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Minimum time problem for the double integrator
with a loss control region

Térence Bayen∗ Anas Bouali† Loïc Bourdin‡

January 10, 2023

Abstract

In this paper we address the minimum time problem to reach the origin for the double integrator
but, in contrast with the classical version of this problem, the control is constrained to be frozen as long
as the corresponding state belongs to a given region of the state space called loss control region. This
situation prevents switches to occur in the loss control region and, therefore, a new analysis has to be
performed. To this aim we prove a Pontryagin maximum principle adapted to this setting. The necessary
conditions involve a costate that admits discontinuity jumps at the interface between the loss control
region and its complement, and an averaged Hamiltonian gradient condition to determine the optimal
constant value of the control in the loss control region. The purpose of this paper is to highlight the use
of this principle and also the new behaviors that are observed in this new setting, such as the lacks of
dynamical programming principle, feedback expression and saturation of the control constraint set.

1 Introduction
Geometric control theory is developed since the sixties and it now plays a central role in optimal control
theory. Based on the Pontryagin maximum principle [26] and differential geometry, it gathers mathematical
tools and methods to determine optimal controls and to synthesize feedback expressions [1, 10, 11, 27]. Several
well known examples of optimal control problem illustrate various phenomena observed in that field. We
can cite for instance the minimum time problem for the double integrator for which every optimal control is
bang-bang with zero or one switching time (depending on the initial condition), or for the harmonic oscillator
for which every optimal control is bang-bang with a finite (but possibly large) number of switching times.
We should also mention the classical Fuller’s problem [29] for which every optimal control is bang-bang with
an infinite number of switching times on a finite time interval.

Objective. The objective of this paper is to study a variant of the minimum time problem for the double
integrator in which the control is constrained to be constant as long as the corresponding state belongs to a
given region of the state space. We speak of a loss control region (that is, a subset of the state space in which
the control is frozen to the last assigned value before entering this region, and as long as the state belongs
to this region). The consideration of optimal control problems involving loss control regions is motivated
by various applications. For instance, in the context of aerospace, this question arises in order to take into
account the shadow effect in the low-thrust transfer problem [21, 23]. Other examples arise when considering
optimal control problems in the setting of viability theory [2]. Indeed, in order to reduce operating costs,
constant controls can be applied whenever the system belongs to a safety zone, typically the viability kernel
(see, e.g., time crisis problems [9]). Our choice to focus in this paper on the double integrator is twofold.
First, as far as we know, optimal control problems including loss control regions have not been treated in
the literature yet. Therefore, the adaptation of an academic problem to this new setting could serve the
community to highlight the construction of optimal paths in that context (see, e.g., a related study [18] in
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which the double integrator is investigated under a linear pathwise constraint). Second, we shall see that the
analysis of optimal trajectories for the double integrator in this new setting is more involved than in the
usual case and it requires the use of an adapted methodology.

Methodology. Our methodology is to follow the approach of our previous works [6, 7]. Precisely, first-order
necessary optimality conditions (in a Pontryagin form) for hybrid1 optimal control problems involving
regionally switching parameters are obtained in [6]. As a particular case, the paper [7] provides a Pontryagin
maximum principle for optimal control problems involving loss control regions. This principle provides a
so-called averaged Hamiltonian gradient condition2 to determine the optimal constant value of the control
whenever the state belongs to a loss control region, as well as the usual Hamiltonian maximization condition
whenever the state belongs to the other regions. Since our framework is related to hybrid optimal control
problems, we recall that the costate obtained in the principle admits discontinuity jumps.

It is worth mentioning that the framework in [6, 7] does not allow terminal state constraints. Since
the minimal time problem for the double integrator involves an endpoint constraint, we cannot resort to
the results of [6, 7]. Therefore, in the present paper, we first prove an adapted version of the Pontryagin
maximum principle for a general minimum time problem involving an arbitrary loss control region and
endpoint constraints. We refer to Proposition 2.2 whose proof is based on an augmentation procedure in
the spirit of [17]. Note that our framework involves a partition of the state space and thus the use of such
an augmentation technique requires a careful study to relate a solution to the original problem to a (local)
solution to the augmented problem. This is made possible thanks to an hypothesis made on the velocity set
at the boundary of the loss control region (in line with the usual transverse assumptions found in hybrid
settings [6, 8, 17, 23]). We emphasize that Proposition 2.2 is established under quite strong hypotheses (see
Remark 2.3 for details). However these hypotheses are all satisfied by the double integrator with a loss control
region which constitutes the major focus of the present work. Therefore Proposition 2.2 is sufficient for our
purposes in this paper. The extension of Proposition 2.2 to a more general setting should be the subject of
further research papers.

Main result (Theorem 3.1) and new observations. Applying Proposition 2.2 to the minimum time
problem for the double integrator with a loss control region, we prove that every optimal trajectory visits
at most once the loss control region and then, thanks to the averaged Hamiltonian gradient condition, we
are able to determine the corresponding optimal constant value of the control. The synthesis for each initial
condition is given in Theorem 3.1 and the corresponding optimal trajectories are depicted in Figure 5. At this
occasion, we observe new behaviors with respect to the classical setting (that is, without loss control region).
For example, some optimal trajectories (for different initial conditions) cross each other, which implies that
the classical dynamical programming principle does not hold true and that the optimal control cannot be
expressed as a feedback. Furthermore, in contrary again to the classical setting, the optimal control takes
moderated values, that is, values in the interior of the control constraint set (which is thus not saturated).
We refer to Remarks 2.2 and 4.1 for details. These new phenomena raise many questions and open new
challenges to address (theoretically and/or numerically) optimal control problems with loss control regions in
view of applications.

Organization of the paper. This paper is organized as follows. In Section 2, we recall the well known
solution to the classical minimum time problem for the double integrator. Next we state a version of
the Pontryagin maximum principle adapted to a minimum time problem with a loss control region (see
Proposition 2.2 whose proof is postponed in Appendix A). In Section 3, our main result (Theorem 3.1) is
stated, providing an exact analytical solution to the minimum time problem for the double integrator with a
loss control region. Its proof (based on Proposition 2.2) is given immediately after, being divided into several
cases arising in the application of Proposition 2.2. Section 4 gives a list of additional comments on Theorem 3.1
and its proof. We conclude with open questions and perspectives about optimal control problems with

1Here the terminology hybrid means that the control system is described by a regionally heterogeneous dynamics in the
spirit of [23].

2This necessary condition is well known in the context of sampled-data controls (that is, piecewise constant controls). We
refer to [12, 13, 14] and references therein. However note that, in the present work, as in [6, 7], the situation is more involved
since the constancy intervals of the control depends on the state position, and not on the independent time variable.
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loss control regions (such as controllability/reachability issues, existence results, Hamilton-Jacobi-Bellman
equation, etc.). Finally, Appendix A contains the proof of Proposition 2.2.

