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THE HYBRID MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL1

PROBLEMS WITH SPATIALLY HETEROGENEOUS DYNAMICS IS A2

CONSEQUENCE OF A PONTRYAGIN MAXIMUM PRINCIPLE FOR3

L1
□–LOCAL SOLUTIONS4

TÉRENCE BAYEN∗, ANAS BOUALI† , AND LOÏC BOURDIN‡5

Abstract. The title of the present work is a nod to the paper The hybrid maximum principle is6
a consequence of Pontryagin maximum principle by Dmitruk and Kaganovich (Systems and Control7
Letters, 2008). Here we investigate a similar but different framework of hybrid optimal control8
problems. Precisely we consider a general control system that is described by a differential equation9
involving a spatially heterogeneous dynamics. In that context the sequence of dynamics followed10
by the trajectory and the corresponding switching times are fully constrained by the state position.11
We prove with an explicit counterexample that the augmentation technique proposed by Dmitruk12
and Kaganovich cannot be fully applied to our setting, but we show that it can be adapted by13
introducing a new notion of local solution to classical optimal control problems and by establishing a14
corresponding Pontryagin maximum principle. Thanks to this method we derive a hybrid maximum15
principle adapted to our setting, with a simple proof that does not require any technical tool (such as16
implicit function arguments) to handle the dynamical discontinuities.17

Key words. Optimal control, heterogeneous dynamics, hybrid maximum principle.18

MSC codes. 34A38, 49K15.19

1. Introduction.20

1.1. General context. The Pontryagin Maximum Principle (in short, PMP),21

established at the end of the 1950s (see [27]), has originally been developed for optimal22

control problems where the control system is described by an ordinary differential23

equation (in short, ODE). It states the corresponding first-order necessary optimality24

conditions, in terms of an (absolutely continuous) costate function. As usual in25

optimization, the PMP remains valid for local solutions only (typically in uniform26

norm for the state and in L1-norm for the control). Since then, the PMP has been27

adapted to many situations, in particular for control systems of different natures.28

On the other hand, hybrid systems are, in a broad sense, dynamical systems29

that exhibit both continuous and discrete behaviors. They are particularly used in30

automation and robotics to describe complex systems in which, for example, logic31

decisions are combined with physical processes. We refer to [32] for an elementary32

introduction to hybrid systems. This theory is very large and it is commonly accepted33

that it includes ODEs with heterogeneous dynamics, that is, ODEs involving a family34

of different dynamics (used for example to describe evolutions in heterogeneous media)35

where the transitions from one dynamics to another are seen as discrete events.36

The PMP has been extended to hybrid control systems, especially in the context37

of ODEs with heterogeneous dynamics (see, e.g., [19, 22, 26, 29, 30, 31]), resulting38

in theorems often referred to as Hybrid Maximum Principle (in short, HMP). We39

emphasize that the frameworks are very varied. Indeed the rule that supervises the40

transitions between the different dynamics is usually described by additional variables41
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2 T. BAYEN, A. BOUALI AND L. BOURDIN

that can be free or constrained and, in that second case, the constraints can be of42

different natures. For example the switching times (i.e. the instants at which the43

control system moves from one dynamics to another) can be the resultant of a control44

decision or can be (fully or partially) determined by the time variable, the state position45

or both of them. Hence different versions of the HMP can be found in the literature,46

corresponding to different hybrid control systems that are presented under various47

names according to their nature (such as multi-processes [18], switched systems [28],48

regional systems [1], systems on stratified domains [14], variable structure systems [8]).49

In contrary to the classical PMP, the HMP is usually expressed in terms of an (only)50

piecewise absolutely continuous costate function that admits discontinuity jumps at51

the switching times. A common feature of most of the above references is that the52

mathematical framework somehow guarantees that local perturbations (typically in53

uniform norm for the state and in L1-norm for the control) preserve the same hybrid54

structure (that is, the same sequence of dynamics) as the nominal one.55

1.2. The augmentation technique of Dmitruk and Kaganovich. In the56

context of ODEs with heterogeneous dynamics, the difficult part of deriving a HMP57

lies in handling the dynamical discontinuities. To this end, an excellent strategy has58

been proposed in [19], in which the switching times are additional variables satisfying59

equality/inequality constraints involving the corresponding intermediate state values.60

Roughly speaking, considering an optimal solution (associated with switching times61

denoted by τ∗k ), this technique consists in affine changes of time variable, mapping62

the intervals (τ∗k−1, τ
∗
k ) into a common interval (0, 1). This procedure augments the63

dimensions of the variables and thus is categorized in the set of augmentation techniques.64

The authors prove that the augmented solution is a local solution to the augmented65

problem which is classical (that is, non-hybrid) by construction (since the discontinuities66

have been positioned at the endpoints of the interval [0, 1]). Therefore the classical67

PMP can be applied to the augmented solution (expressed in terms of an augmented68

absolutely continuous costate function satisfying endpoint transversality conditions).69

Hence, by inverting the above affine changes of time variable, first-order necessary70

optimality conditions are derived for the original nonaugmented solution, expressed in71

terms of a nonaugmented (piecewise absolutely continuous) costate function satisfying72

discontinuity jumps at the switching times τ∗k (whose expressions follow from the73

endpoint transversality conditions at 0 and 1 of the augmented costate function).74

Hence Dmitruk and Kaganovich have entitled their paper [19] as The hybrid75

maximum principle is a consequence of Pontryagin maximum principle. The augmen-76

tation technique is particularly satisfactory because it allows to reduce the hybrid77

problem into a classical (non-hybrid) augmented problem, avoiding the use of technical78

arguments (such as implicit function theorems) to handle the dynamical discontinuities.79

1.3. Framework and contributions of the present work. In the spirit of [1,80

23], we consider a control system described by an ODE with spatially heterogeneous81

dynamics, in the sense that the state space is partitioned into several disjoint regions82

and each region has its own dynamics. In that context the sequence of dynamics83

followed by the trajectory and the corresponding switching times (called crossing84

times since they correspond to the instants at which the state goes from one region to85

another) are fully constrained by the state position.86

A HMP corresponding to this setting has already been announced in [23] but with87

a sketch of proof which is, to our best knowledge, erroneous. Indeed the author invoke88

needle-like perturbations of the control, while they are not admissible in the present89

setting (see Appendix C for a counterexample). This issue has been corrected in our90
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HYBRID MAXIMUM PRINCIPLE 3

previous paper [2] by applying needle-like perturbations on auxiliary controls. Then,91

to handle the resulting perturbed crossing times, we used an inductive application of92

the implicit function theorem, which results into a technical and extended analysis.93

An attempt to derive a HMP corresponding to our setting, with the simpler approach94

of Dmitruk and Kaganovich, was also presented in [1]. Unfortunately, to our best95

knowledge, this proof is also incorrect. Indeed, in contrary to the framework of96

Dmitruk and Kaganovich in [19], our setting fails to guarantee that the augmented97

solution is a local solution to the classical augmented problem (see Section 3.4 for a98

counterexample) and, therefore, the classical PMP cannot be applied. We emphasize99

that our counterexample shows that, in our setting, a local perturbation (in uniform100

norm for the state and in L1-norm for the control) does not preserve the hybrid101

structure of the nominal one in general.102

Hence the main objective of this paper is to derive a HMP for our setting, with a103

correct proof that adapts the augmentation procedure of Dmitruk and Kaganovich.104

To this aim a new notion of local solution to classical optimal control problems (see105

the definition of L1
□–local solution in Definition 2.2) and a corresponding version of106

the PMP (see Theorem 2.1) are required. Indeed we prove in Proposition 3.1 that,107

under appropriate assumptions (such as transverse conditions at the crossing times),108

the augmented solution is a L1
□–local solution to the classical augmented problem and109

therefore the above new PMP can be applied. Finally, similarly to [19], by inverting the110

affine changes of time variable, a HMP for our setting is obtained (see Theorem 3.1).111

1.4. Organization of the paper. In Section 2, a classical optimal control prob-112

lem is considered (see Problem (P)), the new notion of L1
□–local solution is introduced113

(see Definition 2.2) and a corresponding PMP is established (see Theorem 2.1). In114

Section 3, a hybrid optimal control problem with spatially heterogeneous dynamics115

is introduced (see Problem (HP)). Applying the augmentation procedure, Proposi-116

tion 3.1 states that an augmented solution to Problem (HP) is a L1
□–local solution to117

the corresponding classical augmented problem of the form of Problem (P). Hence,118

applying the above new PMP and inverting the affine changes of time variable, a HMP119

for Problem (HP) is obtained (see Theorem 3.1). An explicit counterexample showing120

that an augmented solution to Problem (HP) is not a local solution (in the usual sense)121

to the corresponding classical augmented problem is provided in Section 3.4. Finally122

the technical proofs of Proposition 3.1 and Theorem 3.1 are provided in Appendices A123

and B respectively. A counterexample showing that needle-like perturbations of the124

control are not admissible in our setting is provided in Appendix C.125

2. Preliminaries and PMP for the new notion of L1
A□–local solution.126

In this paper, for any positive integer d ∈ N∗, we denote by ⟨·, ·⟩Rd (resp. ∥ · ∥Rd)127

the standard inner product (resp. Euclidean norm) of Rd. For any subset X ⊂ Rd,128

we denote by ∂X the boundary of X defined by ∂X := X\Int(X), where X and129

Int(X) stand respectively for the closure and the interior of X. Given a (Lebesgue)130

measurable subset A ⊂ R, we denote by µ(A) its (Lebesgue) measure. Furthermore,131

for any extended-real number r ∈ [1,∞] and any real interval I ⊂ R, we denote by:132

