur les variétés d'Einstein et agissant simplement sur les 2-tenseurs sans trace et à divergence nulle (tenseurs TT).

Introduction

En géométrie Riemannienne, comme en relativité générale, les champs de 2-tenseurs covariants symétriques apparaissent naturellement dès que l'on étudie des variations de métriques. Certains opérateurs d'ordre deux, agissant sur ces tenseurs ont aussi leur importance, comme le Laplacien de Lichnerowicz qui se dévoile lors de la linéarisation de la courbure de Ricci.

On s'intéresse ici à la construction explicite d'un tel opérateur, elliptique si possible, d'ordre 2, agissant sur les tenseurs symétriques, ayant de plus la propriété d'être covariant conforme (voir par exemple l'appendice 7.2 de [START_REF] Delay | Conformally covariant parameterizations for relativistic initial data[END_REF] pour une définition).

Il faut savoir qu'il était connu qu'un tel opérateur existait [START_REF] Erdmenger | Conformally covariant differential operators : symmetric tensor fields[END_REF][START_REF] Matsumoto | A GJMS construction for 2-tensors and the second variation of the total Q-curvature[END_REF] mais, hormis pour les métriques d'Einstein et agissant sur les tenseurs de trace nulle et à divergence nulle (dit TT-tensors) sa forme générale ne semble pas avoir été décrite auparavant.

Par ailleurs les opérateurs covariants conformes sont bien entendu d'une importance fondamentale en géométrie conforme. On rappelle en particulier le Laplacien conforme de Yamabe agissant sur les fonctions :

∆ Y = d * d + n -2 4(n -1) R,
R désignant la courbure scalaire, d la différentielle extérieure sur les formes différentielles et d * son adjoint . Ainsi si v et ϕ sont deux fonctions lisses sur M, si g ′ = e 2v g et ∆ ′ Y est le Laplacien conforme associé à g ′ , la covariance conforme se traduit ici par la formule :

∆ ′ Y ϕ = e -n+2 2 v ∆ Y (e n-2 2 v ϕ).
Par analogie, Branson [START_REF] Branson | Conformally convariant equations on differential forms[END_REF] construit (parmis d'autre) l'opérateur suivant agissant sur les (champs de) 1-formes 1 :

L B = d * d + n -4 n dd * + n(n -4) 4(n -2)(n -1) R - n -4 (n -2) Ric,
Ric étant l'opérateur de Ricci. On notera que L B est elliptique dès lors que n = 4. Lorsque g ′ = e 2v g, pour toute 1-forme différentielle ω lisse, la covariance conforme se lit alors par la relation :

L ′ B ω = e -n 2 v L B (e n-4 2 v ω).
Le but de cette note est donc d'expliciter un opérateur similaire agissant sur les champs de deux formes bilinéaires symétriques. Afin de décrire notre résultat, quelques définitions s'imposent. Tout d'abord, ∆ L désignera le Laplacien de Lichnerowicz, L l'opérateur de Killing conforme, div la divergence sur les 2-tenseurs, enfin Ric l'opérateur de Ricci, et R la courbure scalaire (les définitions précises des opérateurs sont données en section 2, notamment les normalisations et conventions de signe). Le résultat principal est le suivant : Théorème 1.1. Sur une variété riemannienne lisse (M, g) de dimension n ≥ 3, l'opérateur autoadjoint

P g = ∆ L - 8 n + 2 L div -2Ric + 2 n Ric(g), . g + n -2 4(n -1) R ,
agissant sur les tenseurs symétriques de trace nulle, est covariant conforme :

∀v ∈ C ∞ (M), ∀u ∈ C ∞ (M, S2 ), P e 2v g (u) = e -n-2 2 v P g (e n-6 2 v u).
On notera deux dimensions particulières, n = 4 seule dimension où P g n'est pas elliptique, et n = 6 où le noyau de P g est un espace invariant conforme.

L'opérateur P g donné ici agit uniquement sur les tenseurs symétriques sans trace mais il est facile d'en déduire un opérateur P g agissant sur tous les 2-tenseurs symétriques, ce dernier est donné au corollaire 3.7.

