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THE HYBRID MAXIMUM PRINCIPLE FOR OPTIMAL CONTROL
PROBLEMS WITH SPATIALLY HETEROGENEOUS DYNAMICS IS A
CONSEQUENCE OF A PONTRYAGIN MAXIMUM PRINCIPLE FOR

LL,-LOCAL SOLUTIONS

TERENCE BAYEN*, ANAS BOUALI', AND LOIC BOURDIN#

Abstract. The title of the present work is a nod to the paper The hybrid mazimum principle is
a consequence of Pontryagin mazimum principle by Dmitruk and Kaganovich (Systems and Control
Letters, 2008). Here we investigate a similar but different framework of hybrid optimal control
problems. Precisely we consider a general control system that is described by a differential equation
involving a spatially heterogeneous dynamics. In that context the sequence of dynamics followed
by the trajectory and the corresponding switching times are fully constrained by the state position.
‘We prove with an explicit counterexample that the augmentation technique proposed by Dmitruk
and Kaganovich cannot be fully applied to our setting, but we show that it can be adapted by
introducing a new notion of local solution to classical optimal control problems and by establishing a
corresponding Pontryagin maximum principle. Thanks to this method we derive a hybrid maximum
principle adapted to our setting, with a simple proof that does not require any technical tool (such as
implicit function arguments) to handle the dynamical discontinuities.

Key words. Optimal control, heterogeneous dynamics, hybrid maximum principle.

MSC codes. 34A38, 49K15.

1. Introduction.

1.1. General context. The Pontryagin Mazimum Principle (in short, PMP),
established at the end of the 1950s (see [27]), has originally been developed for optimal
control problems where the control system is described by an ordinary differential
equation (in short, ODE). It states the corresponding first-order necessary optimality
conditions, in terms of an (absolutely continuous) costate function. As usual in
optimization, the PMP remains valid for local solutions only (typically in uniform
norm for the state and in L'-norm for the control). Since then, the PMP has been
adapted to many situations, in particular for control systems of different natures.

On the other hand, hybrid systems are, in a broad sense, dynamical systems
that exhibit both continuous and discrete behaviors. They are particularly used in
automation and robotics to describe complex systems in which, for example, logic
decisions are combined with physical processes. We refer to [32] for an elementary
introduction to hybrid systems. This theory is very large and it is commonly accepted
that it includes ODEs with heterogeneous dynamics, that is, ODEs involving a family
of different dynamics (used for example to describe evolutions in heterogeneous media)
where the transitions from one dynamics to another are seen as discrete events.

The PMP has been extended to hybrid control systems, especially in the context
of ODEs with heterogeneous dynamics (see, e.g., [19, 22, 26, 29, 30, 31]), resulting
in theorems often referred to as Hybrid Mazimum Principle (in short, HMP). We
emphasize that the frameworks are very varied. Indeed the rule that supervises the
transitions between the different dynamics is usually described by additional variables
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2 T. BAYEN, A. BOUALI AND L. BOURDIN

that can be free or constrained and, in that second case, the constraints can be of
different natures. For example the switching times (i.e. the instants at which the
control system moves from one dynamics to another) can be the resultant of a control
decision or can be (fully or partially) determined by the time variable, the state position
or both of them. Hence different versions of the HMP can be found in the literature,
corresponding to different hybrid control systems that are presented under various
names according to their nature (such as multi-processes [18], switched systems [28],
regional systems [1], systems on stratified domains [14], variable structure systems [8]).
In contrary to the classical PMP, the HMP is usually expressed in terms of an (only)
piecewise absolutely continuous costate function that admits discontinuity jumps at
the switching times. A common feature of most of the above references is that the
mathematical framework somehow guarantees that local perturbations (typically in
uniform norm for the state and in L'-norm for the control) preserve the same hybrid
structure (that is, the same sequence of dynamics) as the nominal one.

1.2. The augmentation technique of Dmitruk and Kaganovich. In the
context of ODEs with heterogeneous dynamics, the difficult part of deriving a HMP
lies in handling the dynamical discontinuities. To this end, an excellent strategy has
been proposed in [19], in which the switching times are additional variables satisfying
equality /inequality constraints involving the corresponding intermediate state values.

Roughly speaking, considering an optimal solution (associated with switching times
denoted by 7;), this technique consists in affine changes of time variable, mapping
the intervals (7;_,, 7;) into a common interval (0, 1). This procedure augments the
dimensions of the variables and thus is categorized in the set of augmentation techniques.
The authors prove that the augmented solution is a local solution to the augmented
problem which is classical (that is, non-hybrid) by construction (since the discontinuities
have been positioned at the endpoints of the interval [0, 1]). Therefore the classical
PMP can be applied to the augmented solution (expressed in terms of an augmented
absolutely continuous costate function satisfying endpoint transversality conditions).
Hence, by inverting the above affine changes of time variable, first-order necessary
optimality conditions are derived for the original nonaugmented solution, expressed in
terms of a nonaugmented (piecewise absolutely continuous) costate function satisfying
discontinuity jumps at the switching times 7} (whose expressions follow from the
endpoint transversality conditions at 0 and 1 of the augmented costate function).

Hence Dmitruk and Kaganovich have entitled their paper [19] as The hybrid
maximum principle is a consequence of Pontryagin maximum principle. The augmen-
tation technique is particularly satisfactory because it allows to reduce the hybrid
problem into a classical (non-hybrid) augmented problem, avoiding the use of technical
arguments (such as implicit function theorems) to handle the dynamical discontinuities.

1.3. Framework and contributions of the present work. In the spirit of [1,
23], we consider a control system described by an ODE with spatially heterogeneous
dynamics, in the sense that the state space is partitioned into several disjoint regions
and each region has its own dynamics. In that context the sequence of dynamics
followed by the trajectory and the corresponding switching times (called crossing
times since they correspond to the instants at which the state goes from one region to
another) are fully constrained by the state position.

A HMP corresponding to this setting has already been announced in [23] but with
a sketch of proof which is, to our best knowledge, erroneous. Indeed the author invoke
needle-like perturbations of the control, while they are not admissible in the present
setting (see Appendix C for a counterexample). This issue has been corrected in our
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HYBRID MAXIMUM PRINCIPLE 3

previous paper [2] by applying needle-like perturbations on auziliary controls. Then,
to handle the resulting perturbed crossing times, we used an inductive application of
the implicit function theorem, which results into a technical and extended analysis.
An attempt to derive a HMP corresponding to our setting, with the simpler approach
of Dmitruk and Kaganovich, was also presented in [1]. Unfortunately, to our best
knowledge, this proof is also incorrect. Indeed, in contrary to the framework of
Dmitruk and Kaganovich in [19], our setting fails to guarantee that the augmented
solution is a local solution to the classical augmented problem (see Section 3.4 for a
counterexample) and, therefore, the classical PMP cannot be applied. We emphasize
that our counterexample shows that, in our setting, a local perturbation (in uniform
norm for the state and in L!-norm for the control) does not preserve the hybrid
structure of the nominal one in general.

Hence the main objective of this paper is to derive a HMP for our setting, with a
correct proof that adapts the augmentation procedure of Dmitruk and Kaganovich.
To this aim a new notion of local solution to classical optimal control problems (see
the definition of L{-local solution in Definition 2.2) and a corresponding version of
the PMP (see Theorem 2.1) are required. Indeed we prove in Proposition 3.1 that,
under appropriate assumptions (such as transverse conditions at the crossing times),
the augmented solution is a Llljflocal solution to the classical augmented problem and
therefore the above new PMP can be applied. Finally, similarly to [19], by inverting the
affine changes of time variable, a HMP for our setting is obtained (see Theorem 3.1).