• Lr(I,Rd) the usual Lebesgue space of r-integrable functions defined on I with133

values in Rd, endowed with its usual norm ∥ · ∥Lr ;134

• C(I,Rd) the standard space of continuous functions defined on I with values135

in Rd, endowed with the standard uniform norm ∥ · ∥C;136

• AC(I,Rd) the subspace of C(I,Rd) of absolutely continuous functions.137

Now take I = [0, T ] for some T > 0. Recall that a partition of the interval [0, T ] is a138

set T = {τk}k=0,...,N of real numbers such that 0 = τ0 < τ1 < . . . < τN−1 < τN = T139
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4 T. BAYEN, A. BOUALI AND L. BOURDIN

for some N ∈ N∗. In this paper a function p : [0, T ] → Rd is said to be piecewise140

absolutely continuous, with respect to a partition T = {τk}k=0,...,N , if p is continuous141

at 0 and T and the restriction of p over each open interval (τk−1, τk) admits an142

extension over [τk−1, τk] that is absolutely continuous. If so, p admits left and right143

limits at each τk ∈ (0, T ), denoted respectively by p−(τk) and p+(τk). We denote by:144

• PACT([0, T ],Rd) the space of piecewise absolutely continuous functions, with145

respect to a partition T of the interval [0, T ], with values in Rd.146

Finally, when (Z,dZ) is a metric space, we denote by BZ(z, ν) (resp. BZ(z, ν)) the147

standard open (resp. closed) ball of Z centered at z ∈ Z and of radius ν > 0.148

2.1. A classical optimal control problem and L1
A□–local solution. Let n,149

m, d and ℓ ∈ N∗ be four fixed positive integers and T > 0 be a fixed positive real150

number. In the present section we consider a classical Mayer optimal control problem151

with parameter and mixed terminal state constraints given by152

(P)

minimize ϕ(x(0), x(T ), λ),

subject to (x, u, λ) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm)× Rd,

ẋ(t) = f(x(t), u(t), λ), a.e. t ∈ [0, T ],

g(x(0), x(T ), λ) ∈ S,

u(t) ∈ U, a.e. t ∈ [0, T ],

153

where the Mayer cost function ϕ : Rn × Rn × Rd → R, the dynamics f : Rn ×154

Rm × Rd → Rn and the constraint function g : Rn × Rn × Rd → Rℓ are of class C1,155

and where S ⊂ Rℓ is a nonempty closed convex subset and U ⊂ Rm is a nonempty156

subset. As usual in the literature, x ∈ AC([0, T ],Rn) is called the state (or the157

trajectory), u ∈ L∞([0, T ],Rm) is called the control and λ ∈ Rd is called the parameter.158

A triplet (x, u, λ) ∈ AC([0, T ],Rn) × L∞([0, T ],Rm) × Rd is said to be admissible159

for Problem (P) if it satisfies all the constraints of Problem (P). Finally, such an160

admissible triplet is said to be a global solution to Problem (P) if it minimizes the161

Mayer cost ϕ(x(0), x(T ), λ) among all admissible triplets.162

Remark 2.1. (i) All along this paper (not only for Problem (P)), we have chosen163

to deal with optimal control problems with (only) Mayer cost, fixed final time and164

autonomous dynamics. It is well known in the literature (see, e.g., [9, 15, 16]) that165

standard techniques (such as augmentation or changes of variables) allow to deal with166

more general Bolza cost, free final time and time-dependent dynamics. Similarly, in167

Problem (P), we assume for simplicity that ϕ, f and g are of class C1 and also some168

topological properties for S. However the results that we will present in this section169

can be extended to weaker assumptions (see, e.g., [17, 33]). Overall, our aim in this170

paper is not to address the most general framework possible. We keep our setting as171

simple as possible to stay focused on the novel aspects of our work.172

(ii) The presence of a parameter λ ∈ Rd in Problem (P) can also be treated thanks173

to an augmentation (see, e.g., [9]). It is noteworthy that the main problem considered174

in the present work (see Problem (HP) in the next Section 3) is a hybrid optimal175

control problem which does not involve any parameter. However the proof of our main176

result (Theorem 3.1) is based on a reduction of Problem (HP) into a classical optimal177

control problem of the form of Problem (P) that involves parameters. This is the only178

reason why we need to consider the presence of a parameter λ ∈ Rd in Problem (P).179

The classical PMP [27] has originally been developed for global solutions but, as180

usual in optimization, it remains valid for local solutions. As a consequence, several181

notions of local solution to classical optimal control problems, and the corresponding182
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HYBRID MAXIMUM PRINCIPLE 5

versions of the PMP, have been developed in the literature (see, e.g., [11, 25]). Let us183

introduce two new notions of local solution which will play central roles in our work.184

Definition 2.1 (L1
A–local solution). An admissible triplet (x∗, u∗, λ∗) is said

to be a L1
A–local solution to Problem (P), for a measurable subset A ⊂ [0, T ], if, for

all R ≥ ∥u∗∥L∞ , there exists η > 0 such that ϕ(x∗(0), x∗(T ), λ∗) ≤ ϕ(x(0), x(T ), λ) for
all admissible triplets (x, u, λ) satisfying

∥x− x∗∥C + ∥u− u∗∥L1 + ∥λ− λ∗∥Rd ≤ η,

∥u∥L∞ ≤ R,

u(t) = u∗(t) a.e. t ∈ [0, T ]\A.

Definition 2.2 (L1
A□–local solution). An admissible triplet (x∗, u∗, λ∗) is said185

to be a L1
A□–local solution to Problem (P), for a measurable subset A ⊂ [0, T ], if there186

exists an increasing family (Aε)ε>0 of measurable subsets of A, satisfying µ(Aε) → µ(A)187

as ε → 0, such that (x∗, u∗, λ∗) is a L1
Aε

–local solution to Problem (P) for all ε > 0.188

Remark 2.2. (i) The notations L1
A and L1

A□ are very close, while the corresponding189

definitions are (slightly) different. Therefore the reader needs to be careful with these190

two different concepts, for which we will give each one a version of the PMP (see191

Lemma 2.1 for L1
A–local solutions and Theorem 2.1 for L1

A□–local solutions).192

(ii) The concept of L1
[0,T ]–local solution coincides with the classical notion of L1–193

local solution well established in the literature (see, e.g., [11, 25]). Therefore, in194

the sequel, we simply write L1–local solution instead of L1
[0,T ]–local solution. To be195

consistent we simply write L1
□–local solution instead of L1

[0,T ]□–local solution.196

(iii) With respect to the classical concept of L1–local solution, the refined notion197

of L1
A–local solution imposes on admissible controls to match the nominal one almost198

everywhere outside the measurable subset A ⊂ [0, T ]. This feature is crucial to reduce199

the hybrid optimal control problem considered in the next Section 3 into a classical200

optimal control problem. This is not possible with the classical concept of L1–local201

solution, as shown by a counterexample in Section 3.4.202

(iv) For a measurable subset A ⊂ [0, T ], it is clear that a L1
A–local solution is203

automatically a L1
A□–local solution. However the converse is not true in general (see204

the counterexample in Section 3.4). From a general point of view, the implications205

global solution L1
A–local solution

L1
A□–local solution

L1
A′–local solution

L1
A′□–local solution

206

hold true for any measurable subsets A′ ⊂ A ⊂ [0, T ], but not the converses in general.207

2.2. PMP for L1
A□–local solutions and comments. Recall first that the208

normal cone to S at some point z ∈ S is defined by209

NS[z] := {z′′ ∈ Rℓ | ∀z′ ∈ S, ⟨z′′, z′ − z⟩Rℓ ≤ 0},210

and that g is said to be submersive at a point of Rn×Rn×Rd if the differential of g at211

this point is surjective. Finally recall that the Hamiltonian H : Rn ×Rm ×Rd ×Rn →212

R associated with Problem (P) is defined by H(x, u, λ, p) := ⟨p, f(x, u, λ)⟩Rn for213

all (x, u, λ, p) ∈ Rn × Rm × Rd × Rn. We are now in a position to establish a new214

version of the PMP that is dedicated to L1
A□–local solutions to Problem (P).215
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6 T. BAYEN, A. BOUALI AND L. BOURDIN

Theorem 2.1 (PMP for L1
A□–local solutions). If (x∗, u∗, λ∗) is a L1

A□–local216

solution to Problem (P), for a measurable subset A ⊂ [0, T ], such that g is submersive217

at (x∗(0), x∗(T ), λ∗), then there exists a nontrivial pair (p, p0) ∈ AC([0, T ],Rn)× R+218

satisfying:219

(i) the Hamiltonian system ẋ∗(t) = ∇pH(x∗(t), u∗(t), λ∗, p(t)) and −ṗ(t) =220

∇xH(x∗(t), u∗(t), λ∗, p(t)) for almost every t ∈ [0, T ];221

(ii) the endpoint transversality condition222 
p(0)