La preuve du Théorème 1.1 est directe, en analysant les transformations conformes sur chacun des opérateurs qui apparaissent dans P g , afin de vérifier que la combinaison donnant P g convient. L'utilité de cette preuve est aussi l'obtention d'une série de formules de transformations conformes sur des opérateurs naturels, chacune ayant son intérêt propre pour de futures références.

Une autre preuve, basée sur une adaptation de [START_REF] Aubry | Conformal harmonic forms, Branson-Gover operators and Dirichlet problem at infinity[END_REF] aux 2-tenseurs symétriques, permet de retrouver les opérateurs de [START_REF] Matsumoto | A GJMS construction for 2-tensors and the second variation of the total Q-curvature[END_REF], ainsi que d'autres, et les liens qui les unissent [START_REF] Delay | Conformally covariant differential operators on symmetric 2-tensors[END_REF].

Notons que 2 v u n'est pas celle qui permet de passer des tenseurs TT pour e 2v g aux tenseurs TT pour g (qui est u → e (n-2)v u voir lemme 3.3) d'où l'intérêt du calcul du terme explicite en divergence dans P g .

∆ E := ∆ L -2 Ric = ∆ -2
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Définitions, notations et conventions

Nous décrivons ici certains objets utilisés dans cette note. Tout d'abord (M, g) désignera une variété riemannienne, et ∇ sa connexion de Levi-Civita .

On notera T q r l'ensemble des tenseurs covariants de rang r et contravariants de rang q. Si q = 0, on notera S r le sous-ensemble des tenseurs symétriques et Sr le sous-ensemble des tenseurs symétriques de trace nulle (relativement à g). On appliquera la convention de sommation, en utilisant g ij et son inverse g ij afin d'abaisser ou de remonter les indices.

L 2 est l'espace de Hilbert usuel de fonctions ou tenseurs muni du produit (resp. norme)

u, v L 2 = M u, v g dV g (resp. |u| L 2 = ( M |u| 2 g dV g ) 1 2 
), où u, v g (resp. |u| g ) est le produit usuel (resp. norme) de fonctions ou tenseurs relatif à g, et la mesure dV g celle induite par g. On note d la différentielle extérieure agissant sur les formes différentielles, d * son adjoint formel (pour L 2 (dV g ) ). Le Laplacien sur les fonctions est défini par 

∆ = ∇ * ∇ = -Tr ∇ 2 = d * d,
(div h) i = -∇ j h ij .
L'opérateur de Killing sera noté

(LX) ij = 1 2 (∇ i X j + ∇ j X i ) , L * = div .
L'opérateur de Ahlfors ou de Killing conforme étant alors :

L = L + 1 n d * (.)g , L * = div + 1 n d Tr,
ce dernier donnant lieu au Laplacien dit vectoriel (en utilisant l'identité de Weitzenböck (2.1)) : 2

(2.2)

2 div L = ∇ * ∇ -Ric(g) + n-2 n dd * = ∆ H -2 Ric(g) + n -2 n dd * = d * d + 2 n -1 n dd * -2 Ric(g).
2. Profitons de cette note pour signaler que la formule correspondante de [5] appendice 7.1 (alors heureusement non utilisée) doit etre corrigée comme ici.

Le Laplacien de Lichnerowicz [START_REF] Lichnerowicz | Propagateurs et commutateurs en relativité générale[END_REF] est défini en coordonnés locales par

∆ L h ij = -∇ k ∇ k h ij + R ik h k j + R jk h k j -2R ikjl h kl , où R ij
est la curbure de Ricci de g et R ijkl sa courbure de Riemann. De manière condensée, on écrira aussi

∆ L = ∆ + 2(Ric -Riem).
Le tenseur de Schouten est défini par

Sch(g) = 1 n -2 Ric(g) - 1 2(n -1) R(g)g .
La dérivée covariante dans la direction d'un champ 

V d'un 2-tenseur u sera notée (∇ V u) ij := V k ∇ k u ij , on notera aussi (∇u V ) ij := V k ∇ i u kj . Pour un 2-tenseur covariant T , on considère sa partie symétrique S(T ) ij := 1 2 (T ij + T ji ),
u(V ) i = u ij V i . Notons que (dv ⊗ dv) • u = dv ⊗ u(∇v), et que S(∇w) = Lw.