2 Preliminaries
Let us start with some basic notations and functional framework. In this paper, for any positive integer d ∈ N⋆,
we denote by ⟨·, ·⟩Rd (resp. ∥ · ∥Rd) the standard inner product (resp. Euclidean norm) of Rd. For any
subset X ⊂ Rd, we denote by X its closure. Furthermore, for any extended-real number r ∈ [1,∞] and any
real interval I ⊂ R, we denote by:

• Lr(I,Rd) the usual Lebesgue space of r-integrable functions defined on I with values in Rd, endowed
with its usual norm ∥ · ∥Lr ;

• C(I,Rd) the standard space of continuous functions defined on I with values in Rd, endowed with its
standard uniform norm ∥ · ∥C;

• AC(I,Rd) the subspace of C(I,Rd) of absolutely continuous functions.

Now take I = [0, T ] for some T > 0. Recall that a partition of the interval [0, T ] is a set T = {τk}k=0,...,N

such that 0 = τ0 < τ1 < . . . < τN−1 < τN = T for some N ∈ N⋆. In this paper a function p : [0, T ] → Rd is
said to be piecewise absolutely continuous, with respect to a partition T = {τk}k=0,...,N of the interval [0, T ],
if p is continuous at 0 and T and the restriction of p over each open interval (τk−1, τk) admits an extension
over [τk−1, τk] that is absolutely continuous. If so, p admits left and right limits at each τk with k ∈
{1, . . . , N − 1}, denoted respectively by p−(τk) and p+(τk). Finally, in this paper, we denote by:

• PACT([0, T ],Rd) the space of piecewise absolutely continuous functions, with respect to a partition T
of the interval [0, T ], with values in Rd.

2.1 Reminders on the classical minimum time problem for the double integrator
Recall that the classical minimum time problem for the double integrator [27] is given by

minimize T,

subject to (x, u, T ) ∈ AC([0, T ],R2)× L∞([0, T ],R)× (0,+∞),

ẋ1(t) = x2(t), a.e. t ∈ [0, T ],

ẋ2(t) = u(t), a.e. t ∈ [0, T ],

x(0) = x0, x(T ) = 0R2 ,

u(t) ∈ [−1, 1], a.e. t ∈ [0, T ],

(CP)

where x0 ∈ R2\{0R2}. As usual in the literature, x = (x1, x2) ∈ AC([0, T ],R2) is called the state (or the
trajectory), u ∈ L∞([0, T ],R) is called the control and T > 0 is called the final time. Using the classical
Filippov approach [20], it can be proved that Problem (CP) admits (at least) one solution. Then, from the
classical Pontryagin maximum principle [26], it can be proved that Problem (CP) admits exactly one solution
and its description can be separated into four cases according to the position of the initial condition x0 in the
partition R2\{0R2} = Γ0 ∪ Ω1 ∪ Γ1 ∪ Ω0 (see Figure 1) where

Γ0 :=

{(
1

2
x2
2, x2

)
| x2 < 0

}
and Γ1 :=

{(
−1

2
x2
2, x2

)
| x2 > 0

}
,

and where Ω1 (resp. Ω0) stands for the strict epigraph (resp. strict hypograph) of Γ0 ∪ Γ1 ∪ {0R2}.3
3The notation of the sets Γ0, Ω1, Γ1 and Ω0 may be non-intuitive with regards to other notations found in the literature.

However they will be convenient and consistent with the setting developed in the next Section 3 (see Figure 4).
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Figure 1: Partition of R2\{0R2} arising from the analysis of Problem (CP) (see Proposition 2.1).

Precisely the following well known proposition is established [27].

Proposition 2.1. If (x†, u†, T †) is the unique solution to Problem (CP), then an overview description
of (x†, u†) over the interval [0, T †], according to the position of the initial condition x0 in the parti-
tion R2\{0R2} = Γ0 ∪ Ω1 ∪ Γ1 ∪ Ω0, can be summarized as follows:

Position of x0 Overview description of x†(t)
u†(t)

Figure

Γ0
Γ0

1
2a

Ω1
Ω1 ⇝ Γ0

−1 ⇝ 1
2b

Γ1
Γ1

−1
2c

Ω0
Ω0 ⇝ Γ1

1 ⇝ −1
2d

For example, the second case of the above table can be read as follows: if x0 ∈ Ω1, then there exists a
switching time σ† ∈ (0, T †) such that x†(t) ∈ Ω1 and u†(t) = −1 over (0, σ†), and x†(t) ∈ Γ0 and u†(t) = 1
over (σ†, T †).
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(a)
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Figure 2: Optimal trajectories (in red) in the four cases of Proposition 2.1.

Our objective in the present work is to state and prove a similar result to Proposition 2.1, but when
adding a so-called loss control region in the control system. We refer to the next Section 2.2 for a general
presentation of this new concept and to Section 3 for a specification to the double integrator.

Remark 2.1. Note that Proposition 2.1 is not as complete as it could be. Indeed the expressions of the
final time T † and of the (possible) switching time σ† and switching state x†(σ†), in function of the initial
condition x0, are not explicitly provided. Nevertheless these expressions can be easily obtained. To this
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aim define χ(·, x0, µ) : R → R2 as the unique solution to the control system, associated with the initial
condition x0 ∈ R2 and with the control constantly equal to µ ∈ R, whose explicit expression is given by

χ(t, x0, µ) =
(
x0
1 + x0

2t+
µ

2
t2, x0

2 + µt
)
, (E)

for all t ∈ R. For example, if x0 ∈ Ω1, it holds from Proposition 2.1 that x†(t) = χ(t, x0,−1) over [0, σ†]
and x†(t) = χ(t− σ†, x†(σ†), 1) over [σ†, T †]. Hence, in the case x0 ∈ Ω1, one can easily deduce from (E) and
simple computations that

σ† = x0
2 +

√
1

2
(x0

2)
2 + x0

1, x†(σ†) =

(
1

2

(
1

2
(x0

2)
2 + x0

1

)
,−
√

1

2
(x0

2)
2 + x0

1

)
, T † = x0

2 + 2

√
1

2
(x0

2)
2 + x0

1.

Therefore a complete and detailed description of the unique solution (x†, u†, T †) to Problem (CP), in function
of the initial condition x0, can be easily derived from Proposition 2.1, (E) and simple computations.

Remark 2.2. Consider the framework of Proposition 2.1. In the present classical setting (that is, without
loss control region), it is well known that:

(i) As usual with a classical minimal time problem, the dynamical programming principle holds true, in
the sense that (x†, u†) is not only the fastest way to reach the origin 0R2 from x0, but also the fastest
way to reach the origin 0R2 from any intermediate point x†(s) with s ∈ (0, T †), and also the fastest way
to reach x†(s) from x0.

(ii) The optimal control u† can be expressed as a feedback control (that is, as a function of the instantaneous
position) given by

u†(t) =

{
−1 if x†(t) ∈ Γ1 ∪ Ω1,
+1 if x†(t) ∈ Γ0 ∪ Ω0,

over (0, T †).

(iii) Furthermore, as is often the case with a classical optimal control problem for which the Hamiltonian is
affine with respect to the control and without singular arc, the optimal control u† saturates the control
constraint set [−1, 1], in the sense that it does not take any moderated value in the interior (−1, 1).

As we will see in the next Section 3, these three well known properties are broken when considering a loss
control region in the control system (see Remark 4.1).