−p(T )∫ T

0

∇λH(x∗(s), u∗(s), λ∗, p(s)) ds

 = p0∇ϕ(x∗(0), x∗(T ), λ∗) +∇g(x∗(0), x∗(T ), λ∗)ξ,223

for some ξ ∈ NS[g(x
∗(0), x∗(T ), λ∗)];224

(iii) the Hamiltonian maximization condition u∗(t) ∈ argmaxω∈U H(x∗(t), ω, λ∗, p(t))225

for almost every t ∈ A.226

The proof of Theorem 2.1 is quite simple and will be developed in a few lines. It227

is based on the next preliminary PMP for L1
A–local solutions to Problem (P).228

Lemma 2.1 (PMP for L1
A–local solutions). If (x∗, u∗, λ∗) is a L1

A–local solu-229

tion to Problem (P), for a measurable subset A ⊂ [0, T ], such that g is submersive230

at (x∗(0), x∗(T ), λ∗), then the conclusion of Theorem 2.1 holds true.231

About the proof of Lemma 2.1. A PMP for L1
A–local solutions to classical optimal232

control problems can be established via many different methods known in the literature.233

In our context, since the measurable subset A can be of complex nature (such as a234

Cantor set of positive measure), the classical needle-like perturbations of the control235

(see, e.g., [15, 27]) may not be suitable for the sensitivity analysis of the control system236

and, therefore, one may prefer to use implicit spike variations (see, e.g., [10, 12, 24]).237

To deal with the parameter λ ∈ Rd in Problem (P), one can simply augment the238

state variable from x to (x, λ) by adding the state equation λ̇(t) = 0Rd (see, e.g., [9]).239

Finally, to deal with the general mixed terminal state constraints g(x(0), x(T ), λ) ∈ S240

in Problem (P), one may use the Ekeland variational principle on a penalized functional241

involving the square of the distance function to S (see, e.g., [12, 20]). Since all these242

techniques are very well known in the literature, the proof of Lemma 2.1 is omitted.243

Proof of Theorem 2.1. Consider an increasing family (Aε)ε>0 of measurable sub-
sets of A associated with (x∗, u∗, λ∗) and a decreasing positive sequence (εk)k∈N such
that εk → 0. In the sequel we denote by Ak := Aεk and by (pk, p

0
k) ∈ AC([0, T ],Rn)×

R+ the nontrivial pair provided by Lemma 2.1 (with ξk ∈ NS[g(x
∗(0), x∗(T ), λ∗)]) for

all k ∈ N. From linearity and submersiveness, the pair (ξk, p
0
k) is nontrivial and can

be renormalized so that ∥(ξk, p0k)∥Rℓ×R = 1 for all k ∈ N. Therefore, up to a subse-
quence that we do not relabel, the sequence (ξk, p

0
k)k∈N converges to some nontrivial

pair (ξ, p0) satisfying (ξ, p0) ∈ NS[g(x
∗(0), x∗(T ), λ∗)]×R+ from closure of the normal

cone. Define p ∈ AC([0, T ],Rn) as the unique global solution to{
ṗ(t) = −∇xf(x

∗(t), u∗(t), λ∗)⊤p(t), a.e. t ∈ [0, T ],

p(T ) = −p0∇2ϕ(x
∗(0), x∗(T ), λ∗)−∇2g(x

∗(0), x∗(T ), λ∗)ξ.

The Hamiltonian system and the second component of the endpoint transversality244

condition are satisfied. Since p and pk satisfy the same linear differential equation245

and pk(T ) → p(T ), the sequence (pk)k∈N uniformly converges to p over [0, T ]. We246

deduce the first and third components of the endpoint transversality condition and,247
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HYBRID MAXIMUM PRINCIPLE 7

from submersiveness, that the pair (p, p0) is nontrivial. Still from Lemma 2.1, there248

exists a null set Nk ⊂ Ak such that H(x∗(t), u∗(t), λ∗, pk(t)) ≥ H(x∗(t), ω, λ∗, pk(t))249

for all ω ∈ U and all t ∈ Ak\Nk, for all k ∈ N. Now let us prove that the Hamiltonian250

maximization condition holds true at any t ∈ Ã := (∪k∈NAk)\(∪k∈NNk) which is251

a measurable subset of A with full measure. Let t ∈ Ã and take k0 ∈ N such252

that t ∈ Ak\Nk for all k ≥ k0. Therefore the previous inequality holds true at t253

for all ω ∈ U and all k ≥ k0. From convergence of pk(t) to p(t), we get that254

H(x∗(t), u∗(t), λ∗, p(t)) ≥ H(x∗(t), ω, λ∗, p(t)) for all ω ∈ U, which ends the proof.255

Remark 2.3. (i) First of all we bring the reader’s attention to the fact that the256

Hamiltonian maximization condition in Lemma 2.1 and Theorem 2.1 holds true only257

almost everywhere over A (and not over the entire interval [0, T ]). This is the only258

difference with the classical PMP and this is due, of course, to the restrictions to L1
A–259

and L1
A□–local solutions (see Definitions 2.1 and 2.2 and Item (iii) of Remark 2.2).260

(ii) Even if the conclusions of Lemma 2.1 and Theorem 2.1 are exactly the same,261

we recall that a L1
A□–local solution is not a L1

A–local solution in general (see Item (iv)262

of Remark 2.2). Therefore Theorem 2.1 is not only a consequence of Lemma 2.1 but263

also a strict extension. From the diagram in Remark 2.2, it is also clear that the264

classical PMP (for global solutions or for L1–local solutions) is a particular case of265

both Lemma 2.1 and Theorem 2.1 (by taking A = [0, T ]).266

(iii) As explained in [6, 7], the submersiveness hypothesis can be removed but, in267

that case, all items of Lemma 2.1 and Theorem 2.1 remain valid, except Item (ii).268

(iv) Consider the framework of Theorem 2.1 for a L1
□–local solution (x∗, u∗, λ∗).269

Using the Hamiltonian system and the Hamiltonian maximization condition over [0, T ]270

and applying [21, Theorem 2.6.1], we obtain the Hamiltonian constancy condition271

H(x∗(t), u∗(t), λ∗, p(t)) = c for almost every t ∈ [0, T ], for some c ∈ R.272

3. Derivation of a HMP for spatially heterogeneous dynamics. In this273

section we consider a partition of the state space Rn = ∪j∈JXj , where J is a family274

of indexes and the nonempty open subsets Xj ⊂ Rn, called regions, are disjoint. Our275

aim is to derive first-order necessary optimality conditions in a Pontryagin form for276

the hybrid optimal control problem with mixed terminal state constraints given by277

(HP)

minimize ϕ(x(0), x(T )),

subject to (x, u) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm),

ẋ(t) = h(x(t), u(t)), a.e. t ∈ [0, T ],

g(x(0), x(T )) ∈ S,

u(t) ∈ U, a.e. t ∈ [0, T ],

278

where the data assumptions and the terminology for Problem (HP) are the same
as those for Problem (P), except that the dynamics h : Rn × Rm → Rn is spatially
heterogeneous, in the sense that it is defined regionally by

∀(x, u) ∈ Rn × Rm, h(x, u) := hj(x, u) when x ∈ Xj ,

where the subdynamics hj : Rn × Rm → Rn are of class C1. Note that h(x, u) is not279

defined when x /∈ ∪j∈JXj but this fact will have no impact on the rest of this work280

(see Item (i) in Remark 3.1). Finally, in contrary to Problem (P) and as explained in281

Item (ii) of Remark 2.1, note that Problem (HP) does not involve any parameter.282

3.1. Regular solutions to the hybrid control system. Due to the disconti-283

nuities of the spatially heterogeneous dynamics h, we need to precise the definition of284
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a solution to the hybrid control system285

(HS) ẋ(t) = h(x(t), u(t)), for a.e. t ∈ [0, T ],286

associated with Problem (HP).287

Definition 3.1 (Solution to (HS)). A pair (x, u) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm)288

is said to be a solution to (HS) if there exists a partition T = {τk}k=0,...,N such that:289

(i) For all k ∈ {1, . . . , N}, there exists j(k) ∈ J (with j(k) ̸= j(k − 1)) such290

that x(t) ∈ Xj(k) for almost every t ∈ (τk−1, τk).291

(ii) x(0) ∈ Xj(1) and x(T ) ∈ Xj(N).292

(iii) ẋ(t) = hj(k)(x(t), u(t)) for almost every t ∈ (τk−1, τk) and all k ∈ {1, . . . , N}.293

In that case, to ease notation, we set fk := hj(k) and Ek := Xj(k) for all k ∈ {1, . . . , N}.
With this system of notations, we have

x(t) ∈ E1, ∀t ∈ [τ0, τ1),
x(t) ∈ Ek, ∀t ∈ (τk−1, τk), ∀k ∈ {2, . . . , N − 1},
x(t) ∈ EN , ∀t ∈ (τN−1, τN ],
ẋ(t) = fk(x(t), u(t)), a.e. t ∈ (τk−1, τk), ∀k ∈ {1, . . . , N}.