Opérateurs et transformation conforme

Cette section prouve le Théorème 1.1 en analysant la transformation de chacun des termes qui définissent P g pour une métrique conforme. On commence par rappeler comment se comportent les courbures [START_REF] Besse | Einstein manifolds[END_REF]. Proposition 3.1. Considérons deux métriques conformes g ′ = e 2v g. Alors les symboles de Christoffel vérifient

Γ ′k ij -Γ k ij = (δ k j ∂ i v + δ k i ∂ j v -g ij ∇ k v).

Les courbures de Riemann sont reliées via

R ′ ijkl = e 2v [R ijkl -(g ij S jl + g jl S ik -g il S jk -g jk S il )], où S ij = ∇ i ∇ j v -∇ i f ∇ j v + 1 2 |dv| 2 g ij ,
que l'on peut réécrire avec le produit de Kulkarni-Numizu (voir [START_REF] Besse | Einstein manifolds[END_REF])

R ′ ijkl = e 2v [R ijkl -(g ∧ S) ijkl ]. Les courbures de Ricci respectives satisfont R ′ ij = R ij -(n -2)∇ i ∇ j v+(n -2)∇ i v∇ j v-(∇ k ∇ k v+(n -2)|dv| 2 )g ij .
Pour les courbures de Schouten on a

S ′ ij = S ij -∇ i ∇ j v + (dv⊗ dv) ij - 1 2 |dv| 2 g g ij = S ij -S ij .

Enfin les courbures scalaires respectives vérifient

R ′ = e -2v [R -2(n -1)∇ i ∇ i v -(n -1)(n -2)∇ i f ∇ i v].
Énonçons maintenant la transformation du Laplacien brut sur les deux tenseurs symétriques . Proposition 3.2. Considérons deux métriques conformes g ′ = e 2v g, un 2-tenseur symétrique u et h = e cv u avec c ∈ R, on a alors

-∆ ′ u = e (-c-2)v {-∆h + (n -6 -2c)∇ ∇v h + 4S(dv ⊗ div h) + 4S(∇h ∇v ) +[(2(3 -n) -c(n -6) + c 2 )|dv| 2 g + (2 + c)∆v]h -(2n + 4c -4c)S(dv ⊗ h(∇v)) +2 Tr g h dv ⊗ dv + 2h(∇v, ∇v)g}
Démonstration. Par un calcul long et fastidieux, on trouve que sur les deux tenseurs symétriques :

∇ ′k ∇ ′ k u ij = e -2v ∇ k ∇ k u ij + (n -6)∇ k v∇ k u ij -2(∇ i v∇ k u kj + ∇ j v∇ k u ki ) +2(∇ k v∇ i u kj + ∇ k v∇ j u ki ) + (2(3 -n)∇ k v∇ k v -2∇ k ∇ k v)u ij -n(∇ i v∇ k vu kj + ∇ j v∇ k vu ki ) + 2∇ i v∇ j vu k k + 2g ij u kl ∇ k v∇ l v .
On peut réécrire cette égalité de façons plus condensée en

-∆ ′ u = e -2v {-∆u + (n -6)∇ ∇v u + 4S(dv ⊗ div u) + 4S(∇u ∇v ) +[2(3 -n)|dv| 2 g + 2∆v]u -2nS(dv ⊗ u(∇v)) (3.1)
+2 Tr g u dv ⊗ dv + 2u(∇v, ∇v)g} .