2.2 Pontryagin maximum principle for a general minimum time problem with a
loss control region

Let n ∈ N⋆ be a positive integer and consider a state space partition Rn = X1 ∪ X2 where X1, X2 are two
disjoint nonempty open subsets of Rn called regions. In the sequel we denote by ∂X := X1 ∩ X2 and we
assume that there exists a C1 description map F : Rn → R such that

X1 = {x ∈ Rn | F (x) > 0}, ∂X = {x ∈ Rn | F (x) = 0}, X2 = {x ∈ Rn | F (x) < 0}.

Consider the control system given by
(x, u, T ) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm)× (0,+∞),

ẋ(t) = f(x(t), u(t)), a.e. t ∈ [0, T ],

X2 is a loss control region,
(CS)

where the dynamics f : Rn × Rm → Rn is of class C1. The novelty in the control system (CS) is that X2

is a loss control region, in the sense that the control value u(t) is frozen (that is, cannot be modified) in
the region X2. In other words, the control value u(t) remains constant on the intervals for which the state
position x(t) belongs to X2. The precise definition of a solution to (CS) is given as follows.
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Definition 2.1 (Solution to (CS)). A triplet (x, u, T ) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm)× (0,+∞) is said to
be a solution to (CS) if the following conditions are satisfied:

(i) It holds that ẋ(t) = f(x(t), u(t)) for almost every t ∈ [0, T ].

(ii) There exists a partition T = {τk}k=0,...,N of the interval [0, T ] such that x is alternatively, over the
open intervals (τk−1, τk), with values in X1 and then with values in X2. We denote by I1 (resp. I2) the
set of indexes k ∈ {1, . . . , N} such that x is with values in X1 (resp. in X2) over (τk−1, τk).

(iii) For all k ∈ I2, there exists µk ∈ Rm such that u(t) = µk for almost every t ∈ (τk−1, τk).

Our aim in this section is to derive first-order necessary optimality conditions in a Pontryagin form for
the general minimum time problem with a loss control region given by

minimize T,

subject to (x, u, T ) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm)× (0,+∞),

ẋ(t) = f(x(t), u(t)), a.e. t ∈ [0, T ],

x(0) = x0, x(T ) = xtarg,

u(t) ∈ U, a.e. t ∈ [0, T ],

X2 is a loss control region,

(GP)

where the initial condition x0 ∈ Rn and the target xtarg ∈ Rn are distinct and U is a nonempty compact
convex subset of Rm. A triplet (x, u, T ) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm)× (0,+∞) is said to be admissible
for Problem (GP) if it satisfies all the constraints of Problem (GP) (in particular it has to be a solution to (CS)
in the sense of Definition 2.1). Finally such an admissible triplet is said to be a solution to Problem (GP) if
it minimizes the final time among all admissible triplets.

Recall that the normal cone to U at some point u ∈ U is defined by

NU[u] := {u′′ ∈ Rm | ∀u′ ∈ U, ⟨u′′, u′ − u⟩Rm ≤ 0},

and that the Hamiltonian H : Rn × Rm × Rn → R associated with Problem (GP) is defined by

H(x, u, p) := ⟨p, f(x, u)⟩Rn ,

for all (x, u, p) ∈ Rn × Rm × Rn. We are now in a position to provide a Pontryagin maximum principle for
Problem (GP) under the transverse assumption given by

∀(x, u) ∈ (∂X\{xtarg})×U, ⟨∇F (x), f(x, u)⟩Rn ̸= 0. (A)

Proposition 2.2 (Pontryagin maximum principle for Problem (GP)). Under the transverse assumption (A),
if (x⋆, u⋆, T ⋆) is a solution to Problem (GP), associated with a partition T⋆ = {τ⋆k}k=0,...,N of the inter-
val [0, T ⋆], then there exists a nontrivial pair (p, p0) ∈ PACT⋆([0, T ⋆],Rn)× R+ satisfying:

(i) The Hamiltonian system ẋ⋆(t) = ∇pH(x⋆(t), u⋆(t), p(t)) and −ṗ(t) = ∇xH(x⋆(t), u⋆(t), p(t)) for almost
every t ∈ [0, T ⋆].

(ii) The Hamiltonian maximization condition u⋆(t) ∈ argmaxω∈U H(x⋆(t), ω, p(t)) for almost every t ∈
(τ⋆k−1, τ

⋆
k ), for all k ∈ I⋆

1 .

(iii) The averaged Hamiltonian gradient condition
∫ τ⋆

k

τ⋆
k−1

∇uH(x⋆(t), µ⋆
k, p(t)) dt ∈ NU[µ

⋆
k] for all k ∈ I⋆

2 .

(iv) The discontinuity jump condition p+(τ⋆k ) − p−(τ⋆k ) = νk∇F (x⋆(τ⋆k )) for some νk ∈ R, for all k ∈
{1, . . . , N − 1}.

(v) The constancy Hamiltonian condition H(x⋆(t), u⋆(t), p(t)) = p0 for almost every t ∈ [0, T ⋆].

The proof of Proposition 2.2 is postponed in Appendix A. It is based on an augmentation technique and
the application of the classical Pontryagin maximum principle for local solutions to a classical (that is, without
loss control region) augmented optimal control problem involving parameters and endpoint constraints.
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Remark 2.3. Hereafter we provide a list of comments on Proposition 2.2 and its proof.

(i) First of all, we emphasize that Proposition 2.2 is established under strong hypotheses such as the
transverse assumption (A), the topological assumptions made on the control constraint set U or the
global descriptions of the regions X1 and X2. However these hypotheses are all satisfied in the context
of the double integrator with a loss control region considered in the next Section 3 which constitutes the
central part of the present work. Therefore Proposition 2.2 is sufficient for our purposes in this paper.
We also emphasize that, in this paper, we do not consider in Definition 2.1 the possibility of an infinite
number of instants τk (in the spirit of a chattering phenomenon [29]). The extension of Proposition 2.2
to more general contexts (including also general Bolza costs, not only minimum time problems) should
be the subject of future research works.

(ii) The transverse assumption (A) has a geometrical interpretation. It implies that, for any admissible
triplet (x, u, T ) for Problem (GP), if the trajectory x crosses the boundary ∂X, then it does not cross it
tangentially. This assumption plays a central role in the proof of Proposition 2.2 in order to guarantee
that the reverse procedure of the augmentation technique produces (at least locally) admissible triplets
for the original Problem (GP). We refer to Appendix A for details. We also emphasize that, in the
next Section 3, the non-equality in the transverse assumption (A) is not satisfied at xtarg. Fortunately,
since we consider here a minimum time problem (and not a general Bolza cost), the non-equality in
the transverse assumption (A) is not mandatory at xtarg thanks to a basic dynamical programming
argument. We refer to Appendix A for details. To conclude on the transverse assumption (A), we
mention that weaker assumptions could be considered. For example, one could consider a transverse
assumption on the solution (x⋆, u⋆, T ⋆) only (and not everywhere). However, as explained in the
previous item, it is not our objective here to provide a Pontryagin maximum principle for very general
optimal control problems with loss control regions. Proposition 2.2 is sufficient for our purposes in this
paper.

(iii) From linearity, the nontrivial pair (p, p0) in Proposition 2.2 is defined up to a positive multiplicative
constant. When the pair is normal (that is, when p0 ̸= 0), we renormalize it so that p0 = 1.