Finally the times τk, for k ∈ {1, . . . , N − 1}, are called crossing times since they294

correspond to the instants at which the trajectory x goes from the region Ek to the295

region Ek+1, and thus x(τk) ∈ ∂Ek ∩ ∂Ek+1.296

Our main result (Theorem 3.1 stated in Section 3.3) is based on some regularity297

assumptions made on the behavior of the optimal pair of Problem (HP) at each298

crossing time. These hypotheses are precised in the next definition.299

Definition 3.2 (Regular solution to (HS)). Following the notations introduced300

in Definition 3.1, a solution (x, u) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm) to (HS) is said301

to be regular if the following conditions are both satisfied:302

(i) At each crossing time τk, there exists a C1 function Fk : Rn → R such that303

∃νk > 0, ∀z ∈ BRn(x(τk), νk),

 z ∈ Ek ⇔ Fk(z) < 0,
z ∈ ∂Ek ∩ ∂Ek+1 ⇔ Fk(z) = 0,

z ∈ Ek+1 ⇔ Fk(z) > 0.
304

In particular it holds that Fk(x(τk)) = 0.305

(ii) At each crossing time τk, there exists αk > 0 and βk > 0 such that the306

transverse conditions307

(TC)

{
⟨∇Fk(x(τk)), fk(x(τk), u(t))⟩Rn ≥ βk, a.e. t ∈ [τk − αk, τk),
⟨∇Fk(x(τk)), fk+1(x(τk), u(t))⟩Rn ≥ βk, a.e. t ∈ (τk, τk + αk],

308

are both satisfied.309

Remark 3.1. (i) Definition 3.1 does not include the possibility of an infinite number310

of crossing times (excluding the Zeno phenomenon [34]). Also it does not allow311

trajectories bouncing against a boundary of a region, or moving along a boundary312

(excluding situations as described in [1]). This last restriction is the reason why the313

fact that h(x, u) is not defined when x /∈ ∪j∈JXj has no impact on the present work.314

Finally Definition 3.1 allows terminal states x(0) and x(T ) that belong to regions only315

(and not to their boundaries). Possible relaxations are presented in Remark 3.4.316

(ii) The transverse conditions (TC) have a geometrical interpretation, meaning317

that x does not cross the boundary ∂Ek ∩ ∂Ek+1 tangentially. At a crossing time τk,318
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the transverse conditions319

(TC’)

 u admits left and right limits at τk denoted by u−(τk) and u+(τk),
⟨∇Fk(x(τk)), fk(x(τk), u

−(τk))⟩Rn > 0
⟨∇Fk(x(τk)), fk+1(x(τk), u

+(τk))⟩Rn > 0,
320

considered in the papers [1, 23], are (slightly) stronger than (TC).321

3.2. Reduction into a classical optimal control problem with parameter.322

To establish a correspondence from the hybrid optimal control problem (HP) to a323

classical optimal control problem with parameter of the form of Problem (P), we324

will proceed as in [19] to affine changes of time variable. Precisely let (x∗, u∗) ∈325

AC([0, T ],Rn)×L∞([0, T ],Rm) be a solution to (HS), associated with a partition T∗ =326

{τ∗k}k=0,...,N , and let E∗
k and f∗

k stand for the corresponding regions and functions (see327

Definition 3.1). We introduce (y∗, v∗) ∈ AC([0, 1],RnN )× L∞([0, 1],RmN ) defined by328

(3.1) y∗k(s) := x∗(τ∗k−1 + (τ∗k − τ∗k−1)s) and v∗k(s) := u∗(τ∗k−1 + (τ∗k − τ∗k−1)s),329

for all s ∈ [0, 1] and all k ∈ {1, . . . , N}. To invert the changes of time variable, it holds330

(3.2) x∗(t) = y∗k

(
t− τ∗k−1

τ∗k − τ∗k−1

)
and u∗(t) = v∗k

(
t− τ∗k−1

τ∗k − τ∗k−1

)
,331

for all t ∈ [τ∗k−1, τ
∗
k ] and all k ∈ {1, . . . , N}. In particular note that (x∗(0), x∗(T )) =

(y∗1(0), y
∗
N (1)). From a more general point of view, it holds that x∗(τ∗k ) = y∗k+1(0)

for all k ∈ {0, . . . , N − 1} and x∗(τ∗k ) = y∗k(1) for all k ∈ {1, . . . , N}. Note that the
triplet (y∗, v∗,T∗) satisfies

ẏ∗(s) = f∗(y∗(s), v∗(s),T∗), a.e. s ∈ [0, 1],

where f∗ : RnN × RmN × RN+1 → RnN is the C1 function defined by

f∗(y, v,T) :=
(
(τ1 − τ0)f

∗
1 (y1, v1), . . . , (τN − τN−1)f

∗
N (yN , vN )

)
,

for all y = (y1, . . . , yN ) ∈ RnN , v = (v1, . . . , vN ) ∈ RmN and T = {τ0, . . . , τN} ∈ RN+1.332

Furthermore it holds that333

(3.3)

 y∗1(s) ∈ E1, ∀s ∈ [0, 1),
y∗k(s) ∈ Ek, ∀s ∈ (0, 1), ∀k ∈ {2, . . . , N − 1},
y∗N (s) ∈ EN , ∀s ∈ (0, 1],

334

and y∗k+1(0) = y∗k(1) ∈ ∂E∗
k ∩ ∂E∗

k+1 for all k ∈ {1, . . . , N − 1}. Also note that T∗ ∈ ∆

where ∆ ⊂ RN+1 is the nonempty closed convex set defined by

∆ := {T = {τk}k=0,...,N ∈ RN+1 | 0 = τ0 ≤ τ1 ≤ . . . ≤ τN−1 ≤ τN = T}.

Now assume that the pair (x∗, u∗) is moreover a regular solution to (HS) and denote335

by F ∗
k and ν∗k > 0 the corresponding functions and positive radii (see Definition 3.2).336

In that context note that F ∗
k (x(τ

∗
k )) = F ∗

k (y
∗
k(1)) = 0 for all k ∈ {1, . . . , N − 1}.337

Finally it is clear that, if the pair (x∗, u∗) is furthermore admissible for Problem (HP),338

then the triplet (y∗, v∗,T∗) is admissible for the classical optimal control problem with339
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parameter given by340

(CP∗)

minimize ϕ∗(y(0), y(1),T),
subject to (y, v,T) ∈ AC([0, 1],RnN )× L∞([0, 1],RmN )× RN+1,

ẏ(s) = f∗(y(s), v(s),T), a.e. s ∈ [0, 1],

g∗(y(0), y(1),T) ∈ S∗,

v(s) ∈ UN , a.e. s ∈ [0, 1],

341

where ϕ∗ : RnN × RnN × RN+1 → R and g∗ : RnN × RnN × RN+1 → Rℓ∗ are the C1

functions defined by ϕ∗(y0, y1,T) := ϕ(y01 , y
1
N ) and

g∗(y0, y1,T) := (g(y01 , y
1
N ), y02 − y11 , . . . , y

0
N − y1N−1, F

∗
1 (y

1
1), . . . , F

∗
N−1(y

1
N−1),T),

for all y0 = (y01 , . . . , y
0
N ), y1 = (y11 , . . . , y

1
N ) ∈ RnN and T = {τ0, . . . , τN} ∈ RN+1,

where ℓ∗ := ℓ + n(N − 1) + (N − 1) + (N + 1), and where S∗ ⊂ Rℓ∗ stands for the
nonempty closed convex set defined by

S∗ := S× {0Rn}N−1 × {0}N−1 ×∆.

Proposition 3.1. If (x∗, u∗) ∈ AC([0, T ],Rn)×L∞([0, T ],Rm) is a global solution342

to Problem (HP), that is moreover a regular solution to (HS), associated with a343

partition T∗ = {τ∗k}k=0,...,N , then the triplet (y∗, v∗,T∗) constructed above is a L1
□–344

local solution to Problem (CP∗).345

Proof. The proof of Proposition 3.1 is postponed to Appendix A. We prove that the346

triplet (y∗, v∗,T∗) is a L1
[ε,1−ε]–local solution to Problem (CP∗) for any 0 < ε < 1/2.347