Maintenant comme h = e cv u, on calcule les termes qui apparaissent au membre de droite

∇u = e -cv (-c dv ⊗ h + ∇h), ∇u ∇v = e -cv (-c dv ⊗ h(∇v) + ∇h ∇v ), ∇ ∇v u = e -cv (-c|dv| 2 h + ∇ ∇v h), div u = e -cv (c h(∇v) + div h), enfin -∆u = e -cv [-∆h -2c∇ ∇v h + (c 2 |dv| 2 + c∆v)h].
Il suffit ensuite de remplacer les termes ci-avant dans (3.1)

Lemme 3.3. Considérons deux métriques conformes g ′ = e 2v g, un 2tenseur symétrique sans trace u et h = e cv u avec c ∈ R. On a alors

div ′ u = e (-c-2)v [div h + (c -(n -2))h(∇v)],
en particulier div est covariant conforme :

div ′ u = e -nv div(e (n-2)v u).
Démonstration. Par un calcul direct on retrouve le résultat bien connu

div ′ u = e -2v [div u -(n -2)u(∇v) + Tr g u dv],
ainsi, si Tr g u = 0

div ′ u = e -2v [div u -(n -2)u(∇v)].
Finalement on obtient

div ′ u = e (-c-2)v [div h + (c -(n -2))h(∇v)]
Remarque 3.4. Par dualité ou un calcul direct, on retrouve aussi la formule classique de covariance conforme :

Lg ′ ω = e 2v
Lg (e -2v ω).

Proposition 3.5. Considérons deux métriques conformes g ′ = e 2v g, un 2-tenseur symétrique sans trace u et h = e cv u. Alors on a la correspondance

L′ (div ′ u) = e (-c-2)v L(div h) +(c -(n -2))(∇h ∇v + S(∇∇v • h)) (-c -4)S(dv ⊗ div h) +(-c -4)(c -(n -2))S(dv ⊗ h(∇v)) + 1 n (2c -n + 6) div h(∇v) +(c -(n -2))(c + 4)h(∇v, ∇v) -(c -(n -2)) ∇∇v • h g Démonstration.
Pour toute 1-forme w, on a

∇ ′ w = ∇w -2S(dv ⊗ w) + w(∇v)g,
en particulier si w = div ′ u , par le Lemme 3.3, il en découle

∇ ′ div ′ u = e (-c-2)v {(-c -2)dv ⊗ [div h + (c -(n -2))h(∇v)] +∇ div h + (c -(n -2))(∇h ∇v + ∇∇v • h) -2S(dv ⊗ div h) -2(c -(n -2))S(dv ⊗ h(∇v)) +[div h(∇v) + (c -(n -2))h(∇v, ∇v)]g} .
La partie symétrique de ∇ ′ div ′ u est donc

S(∇ ′ div ′ u) = e (-c-2)v {S(∇ div h) + (c -(n -2))(∇h ∇v + S(∇∇v • h)) (-c -4)S(dv ⊗ div h) + (-c -4)(c -(n -2))S(dv ⊗ h(∇v)) +[div h(∇v) + (c -(n -2))h(∇v, ∇v)]g} .
On en déduit la trace

Tr g S(∇ ′ div ′ u) = e (-c-2)v {-d * div h + (c -(n -2)) ∇∇v • h +(-2c + 2n -6) div h(∇v) +(c -(n -2))(n -c -4)h(∇v, ∇v)} .
Finalement la partie symétrique sans trace de

∇ ′ div ′ u est S(∇ ′ div ′ u) = e (-c-2)v {S(∇ div h) +(c -(n -2))(∇h ∇v + S(∇∇v • h)) (-c -4)S(dv ⊗ div h) +(-c -4)(c -(n -2))S(dv ⊗ h(∇v)) + 1 n (2c -n + 6) div h(∇v) +(c -(n -2))(c + 4)h(∇v, ∇v) +d * div h -(c -(n -2)) ∇∇v • h g .
On conclut en rappelant que

S(∇ div h) + 1 n (d * div h)g = S(∇ div h) = L div h.
Il nous reste à énoncer la transformation de l'action des opérateurs de courbures. Proposition 3.6. Considérons deux métriques conformes g ′ = e 2v g, un 2-tenseur symétrique u et h = e cv u, avec c ∈ R. L'action des termes de courbures sont alors reliés par 3

Riem ′ u = e (-c-2)v [Riem h -S, h g + 2S(S • h)], Ric ′ u = e (-c-2)v Ric h -(n -2)S(S • h) + ∆v - n -2 2 |dv| 2 g , Ric(g ′ ), u g ′ g ′ = e (-c-2)v [ Ric(g), h g -(n -2) S, h g ]g, et R ′ u = e (-c-2)v [R + 2(n -1)∆v -(n -2)(n -1)|dv| 2 ]h
Démonstration. Cela découle immédiatement de la Proposition 3.1.