(iv) The averaged Hamiltonian gradient condition is well known in the context of sampled-data controls (that
is, piecewise constant controls). We refer to [12, 13, 14] and references therein. In the present context,
the control is imposed to be constant on intervals for which the state position lies in the loss control
region. Therefore it is not surprising that the averaged Hamiltonian gradient condition appears in
Proposition 2.2 as first-order necessary optimality condition on these constancy intervals. However note
that our setting here is more involved than the framework of sampled-data controls since the constancy
intervals for the control are determined by the state position x(t), and not by the (independent) time
variable t.

(v) The discontinuity jump condition on the costate p is well known in the literature on hybrid maximum
principles (in which, for example, authors consider control systems with spatially heterogeneous
dynamics). We refer to [5, 23] and references therein. As also well known, when the control u⋆ admits
left and right limits at τ⋆k for all k ∈ {1, . . . , N − 1}, denoted respectively by (u⋆)−(τ⋆k ) and (u⋆)+(τ⋆k ),
the constancy Hamiltonian condition allows to obtain (forward and backward) expressions for νk given
by

νk = −⟨p±(τ⋆k ), f(x⋆(τ⋆k ), (u
⋆)+(τ⋆k ))− f(x⋆(τ⋆k ), (u

⋆)−(τ⋆k ))⟩Rn

⟨∇F (x⋆(τ⋆k )), f(x
⋆(τ⋆k ), (u

⋆)±(τ⋆k ))⟩Rn

,

for all k ∈ {1, . . . , N − 1}.

One can conclude from Items (iv) and (v) that the present framework of loss control region can be seen, in
some sense, as a mix of two well known topics in the literature, namely the sampled-data controls and the
hybrid control systems.
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3 Main result and its proof
In this section we focus on the minimum time problem for the double integrator with a loss control region
given by

minimize T,

subject to (x, u, T ) ∈ AC([0, T ],R2)× L∞([0, T ],R)× (0,+∞),

ẋ1(t) = x2(t), a.e. t ∈ [0, T ],

ẋ2(t) = u(t), a.e. t ∈ [0, T ],

x(0) = x0, x(T ) = 0R2 ,

u(t) ∈ [−1, 1], a.e. t ∈ [0, T ],

X2 is a loss control region,

(P)

where x0 ∈ R2\{0R2} and where the state space R2 = X1 ∪X2 has been partitioned (see Figure 3) with

X1 := {x ∈ R2 | x1 > 0}, ∂X = {x ∈ R2 | x1 = 0}, X2 := {x ∈ R2 | x1 < 0}.

−6 −3 0 3 6

−3

0

3

X1X2

∂X

Figure 3: Partition of R2 into a “non-control region" (in red) and a “control region" (in green).

In the case where x0 ∈ Γ0 ∪ Ω1 ∪ Γ1, the unique solution (x†, u†, T †) to Problem (CP) is admissible for
Problem (P) (since the control u† remains frozen in the region X2, see Proposition 2.1 and Figure 2) and
therefore it is clear that (x†, u†, T †) is the unique solution to Problem (P). On the contrary, when x0 ∈ Ω0,
the unique solution (x†, u†, T †) to Problem (CP) is not admissible for Problem (P) (since the control u†

requires a switch from −1 to +1 on the curve Γ1 ⊂ X2, see Proposition 2.1 and Figure 2). Hence a rigorous
analysis has to be performed in order to determine the candidate solution to Problem (P) in the case x0 ∈ Ω0.
This is the objective of the present section. To state and prove our main result (see Theorem 3.1 below), we
need to introduce several elements:

• The positive real number θ := 1
1+

√
2
> 0 introduced to simplify notations.

• The partition R2\{0R2} = ∪6
i=1(Γi−1 ∪ Ωi) (see Figure 4) where Γ0, Ω1 and Γ1 have already been

defined in Section 2.1, where Γ3 := {(x1, 0) | x1 < 0} and Γ5 := {(0, x2) | x2 < 0}, where

Γ2 :=

{(
− 1

2θ
x2
2, x2

)
| x2 > 0

}
, Γ4 :=

{(
−1

θ
x2
2, x2

)
| x2 < 0

}
,

and where Ωi stands for the open region delimited by Γi−1 and Γi for all i ∈ {1, . . . , 6} (with Γ6 := Γ0

by convention).
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−6 −3 0 3 6

−3

0

3
Γ1

Ω1
Γ2 Ω2

Ω3

Γ3

Γ4

Ω5 Ω6

Γ5 Γ0

Ω4

Figure 4: Partition of R2\{0R2} arising from the analysis of Problem (P) (see Theorem 3.1).

• The three real numbers

λ(x0) :=
(x0

2)
2

2x0
1

and λ±(x0) :=
√
θ
(√

θ ± 2
√
−λ(x0)

)
,

introduced for any initial condition x0 ∈ Ω0 ∩ X2, for which λ(x0) ≤ 0. We refer to Remark 3.1 for
additional comments on these numbers.

Theorem 3.1. If (x⋆, u⋆, T ⋆) is a solution to Problem (P), then an overview description of (x⋆, u⋆) over the
interval [0, T ⋆], according to the position of the initial condition x0 in the partition R2\{0R2} = ∪6

i=1(Γi−1∪Ωi),
can be summarized as follows:

Position of x0 Overview description of x⋆(t)
u⋆(t)

µ⋆ ∈ (−1, 1) N Figure

Γ0
Γ0

1
1 5a

Ω1
Ω1 ⇝ Γ0

−1 ⇝ 1
1 or 2 5b

Γ1
Γ1

−1
1 5c

Ω2
Ω2

µ⋆ λ(x0) 1 5d

Γ2
Γ2

µ⋆ λ(x0) = λ−(x0) 1 5e

Ω3
X2 ⇝ Ω1 ∩X1 ⇝ Γ0

µ⋆ ⇝ −1 ⇝ 1
λ−(x0) 2 5f

Γ3
X2 ⇝ Ω1 ∩X1 ⇝ Γ0

µ⋆ ⇝ −1 ⇝ 1
λ−(x0) = λ+(x0) 2 5g

Ω4
X2 ⇝ Ω1 ∩X1 ⇝ Γ0

µ⋆ ⇝ −1 ⇝ 1
λ+(x0) 2 5h

Γ4
X2 ⇝ Ω1 ∩X1 ⇝ Γ0

1 ⇝ −1 ⇝ 1
2 5i

Ω5
X2 ⇝ Ω1 ∩X1 ⇝ Γ0

1 ⇝ −1 ⇝ 1
2 5j

Γ5
X2 ⇝ Ω1 ∩X1 ⇝ Γ0

1 ⇝ −1 ⇝ 1
2 5k

Ω6
Ω6 ⇝ X2 ⇝ Ω1 ∩X1 ⇝ Γ0

1 ⇝ 1 ⇝ −1 ⇝ 1
3 5l

The column N allows to know how many crossing times (from X1 to X2, or from X2 to X1) are observed
for the trajectory x⋆ (that is, N − 1). For example, if x0 ∈ Ω3, then the trajectory x⋆ has only one crossing
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time τ⋆1 from X2 to X1. Precisely, in the case x0 ∈ Ω3, there exist 0 < τ⋆1 < σ⋆ < T ⋆ such that x⋆(t) ∈ X2

and u⋆(t) = µ⋆ over (0, τ⋆1 ), and x⋆(t) ∈ Ω1 ∩X1 and u⋆(t) = −1 over (τ⋆1 , σ
⋆), and x⋆(t) ∈ Γ0 and u⋆(t) = 1

over (σ⋆, T ⋆).