1.4. Organization of the paper. In Section 2, a classical optimal control prob-
lem is considered (see Problem (P)), the new notion of L{;-local solution is introduced
(see Definition 2.2) and a corresponding PMP is established (see Theorem 2.1). In
Section 3, a hybrid optimal control problem with spatially heterogeneous dynamics
is introduced (see Problem (HP)). Applying the augmentation procedure, Proposi-
tion 3.1 states that an augmented solution to Problem (HP) is a L-local solution to
the corresponding classical augmented problem of the form of Problem (P). Hence,
applying the above new PMP and inverting the affine changes of time variable, a HMP
for Problem (HP) is obtained (see Theorem 3.1). An explicit counterexample showing
that an augmented solution to Problem (HP) is not a local solution (in the usual sense)
to the corresponding classical augmented problem is provided in Section 3.4. Finally
the technical proofs of Proposition 3.1 and Theorem 3.1 are provided in Appendices A
and B respectively. A counterexample showing that needle-like perturbations of the
control are not admissible in our setting is provided in Appendix C.

2. Preliminaries and PMP for the new notion of L} —local solution.
In this paper, for any positive integer d € N*, we denote by (-, )ge (resp. || - ||ga)
the standard inner product (resp. Euclidean norm) of RY. For any subset X C RY,
we denote by dX the boundary of X defined by dX := X\Int(X), where X and
Int(X) stand respectively for the closure and the interior of X. Given a (Lebesgue)
measurable subset A C R, we denote by u(A) its (Lebesgue) measure. Furthermore,
for any extended-real number r € [1,00] and any real interval I C R, we denote by:
e L"(I,RY) the usual Lebesgue space of r-integrable functions defined on I with
values in R?, endowed with its usual norm || - ||;
e C(I,R?) the standard space of continuous functions defined on I with values
in R?, endowed with the standard uniform norm || - ||c;
e AC(I,R?) the subspace of C(I,R?) of absolutely continuous functions.
Now take I = [0, 7] for some T > 0. Recall that a partition of the interval [0, 7] is a
set T = {7k }r=0,.. .~ of real numbers suchthat 0 =1p <7 < ... <7y_1 <7n =T

This manuscript is for review purposes only.
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4 T. BAYEN, A. BOUALI AND L. BOURDIN

for some N € N*. In this paper a function p : [0,7] — R? is said to be piecewise
absolutely continuous, with respect to a partition T = {73 }x=0,.. n, if p is continuous
at 0 and T and the restriction of p over each open interval (7x_1,7;) admits an
extension over [1;_1, ;] that is absolutely continuous. If so, p admits left and right
limits at each 74, € (0,T), denoted respectively by p~(7%) and p™ (7). We denote by:
e PACz([0,T],R?) the space of piecewise absolutely continuous functions, with
respect to a partition T of the interval [0, T, with values in R
Finally, when (Z,dz) is a metric space, we denote by Bz(z,v) (resp. Bz(z,v)) the
standard open (resp. closed) ball of Z centered at z € Z and of radius v > 0.

2.1. A classical optimal control problem and LLD—local solution. Let n,
m, d and ¢ € N* be four fixed positive integers and T" > 0 be a fixed positive real
number. In the present section we consider a classical Mayer optimal control problem
with parameter and mixed terminal state constraints given by

minimize @(x(0), z(T), \),
subject to (z,u, \) € AC([0,T],R™) x L>=°([0, T],R™) x R9,
(P) z(t) = fa(t),u(t),N), ae. te]0,T],
9(2(0),z(T),A) €8,
uw(t) €U, ae. tel0,T],

where the Mayer cost function ¢ : R® x R® x R — R, the dynamics f : R™ x
R™ x R* — R™ and the constraint function g : R® x R™ x R? — R? are of class C!,
and where S C R’ is a nonempty closed convex subset and U C R™ is a nonempty
subset. As usual in the literature, x € AC([0,T],R") is called the state (or the
trajectory), u € L>°([0,T], R™) is called the control and A € R is called the parameter.
A triplet (z,u,\) € AC([0,T],R") x L>([0,T],R™) x R? is said to be admissible
for Problem (P) if it satisfies all the constraints of Problem (P). Finally, such an
admissible triplet is said to be a global solution to Problem (P) if it minimizes the
Mayer cost ¢(x(0),z(T), A) among all admissible triplets.

Remark 2.1. (i) All along this paper (not only for Problem (P)), we have chosen
to deal with optimal control problems with (only) Mayer cost, fixed final time and
autonomous dynamics. It is well known in the literature (see, e.g., [9, 15, 16]) that
standard techniques (such as augmentation or changes of variables) allow to deal with
more general Bolza cost, free final time and time-dependent dynamics. Similarly, in
Problem (P), we assume for simplicity that ¢, f and g are of class C! and also some
topological properties for S. However the results that we will present in this section
can be extended to weaker assumptions (see, e.g., [17, 33]). Overall, our aim in this
paper is not to address the most general framework possible. We keep our setting as
simple as possible to stay focused on the novel aspects of our work.

(ii) The presence of a parameter A € R? in Problem (P) can also be treated thanks
to an augmentation (see, e.g., [9]). It is noteworthy that the main problem considered
in the present work (see Problem (HP) in the next Section 3) is a hybrid optimal
control problem which does not involve any parameter. However the proof of our main
result (Theorem 3.1) is based on a reduction of Problem (HP) into a classical optimal
control problem of the form of Problem (P) that involves parameters. This is the only
reason why we need to consider the presence of a parameter A € R? in Problem (P).

The classical PMP [27] has originally been developed for global solutions but, as
usual in optimization, it remains valid for local solutions. As a consequence, several
notions of local solution to classical optimal control problems, and the corresponding
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HYBRID MAXIMUM PRINCIPLE 5

versions of the PMP, have been developed in the literature (see, e.g., [11, 25]). Let us
introduce two new notions of local solution which will play central roles in our work.

DEFINITION 2.1 (L%-local solution). An admissible triplet (x*,u*, \*) is said
to be a LY ~local solution to Problem (P), for a measurable subset A C [0,T), if, for
all R > ||u*||Le<, there exists n > 0 such that ¢p(z*(0), z*(T), \*) < ¢(x(0),z(T), A) for
all admissible triplets (x,u, \) satisfying

[ = 2*[lo + [lu = w4+ |A = A"[lge <,
[uflLe < R,
u(t) = u*(t) a.e. t € [0,T]\A.

DEFINITION 2.2 (L%-local solution). An admissible triplet (x*,u*, \*) is said
to be a LY -local solution to Problem (P), for a measurable subset A C [0,T), if there
exists an increasing family (Ac)eso of measurable subsets of A, satisfying u(Ae) — u(A)
as € — 0, such that (z*,u*,\*) is a L}AE —local solution to Problem (P) for all e > 0.

Remark 2.2. (i) The notations LY and L}4D are very close, while the corresponding
definitions are (slightly) different. Therefore the reader needs to be careful with these
two different concepts, for which we will give each one a version of the PMP (see
Lemma 2.1 for L -local solutions and Theorem 2.1 for L} -local solutions).

(ii) The concept of L[107T] ~local solution coincides with the classical notion of L'~
local solution well established in the literature (see, e.g., [11, 25]). Therefore, in
the sequel, we simply write L!'-local solution instead of L[lovT]flocal solution. To be
consistent we simply write L-local solution instead of L%O)T]Dflocal solution.

(iii) With respect to the classical concept of L!-local solution, the refined notion
of L ~local solution imposes on admissible controls to match the nominal one almost
everywhere outside the measurable subset A C [0,7T]. This feature is crucial to reduce
the hybrid optimal control problem considered in the next Section 3 into a classical
optimal control problem. This is not possible with the classical concept of L!-local
solution, as shown by a counterexample in Section 3.4.