Nous pouvons maintenant passer à la justification du résultat principal.

L'action u → Ric u est indiquée par complétude mais n'est pas utilisée dans ce texte

Démonstration du Théorème 1.1. On considère deux métriques conformes g ′ = e 2v g pour une fonction v. Soit u un deux tenseur symétrique sans trace et h = e cv u, avec c ∈ R. En utilisant les trois propositions, 3.2, 3.5 et 3.6, on remarque que pour c = n-6 2 la combinaison

P g ′ u := ∆ ′ u - 8 n + 2 L′ div ′ u -2Riem ′ u + 2 n Ric ′ (g), u g ′ + n -2 4(n -1) R ′ u donne P g ′ u = e (-c-2)v ∆h - 8 n + 2 L div h -2Riem h + 2 n Ric(g), h g + n -2 4(n -1)
Rh .

On a donc bien

P g ′ u = e (-c-2)v P g h.
Le Théorème 1.1 concerne les tenseurs symétriques sans trace, si l'on cherche un opérateur agissant sur tous les tenseurs symétriques on peut ajouter la partie conforme comme suit. Pour le Laplacien conforme de Yamabe, on a pour toutes fonctions lisses ϕ

∆ ′ Y ϕ = e -n+2 2 v ∆ Y (e n-2 2 v ϕ), ainsi comme ∆ L (ϕg) = (∆ϕ) g, on déduit ∆ ′ L + n -2 4(n -1) R ′ (ϕg ′ ) = e -n-2 2 v ∆ L + n -2 4(n -1)
R (e n-6

2 v ϕg ′ ).
Afin de décrire notre opérateur, introduisons une dernière notation. Pour un deux tenseur symétrique h, on note TF h sa partie sans trace :

h = 1 n Tr h g + TF h.
En combinant ce qui précède et le Théorème 1.1 on obtient directement le corollaire suivant.

Corollaire3.7. Sur une variété riemannienne lisse (M, g) de dimension n ≥ 3, l'opérateur autoadjoint

P g = ∆ L - 8 n + 2 L div TF -2Ric TF + 2 n Ric(g), TF . g + n -2 4(n -1) R agissant sur les 2-tenseurs symétriques est covariant conforme : ∀v ∈ C ∞ (M), ∀u ∈ C ∞ (M, S 2 ), P e 2v g (u) = e -n-2 2 v P g (e n-6
2 v u).

Ellipticité

Proposition 4.1. P g est elliptique si et seulement si la dimension est différente de 4.

Démonstration. Le symbole principal de P g est donné par l'endomorphisme de S2 :

σ ξ h = -|ξ| 2 h + 4 n + 2 (ξ ⊗ h(ξ) + h(ξ) ⊗ ξ - 2 n h(ξ, ξ)g),
où le covecteur ξ est (abusivement) identifié avec le vecteur correspondant via g. Si ξ = 0 et σ ξ h = 0 alors on déduit

σ ξ h(ξ) = -|ξ| 2 h(ξ) + 4 n + 2 |ξ| 2 h(ξ) + 1 - 2 n h(ξ, ξ)ξ = 0 et σ ξ h(ξ, ξ) = -1 + 4 n + 2 2 - 2 n h(ξ, ξ)|ξ| 2 = 0 donc σ ξ h(ξ, ξ) = - (n -2)(n -4) n(n + 2) h(ξ, ξ)|ξ| 2 = 0.
Ainsi si n = 4 (on rappelle que n ≥ 3), on obtient h(ξ, ξ)|ξ| 2 = 0, ce qui implique en remontant les égalités précédentes |ξ| 2 h(ξ) = 0, puis |ξ| 2 h = 0, enfin h = 0 donc σ ξ est injectif (donc bijectif).