−6 −3 0 3 6

−3

0

3

(a)

−6 −3 0 3 6

−3

0

3

(b)

−6 −3 0 3 6

−3

0

3

(c)

−6 −3 0 3 6

−3

0

3

(d)

−6 −3 0 3 6

−3

0

3

(e)

−6 −3 0 3 6

−3

0

3

(f)

−6 −3 0 3 6

−3

0

3

(g)

−6 −3 0 3 6

−3

0

3

(h)

−6 −3 0 3 6

−3

0

3

(i)

−6 −3 0 3 6

−3

0

3

(j)

−6 −3 0 3 6

−3

0

3

(k)

−6 −3 0 3 6

−3

0

3

(l)

Figure 5: Optimal trajectories (in red) in the twelve cases of Theorem 3.1.

The results of Theorem 3.1 will be commented in Section 4.1. The rest of this section is dedicated to its
proof which is based on the Pontryagin maximum principle stated in Proposition 2.2. To this aim let us fix a
solution (x⋆, u⋆, T ⋆) to Problem (P), associated with a partition T⋆ = {τ⋆k}k=0,...,N of the interval [0, T ⋆], and
let us denote by (p, p0) ∈ PACT⋆([0, T ⋆],Rn)× R+ the nontrivial pair provided by Proposition 2.2 (whose
hypotheses are all satisfied).

Remark 3.1. Before going any further in the proof of Theorem 3.1, we need to emphasize several facts.

(i) Note that Γ0 ⊂ X1 and Γ1 ⊂ X2, and that Ω1 intersects both X1 and X2. Also note that Ω0 ∩ X2 =
Ω2 ∪ Γ2 ∪ Ω3 ∪ Γ3 ∪ Ω4 ∪ Γ4 ∪ Ω5, that Ω0 ∩ ∂X = Γ5 and that Ω0 ∩X1 = Ω6.

(ii) For any initial condition x0 ∈ Ω0 ∩X2, it holds that λ(x0) ≤ 0 (with equality if and only if x0 ∈ Γ3)
and λ+(x0) > 0. Note that, if x0 ∈ Γ1 (resp. x0 ∈ Γ2, x0 ∈ Γ3, x0 ∈ Γ4), then λ(x0) = −1 (resp.
λ−(x0) = λ(x0), λ+(x0) = λ−(x0), λ+(x0) = 1). Also note that, if x0 ∈ Ω2∪Γ2 (resp. x0 ∈ Γ2∪Ω3∪Γ3,
x0 ∈ Γ3 ∪ Ω4), then λ(x0) ∈ (−1, 1) (resp. λ−(x0) ∈ (−1, 1), λ+(x0) ∈ (−1, 1)).

(iii) Consider the framework of Proposition 2.1 in the case where x0 ∈ Ω1 ∩ ∂X. In that context, from
Remark 2.1, it holds that

σ† =

(
1 +

√
2

2

)
x0
2, x†

2(σ
†) = −

√
2

2
x0
2, T † =

x0
2

θ
.
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In the sequel we denote by (x†(·, x0), u†(·, x0), T †(x0)) the unique solution (x†, u†, T †) to Problem (CP)
corresponding to such an initial condition x0 ∈ Ω1 ∩ ∂X.

We are now in a position to pursue the proof of Theorem 3.1 by separating the cases according to the
position of the initial condition x0 in the partition of R2\{0R2} depicted in Figure 4. First, recall that the
first three cases of Theorem 3.1 (that is, when x0 ∈ Γ0 ∪ Ω1 ∪ Γ1) are trivial since, in these cases, the unique
solution (x†, u†, T †) to Problem (CP) is admissible for Problem (P) and thus (x⋆, u⋆, T ⋆) = (x†, u†, T †) and
we refer to Proposition 2.1 for the corresponding overview description. Note that, in the case x0 ∈ Ω1

(since Ω1 intersects both X1 and X2), we have N = 2 (resp. N = 1) if x0
1 < 0 (resp. x0

1 ≥ 0).
In the sequel we will focus only on the case x0 ∈ Ω0 and we separate it into three subcases given

by x0 ∈ Ω0 ∩X2 (see Section 3.1), x0 ∈ Ω0 ∩ ∂X (see Section 3.2) and x0 ∈ Ω0 ∩X1 (see Section 3.3).

3.1 The case x0 ∈ Ω0 ∩ X2

Here we focus on the case x0 ∈ Ω0 ∩ X2. Since x⋆(0) = x0 ∈ X2, we get that x⋆(t) ∈ X2 over [0, τ⋆1 ).
Moreover, since x⋆(T ⋆) = 0R2 , we get that x⋆

1(τ
⋆
1 ) = 0 (independently of N = 1 or N ≥ 2). Since X2 is a

loss control region, let us denote by µ⋆ ∈ [−1, 1] the constant value of u⋆ over (0, τ⋆1 ). Therefore it holds
that x⋆(t) = χ(t, x0, µ⋆) over [0, τ⋆1 ] (see Remark 2.1). From (E) and simple computations, one can easily
derive the following lemma.

Lemma 3.1 (Case x0 ∈ Ω0 ∩X2). The following five properties are satisfied:

(i) (x0
2)

2 − 2µ⋆x0
1 ≥ 0, (ii) (x0

2, µ
⋆) /∈ R2

−, (iii) µ⋆ ̸= −1,

(iv) τ⋆1 =


√

(x0
2)

2 − 2µ⋆x0
1 − x0

2

µ⋆
if µ⋆ ̸= 0,

−x0
1

x0
2

if µ⋆ = 0.

, (v) x⋆
2(τ

⋆
1 ) =

√
(x0

2)
2 − 2µ⋆x0

1 ≥ 0.

Proof. (i) Since x⋆
1(τ

⋆
1 ) = 0, the discriminant of x⋆

1(t) is nonnegative. (ii) By contradiction, if (x0
2, µ

⋆) /∈ R2
−,

then one would obtain that x⋆
1(τ

⋆
1 ) ≤ x0

1 < 0 which is absurd. (iii) By contradiction, if µ⋆ = −1, then, from
the previous two items, one would obtain (x0

2)
2 +2x0

1 ≥ 0 and x0
2 > 0, which contradicts x0 ∈ Ω0 ∩X2. (iv)(v)

Separating the cases µ⋆ > 0, µ⋆ = 0 and µ⋆ < 0 (note that x0
2 > 0 in the last two cases), one can easily derive

from (E) and simple computations the above expressions of τ⋆1 and x⋆
2(τ

⋆
1 ).

From Lemma 3.3 we deduce that x⋆(τ⋆1 ) ∈ (Ω1 ∩ ∂X) ∪ {0R2}. Precisely we obtain two cases:

1. Either x⋆
2(τ

⋆
1 ) = 0. In that case x⋆(τ⋆1 ) = 0R2 and thus T ⋆ = τ⋆1 and N = 1. Furthermore, from

Lemma 3.3, it holds that µ⋆ = λ(x0) ≤ 0 and thus this situation is possible only for x0
2 > 0.