(iv) For a measurable subset A C [0,T], it is clear that a LY —local solution is
automatically a L}L‘Dflocal solution. However the converse is not true in general (see
the counterexample in Section 3.4). From a general point of view, the implications

L%, —local solution

= S~

global solution = L, ~local solution L, 5-local solution

S~ =

L, 5-local solution

hold true for any measurable subsets A’ C A C [0, 7], but not the converses in general.

2.2. PMP for L;D—local solutions and comments. Recall first that the
normal cone to S at some point z € S is defined by

Nglz] := {z" € RY | V2 €8, (2,2 — 2)pe <0},

and that g is said to be submersive at a point of R” x R” x R¢ if the differential of g at
this point is surjective. Finally recall that the Hamiltonian H : R™ x R™ x R4 x R™ —
R associated with Problem (P) is defined by H(x,u,\,p) := (p, f(x,u, \))gn for
all (z,u,\,p) € R® x R™ x RY x R®. We are now in a position to establish a new
version of the PMP that is dedicated to L, j-local solutions to Problem (P).

This manuscript is for review purposes only.
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6 T. BAYEN, A. BOUALI AND L. BOURDIN

THEOREM 2.1 (PMP for LY -local solutions). If (z*,u*, A\*) is a LY-local
solution to Problem (P), for a measurable subset A C [0,T], such that g is submersive
at (x*(0),z*(T), \*), then there exists a nontrivial pair (p,p°) € AC([0,T],R™) x R
satisfying:

(i) the Hamiltonian system z*(t) = V,H(z*(t),u*(t),\*,p(t)) and —p(t) =

Vo H(z*(t), u*(t), \*, p(t)) for almost every t € [0,T];

(ii) the endpoint transversality condition

p(0)

. =»(T) = POV(x*(0), 2*(T), A*) + Vg(a*(0), 2*(T), A*)€,
/0 VaH(z"(s),u*(s), A", p(s)) ds

for some € € Nsg(a*(0), 2*(T), A*)];
(#3) the Hamiltonian mazimization condition u*(t) € arg max,cy H(z*(¢),w, A*, p(t))
for almost every t € A.

The proof of Theorem 2.1 is quite simple and will be developed in a few lines. It
is based on the next preliminary PMP for LY~local solutions to Problem (P).

LEMMA 2.1 (PMP for LY-local solutions). If (z*,u*,\*) is a LY -local solu-
tion to Problem (P), for a measurable subset A C [0,T], such that g is submersive
at (x*(0),z*(T),\*), then the conclusion of Theorem 2.1 holds true.

About the proof of Lemma 2.1. A PMP for LY~local solutions to classical optimal
control problems can be established via many different methods known in the literature.
In our context, since the measurable subset A can be of complex nature (such as a
Cantor set of positive measure), the classical needle-like perturbations of the control
(see, e.g., [15, 27]) may not be suitable for the sensitivity analysis of the control system
and, therefore, one may prefer to use implicit spike variations (see, e.g., [10, 12, 24]).
To deal with the parameter A € R? in Problem (P), one can simply augment the
state variable from z to (z,\) by adding the state equation A(t) = Oga (see, e.g., [9]).
Finally, to deal with the general mixed terminal state constraints g(x(0),z(T),A) € S
in Problem (P), one may use the Ekeland variational principle on a penalized functional
involving the square of the distance function to S (see, e.g., [12, 20]). Since all these
techniques are very well known in the literature, the proof of Lemma 2.1 is omitted.O

Proof of Theorem 2.1. Consider an increasing family (A.).>o of measurable sub-
sets of A associated with (z*,u*, \*) and a decreasing positive sequence (€)ren such
that e — 0. In the sequel we denote by Ay := A., and by (pg, p}) € AC([0,T],R"™) x
R, the nontrivial pair provided by Lemma 2.1 (with & € Ng[g(x*(0), 2*(T), A\*)]) for
all £ € N. From linearity and submersiveness, the pair (g, pg) is nontrivial and can
be renormalized so that [|(£, pl)||rexr = 1 for all k € N. Therefore, up to a subse-
quence that we do not relabel, the sequence (&, p%) keN converges to some nontrivial
pair (&, p) satisfying (£,p°) € Ng[g(2*(0),2*(T), A\*)] x Ry from closure of the normal
cone. Define p € AC([0,T],R™) as the unique global solution to

{ p(t) = =V f(a*(t), u*(t), ) Tp(t), ae. te€[0,T],

p(T) = —p"V2¢(2*(0),2*(T), \*) — Vag(2*(0), *(T), A*)¢.

The Hamiltonian system and the second component of the endpoint transversality
condition are satisfied. Since p and py satisfy the same linear differential equation

and pg(T) — p(T), the sequence (pg)ren uniformly converges to p over [0,7]. We
deduce the first and third components of the endpoint transversality condition and,

This manuscript is for review purposes only.
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HYBRID MAXIMUM PRINCIPLE 7

from submersiveness, that the pair (p,p") is nontrivial. Still from Lemma 2.1, there
exists a null set N, C Ay such that H(z*(t), u*(t), \*, pp(t)) > H(z*(t),w, A*, pi(t))
for all w € U and all t € A\ Ny, for all k € N. Now let us prove that the Hamiltonian
maximization condition holds true at any t € A := (UrenAr)\(UrenNg) which is
a measurable subset of A with full measure. Let ¢ € A and take ky € N such
that t € Ag\Ny for all k > kg. Therefore the previous inequality holds true at ¢
for all w € U and all k& > kg. From convergence of pi(t) to p(t), we get that
H(z*(t), u*(t), \*, p(t)) > H(x*(t),w, \*,p(t)) for all w € U, which ends the proof. 0O

Remark 2.3. (i) First of all we bring the reader’s attention to the fact that the
Hamiltonian maximization condition in Lemma 2.1 and Theorem 2.1 holds true only
almost everywhere over A (and not over the entire interval [0,7]). This is the only
difference with the classical PMP and this is due, of course, to the restrictions to L -
and L 1—local solutions (see Definitions 2.1 and 2.2 and Item (iii) of Remark 2.2).

(ii) Even if the conclusions of Lemma 2.1 and Theorem 2.1 are exactly the same,
we recall that a L, j-local solution is not a LY ~local solution in general (see Item (iv)
of Remark 2.2). Therefore Theorem 2.1 is not only a consequence of Lemma 2.1 but
also a strict extension. From the diagram in Remark 2.2, it is also clear that the
classical PMP (for global solutions or for L'-local solutions) is a particular case of
both Lemma 2.1 and Theorem 2.1 (by taking A = [0,T1).

(iii) As explained in [6, 7], the submersiveness hypothesis can be removed but, in
that case, all items of Lemma 2.1 and Theorem 2.1 remain valid, except Item (ii).

(iv) Consider the framework of Theorem 2.1 for a LY -local solution (z*, u*, \*).
Using the Hamiltonian system and the Hamiltonian maximization condition over [0, 7]
and applying [21, Theorem 2.6.1], we obtain the Hamiltonian constancy condition
H(z*(t), u*(t), \*, p(t)) = ¢ for almost every t € [0,T], for some ¢ € R.

3. Derivation of a HMP for spatially heterogeneous dynamics. In this
section we consider a partition of the state space R" = Uje 7 X;, where J is a family
of indexes and the nonempty open subsets X; C R", called regions, are disjoint. Our
aim is to derive first-order necessary optimality conditions in a Pontryagin form for
the hybrid optimal control problem with mixed terminal state constraints given by

minimize ¢(x(0),z(T)),
subject to (x,u) € AC([0,T],R™) x L*°([0, T],R™),
(HP) x(t) = h(x(t),u(t)), a.e. tel0,T],
9(x(0),2(T)) €
u(t) €U, ae. tel0,T],

where the data assumptions and the terminology for Problem (HP) are the same
as those for Problem (P), except that the dynamics h : R™ x R™ — R"™ is spatially
heterogeneous, in the sense that it is defined regionally by

V(z,u) € R® x R™, h(z,u):=h;(z,u) when z € X,

where the subdynamics h; : R® x R™ — R™ are of class C'. Note that h(z,u) is not
defined when x ¢ U;c7X; but this fact will have no impact on the rest of this work
(see Ttem (i) in Remark 3.1). Finally, in contrary to Problem (P) and as explained in
Item (ii) of Remark 2.1, note that Problem (HP) does not involve any parameter.