Remark 3.2. (i) Consider the framework of Proposition 3.1. In Section 3.4 we348

will provide a counterexample showing that the triplet (y∗, v∗,T∗) is not a L1–local349

solution to Problem (CP∗) in general. This highlights the fact that the classical PMP350

cannot be applied to the triplet (y∗, v∗,T∗). However, thanks to Proposition 3.1, we351

can apply the new PMP for L1
□–local solution obtained in Theorem 2.1. This allows352

us to derive a HMP for Problem (HP) in the next Section 3.3.353

(ii) Consider the framework of Proposition 3.1. Given an admissible triplet (y, v,T)354

for Problem (CP∗), one can easily invert the augmentation procedure and obtain a355

pair (x, u) which satisfies all the constraints of Problem (HP), except one. Precisely,356

even if (x, u) follows the same sequence (f∗
k )k=1,...,N of dynamics than the pair (x∗, u∗),357

it does not necessarily follow the same sequence of regions (E∗
k)k=1,...,N (and thus it is358

not necessarily admissible for Problem (HP)). This is the major difficulty of the proof359

of Proposition 3.1 and, as we will see with a counterexample in Section 3.4, the notion360

of L1–local solution (which consists in considering the triplet (y, v,T) in a standard361

neighborhood of (y∗, v∗,T∗)) fails to guarantee this property. This is because, even362

if transverse conditions are satisfied by the pair (x∗, u∗), allowing L1-perturbations363

of u∗ (with possibly far values in U from the ones of u∗) in the neighborhoods of364

the crossing times τ∗k may lead to a perturbed pair (x, u) that does not satisfy the365

transverse conditions, and thus to a perturbed trajectory x that may visit a different366

sequence of regions than x∗. On the contrary, the new notion of L1
[ε,1−ε]–local solution,367

for 0 < ε < 1/2 , addresses this issue by allowing L1-perturbations of u∗ only outside368

neighborhoods of the crossing times τ∗k .369

3.3. HMP and comments. The Hamiltonian H : Rn×Rm×Rn → R associated370

with Problem (HP) is defined by H(x, u, p) := ⟨p, h(x, u)⟩ for all (x, u, p) ∈ Rn×Rm×371

Rn. We are now in a position to state the main result of this paper.372
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Theorem 3.1 (HMP). If (x∗, u∗) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm) is a global373

solution to Problem (HP), that is moreover a regular solution to (HS), associated with374

a partition T∗ = {τ∗k}k=0,...,N , such that g is submersive at (x∗(0), x∗(T )), then there375

exists a nontrivial pair (p, p0) ∈ PACT∗([0, T ],Rn)× R+ satisfying:376

(i) the Hamiltonian system ẋ∗(t) = ∇pH(x∗(t), u∗(t), p(t)) and −ṗ(t) = ∇xH(x∗(t),377

u∗(t), p(t)) for almost every t ∈ [0, T ];378

(ii) the endpoint transversality condition379 (
p(0)

−p(T )

)
= p0∇ϕ(x∗(0), x∗(T )) +∇g(x∗(0), x∗(T ))ξ,380

for some ξ ∈ NS[g(x
∗(0), x∗(T ))];381

(iii) the discontinuity condition p+(τ∗k )−p−(τ∗k ) = σk∇F ∗
k (x

∗(τ∗k )) for some σk ∈ R,382

for all k ∈ {1, . . . , N − 1};383

(iv) the Hamiltonian maximization condition u∗(t) ∈ argmaxω∈U H(x∗(t), ω, p(t))384

for almost every t ∈ [0, T ];385

(v) the Hamiltonian constancy condition H(x∗(t), u∗(t), p(t)) = c for almost ev-386

ery t ∈ [0, T ], for some c ∈ R.387

Proof. The proof of Theorem 3.1 is postponed to Appendix B. It is based on388

Proposition 3.1 and on the application of Theorem 2.1 to the triplet (y∗, v∗,T∗).389

Remark 3.3. (i) In the classical PMP (that is, when the dynamics is not hetero-390

geneous), the costate p is absolutely continuous over the entire interval [0, T ] and391

satisfies Items (i), (ii), (iv) and (v) of Theorem 3.1 (see, e.g., [27]). In the present392

setting of heterogeneous dynamics, the costate p is (only) piecewise absolutely contin-393

uous over [0, T ], admitting at each crossing time τ∗k a discontinuity jump satisfying394

Item (iii) of Theorem 3.1. Under the (slightly) stronger transverse conditions (TC’),395

the Hamiltonian constancy condition allows to obtain396

397

σk = −

〈
p−(τ∗k ), f

∗
k+1(x

∗(τ∗k ), (u
∗)+(τ∗k ))− f∗

k (x
∗(τ∗k ), (u

∗)−(τ∗k ))
〉
Rn〈

∇F ∗
k (x

∗(τ∗k )), f
∗
k+1(x

∗(τ∗k ), (u
∗)+(τ∗k ))

〉
Rn

398

= −

〈
p+(τ∗k ), f

∗
k+1(x

∗(τ∗k ), (u
∗)+(τ∗k ))− f∗

k (x
∗(τ∗k ), (u

∗)−(τ∗k ))
〉
Rn〈

∇F ∗
k (x

∗(τ∗k )), f
∗
k (x

∗(τ∗k ), (u
∗)−(τ∗k ))

〉
Rn

,399

400

for all k ∈ {1, . . . , N − 1}, and thus the discontinuity conditions can be expressed401

as forward (or backard) discontinuity jumps. Such discontinuity jumps are very402

standard in the literature on hybrid optimal control problems (see, e.g., [8, 26]) and403

the discontinuity conditions have even been announced in our setting of spatially404

heterogeneous dynamics in the papers [1, 23]. However, as explained in Introduction,405

we recall that the proofs in [1, 23] are not satisfactory for several and different reasons.406

(ii) Similarly to Item (iii) of Remark 2.3, and as explained in [6, 7], the submer-407

siveness hypothesis made in Theorem 3.1 can be removed but, in that case, all items408

of Theorem 3.1 remain valid, except Item (ii).409

Remark 3.4. (i) Consider the framework of Proposition 3.1. From Item (i) of410

Remark 3.2, we know that (y∗, v∗,T∗) is not a L1–local solution to Problem (CP∗) in411

general. Nevertheless, according to the ideas presented in Item (ii) of Remark 3.2, it412

may be possible to avoid the use of the notion of L1
□–local solution introduced in the413
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present paper. However, to our best knowledge, this would not be possible without414

obtaining a weaker result and/or without restricting the framework. Let us develop415

two options in that direction:416

• First, under the (slightly) stronger transverse conditions (TC’), it can be417

proved that (y∗, v∗,T∗) is a L∞–local solution to Problem (CP∗), in the sense418

that there exists η > 0 such that ϕ∗(y∗(0), y∗(1),T∗) ≤ ϕ∗(y(0), y(1),T) for all419

admissible triplets (y, v,T) satisfying ∥y−y∗∥C+∥v−v∗∥L∞+∥T−T∗∥RN+1 ≤ η.420

This idea is in-line with the approach developed in [5]. In that context,421

assuming for simplicity that U is closed and convex and applying a weak422

version of the classical PMP (that is, a version adapted to L∞–local solutions,423

see [13] and discussion therein), one can derive a weaker version of Theorem 3.1,424

that is, without the Hamiltonian constancy condition and, above all, where the425

Hamiltonian maximization condition is replaced by the weaker Hamiltonian426

gradient condition ∇uH(x∗(t), u∗(t), p(t)) ∈ NU[u
∗(t)] for a.e. t ∈ [0, T ].427

• Second, under the (very) stronger transverse conditions given by428

(TC”) ∀ω ∈ U,

{
⟨∇F ∗

k (x
∗(τ∗k )), f

∗
k (x

∗(τ∗k ), ω)⟩Rn ≥ βk,
⟨∇F ∗

k (x
∗(τ∗k )), f

∗
k+1(x

∗(τ∗k ), ω)⟩Rn ≥ βk,
429

for some βk > 0 at each crossing time τ∗k , it can be proved that (y∗, v∗,T∗)430

is a L1–local solution to Problem (CP∗). In that context one can derive431

Theorem 3.1 from the application of the classical PMP. However the strong432

transverse conditions (TC”) are quite restrictive and are not satisfied in433

practice (see the counterexample presented in the next Section 3.4).434

From a general point of view, it can be observed that the choice of the transverse435

conditions (more or less strong) influences the local quality (L1, L∞ or L1
□) of the436

solution (y∗, v∗,T∗) to Problem (CP∗) and thus the version of the PMP that can be437

applied to it, and finally the version of the HMP obtained on the original pair (x∗, u∗).438

(ii) For simplicity, Definition 2.1 allows trajectories x such that x(0) and x(T )
belong to regions only (and not to their boundaries). This restriction may limit
the scope of our results. To overcome this restriction, some adjustments have to be
performed. For instance, consider the framework of Theorem 3.1 with x∗(0) ∈ E1

and x∗(T ) ∈ ∂EN (other cases can be handled similarly). To deal with this situation,
one has to add in Definition 3.2 the existence of a local C1 description FN of ∂EN in
a neighborhood of x∗(T ) and an adapted transverse condition of the form

⟨∇F ∗
N (x∗(T )), f∗

N (x∗(T ), u∗(t))⟩Rn ≥ βN , a.e. t ∈ [T − αN , T ),

with αN > 0 and βN > 0. Then the augmented problem (CP∗) must be adjusted care-439

fully by adding the inequality constraint F ∗
N (yN (1)) ≤ 0 to keep the validity of Propo-440

sition 3.1. Finally, adapting the submersiveness hypothesis (involving both g and F ∗
N ),441

applying Theorem 2.1 and inverting the augmentation procedure, the conclusion of442