2. Either x⋆
2(τ

⋆
1 ) > 0. In that case x⋆(τ⋆1 ) ∈ Ω1 ∩ ∂X and, from a basic dynamical programming argument,

it holds that x⋆ = x†(· − τ⋆1 , x
⋆(τ⋆1 )) and u⋆ = u†(· − τ⋆1 , x

⋆(τ⋆1 )) over (τ⋆1 , T
⋆) (see Remark 3.1 for the

notation). From Proposition 2.1 and Remark 3.1, we deduce that x⋆(t) ∈ Ω1 ∩ X1 and u⋆(t) = −1

over (τ⋆1 , σ
⋆), and x⋆(t) ∈ Γ0 and u⋆(t) = 1 over (σ⋆, T ⋆), where σ⋆ = τ⋆1 + (1 +

√
2
2 )x⋆

2(τ
⋆
1 ), x⋆

2(σ
⋆) =

−
√
2
2 x⋆

2(τ
⋆
1 ) < 0 and T ⋆ = τ⋆1 +

x⋆
2(τ

⋆
1 )

θ . In particular, in that case, we have T ⋆ = τ⋆2 and N = 2.

In the second case above, we already have a quite complete description of (x⋆, u⋆) over (τ⋆1 , T ⋆). Therefore
we only need to determine the constant value µ⋆ ∈ [−1, 1] of the optimal control u⋆ over (0, τ⋆1 ). Our aim in
the next lemma is to reduce the possibilities of values for µ⋆ in that case. This lemma, whose proof is based
on the application of the Pontryagin maximum principle stated in Proposition 2.2, allows to discriminate four
values.

Lemma 3.2 (Case x0 ∈ Ω0 ∩X2). If x⋆
2(τ

⋆
1 ) > 0, then µ⋆ ∈ {0, λ−(x0), λ+(x0), 1}.
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Proof. We only deal with the case x0
2 > 0 (the other cases x0

2 = 0 and x0
2 < 0 are similar). Since N = 2 and

from the Pontryagin maximum principle stated in Proposition 2.2 (precisely from the Hamiltonian system
and the discontinuity jump condition), we get that

p1(t) =

{
p11 if t ∈ [0, τ⋆1 ),
p12 if t ∈ (τ⋆1 , T

⋆],
and p2(t) =

{
−p11t+ p2(0) if t ∈ [0, τ⋆1 ],
−p12(t− τ⋆1 )− p11τ

⋆
1 + p2(0) if t ∈ [τ⋆1 , T

⋆],

with p11, p12 ∈ R. From the Hamiltonian maximization condition, since x⋆(t) ∈ X1 over (τ⋆1 , T
⋆) and u⋆

changes its value at σ⋆, we deduce that p2(σ
⋆) = 0. From the Hamiltonian constancy (considered at 0, τ⋆1

and σ⋆), we obtain that

p11x
0
2 + p2(0)µ

⋆ = p0, p11x
⋆
2(τ

⋆
1 ) + p2(τ

⋆
1 )µ

⋆ = p0, p12x
⋆
2(τ

⋆
1 )− p2(τ

⋆
1 ) = p0, p12x

⋆
2(σ

⋆) = p0.

From these four equalities, one can easily prove in the one hand that

p12 = p11 +
p2(τ

⋆
1 )

x⋆
2(τ

⋆
1 )

(1 + µ⋆) = p11 +
p2(0)− p11τ

⋆
1

x⋆
2(τ

⋆
1 )

(1 + µ⋆), (3.1)

and, in the other hand, using the nontriviality of the pair (p, p0), that p0 ̸= 0 (by contradiction). In the
sequel we take p0 = 1 (see Remark 2.3) and we assume that µ⋆ /∈ {0, 1}. Therefore it only remains to
prove that µ⋆ ∈ {λ−(x0), λ+(x0)}. Since µ⋆ /∈ {−1, 1} (see Lemma 3.3), the averaged Hamiltonian gradient
condition gives

∫ τ⋆
1

0
p2(t)dt = 0 and thus p2(0) =

p11

2 (and thus p11 ̸= 0 by contradiction). Using it in the
equality p2(σ

⋆) = 0, we obtain that −p12(σ
⋆ − τ⋆1 )− p11

2 τ⋆1 = 0. Replacing the value p12 from (3.1) and the
value σ⋆ = τ⋆1 + (1 +

√
2
2 )x⋆

2(τ
⋆
1 ) (and dividing by p11 ̸= 0 and by x⋆

2(τ
⋆
1 ) ̸= 0), one can obtain that

2

θ
x⋆
2(τ

⋆
1 )− τ⋆1

(
1 +

µ⋆

θ

)
= 0.

Replacing the values x⋆
2(τ

⋆
1 ) and τ⋆1 obtained in Lemma 3.3 (and dividing by x0

2 > 0), we obtain that(
µ⋆

θ
− 1

)√
1− µ⋆

λ(x0)
= −

(
1 +

µ⋆

θ

)
.

Squaring this last equality (and dividing by µ⋆ ̸= 0), we obtain that(
µ⋆

θ

)2

− 2

(
µ⋆

θ

)
+

(
1 +

4λ(x0)

θ

)
= 0.

which admits two solutions given by λ−(x0) and λ+(x0). The proof is complete.

Finally, according to the previous analysis and using the equality T ⋆ = τ⋆1 +
x⋆
2(τ

⋆
1 )

θ , we can summarize the
situation as follows:

(i) If x0
2 < 0, then µ⋆ ≥ 0 and µ⋆ ∈ {λ−(x0), λ+(x0), 1} and

T ⋆ = −x0
2

((
1

µ⋆
+

1

θ

)√
1− µ⋆

λ(x0)
+

1

µ⋆

)
. (3.2)

(ii) If x0
2 = 0, then µ⋆ ∈ {θ, 1} and

T ⋆ =

(
1

µ⋆
+

1

θ

)√
−2µ⋆x0

1. (3.3)

(iii) If x0
2 > 0, then µ⋆ ∈ {0, λ(x0), λ−(x0), λ+(x0), 1} and

T ⋆ =


x0
2

((
1

µ⋆
+

1

θ

)√
1− µ⋆

λ(x0)
− 1

µ⋆

)
if µ⋆ ̸= 0,

x0
2

(
1

θ
− 1

2λ(x0)

)
if µ⋆ = 0.

(3.4)
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By comparing the value of T ⋆ in function of the possibilities of value of µ⋆, we get the following proposition
which concludes the proof in the case x0 ∈ Ω0 ∩X2 = Ω2 ∪ Γ2 ∪ Ω3 ∪ Γ3 ∪ Ω4 ∪ Γ4 ∪ Ω5.

Proposition 3.1. It holds that:

If x0 ∈ Ω2 Γ2 Ω3 Γ3 Ω4 Γ4 Ω5

Then µ⋆ = λ(x0) λ(x0) = λ−(x0) λ−(x0) λ−(x0) = λ+(x0) λ+(x0) λ+(x0) = 1 1

Proof. In this proof we denote by T (α) the value of T ⋆ given in (3.2), (3.3) and (3.4) if µ⋆ = α.