Si n = 4 alors h = ξ ⊗ ξ -|ξ| 2 4 g, de norme |h| 2 = 3 4 |ξ| 2 , est dans le noyau de σ ξ , ainsi P g n'est pas elliptique en dimension 4.

Métrique d'Einstein

Une variété d'Einstein, avec Ric(g) = Λg, est dite stable (resp. strictement stable) si l'opérateur ∆ E = ∆ L -2Λ est positif (resp. strictement positif), au sens L 2 sur les tenseurs TT. L'étude de cette stabilité sur les variétés compactes sans bord a été étudiée par de nombreux auteurs, en commençant par [START_REF] Koiso | Non-deformability of Einstein metrics[END_REF] (voir [START_REF] Dai | On the stability of Riemannian manifold with parallel spinors[END_REF] pour un résultat plus récent ou [START_REF] Kröncke | Variational Stability and Rigidity of Compact Einstein Manifolds[END_REF] pour un survey). Il semble qu'il n'y ait aucun exemple d'instabilité si Λ ≤ 0 (ce n'est pas le cas si la variété est non compacte ou si Λ est strictement positif).

Si Ric(g) = 2λ(n -1)g = Λg et h est un tenseur TT, on a

P g h = ∆ L -4λ(n -1) + λn n 2 -1 h,
on retrouve bien l'opérateur P 1 de [START_REF] Matsumoto | A GJMS construction for 2-tensors and the second variation of the total Q-curvature[END_REF]. Notons que g sera stable ssi 

P g ≥ λn n 2 -1 ,
∆ E Lw, Lw L 2 = L(∆ H -2Λ)w, Lw L 2 = (∆ H -2Λ)w, div Lw L 2 = n -1 n |dd * w| 2 L 2 + 1 2 |d * d w| 2 L 2 -2Λ|d w| 2 L 2 - 3n -2 n Λ|d * w| 2 L 2 + 2Λ 2 |w| 2 L 2 .
Ainsi comme de plus ∆ E préserve la décomposition L 2 orthogonale C ∞ (M, S2 ) = Im L ⊕ ker div, (5.1) si Λ ≤ 0, la positivité de ∆ E sur ker Tr équivaut à celle sur TT= ker Tr ∩ ker div. D'autre part L div Lw, Lw

L 2 = div Lw, div Lw L 2 = (n -1) 2 n 2 |dd * w| 2 L 2 + 1 4 |d * d w| 2 L 2 -Λ|d w| 2 L 2 -2Λ n -1 n |d * w| 2 L 2 + Λ 2 |w| 2 L 2 .
Donc si l'on pose Pg = ∆ E -8 n + 2 L div h, qui respecte aussi la décomposition (5.1), on a Pg Lw, Lw

L 2 = (n -1)(n -2)(n -4) n 2 (n + 2) |dd * w| 2 L 2 + n -2 2(n + 2) |d * d w| 2 L 2 -2 (n -2) (n + 2) Λ|d w| 2 L 2 -3Λ (n -2) 2 n(n + 2) |d * w| 2 L 2 +2Λ 2 n -2 (n + 2) |w| 2 L 2
Ainsi, lorsque n ≥ 4 et Λ ≤ 0, la positivité de Pg sur ker Tr équivaut à celle sur TT= ker Tr ∩ ker div, or sur TT, on a ∆ E = Pg . Comme en particulier si Λ = 0, alors Pg = P g , et comme u, P g ′ u g ′ dV g ′ = u, P g u g dV g , on déduit : Proposition 5.1. Sur une variété compacte sans bord de dimension n ≥ 4 possédant une métrique Ricci plate g. On a équivalence entre : i) g est stable, ii) P g ′ ≥ 0 sur ker Tr , pour une métrique conforme g ′ = e 2v g. iii)P g ′ ≥ 0 sur ker Tr , pour toute métrique conforme g ′ = e 2v g.

Formules de Weitzenböck

On donne ici une formule de Weitzenböck afin de réécrire les termes d'ordre deux de P g . Il est bien connu que ce type de formule est utile lors de l'étude du spectre, et particulièrement de la première valeur propre de P g .