3.1. Regular solutions to the hybrid control system. Due to the disconti-
nuities of the spatially heterogeneous dynamics h, we need to precise the definition of

This manuscript is for review purposes only.
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8 T. BAYEN, A. BOUALI AND L. BOURDIN

a solution to the hybrid control system
(HS) &(t) = h(z(t),u(t)), for a.e. t€[0,T],

associated with Problem (HP).

DEFINITION 3.1 (Solution to (HS)). A pair (z,u) € AC([0,T],R™) x L*([0,T],R™)
is said to be a solution to (HS) if there exists a partition T = {7 }x=o0,... N Such that:
(i) For all k € {1,...,N}, there exists j(k) € J (with j(k) # j(k — 1)) such
that x(t) € X for almost every t € (Tp_1,Tx)-
(ZZ) ( ) ( ) and {ZZ(T) € Xj(N)
(iii) ©(t) = hj)(x(t),u(t)) for almost every t € (Tp_1,m) and all k € {1,...,N}.
In that case, to ease notation, we set fr 1= hjqy and Ey := X for allk € {1,...,N}.
With this system of motations, we have

(t) e F, Vte [7'0,7'1),
LL'(t)EE]€7 VtE(kal,Tk), VkE{Q,...,N—l},
(t) € En, Vte (TNfl,TN],
t(t) = fr(z(t),u(t)), ae te (mh—1,7%), Vke{l,...,N}

Finally the times 1, for k € {1,...,N — 1}, are called crossing times since they
correspond to the instants at which the trajectory x goes from the region Ej to the
region Ey11, and thus x(1;) € OFE, N OFEk41.

Our main result (Theorem 3.1 stated in Section 3.3) is based on some regularity
assumptions made on the behavior of the optimal pair of Problem (HP) at each
crossing time. These hypotheses are precised in the next definition.

DEFINITION 3.2 (Regular solution to (HS)). Following the notations introduced
in Definition 3.1, a solution (x,u) € AC([0,T],R™) x L*°(][0,T],R™) to (HS) is said
to be regular if the following conditions are both satisfied:

(i) At each crossing time Ty, there exists a C! function Fy : R™ — R such that

. ze b, < Fk(z)
v, >0, Vze BRn(I(Tk),llk), z € 0Ey N 8Ek+1 =2 Fk(z)

0,
0,
ZEE;C+1 54 Fk(z) 0

VoA

In particular it holds that Fy(x(my)) = 0.
(i) At each crossing time Ty, there exists o, > 0 and By > 0 such that the
transverse conditions

(VE (), fula(m) u®))ge > Boe  ave. £ € [k — i)
(TC) {<VFZ<< O Fran @ ulO)an > Bes e, t € (rare + ar],

are both satisfied.

Remark 3.1. (i) Definition 3.1 does not include the possibility of an infinite number
of crossing times (excluding the Zeno phenomenon [34]). Also it does not allow
trajectories bouncing against a boundary of a region, or moving along a boundary
(excluding situations as described in [1]). This last restriction is the reason why the
fact that h(z,u) is not defined when z ¢ Ujc 7 X; has no impact on the present work.
Finally Definition 3.1 allows terminal states (0) and x(7T) that belong to regions only
(and not to their boundaries). Possible relaxations are presented in Remark 3.4.

(ii) The transverse conditions (TC) have a geometrical interpretation, meaning
that = does not cross the boundary 0Fy, N 0E)41 tangentially. At a crossing time 7y,

This manuscript is for review purposes only.



319

335
336
337
338
339

HYBRID MAXIMUM PRINCIPLE 9

the transverse conditions

u admits left and right limits at 7, denoted by u™ (%) and u*(7%),
(TC") (VE(2(1k)), fr(@(Tk), u™ (73)))rn > 0
(VEe(2(1k)), frotr (@(7), w" (k) )rn > 0,

considered in the papers [1, 23], are (slightly) stronger than (TC).

3.2. Reduction into a classical optimal control problem with parameter.
To establish a correspondence from the hybrid optimal control problem (HP) to a
classical optimal control problem with parameter of the form of Problem (P), we
will proceed as in [19] to affine changes of time variable. Precisely let (z*,u*) €
AC([0,T],R™) x L*°([0, T], R™) be a solution to (HS), associated with a partition T* =
{T¢ }k=0,... N, and let B} and f} stand for the corresponding regions and functions (see
Definition 3.1). We introduce (y*,v*) € AC([0, 1], R™Y) x L°([0, 1], R™") defined by

B1) yrls) =2 (m_y + (7p —mp—1)s)  and - v(s) == " (T + (7 — 7)),
forall s € [0,1] and all k € {1,..., N}. To invert the changes of time variable, it holds
t— 1) t—T1;
B2 0= () wd e = (),
Te = Tk—1 Tk = Tk—1

for all t € [rj_,, 7] and all k € {1,...,N}. In particular note that (z*(0),2*(T)) =
(y1(0),yx(1)). From a more general point of view, it holds that =*(7}}) = y;,,(0)
for all k € {0,...,N — 1} and z*(7}) = y;(1) for all k € {1,..., N}. Note that the
triplet (y*,v*, T*) satisfies

75 (s) = f*(y*(s),v*(s),T*), a.e. s€l0,1],

where f*: RN x R™Y x RN+ 5 R™V is the C! function defined by
7o) = (= ) ff oo (o = o) fiv s ox)),

forally = (y1,...,yn) €E RN v = (v1,...,0n8) ER™ and T = {7y, ..., 75} € RN*L.
Furthermore it holds that

Z/T(S) € Ela Vs € [07 1)7
(33 yi(s) € By, Vs e (0,1)
yN(s) € En, Vse(

, Vke{2,...,N -1},
71]7
and y;,,1(0) = y3(1) € OE; NOE;  forall k € {1,..., N —1}. Also note that T* € A
where A € RV*! is the nonempty closed convex set defined by

A . {T = {Tk}kZO,A..,N S RN+1 | 0 =170 S T1 S - S TN -1 S TN = T}

Now assume that the pair (z*,u*) is moreover a regular solution to (HS) and denote
by F}' and v} > 0 the corresponding functions and positive radii (see Definition 3.2).
In that context note that Fj(xz(7})) = Fi(y;(1)) = 0 for all k € {1,...,N — 1}.
Finally it is clear that, if the pair («*,u*) is furthermore admissible for Problem (HP),
then the triplet (y*,v*, T*) is admissible for the classical optimal control problem with
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10 T. BAYEN, A. BOUALI AND L. BOURDIN

parameter given by

minimize o*(y(0),y(1),T),
subject to (y,v,T) € AC([0, 1], R™™) x L>°(]0, 1], R™V) x RN+L,
(CP™) y(s) = f*(y(s),v(s),T), ae s€(0,1],
9" (y(0),y(1),T) € 57,
v(s) € UV, ae. s€]0,1],

where ¢* : R™N x R™N x RV*! & R and ¢* : R™N x R"™N x RN+1 5 RY are the C!
functions defined by ¢*(y°, 4!, T) := ¢(y?,yL) and

g @,y T) = (9 yN ) ¥s =ty U — YN Fr (W), Fr1(yh_1), T),

for all yO = (y?7ay9\7)’ yl = (y%aﬁy]l\[) € RN and T = {T07"'77-N} € RN+1a
where ¢* := £+ n(N —1) + (N — 1) + (N + 1), and where S* € R* stands for the
nonempty closed convex set defined by

S* =S x {Opa }V 7 x {0}V x AL

PROPOSITION 3.1. If (z*,u*) € AC([0, T],R™) xL*°([0, T], R™) is a global solution
to Problem (HP), that is moreover a regular solution to (HS), associated with a
partition T* = {7} }x=o,...n, then the triplet (y*,v*, T*) constructed above is a L} -
local solution to Problem (CP*).