Theorem 3.1 remains valid, but with an additional term of the form ζ∇F ∗
N (x∗(T ))443

with ζ ≥ 0 in the expression of −p(T ).444

(iii) In addition to the comments made in the previous Item (ii), we would like445

to emphasize that certain cases where x∗(0) and x∗(T ) belong to boundaries of the446

regions can be treated without the adjusted procedure discussed above. For instance,447

if the initial condition is fixed on a boundary, then no information is expected for p(0)448

and, furthermore, with the approach developed in this paper, only perturbations of the449

control over [ε, T ] for small ε > 0 are considered. Hence the corresponding perturbed450

trajectories coincide with the nominal trajectory over [0, ε] and thus satisfy the initial451
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condition. Another example is provided with minimum time problems where the target452

belongs to a boundary of a region. In that context, a simple dynamical programming453

argument can eliminate the need of a transverse condition at T (see [4]).454

(iv) Here we focus on possible extensions and perspectives of our work.455

• First, one may consider a setting where the subdynamics hj : Rn×Rmj → Rn456

have possibly different control dimensions mj ∈ N∗ and with possibly different457

control constraint sets Uj ⊂ Rmj . This generalized context is interesting458

to impose specific values for the control in certain regions (for example, by459

taking Uj = {0Rmj } for some j ∈ J ). We believe that our methodology can460

be adapted to this framework without any major difficulty.461

• Second, one may consider an extended setting that includes a regionally462

switching parameter (see [2]), meaning that the control system depends on463

a parameter that remains constant in each region but can change its value464

when the state crosses a boundary. This framework enables us to handle, as465

a specific case, control systems with loss control regions (see [3, 4]). This466

extension is the subject of a work in progress by the authors.467

3.4. A counterexample. Consider the framework of Proposition 3.1. This468

section is dedicated to an explicit counterexample showing that the triplet (y∗, v∗,T∗)469

is not a L1–local solution to Problem (CP∗) in general. To this aim consider the470

two-dimensional case n = 2, the state space partition R2 = X1 ∪ X2 where X1 :=471

(−∞, 1)×R and X2 := (1,+∞)×R, and the hybrid optimal control problem given by472

(HPex)

minimize −(x1(2)− 2)3 − ρx2(2),

subject to (x, u) ∈ AC([0, 2],R2)× L∞([0, 2],R),
ẋ(t) = h(x(t), u(t)), a.e. t ∈ [0, 2],

x(0) = 0R2 ,

u(t) ∈ [−1, 1], a.e. t ∈ [0, 2],

473

where the spatially heterogeneous dynamics h : R2 × R → R2 is defined by474

h(x, u) :=


(
1, ((1− x1)

+)2
)
, if x ∈ X1,(

u, ((1− x1)
+)2

)
, if x ∈ X2,

475

for all x = (x1, x2) ∈ X1 ∪X2 and all u ∈ R, and where ρ > 96.476

3.4.1. A global solution (x∗, u∗) to Problem (HPex). In view of the definition
of h in the region X1 and following Definition 2.1, any admissible pair (x, u) for
Problem (HPex) has exactly one crossing time τ1 = 1, and satisfies x1(t) = t for
all t ∈ [0, 1] and x1(t) > 1 for all t ∈ (1, 2]. Moreover an easy computation shows that

x2(t) =

{
1
3 ((t− 1)3 + 1) if t ∈ [0, 1],
1
3 if t ∈ [1, 2],

for all t ∈ [0, 2]. Since the value x2(2) is fixed to 1
3 for any admissible pair, Prob-

lem (HPex) simply amounts to maximize the value of x1(2). In view of the definition
of h in the region X2, one can easily deduce that a global solution (x∗, u∗) to Prob-
lem (HPex) is given by

x∗
1(t) := t, x∗

2(t) :=

{
1
3 ((t− 1)3 + 1) if t ∈ [0, 1],
1
3 if t ∈ [1, 2],

u∗(t) := 1,
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for all t ∈ [0, 2], and the corresponding optimal cost is given by C∗ := −ρ
3 . Furthermore477

one can observe that the pair (x∗, u∗) is a regular solution to the corresponding hybrid478

control system (Definition 3.2) with exactly one crossing time τ∗1 = 1.479

3.4.2. The corresponding triplet (y∗, v∗,T∗). Now consider the framework of480

Proposition 3.1. The corresponding triplet (y∗, v∗,T∗) is given by481

(y11)
∗(s) = s, (y12)

∗(s) = s+ 1, (y21)
∗(s) =

1

3
((s− 1)3 + 1), (y22)

∗(s) =
1

3
,482

and v∗1(s) = v∗2(s) = 1 for all s ∈ [0, 1], and T∗ = {0, 1, 2}. As expected the483

triplet (y∗, v∗,T∗) is admissible for the classical optimal control problem with parameter484

(CP∗
ex)

minimize −(y12(1)− 2)3 − ρy22(1),

subject to (y, v,T) ∈ AC([0, 1],R4)× L∞([0, 1],R2)× R3,

ẏ11(s) = τ1, a.e. s ∈ [0, 1],

ẏ21(s) = τ1((1− y11(s))
+)2, a.e. s ∈ [0, 1],

ẏ12(s) = (2− τ1)v2(s), a.e. s ∈ [0, 1],

ẏ22(s) = (2− τ1)((1− y12(s))
+)2, a.e. s ∈ [0, 1],

y11(0) = 0, y21(0) = 0, y11(1)− 1 = 0,

y12(0)− y11(1) = 0, y22(0)− y21(1) = 0,

τ0 = 0, τ1 ∈ [0, 2], τ2 = 2,

v1(s), v2(s) ∈ [−1, 1], a.e. s ∈ [0, 1],

485

with the cost C∗ = −ρ
3 .486

3.4.3. The triplet (y∗, v∗,T∗) is not a L1–local solution to Problem (CP∗
ex).

For any ε > 0 small enough, we introduce the triplet (yε, vε,Tε) defined by (y11)
ε :=

(y11)
∗, (y21)

ε := (y21)
∗, vε1 = v∗1 , Tε = T∗, and by

(y12)
ε(s) :=

 s+ 1, if s ∈ [0, ε],
2ε− s+ 1, if s ∈ [ε, 3ε],
s− 4ε+ 1, if s ∈ [3ε, 1],

vε2(s) :=

 1, if s ∈ [0, ε],
−1, if s ∈ [ε, 3ε],
1, if s ∈ [3ε, 1],

and

(y22)
ε(s) :=


1
3 , if s ∈ [0, 2ε],
1
3 ((s− 2ε)3 + 1), if s ∈ [2ε, 3ε],
1
3 ((s− 4ε)3 + 2ε3 + 1), if s ∈ [3ε, 4ε],
1
3 (2ε

3 + 1), if s ∈ [4ε, 1],

for all s ∈ [0, 1]. One can easily conclude that the triplet (y∗, v∗, τ∗) is not a L1–local487

solution to Problem (CP∗
ex) since:488

– The triplet (yε, vε, τε) is admissible for Problem (CP∗
ex) for any ε > 0.489

– It holds that limε→0(∥yε − y∗∥C + ∥vε − v∗∥L1 + ∥Tε − T∗∥R3) = 0.490

– For any ε > 0, the cost Cε associated with the triplet (yε, vε,Tε) is given by

Cε = −ρ

3
−
(
2ρ

3
− 64

)
ε3 < −ρ

3
= C∗.

Appendix A. Proof of Proposition 3.1. Consider the framework of Propo-491

sition 3.1 and let us prove that the triplet (y∗, v∗,T∗) is a L1
[ε,1−ε]–local solution to492
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Problem (CP∗) for any 0 < ε < 1
2 . Therefore let 0 < ε < 1

2 and R ≥ ∥v∗∥L∞ . Our aim493

is to prove that there exists η > 0 such that ϕ∗(y∗(0), y∗(1),T∗) ≤ ϕ∗(y(0), y(1),T) for494

any triplet (y, v,T) that is admissible for Problem (CP∗) and satisfying495

(A.1)


∥y − y∗∥C + ∥v − v∗∥L1 + ∥T− T∗∥RN+1 ≤ η,

∥v∥L∞ ≤ R,

v(s) = v∗(s) a.e. s ∈ [0, ε] ∪ [1− ε, 1].

496

To this aim we need to introduce several technical positive parameters:497

(P1) Let θ := mink∈{1,...,N} |τ∗k − τ∗k−1| > 0 and θ := maxk∈{1,...,N} |τ∗k − τ∗k−1| > 0.498

(P2) From the transverse conditions (see Definition 3.2) and the (uniform) con-
tinuities of the functions ∇F ∗

k and f∗
k on compact sets, there exist 0 < ν ≤

mink∈{1,...,N−1} ν
∗
k and 0 < α ≤ min{ θ

3 ,mink∈{1,...,N−1} α
∗
k} such that{

⟨∇F ∗
k (z), f

∗
k (z, u

∗(t))⟩Rn > 0, a.e. t ∈ [τ∗k − α, τ∗k ),
⟨∇F ∗

k (z), f
∗
k+1(z, u

∗(t))⟩Rn > 0, a.e. t ∈ (τ∗k , τ
∗
k + α],

for all z ∈ BRn(x∗(τ∗k ), ν) and all k ∈ {1, . . . , N − 1}.499

(P3) From continuity of y∗ over [0, 1], there exists 0 < χ < 1
2 such that ∥y∗k(s)−500

y∗k(0)∥Rn ≤ ν
2 for all s ∈ [0, χ] and ∥y∗k(s)− y∗k(1)∥Rn ≤ ν

2 for all s ∈ [1− χ, 1],501

for all k ∈ {1, . . . , N}.502

(P4) Define γ := θ
3 min{ε, χ, α

θ
} > 0 and r := γ

θ+θ
> 0. Note that 0 < γ ≤ α ≤ θ

3503

and 0 < r < 1
2 .504

(P5) From continuity of y∗, from (3.3) and the openness of the regions E∗
k , there505

exists δ > 0 such that506 
BRn(y∗1(s), δ) ⊂ E∗

1 , ∀s ∈ [0, 1− r],

BRn(y∗k(s), δ) ⊂ E∗
k , ∀s ∈ [r, 1− r], ∀k ∈ {2, . . . , N − 1},

BRn(y∗N (s), δ) ⊂ E∗
N , ∀s ∈ [r, 1].