• Take x0 ∈ Ω2. It holds that − 1
2θ (x

0
2)

2 < x0
1 < − 1

2 (x
0
2)

2 and thus −1 < λ(x0) < −θ. In the one hand
we deduce that T (0) > x0

2(
3
2 +

√
2), T (1) > x0

2(1 + 2
√
2) and T (λ(x0)) < x0

2(1 +
√
2) and thus µ⋆ ̸= 0

and µ⋆ ̸= 1. In the other hand we deduce λ+(x0) > 3θ > 1, and thus µ⋆ ̸= λ+(x0). By studying the
quotient

λ−(x0)

λ(x0)
=

√
θ

−λ(x0)

(
2−

√
θ

−λ(x0)

)
,

one can also obtain that −1 < λ(x0) < λ−(x0) < −θ and thus T (λ−(x0)) > T (λ(x0)). We conclude
that µ⋆ = λ(x0).

• Take x0 ∈ Γ2. Similar to the first item.

• Take x0 ∈ Γ3. In that case it holds that x0
2 = 0 and thus µ⋆ ∈ {θ, 1}. Since (

√
θ − 1)2 > 0, one can

easily obtain that T (θ) < T (1) and thus µ⋆ = θ = λ−(x0) = λ+(x0).

• Take x0 ∈ Γ4 ∪Ω5. In that case it holds that − 1
θ (x

0
2)

2 ≤ x0
1 < 0 and thus λ(x0) ≤ − θ

2 . One can deduce
that λ+(x0) ≥ 1 and λ−(x0) < 0. Therefore µ⋆ = 1 (and recall that λ+(x0) = 1 in the case x0 ∈ Γ4).

The cases x0 ∈ Ω3 and x0 ∈ Ω4 can be treated similarly but with more involved computations. For the sake
of conciseness, these cases are omitted.

3.2 The case x0 ∈ Ω0 ∩ ∂X

Here we focus on the case x0 ∈ Ω0 ∩ ∂X. This section is very similar (and even simpler) to the previous
one, except that some minor adjustments have to be performed since x0

1 = 0 and thus λ(x0) is not defined.
Therefore, in this section, the proof is sketched.

From continuity of ẋ⋆
1 = x⋆

2 and since x⋆
1(0) = 0 and x⋆

2(0) = x2
0 < 0, we deduce that x⋆(t) ∈ X2

over (0, τ⋆1 ). Since x⋆(T ⋆) = 0R2 , we get that x⋆
1(τ

⋆
1 ) = 0 (independently of N = 1 or N ≥ 2). Since X2 is

a loss control region, let us denote by µ⋆ ∈ [−1, 1] the constant value of u⋆ over (0, τ⋆1 ). Therefore it holds
that x⋆(t) = χ(t, x0, µ⋆) over [0, τ⋆1 ] (see Remark 2.1). From (E) and simple computations, one can easily
derive the following lemma.

Lemma 3.3 (Case x0 ∈ Ω0 ∩ ∂X). The following three properties are satisfied:

(i) µ⋆ > 0, (ii) τ⋆1 =
−2x0

2

µ⋆
, (iii) x⋆

2(τ
⋆
1 ) = −x0

2 > 0.

In particular it holds that x⋆(τ⋆1 ) = −x0 ∈ Ω1 ∩ ∂X.

Since x⋆(τ⋆1 ) = −x0 ∈ Ω1 ∩ ∂X, it holds from a basic dynamical programming argument that x⋆ =
x†(· − τ⋆1 , x

⋆(τ⋆1 )) and u⋆ = u†(· − τ⋆1 , x
⋆(τ⋆1 )) over (τ⋆1 , T

⋆) (see Remark 3.1 for the notation). From
Proposition 2.1 and Remark 3.1, we deduce that x⋆(t) ∈ Ω1∩X1 and u⋆(t) = −1 over (τ⋆1 , σ⋆), and x⋆(t) ∈ Γ0

and u⋆(t) = 1 over (σ⋆, T ⋆), where σ⋆ = τ⋆1 +(1+
√
2
2 )x⋆

2(τ
⋆
1 ), x⋆

2(σ
⋆) = −

√
2
2 x⋆

2(τ
⋆
1 ) < 0 and T ⋆ = τ⋆1 +

x⋆
2(τ

⋆
1 )

θ .
In particular it holds that T ⋆ = τ⋆2 and N = 2. Hence we already have a quite complete description of (x⋆, u⋆)
over (τ⋆1 , T

⋆). Therefore we only need to determine the constant value µ⋆ ∈ [−1, 1] of the optimal control u⋆

over (0, τ⋆1 ). To this aim one can follow the same steps than the proof of Lemma 3.2, except that one should
assume by contradiction that µ⋆ ≠ 1 (recall that µ⋆ > 0 from Lemma 3.3). At the step of replacing the
values x⋆

2(τ
∗
1 ) and τ⋆1 from Lemma 3.3, one obtains 1

µ⋆ = 0 which is absurd. We get the following proposition
which concludes the proof in the case x0 ∈ Ω0 ∩ ∂X = Γ5.

Proposition 3.2 (Case x0 ∈ Ω0 ∩ ∂X). It holds that µ⋆ = 1 and T ⋆ = −x0
2(2 +

1
θ ).
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3.3 The case x0 ∈ Ω0 ∩ X1

Here we focus on the case x0 ∈ Ω0 ∩X1. This section is different from the previous two sections since our
proof here is based, not only on a basic dynamical programming argument and the results of the previous
section, but also on the application of the classical Pontryagin maximum principle on a classical (that is,
without loss control region) optimal control problem. To this aim we first establish the next lemma.

Lemma 3.4 (Case x0 ∈ Ω0 ∩X1). It holds that x⋆(t) ∈ Ω0 ∩X1 over [0, τ⋆1 ) and x⋆(τ⋆1 ) ∈ Ω0 ∩ ∂X.

Proof. In the one hand, since x⋆(0) = x0 ∈ X1, we get that x⋆(t) ∈ X1 over [0, τ⋆1 ). Moreover, since x⋆(T ⋆) =
0R2 , we get that x⋆

1(τ
⋆
1 ) = 0 (independently of N = 1 or N ≥ 2). On the other hand, from the control

system and since the control u⋆ is with values in [−1, 1], one has x⋆
1(t) ≤ χ1(t) and x⋆

2(t) ≤ χ2(t) over [0, T ⋆],
where χ := χ(·, x0, 1) (see Remark 2.1). Defining r := −x0

2 −
√
(x0

2)
2 − 2x0

1 > 0, from (E) and simple
computations, one can easily obtain that χ2(t) < 0 < χ1(t) <

1
2χ2(t)

2 (that is χ(t) ∈ Ω0 ∩X1) over [0, r) and
that χ2(r) < 0 = χ1(r) (that is χ(r) ∈ Ω0 ∩ ∂X). Firstly, one can deduce that τ⋆1 ≤ r (indeed, if r < τ⋆1 ,
then 0 < x⋆

1(r) ≤ χ1(r) = 0 which is absurd). Secondly, one obtains that x⋆
2(t) ≤ χ2(t) < 0 < x⋆

1(t) ≤
χ1(t) <

1
2χ2(t)

2 ≤ 1
2x

⋆
2(t)

2 (and thus x⋆(t) ∈ Ω0 ∩X1) over [0, τ⋆1 ) and x⋆
2(τ

⋆
1 ) ≤ χ2(τ

⋆
1 ) < 0 = x⋆

1(τ
⋆
1 ) (and

thus x⋆(τ⋆1 ) ∈ Ω0 ∩ ∂X).