Pour a, b, c trois rééls non tous nuls, on définit l'opérateur D des deux tenseurs covariants symétriques dans les 3-tenseurs covariants par

(Du) kij = 1 √ a 2 + b 2 + c 2 (a∇ k u ij + b∇ i u kj + c∇ j u ik ),
et D son analogue agissant simplement sur les 2-tenseurs symétriques sans trace. Si l'on pose L div +2A(Ric -Riem).

A = ab + bc + ca a 2 + b 2 + c 2 ∈ - 1 2 , 1 , on trouve D * Du ij = -∇ k ∇ k u ij -A(∇ k ∇ i u jk + ∇ k ∇ j u ik ) . et D * Du ij = -∇ k ∇ k u ij -A(∇ k ∇ i u jk + ∇ k ∇ j u ik ) + 2 n A(d * div u)g ij . Comme d'autre part on a (div * div u) ij = - 1 2 (∇ i ∇ k u jk + ∇ j ∇ k u ik ), et ( L div u) ij = - 1 2 (∇ i ∇ k u jk + ∇ j ∇ k u ik ) + 1 n (d * div u)g ij , et que ∇ k ∇ i u jk +∇ k ∇ j u ik -(∇ i ∇ k u jk +∇ j ∇ k u ik ) = R kj u k i +R ki u k j -
On obtient par exemple que pour tous champs de deux tenseurs symétriques sans trace, lisses à support compact

u, P g u L 2 = |Du| 2 L 2 -2A + 8 n + 2 | div u| 2 L 2 + 2A Ric u, u L 2 -2(A + 1) Riem u, u L 2 + n -2 4(n -1)
Ru, u L 2 . (6.1) Suivant le contexte (par exemple si on travaille à divergence nulle), un choix judicieux de a, b, c (donc de A), ainsi qu'une étude des termes de courbures, permettra de minimiser la première valeur propre de P g .

Le cas le plus simple est celui où la courbure sectionnelle est une constante K car alors, avec A = - Alors pour tout h ∈ S2 en x, on a l'inégalité ponctuelle :

(α Ric -β Riem)h, h gx ≥ C x h 2 gx .

  où ∇ * est l'adjoint formel de ∇ . Pour les 1-formes on notera de plus (2.1) ∆ H = d * d + dd * = ∇ * ∇ + Ric, le Laplacien de Hodge correspondant (la deuxième égalité étant une identité de Weitzenböck classique sur les 1-formes). La divergence d'un 2-tenseur symétrique est donnée par :

  et sa partie symétrique sans trace S(T ) := S(T ) -1 n Tr S(T )g. Pour A et B deux champs de 2-tenseurs on écrira (A • B) ij := A k i B kj . Lorsque u est un champ de 2-tenseurs et V un champ de vecteur, on définit la 1-forme différentielle u(V ) par

  sur les tenseurs TT. Comme ∆ E • L = (∆ H -2Λ)• L, alors en rappelant les formules (2.1), (2.2) et le fait que d 2 = (d * ) 2 = 0, on trouve

  2R qjli u ql il en découleD * Du -2A div * div u = ∇ * ∇u -2A(Ric -Riem)u, et D * Du -2A L div u = ∇ * ∇u -2A(Ric -Riem)u.On peut donc réécrire les termes d'ordre deux de P g en ∇

Lemme 6 . 1 .

 61 P g est positif dès lors que K l'est et n ≥ 6. On pourra aussi par exemple utiliser le lemme suivant dont la preuve, laissée au lecteur, est une adaptation immédiate du lemme 3.3 de[START_REF] Delay | Inversion d'opérateurs de courbures au voisinage d'une métrique Ricci parallèle[END_REF]. Considérons α ∈ R et β ∈ [0, +∞). Pour un point x de M et c ∈ R , on note [c Ric] min la plus petite valeur propre de c Ric(g) en x, K max et K min le max et le min de la courbure sectionnelle en x. On poseC x = max{[(α + β) Ric] min -(n -2)βK max , [(αβ) Ric] min + nβK min }.
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