Proof. The proof of Proposition 3.1 is postponed to Appendix A. We prove that the
triplet (y*,v*,T*) is a L[l6 1 local solution to Problem (CP*) for any 0 < e < 1/2.0

Remark 3.2. (i) Consider the framework of Proposition 3.1. In Section 3.4 we
will provide a counterexample showing that the triplet (y*,v*, T*) is not a L!-local
solution to Problem (CP*) in general. This highlights the fact that the classical PMP
cannot be applied to the triplet (y*,v*, T*). However, thanks to Proposition 3.1, we
can apply the new PMP for Lﬂjflocal solution obtained in Theorem 2.1. This allows
us to derive a HMP for Problem (HP) in the next Section 3.3.

(ii) Consider the framework of Proposition 3.1. Given an admissible triplet (y,v, T)
for Problem (CP*), one can easily invert the augmentation procedure and obtain a
pair (z,u) which satisfies all the constraints of Problem (HP), except one. Precisely,
even if (x, u) follows the same sequence (f})x=1,...,n of dynamics than the pair (z*, u*),
it does not necessarily follow the same sequence of regions (E} )k=1,.. n (and thus it is
not necessarily admissible for Problem (HP)). This is the major difficulty of the proof
of Proposition 3.1 and, as we will see with a counterexample in Section 3.4, the notion
of L'-local solution (which consists in considering the triplet (y,v,T) in a standard
neighborhood of (y*,v*,T*)) fails to guarantee this property. This is because, even
if transverse conditions are satisfied by the pair (z*,u*), allowing L!-perturbations
of u* (with possibly far values in U from the ones of «*) in the neighborhoods of
the crossing times 7 may lead to a perturbed pair (x,u) that does not satisfy the
transverse conditions, and thus to a perturbed trajectory x that may visit a different
sequence of regions than x*. On the contrary, the new notion of L[15,1— E]flocal solution,
for 0 < e < 1/2 , addresses this issue by allowing L!-perturbations of u* only outside
neighborhoods of the crossing times 7;;.

3.3. HMP and comments. The Hamiltonian H : R" x R™ x R"™ — R associated
with Problem (HP) is defined by H(x,u,p) := (p, h(z,w)) for all (z,u,p) € R™ x R™ x
R™. We are now in a position to state the main result of this paper.

This manuscript is for review purposes only.



HYBRID MAXIMUM PRINCIPLE 11

THEOREM 3.1 (HMP). If (z*,u*) € AC([0,T],R™) x L>°([0,T],R™) is a global
solution to Problem (HP), that is moreover a regular solution to (HS), associated with
a partition T* = {7 }p=o,... N, such that g is submersive at (z*(0),z*(T)), then there
exists a nontrivial pair (p,p°) € PACt([0,T],R") x R satisfying:

(i) the Hamiltonian system x*(t) = V,H (x*(t),u*(t), p(t)) and —p(t) = V. H(z*(t),

Y Ol W

-

W o W W W L W
DS SRS S SIS IS RN |
S

8 u*(t),p(t)) for almost every t € [0,T);
379 (ii) the endpoint transversality condition
‘ p(0) 0 . . . .
380 =D V(b(l’ (O),l‘ (T)) + Vg(m (0)7‘75 (T))f,

—p(T)

381 for some & € Ng[g(z*(0),z*(T))];
382 (iii) the discontinuity condition p™ (7;5)—p~ (1) = o, VE} (z*(73)) for some o), € R,
383 forallke{l,...,N —1};
384 (iv) the Hamiltonian mazimization condition u*(t) € argmax,,cy H(z*(t),w, p(t))
385 for almost every t € [0,T];
386 (v) the Hamiltonian constancy condition H(x*(t),u*(t),p(t)) = ¢ for almost ev-
387 ery t € [0,T], for some c € R.
388 Proof. The proof of Theorem 3.1 is postponed to Appendix B. It is based on
389  Proposition 3.1 and on the application of Theorem 2.1 to the triplet (y*,v*,T*). 0O
390 Remark 3.3. (i) In the classical PMP (that is, when the dynamics is not hetero-

391 geneous), the costate p is absolutely continuous over the entire interval [0,7] and
392 satisfies Items (i), (ii), (iv) and (v) of Theorem 3.1 (see, e.g., [27]). In the present
393 setting of heterogeneous dynamics, the costate p is (only) piecewise absolutely contin-
394 uous over [0,T], admitting at each crossing time 7;° a discontinuity jump satisfying
395 Item (iii) of Theorem 3.1. Under the (slightly) stronger transverse conditions (TC’),
396  the Hamiltonian constancy condition allows to obtain

397

(b () fa (@ (7). () (7)) = i (" (), ()~ () )

R”

398 o = —
(VE @ (). Fia @t (7). (@) (7)),
(P00 o (1), ) () = i (), ()~ (50)),
399 = - ,
" (VE @ (), fi @ (), @)~ (7)),
401 for all k € {1,...,N — 1}, and thus the discontinuity conditions can be expressed

102 as forward (or backard) discontinuity jumps. Such discontinuity jumps are very
103 standard in the literature on hybrid optimal control problems (see, e.g., [8, 26]) and
404  the discontinuity conditions have even been announced in our setting of spatially
405 heterogeneous dynamics in the papers [1, 23]. However, as explained in Introduction,
406 we recall that the proofs in [1, 23] are not satisfactory for several and different reasons.
7 (ii) Similarly to Item (iii) of Remark 2.3, and as explained in [6, 7], the submer-
8 siveness hypothesis made in Theorem 3.1 can be removed but, in that case, all items
9 of Theorem 3.1 remain valid, except Item (ii).

410 Remark 3.4. (i) Consider the framework of Proposition 3.1. From Item (i) of
111 Remark 3.2, we know that (y*,v*,T*) is not a L'-local solution to Problem (CP*) in
112 general. Nevertheless, according to the ideas presented in Item (ii) of Remark 3.2, it
413  may be possible to avoid the use of the notion of Lﬁflocal solution introduced in the
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present paper. However, to our best knowledge, this would not be possible without
obtaining a weaker result and/or without restricting the framework. Let us develop
two options in that direction:

e First, under the (slightly) stronger transverse conditions (TC’), it can be
proved that (y*,v*, T*) is a L>°—local solution to Problem (CP*), in the sense
that there exists n > 0 such that ¢*(y*(0), y*(1), T*) < ¢*(y(0),y(1),T) for all
admissible triplets (y, v, T) satisfying ||y—y*||c+|[v—v"||Lee +||T—T*||grv+1 < 7.
This idea is in-line with the approach developed in [5]. In that context,
assuming for simplicity that U is closed and convex and applying a weak
version of the classical PMP (that is, a version adapted to L°°-local solutions,
see [13] and discussion therein), one can derive a weaker version of Theorem 3.1,
that is, without the Hamiltonian constancy condition and, above all, where the
Hamiltonian maximization condition is replaced by the weaker Hamiltonian
gradient condition V, H(xz*(t),u*(t),p(t)) € Ny[u*(t)] for a.e. t € [0,T].