507

We are now in a position to continue the proof. To this aim let η := min{ θ
3 ,

ν
2 , δ} > 0508

and (y, v,T) be an admissible triplet for Problem (CP∗) satisfying (A.1). Our aim is509

to prove that ϕ∗(y∗(0), y∗(1),T∗) ≤ ϕ∗(y(0), y(1),T).510

Step 1. Since 0 = τ∗0 < τ∗1 < · · · < τ∗N−1 < τ∗N = T and T ∈ ∆ with ∥T −511

T∗∥RN+1 ≤ η ≤ θ
3 , one can easily deduce that 0 = τ0 < τ1 < · · · < τN−1 < τN = T .512

Therefore we are in a position to define (x, u) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm) by513

(A.2) x(t) := yk

(
t− τk−1

τk − τk−1

)
and u(t) := vk

(
t− τk−1

τk − τk−1

)
,514

for all t ∈ [τk−1, τk] and all k ∈ {1, . . . , N}. Note that x is well defined since yk+1(0) =515

yk(1) for all k ∈ {2, . . . , N} (from admissibility of the triplet (y, v,T)). Observe516

that (y1(0), yN (1)) = (x(0), x(T )) and recall that (y∗1(0), y
∗
N (1)) = (x∗(0), x∗(T )).517

Therefore, from the definition of ϕ∗ (see Section 3.2) and since (x∗, u∗) is a global518

solution to Problem (HP), to obtain that ϕ∗(y∗(0), y∗(1),T∗) ≤ ϕ∗(y(0), y(1),T), we519

only need to prove that the pair (x, u) is admissible for Problem (HP).520

From admissibility of the triplet (y, v,T), it is clear that g(x(0), x(T )) ∈ S521

and u(t) ∈ U for almost every t ∈ [0, T ]. Therefore it only remains to prove that (x, u)522

is a solution to the hybrid control system (HS) (see Definition 3.1). From (A.2) and523

the admissibility of the triplet (y, v,T), one can easily obtain that524

(A.3) ẋ(t) = f∗
k (x(t), u(t)), a.e. t ∈ (τk−1, τk),525
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for all k ∈ {1, . . . , N}. Therefore, to conclude the proof, we only need to prove that x(t) ∈ E∗
1 , ∀t ∈ [τ0, τ1),

x(t) ∈ E∗
k , ∀t ∈ (τk−1, τk), ∀k ∈ {2, . . . , N − 1},

x(t) ∈ E∗
N , ∀t ∈ (τN−1, τN ].

This is exactly our goal in the next two steps.526

Step 2. Since ∥T − T∗∥RN+1 ≤ η ≤ θ
3 , note that τk − τk−1 ≤ θ + 2η ≤ θ + θ for

all k ∈ {1, . . . , N}. Hence, since moreover r := γ

θ+θ
, observe that

t−τ0
τ1−τ0

∈ [0, 1− r], ∀t ∈ [τ0, τ1 − γ],
t−τk−1

τk−τk−1
∈ [r, 1− r], ∀t ∈ [τk−1 + γ, τk − γ], ∀k ∈ {2, . . . , N − 1},

t−τN−1

τN−τN−1
∈ [r, 1], ∀t ∈ [τN−1 + γ, τN ].

As a consequence, from (A.2) and (P5), and since ∥yk − y∗k∥C ≤ ∥y − y∗∥C ≤ η ≤ δ,
one can easily obtain that x(t) ∈ E∗

1 , ∀t ∈ [τ0, τ1 − γ],
x(t) ∈ E∗

k , ∀t ∈ [τk−1 + γ, τk − γ], ∀k ∈ {2, . . . , N − 1},
x(t) ∈ E∗

N , ∀t ∈ [τN−1 + γ, τN ].

Therefore, to conclude the proof, it only remains to prove that x(t) ∈ E∗
k for all t ∈527

[τk − γ, τk) and x(t) ∈ E∗
k+1 for all t ∈ (τk, τk + γ], for all k ∈ {1, . . . , N − 1}. This is528

the objective of the following last step.529

Step 3. Let us start with two observations. First, since ∥T− T∗∥RN+1 ≤ η ≤ θ
3 , it530

holds that |τk − τk−1| ≥ θ
3 for all k ∈ {1, . . . , N}. Second, since γ := θ

3 min{ε, χ, α
θ
},531

one can get that532

t−τk−1

τk−τk−1
∈ [1− ε, 1], t−τk−1

τk−τk−1
∈ [1−χ, 1], τ∗k−1 + (τ∗k − τ∗k−1)

t−τk−1

τk−τk−1
∈ [τ∗k −α, τ∗k ],533

for all t ∈ [τk − γ, τk] and all k ∈ {1, . . . , N − 1}. We deduce the following results:534

(i) Since vk(s) = v∗k(s) for almost every s ∈ [1 − ε, 1], one can easily obtain535

from (A.2) and (3.1) that u(t) = u∗(τ∗k−1 + (τ∗k − τ∗k−1)
t−τk−1

τk−τk−1
), with τ∗k−1 +536

(τ∗k − τ∗k−1)
t−τk−1

τk−τk−1
∈ [τ∗k − α, τ∗k ], for almost every t ∈ [τk − γ, τk) and537

all k ∈ {1, . . . , N − 1}.538

(ii) Since ∥yk − y∗k∥C ≤ ∥y − y∗∥C ≤ η ≤ ν
2 , one can easily obtain from (A.2),539

from the equality x∗(τ∗k ) = y∗k(1) and from (P3) that x(t) ∈ BRn(x∗(τ∗k ), ν)540

for all t ∈ [τk − γ, τk] and all k ∈ {1, . . . , N − 1}.541

(iii) We obtain from (A.3), from the previous two items and from (P2) that the
derivative of F ∗

k ◦ x satisfies〈
∇F ∗

k (x(t)), f
∗
k

(
x(t), u∗

(
τ∗k−1 + (τ∗k − τ∗k−1)

t− τk−1

τk − τk−1

))〉
Rn

> 0,

for almost every t ∈ [τk −γ, τk) and all k ∈ {1, . . . , N − 1}. From admissibility542

of the triplet (y, v,T) and (A.2), we know that F ∗
k (x(τk)) = F ∗

k (yk(1)) = 0543

for all k ∈ {1, . . . , N − 1}. As a consequence we obtain that F ∗
k (x(t)) < 0 for544

all t ∈ [τk−γ, τk) which implies from Definition 3.2, since x(t) ∈ BRn(x∗(τ∗k ), ν)545

and ν ≤ ν∗k , that x(t) ∈ E∗
k for all t ∈ [τk − γ, τk) and all k ∈ {1, . . . , N − 1}.546
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Following the same strategy one can obtain that x(t) ∈ E∗
k+1 for all t ∈ (τk, τk + γ]547

and all k ∈ {1, . . . , N − 1}. The proof of Proposition 3.1 is complete.548

Appendix B. Proof of Theorem 3.1. Consider the framework of Theorem 3.1.549

From Proposition 3.1, the corresponding triplet (y∗, v∗,T∗) constructed in Section 3.2550

is a L1
□–local solution to Problem (CP∗). Before applying Theorem 2.1, we need to551

verify that g∗ is submersive at (y∗(0), y∗(1),T∗). From the definition of the function g∗552

(see Section 3.2), note that the matrix ∇g∗(y∗(0), y∗(1),T∗) ∈ R(nN+nN+(N+1))×ℓ∗ is553



∇1g(y
∗
1(0), y

∗
N (1)) 0Rn×n(N−1) 0Rn×(N−1) 0Rn×(N+1)

0Rn(N−1)×ℓ IdRn(N−1)×n(N−1) 0Rn(N−1)×(N−1) 0Rn(N−1)×(N+1)

∇F ∗
1 (y

∗
1(1))

0Rn(N−1)×ℓ −IdRn(N−1)×n(N−1)

. . . 0Rn(N−1)×(N+1)

∇F ∗
N−1(y

∗
N−1(1))

∇2g(y
∗
1(0), y

∗
N (1)) 0Rn×n(N−1) 0Rn×(N−1) 0Rn×(N+1)

0R(N+1)×ℓ 0R(N+1)×n(N−1) 0R(N+1)×(N−1) IdR(N+1)×(N+1)