e Second, under the (very) stronger transverse conditions given by

. (VEE @ (7)), F2 @ (7)) > B
(e wey, { (VE (@ (r2)), fror (@ (7)) > B,

for some S, > 0 at each crossing time 7}, it can be proved that (y*,v*,T*)
is a L!'-local solution to Problem (CP*). In that context one can derive
Theorem 3.1 from the application of the classical PMP. However the strong
transverse conditions (TC”) are quite restrictive and are not satisfied in
practice (see the counterexample presented in the next Section 3.4).
From a general point of view, it can be observed that the choice of the transverse
conditions (more or less strong) influences the local quality (L', L> or L}) of the
solution (y*,v*, T*) to Problem (CP*) and thus the version of the PMP that can be
applied to it, and finally the version of the HMP obtained on the original pair (z*,u*).
(ii) For simplicity, Definition 2.1 allows trajectories x such that x(0) and z(T)
belong to regions only (and not to their boundaries). This restriction may limit
the scope of our results. To overcome this restriction, some adjustments have to be
performed. For instance, consider the framework of Theorem 3.1 with z*(0) € E;
and 2*(T') € OEN (other cases can be handled similarly). To deal with this situation,
one has to add in Definition 3.2 the existence of a local C! description Fiy of OEx in
a neighborhood of z*(T") and an adapted transverse condition of the form

(VEN(@X(T)), fn(@"(T),u"(t)))rn = By, ae. t €[l —an,T),

with ay > 0 and By > 0. Then the augmented problem (CP*) must be adjusted care-
fully by adding the inequality constraint F% (yn(1)) < 0 to keep the validity of Propo-
sition 3.1. Finally, adapting the submersiveness hypothesis (involving both g and Ff),
applying Theorem 2.1 and inverting the augmentation procedure, the conclusion of
Theorem 3.1 remains valid, but with an additional term of the form (VF3 (z*(T))
with ¢ > 0 in the expression of —p(T).

(iii) In addition to the comments made in the previous Item (ii), we would like
to emphasize that certain cases where z*(0) and 2*(T") belong to boundaries of the
regions can be treated without the adjusted procedure discussed above. For instance,
if the initial condition is fixed on a boundary, then no information is expected for p(0)
and, furthermore, with the approach developed in this paper, only perturbations of the
control over [e, T] for small € > 0 are considered. Hence the corresponding perturbed
trajectories coincide with the nominal trajectory over [0,¢] and thus satisfy the initial
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condition. Another example is provided with minimum time problems where the target
belongs to a boundary of a region. In that context, a simple dynamical programming
argument can eliminate the need of a transverse condition at T' (see [4]).

(iv) Here we focus on possible extensions and perspectives of our work.

e First, one may consider a setting where the subdynamics h; : R™ x R™/ — R"
have possibly different control dimensions m; € N* and with possibly different
control constraint sets U; C R™i. This generalized context is interesting
to impose specific values for the control in certain regions (for example, by
taking U; = {Ogm; } for some j € J). We believe that our methodology can
be adapted to this framework without any major difficulty.

e Second, one may consider an extended setting that includes a regionally
switching parameter (see [2]), meaning that the control system depends on
a parameter that remains constant in each region but can change its value
when the state crosses a boundary. This framework enables us to handle, as
a specific case, control systems with loss control regions (see [3, 4]). This
extension is the subject of a work in progress by the authors.

3.4. A counterexample. Consider the framework of Proposition 3.1. This
section is dedicated to an explicit counterexample showing that the triplet (y*, v*, T*)
is not a L!-local solution to Problem (CP*) in general. To this aim consider the
two-dimensional case n = 2, the state space partition R? = X; U X, where X; :=
(—00,1) x R and X5 := (1,400) x R, and the hybrid optimal control problem given by

minimize  —(z21(2) — 2)3 — p2(2),
subject to  (x,u) € AC([0,2],R?) x L*°([0, 2], R),
(HPey) &(t) = h(z(t),u(t)), ae. te]0,2],
z(0) = Oz,

u(t) € [-1,1], a.e. t€]0,2],

where the spatially heterogeneous dynamics h : R? x R — R2 is defined by

Cf (h-atR). e X,
h(z,u) = { (u, ((1- x1)+)2)’ e X,

for all x = (x1,22) € X1 U Xo and all u € R, and where p > 96.

3.4.1. A global solution (z*,u*) to Problem (HP.y). In view of the definition
of h in the region X; and following Definition 2.1, any admissible pair (x,u) for
Problem (HP.y) has exactly one crossing time 71 = 1, and satisfies x1(¢) = t for
all t € [0,1] and z1(t) > 1 for all ¢ € (1,2]. Moreover an easy computation shows that

afg(t) = {

for all t € [0,2]. Since the value z5(2) is fixed to 3 for any admissible pair, Prob-
lem (HP.y) simply amounts to maximize the value of z1(2). In view of the definition
of h in the region X, one can easily deduce that a global solution (z*,u*) to Prob-
lem (HP.y) is given by

L(t—1)3+1) ifteo,1],
if t € [1,2],

= Wl

(t—=1)3+1) iftelo,1],
ift € [1,2],

8
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14 T. BAYEN, A. BOUALI AND L. BOURDIN

for all ¢ € [0,2], and the corresponding optimal cost is given by C* := —£. Furthermore
one can observe that the pair (z*,u*) is a regular solution to the corresponding hybrid
control system (Definition 3.2) with exactly one crossing time 7 = 1.

3.4.2. The corresponding triplet (y*,v*, T*). Now consider the framework of
Proposition 3.1. The corresponding triplet (y*,v*, T*) is given by

W) (s)=s, () (s)=s+1, ) (s)= %((8 D7D, () (s) = 3,

and vi(s) = vi(s) = 1 for all s € [0,1], and T* = {0,1,2}. As expected the
triplet (y*, v*, T*) is admissible for the classical optimal control problem with parameter
minimize  —(y3(1) —2)* — py3(1),
subject to  (y,v,T) € AC([0, 1], R*) x L>°([0, 1], R?) x R3,

yi(s) =11, ae. s€](0,1],

gi(s) = (1 - yi(s)")? ae s€l0,1],
(CP*) U3(s) = (2 —11)va(s), a.e. s€[0,1],

g3(s) = (2 =) (1 —y3(s)*)?, ae s€[0,1],

y1(0) =0, »i(0)=0, yi(1)-1=0,

y3(0) —yi(1) =0, 3(0) —y7(1) =0,

)
’7'0:0, ’7'16[0,2}7 T2:2,
e[-1,1], ae. s€e]0,1],
with the cost C* = fg.

3.4.3. The triplet (y*,v*, T*) is not a L'-local solution to Problem (CP},).
For any ¢ > 0 small enough, we introduce the triplet (y°, v, T¢) defined by (yi)° :=

(1), (7)° := (yi)*, vi = v}, T¢ = T*, and by

s+1, if 5 € [0,¢], 1, ifsel0e],
(3)°(s) =% 2e—s+1, ifsele3e], v5(s):=q —1, ifs€le 3¢,
s—de+1, if s € [3¢,1], 1, ifse[3e1],
and
% if 5 € [0,2¢],
(2 (s) (s —2e) +1), if s € [2¢, 3¢],
S =
v (s —4e)3 +2e3 +1), if s € [3¢,4e],
3(26% +1), if 5 € [de, 1],

for all s € [0,1]. One can easily conclude that the triplet (y*,v*,7*) is not a L-local
solution to Problem (CP?,) since:

— The triplet (y°, v, 7¢) is admissible for Problem (CP,) for any ¢ > 0.

— It holds that lim.o(||y® — y*||c + ||[v€ — v*||pr + ||T® — T*||gs) = 0.