554

From Definition 3.2, it holds that ∇F ∗
k (y

∗
k(1)) = ∇F ∗

k (x
∗(τ∗k )) ̸= 0Rn for all k ∈555

{1, . . . , N −1}. Since g is submersive at (x∗(0), x∗(T )) = (y∗1(0), y
∗
N (1)), one can easily556

conclude that g∗ is submersive at (y∗(0), y∗(1),T∗).557

B.1. Application of Theorem 2.1. Let us introduce the Hamiltonian H :
RnN × RmN × RN+1 × RnN → R associated with Problem (CP∗) given by

H(y, v,T, q) := ⟨q, f∗(y, v,T)⟩RnN =

N∑
k=1

⟨qk, (τk − τk−1)f
∗
k (yk, vk)⟩Rn ,

for all y = (y1, . . . , yN ) ∈ RnN , v = (v1, . . . , vN ) ∈ RmN , T = {τ0, . . . , τN} ∈ RN+1558

and q = (q1, . . . , qN ) ∈ RnN . From Theorem 2.1, there exists a nontrivial pair (q, q0) ∈559

AC([0, 1],RnN )× R+ satisfying:560

(i) the Hamiltonian system ẏ∗(s) = ∇qH(y∗(s), v∗(s),T∗, q(s)) and −q̇(s) =561

∇yH(y∗(s), v∗(s),T∗, q(s)) for almost every s ∈ [0, 1];562

(ii) the endpoint transversality condition563 
q(0)

−q(1)∫ 1

0

∇TH(y∗(s), v∗(s),T∗, q(s)) ds

 = q0∇ϕ∗(y∗(0), y∗(1),T∗) +∇g∗(y∗(0), y∗(1),T∗)ξ̃,564

for some ξ̃ ∈ NS∗ [g∗(y∗(0), y∗(1),T∗)];565

(iii) the Hamiltonian maximization condition v∗(s) ∈ argmaxω̃∈UN H(y∗(s), ω̃,T∗, q(s))566

for almost every s ∈ [0, 1].567

B.2. Introduction of the nontrivial pair (p, p0). Since the pair (q, q0) is not
trivial, it is clear that the pair (p, p0) ∈ PACT∗([0, T ],Rn)× R+ defined by p0 := q0
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and

p(t) :=


q1

(
t−τ∗

0

τ∗
1 −τ∗

0

)
, ∀t ∈ [τ∗0 , τ

∗
1 ),

qk

(
t−τ∗

k−1

τ∗
k−τ∗

k−1

)
, ∀t ∈ (τ∗k−1, τ

∗
k ), ∀k ∈ {2, . . . , N − 1},

qN

(
t−τ∗

N−1

τ∗
N−τ∗

N−1

)
, ∀t ∈ (τ∗N−1, τ

∗
N ],

is not trivial.568

B.3. Hamiltonian system and Hamiltonian maximization condition of569

Theorem 3.1. From the above Items (i) and (iii) and from (3.2), the Hamiltonian570

system and the Hamiltonian maximization condition of Theorem 3.1 are satisfied.571

B.4. Endpoint transversality condition of Theorem 3.1. From the defi-
nitions of g∗ and S∗ (see Section 3.2) and since ξ̃ ∈ NS∗ [g∗(y∗(0), y∗(1),T∗)], we can
write ξ̃ := (ξ, ξ2, ξ3, ξ4) ∈ Rℓ × Rn(N−1) × RN−1 × RN+1 with

ξ ∈ NS[g(y
∗
1(0), y

∗
N (1))] and ξ4 ∈ N∆[T∗].

Since (y∗1(0), y
∗
N (1)) = (x∗(0), x∗(T )), note that ξ ∈ NS[g(x

∗(0), x∗(T ))]. Further-572

more, from the first two components of the above Item (ii), from the expression573

of ∇g∗(y∗(0), y∗(1),T∗) given at the beginning of Appendix B and from the expression574

of ∇ϕ∗(y∗(0), y∗(1),T∗) (see Section 3.2 for the definition of ϕ∗), we obtain that575

576

p(0) = q1(0) = q0∇1ϕ(y
∗
1(0), y

∗
N (1)) +∇1g(y

∗
1(0), y

∗
N (1))ξ577

= p0∇1ϕ(x
∗(0), x∗(T )) +∇1g(x

∗(0), x∗(T ))ξ,578579

and580
581

− p(T ) = −qN (1) = q0∇2ϕ(y
∗
1(0), y

∗
N (1)) +∇2g(y

∗
1(0), y

∗
N (1))ξ582

= p0∇2ϕ(x
∗(0), x∗(T )) +∇2g(x

∗(0), x∗(T ))ξ.583584

Therefore the endpoint transversality condition of Theorem 3.1 is proved.585

B.5. Discontinuity condition of Theorem 3.1. From the first two compo-586

nents of the above Item (ii), from the expression of ∇g∗(y∗(0), y∗(1),T∗) given at587

the beginning of Appendix B and from the expression of ∇ϕ∗(y∗(0), y∗(1),T∗) (see588

Section 3.2 for the definition of ϕ∗), we obtain that589

590

∀k ∈ {2, . . . , N}, qk(0) = ξ2k−1591

and ∀k ∈ {1, . . . , N − 1}, −qk(1) = −ξ2k + ξ3k∇F ∗
k (y

∗
k(1)).592593

We deduce that594

p+(τ∗k )− p−(τ∗k ) = qk+1(0)− qk(1) = ξ3k∇F ∗
k (y

∗
k(1)) = ξ3k∇F ∗

k (x
∗(τ∗k )),595

for all k ∈ {1, . . . , N − 1}. Therefore the discontinuity condition of Theorem 3.1 is596

satisfied with σk := ξ3k for all k ∈ {1, . . . , N − 1}.597

B.6. Hamiltonian constancy condition of Theorem 3.1. From the Hamil-598

tonian system and the maximization condition and applying [21, Theorem 2.6.1] on599

each interval [τ∗k−1, τ
∗
k ], we obtain that, for all k ∈ {1, . . . , N}, there exists a con-600

stant ck ∈ R such that ⟨p(t), f∗
k (x

∗(t), u∗(t))⟩Rn = ck for almost every t ∈ [τ∗k−1, τ
∗
k ].601
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Furthermore, from the definition of ∆ (see Section 3.2) and since 0 = τ∗0 < τ∗1 < . . . <602

τ∗N−1 < τ∗N = T , we deduce from ξ4 ∈ N∆[T∗] that all components of ξ4 are zero,603

except possibly the first and last components. Thus, from the third component of the604

above Item (ii), from the expression of ∇g∗(y∗(0), y∗(1),T∗) given at the beginning of605

Appendix B and from the expression of ∇ϕ∗(y∗(0), y∗(1),T∗) (see Section 3.2 for the606

definition of ϕ∗), we obtain that607 ∫ 1

0
⟨qk+1(s), f

∗
k+1(y

∗
k+1(s), v

∗
k+1(s))⟩Rn ds =

∫ 1

0
⟨qk(s), f∗

k (y
∗
k(s), v

∗
k(s))⟩Rn ds,608

for all k ∈ {1, . . . , N − 1}. From affine changes of time variable, we obtain that609

1

τ∗k+1 − τ∗k

∫ τ∗
k+1

τ∗
k

⟨p(t), f∗
k+1(x

∗(t), u∗(t))⟩Rn dt =
1

τ∗k − τ∗k−1

∫ τ∗
k

τ∗
k−1

⟨p(t), f∗
k (x

∗(t), u∗(t))⟩Rn dt,610

for all k ∈ {1, . . . , N − 1}. From constancy of the above two integrands, we deduce611

that ck+1 = ck for all k ∈ {1, . . . , N − 1}. Therefore the Hamiltonian constancy612

condition is satisfied and the proof of Theorem 3.1 is complete.613

Appendix C. Nonadmissibility of needle-like perturbations. Here we614

prove that needle-like perturbations of the control are not admissible (in a sense to615

precise) in our setting of spatially heterogeneous dynamics. This is a major difference616

with respect to the classical optimal control theory. Consider the one-dimensional617

case n = 1, the state space partition R = X1 ∪ X2, where X1 := (−∞, 1) and618

X2 := (1,+∞), and the hybrid control system given by619

(HSex) ẋ(t) = h(x(t), u(t)), for a.e. t ∈ [0, 2],620

where the spatially heterogeneous dynamics h : R× R → R is defined by h(x, u) := u621

if x ∈ X1 and by h(x, u) := −u if x ∈ X2. Now consider the trajectory x given622

by x(t) = t for all t ∈ [0, 2] and the corresponding control u given by u(t) = 1623

over [0, 1] and u(t) = −1 over (1, 2]. Note that all conditions from Definitions 3.1624

and 3.2 are satisfied, with τ1 = 1 as unique crossing time. For any small α > 0,625

denote by xα the solution to the hybrid control system (HSex) associated with the626

initial condition xα(0) = x(0) = 0 and the needle-like perturbation uα : [0, 2] → R627

of u defined by uα(t) = −1 over ( 12 − α, 1
2 ] and by uα(t) = u(t) elsewhere. Then the628

perturbed trajectory xα satisfies xα(t) ∈ X1 over the whole interval [0, 2] and thus xα629

does not uniformly converge to x over [0, 2] when α → 0.630
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