— For any € > 0, the cost C® associated with the triplet (y¢, v, T¢) is given by

=—--—|——-64 ——=C"
C 3 (3 6)5< 3 C

Appendix A. Proof of Proposition 3.1. Consider the framework of Propo-

sition 3.1 and let us prove that the triplet (y*,v*,T*) is a L[E 1—e] —local solution to
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Problem (CP*) for any 0 < & < 4. Therefore let 0 < ¢ < 3 and R > [[v*||p. Our aim
is to prove that there exists > 0 such that ¢*(y*(0),y*(1), T*) < ¢*(y(0),y(1), T) for
any triplet (y, v, T) that is admissible for Problem (CP*) and satisfying

ly =y llc + llv = v*||pr + | T = Ty <7,
(A.1) vl < R,
v(s) =v*(s) a.e. s €[0,e] U1l —¢,1].

To this aim we need to introduce several technical positive parameters:
(PB1) Let 0 :=mingeqy, . Ny |75 — 51| >0 and 0 := maxpeqr,. Ny |70 — 51| > 0.
(P2) From the transverse conditions (see Definition 3.2) and the (uniform) con-
tinuities of the functions VF} and f; on compact sets, there exist 0 < v <

mingeqy, o131 and 0 < a < min{%,minke{ly__,N_l} aj } such that

{ (VEZ(2), fi(z,u(t)))rn >0,  ae. t€[ry —a,77),
(VE(2), froq (z,u"(t))re >0, ae. t € (1,7 +af,

for all z € Bra(z*(77),v) and all k € {1,..., N — 1}.

(B3) From continuity of y* over [0, 1], there exists 0 < x < % such that ||y;(s) —
y5(0)[|rn < § for all s € [0, x] and ||y} (s) — yj(1)||rn < § for all s € [1—x, 1],
forall k€ {1,...,N}.

(B4) Define ~ := %min{s,x, %} >0and r:= ﬁ > 0. Note that 0 <y < a <

wll

and 0 <r < %
(Bs) From continuity of y*, from (3.3) and the openness of the regions E}, there
exists 6 > 0 such that

Bgn (yi(s),0) C Ef, Vsel[0,1—7],
) CEZa v5€[7",1—7‘]7 Vk€{2,7N—1},
Brn(yy(s),0) C E}, Vse|[r1].

We are now in a position to continue the proof. To this aim let n := min{%7 5,01 >0
and (y,v,T) be an admissible triplet for Problem (CP*) satisfying (A.1). Our aim is
to prove that ¢*(y*(0),y*(1),T*) < ¢*(y(0),y(1), T).

Step 1. Since 0 = 7§ < 77 < - < 7y <75y =T and T € A with ||T —
T*||gr+1 <y < %, one can easily deduce that 0 =y <7 < - <7ny_1 <7nv =T.
Therefore we are in a position to define (x,u) € AC([0,T],R™) x L*°([0,T],R™) by

(A.2) (1) =y (t_T’“) and u(t) == v (t_T’”>

Tk — Tk—1 Tk — Tk—1

for all t € [r;—1, 7] and all k € {1,..., N}. Note that x is well defined since yx+1(0) =
yr(1) for all k € {2,..., N} (from admissibility of the triplet (y,v,T)). Observe
that (1(0), g (1)) — ((0), 2(T)) and recall that (y7(0), (1)) = (z*(0), 2 (T)).
Therefore, from the definition of ¢* (see Section 3.2) and since (z*,u*) is a global
solution to Problem (HP), to obtain that ¢*(y*(0),y*(1), T*) < ¢*(y(0),y(1),T), we
only need to prove that the pair (z,u) is admissible for Problem (HP).

From admissibility of the triplet (y,v,T), it is clear that g(z(0),z(T)) € S
and u(t) € U for almost every ¢ € [0,T]. Therefore it only remains to prove that (z,u)
is a solution to the hybrid control system (HS) (see Definition 3.1). From (A.2) and
the admissibility of the triplet (y, v, T), one can easily obtain that

(A.3) (t) = fi(z(t),u(t)), ae te (tp_1,Tk),
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for all k € {1,..., N}. Therefore, to conclude the proof, we only need to prove that

z(t) € EY, Vt€ [r,71),
xz(t) € Bf, Vte (mp—1,m7), Vke{2,...,N -1},
.’E(t) EE}"V, YVt € (TNfl,TN].

526 This is exactly our goal in the next two steps.

Step 2. Since ||T — T*||gy+1 < 5 < %, note that 7, — 751 < 0+ 2n < 0 + 6 for
all k € {1,..., N}. Hence, since moreover r := T—T—e’ observe that

=10 c[0,1—7], VtE€[rn,m1—1],

T1—7T0

el e l-7], Vt€[ma+vm—9), VEE{2,...,N-1},

Tk—Tk—1

we [7“,1], vtE[TN,1 +’7aTN]‘

TN —TN-1

As a consequence, from (A.2) and (Ps), and since |lyx — yillc < |ly —y*llc <n <4,
one can easily obtain that

xz(t) € Ef, VteE [r, 11 —7),
x(t) e Bf, Vte|m_1+v,mw—7, Vke{2,...,N -1},
x(t) € BN, Vte€[tn_1+77N]

527 Therefore, to conclude the proof, it only remains to prove that z(t) € E;; for all t €
528 [, —,7k) and x(t) € B}, for all t € (1,7 + 7], for all k € {1,..., N —1}. This is
529 the objective of the following last step.

530 Step 3. Let us start with two observations. First, since | T — T*||grv+: <75 < %, it
531 holds that |7, — Tp—1| > % for all k € {1,...,N}. Second, since v := %min{zs,x, <h
532 one can get that

533 aEbel-gl], AL el-x 1, T+ - Tmo) e €[ - eyl

534 for all t € [ry, — v, 7] and all k € {1,..., N — 1}. We deduce the following results:

535 (i) Since vi(s) = vj(s) for almost every s € [1 — ¢,1], one can easily obtain
536 from (A.2) and (3.1) that u(t) = u*(7}_; + (7} — T;—l):;jk__ll ), with 7, +
537 (5 — T;_l):kink‘_ll € [rf — a, 7], for almost every t € [r, — ,7) and
538 allke{1,...,N —1}.

539 (ii) Since |lyx — yillc < [ly —v*llc < 1 < %, one can easily obtain from (A.2),
540 from the equality z*(7;) = y;(1) and from (PB3) that z(t) € Bgra(z*(7}),v)
541 forallt € [r, — 7y, 7] and all k € {1,...,N —1}.

(ili) We obtain from (A.3), from the previous two items and from (P2) that the
derivative of F}} o satisfies

(vrz o). i (w0 (i + (- k>H))> -0,

Tk — Tk—1
542 for almost every ¢ € [1, —,7) and all k € {1,..., N —1}. From admissibility
543 of the triplet (y,v,T) and (A.2), we know that F}'(z(7)) = Fj(yx(1)) =0
544 for all k € {1,...,N —1}. As a consequence we obtain that F}(z(t)) < 0 for
545 all t € [y —, 7)) which implies from Definition 3.2, since z(t) € Bgn (z*(7}), V)
546 and v < v}, that z(t) € Ef for allt € |1, —~y,7%) and all k € {1,...,N — 1}
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Following the same strategy one can obtain that x(t) € EkJrl for all t € (7, 7k + 7]
and all k € {1,..., N — 1}. The proof of Proposition 3.1 is complete.

Appendix B. Proof of Theorem 3.1. Consider the framework of Theorem 3.1.
From Proposition 3.1, the corresponding triplet (y*,v*, T*) constructed in Section 3.2
is a Lﬂjflocal solution to Problem (CP*). Before applying Theorem 2.1, we need to
verify that g* is submersive at (y*(0), y*(1), T*). From the definition of the function g*
(see Section 3.2), note that the matrix Vg*(y*(0),y*(1), T*) € RON+RNHNF1))xE g

V1g(y{‘(0),y]*\,(1)) ORHXH(Nfl) ORnx(N—J) ORnx(NH)
()Rn(!\'—l)xl Ian(N—l)Xn(N—l) ()]Ru(N—l)x(N—l) ORn(N—l)x(NJrl)
* *
VE(y1(1))
Ogn(v—1)xe —Idgnv—1)xn(v-1) Opn(N—1)x(N+1)

VIR (g (1)

V2(](UI(U)Z/;\I(1)) ORHXH(N*l) ()Rnx(;v—n ORnx(N+1)

Op(v+1yxe OR(N+1)xn(N—1) Or(v+1yx(v—1) IdR(N+1)><(N+1)

From Definition 3.2, it holds that VF}(y;(1)) = VFi(z*(7})) # Orn for all k €

{1,. —1}. Since g is submersive at (z*(0),z*(T)) = (y;(0), yx (1)), one can easily
conclude that g* is submersive at (y*(0),y*(1), T*).

B.1. Application of Theorem 2.1. Let us introduce the Hamiltonian H :
RV x R™NV x RV+1 x R™™V — R associated with Problem (CP*) given by

N
H(y7U7Ta ) <q f (y,U T R"N Z qk7 Tk_Tk: l)fk(ykavk)>R"
k=1

for all y = (y1,...,yn) € R, v = (vy,...,on) € R™N T = {ry,..., 75} € RNVF!
and ¢ = (q1,...,qn) € R™. From Theorem 2.1, there exists a nontrivial pair (¢, ¢°) €
AC([0,1],R™V) x R satisfying:
(i) the Hamiltonian system y*(s) = V,H(y*(s),v*(s),T*, ¢(s)) and —¢(s) =
Vi H(y*(s),v*(s), T*, q(s)) for almost every s € [0,1];
(ii) the endpoint transversality condition

X —q(1) = "V (y7(0),y7 (1), T*) + Vg™ (y7(0), 5™ (1), T*)E,
/0 VrH(y* (), 0" (), T*  o(s)) ds

for some € € Ng-[g* (y*(0), y* (1), T*)];
(iii) the Hamiltonian maximization condition v*(s) € arg maxgcyn H(y*(s), @, T*, ¢(s))
for almost every s € [0, 1].

B.2. Introduction of the nontrivial pair (p,p°). Since the pair (g, ¢") is not
trivial, it is clear that the pair (p,p°) € PACt-([0,T],R") x R defined by p° := ¢°
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a (#5), vee ),
t—Tp_ * *
p(t) = a (et ), VEE (i), VReE {2, N -1},

t—Tx
gN (7-;,,7:}(,711) ) vVt € (7—;\(/'7177—;9]7

is not trivial.

B.3. Hamiltonian system and Hamiltonian maximization condition of
Theorem 3.1. From the above Items (i) and (iii) and from (3.2), the Hamiltonian
system and the Hamiltonian maximization condition of Theorem 3.1 are satisfied.

B.4. Endpoint transversality condition of Theorem 3.1. From the defi-
nitions of g* and S* (see Section 3.2) and since § € Ns-[g*(y*(0),y* (1), T*)], we can
write & := (£,£2,€3,€6%) € R x RMN=1) x RN-1 x RNV+1 with

£ € Nslg(yi(0),yn(1))] and &' e NA[T*.

Since (y7(0),yn(1)) = (z*(0),z*(T)), note that £ € Ng[g(z*(0),2*(T))]. Further-
more, from the first two components of the above Item (ii), from the expression
of Vg*(y*(0),y*(1), T*) given at the beginning of Appendix B and from the expression
of Vo* (y*(0),y*(1),T*) (see Section 3.2 for the definition of ¢*), we obtain that

p(0) = 41(0) = ¢"V1o(y1 (0), yi (1)) + Vig(yi (0), yx (1)€
= p’'Vig(a*(0), 2™ (T)) + Vig(z™(0), (7)),

and

—p(T) = —qn(1) = ¢"V2o (31 (0), yn (1)) + Vag(y7 (0), ya (1))€
= p"Vao(2*(0), 2% (T)) + Vag(z*(0), 2" (T))¢.

Therefore the endpoint transversality condition of Theorem 3.1 is proved.

B.5. Discontinuity condition of Theorem 3.1. From the first two compo-
nents of the above Item (ii), from the expression of Vg*(y*(0),y*(1), T*) given at
the beginning of Appendix B and from the expression of V¢*(y*(0),y*(1),T*) (see
Section 3.2 for the definition of ¢*), we obtain that

Vke{2,...,N}, q(0) = €2,
and Vke{l,...,N =1}, —qx(1) = =& + EVEF; (y5(1)).

We deduce that

pT(7) =7 (7)) = ak1(0) — (1) = &V EFL (4 (1)) = &V EFL (¥ (7)),

for all k € {1,...,N — 1}. Therefore the discontinuity condition of Theorem 3.1 is
satisfied with oy, := ¢} for all k € {1,...,N — 1}.

B.6. Hamiltonian constancy condition of Theorem 3.1. From the Hamil-
tonian system and the maximization condition and applying [21, Theorem 2.6.1] on
each interval [r}_,,7/], we obtain that, for all £ € {1,..., N}, there exists a con-
stant ¢ € R such that (p(t), fi(z*(¢),u*(t)))rn = ¢ for almost every t € [1}_,, 7]
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Furthermore, from the definition of A (see Section 3.2) and since 0 = 7§ < 77 < ... <
% 4 < 7% = T, we deduce from &* € NA[T*] that all components of £* are zero,
except possibly the first and last components. Thus, from the third component of the
above Item (ii), from the expression of Vg*(y*(0), y*(1), T*) given at the beginning of
Appendix B and from the expression of V¢*(y*(0),y*(1), T*) (see Section 3.2 for the
definition of ¢*), we obtain that

Jo (ar1.(8), fir W (), v (9))mn ds = fo (ai(s), fi (wic(s), viE(s)))rn dis,

for all k € {1,..., N — 1}. From affine changes of time variable, we obtain that

[0 e O O e = [ 0. 2 0.0 )

Ted1 — Tk X Te = Tk—1 Jrp

for all k € {1,...,N — 1}. From constancy of the above two integrands, we deduce
that cx11 = ¢ for all k € {1,...,N — 1}. Therefore the Hamiltonian constancy
condition is satisfied and the proof of Theorem 3.1 is complete.

Appendix C. Nonadmissibility of needle-like perturbations. Here we
prove that needle-like perturbations of the control are not admissible (in a sense to
precise) in our setting of spatially heterogeneous dynamics. This is a major difference
with respect to the classical optimal control theory. Consider the one-dimensional
case n = 1, the state space partition R = X; U X5, where X; := (—o0,1) and
Xo := (1,400), and the hybrid control system given by

(HSex) @(t) = h(x(t),u(t)), forae. tecl0,2],

where the spatially heterogeneous dynamics h: R x R — R is defined by h(z,u) :==u
if € X7 and by h(z,u) := —u if x € X5. Now consider the trajectory x given
by x(t) = t for all ¢ € [0,2] and the corresponding control u given by u(t) = 1
over [0,1] and u(t) = —1 over (1,2]. Note that all conditions from Definitions 3.1
and 3.2 are satisfied, with 7 = 1 as unique crossing time. For any small « > 0,
denote by z, the solution to the hybrid control system (HS.x) associated with the
initial condition z,(0) = x(0) = 0 and the needle-like perturbation u, : [0,2] — R
of u defined by uq(t) = —1 over (3 — , 1] and by uq(t) = u(t) elsewhere. Then the
perturbed trajectory x, satisfies 2, (t) € X7 over the whole interval [0,2] and thus

does not uniformly converge to = over [0,2] when o — 0.
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