From Lemma 3.4, it holds that x⋆(τ⋆1 ) ∈ Ω0∩∂X. From a basic dynamical programming argument, it holds
from the previous section that x⋆ = χ(· − τ⋆1 , x

⋆(τ⋆1 ), 1) and u⋆ = 1 over (τ⋆1 , τ
⋆
2 ), that x⋆(τ⋆2 ) ∈ Ω1 ∩ ∂X and

that x⋆ = x†(·− τ⋆2 , x
⋆(τ⋆2 )) and u⋆ = u†(·− τ⋆2 , x

⋆(τ⋆2 )) over (τ⋆2 , T ⋆) (see Remark 3.1 for the notation). From
Proposition 2.1 and Remark 3.1, we deduce that x⋆(t) ∈ Ω1∩X1 and u⋆(t) = −1 over (τ⋆2 , σ⋆), and x⋆(t) ∈ Γ0

and u⋆(t) = 1 over (σ⋆, T ⋆), where σ⋆ = τ⋆2 +(1+
√
2
2 )x⋆

2(τ
⋆
2 ), x⋆

2(σ
⋆) = −

√
2
2 x⋆

2(τ
⋆
2 ) < 0 and T ⋆ = τ⋆2 +

x⋆
2(τ

⋆
2 )

θ .
In particular, in that case, we have T ⋆ = τ⋆3 and N = 3.

From the previous section, it also holds that τ⋆2 = τ⋆1 − 2x⋆
2(τ

⋆
1 ) and x⋆

2(τ
⋆
2 ) = −x⋆

2(τ
⋆
1 ). As a consequence

we obtain that T ⋆ = τ⋆1 − (2 + 1
θ )x

⋆
2(τ

⋆
1 ). We deduce that the triplet (x⋆, u⋆, τ⋆1 ) is a solution to the classical

(that is, without loss control region) optimal control problem given by

minimize τ1 − (3 +
√
2)x2(τ1),

subject to (x, u, τ1) ∈ AC([0, τ1],R2)× L∞([0, τ1],R)× (0,+∞),

ẋ1(t) = x2(t), a.e. t ∈ [0, τ1],

ẋ2(t) = u(t), a.e. t ∈ [0, τ1],

x(0) = x0, x1(τ1) = 0,

u(t) ∈ [−1, 1], a.e. t ∈ [0, τ1].

Applying the classical Pontryagin maximum principle, there exists a nontrivial pair (q, q0) ∈ AC([0, τ⋆1 ],R2)×
R+ such that −q̇2 = q1 is constant (and thus q2(t) = q2(τ

⋆
1 ) + q1(τ

⋆
1 − t) is affine) over [0, τ⋆1 ] and q1x

⋆
2(t) +

q2(t)u
⋆(t) = q0 over [0, τ⋆1 ] (and thus q2 vanishes at most one time over [0, τ⋆1 ] by contradiction), but

also u⋆(t) = sign(q2(t)) over [0, τ⋆1 ] and q2(τ
⋆
1 ) = q0(3 +

√
2). Since x⋆

2(τ
⋆
1 ) < 0, we deduce that

q1 =
q0

x⋆
2(τ

⋆
1 )

(1− (3 +
√
2)u⋆

−(t
⋆
1)),

and thus q0 ̸= 0 (by contradiction) that we renormalize so that q0 = 1. We obtain that q2(τ⋆1 ) > 0, u⋆
−(τ

⋆
1 ) = 1

and thus q1 > 0. Finally we get that q2(t) > 0 and thus u⋆(t) = 1 over [0, τ⋆1 ], which concludes the proof in
the case x0 ∈ Ω0 ∩X1 = Ω6.

4 Comments and perspectives
This section is dedicated to comments on Theorem 3.1 and its proof (Section 4.1) and to several perspectives
about the concept of loss control region for further research works (Section 4.2).
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4.1 Comments on Theorem 3.1 and its proof
Remark 4.1. In connection with Remark 2.2, we emphasize that several well known properties observed in
the classical (that is, without loss control region) minimal time problem for the double integrator are broken
when considering a loss control region in the control system. First of all, we observe that some optimal
trajectories obtained in Theorem 3.1 (from different initial conditions) intersect each other (see Figure 6).
We deduce that, in the presence of a loss control region in the control system, the dynamical programming
principle does not hold true and that the optimal control u⋆ cannot be expressed as a feedback.

−6 −3 0 3 6

−3

0

3

Figure 6: Illustration of intersecting optimal trajectories in Theorem 3.1.

Furthermore we observe that, for initial conditions in Ω2 ∪ Γ2 ∪ Ω3 ∪ Γ3 ∪ Ω4, the optimal control u⋆ takes a
moderated value µ⋆ in the interior (−1, 1) of the control constraint set, and therefore does not saturate it.

Remark 4.2. In this remark we comment on the different behaviors observed in Theorem 3.1.

(i) For initial conditions in Ω2∪Γ2, the optimal control u⋆ consists in taking a moderated value µ⋆ ∈ (−1, 1)
until reaching the origin 0R2 . This behavior differs from the optimal strategies observed in classical
(that is, without loss control region) minimum time problems (such as double integrator or harmonic
oscillator). Indeed, for classical minimum time problems governed by affine systems with respect to the
control, the target is usually reached by a so-called bang-bang control (apart singular arc and Fuller’s
phenomenon).

(ii) For initial conditions in Ω3 ∪ Γ3 ∪ Ω4, the optimal control u⋆ takes a moderated value µ⋆ ∈ (−1, 1)
until reaching Ω1 ∩ ∂X and then is bang-bang until reaching the origin 0R2 . This analysis reveals that a
moderated value can be associated with a bang-bang policy. Again, this feature differs from what is
observed in classical settings.

(iii) For initial conditions in Ω3, let us introduce the set Σ defined by

Σ :=

{(
−2

θ
x2
2, x2

)
| x2 > 0

}
,

which corresponds to the set of points x0 ∈ Ω3 such that λ−(x0) = 0. Therefore, for initial conditions
in Ω3, we observe the three situations illustrated in Figure 7 in which the curve Σ is depicted in orange.

−6 −3 0 3 6

−3

0

3

(a)

−6 −3 0 3 6

−3

0

3

(b)

−6 −3 0 3 6

−3

0

3

(c)

Figure 7: Three situations for initial conditions in Ω3.
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In Figure 7(b), we observe that the part of the trajectory x⋆ in the region X2 is an horizontal segment.
This is due to the fact that, when x0 ∈ Σ, it holds that u⋆(t) = µ⋆ = λ−(x0) = 0 in the region X2.
Finally, contrary to what Figures 7(a) and 7(c) above might suggest, the part of the trajectory x⋆ in
the region X2 is a not a segment, but a parabolic curve.

(iv) For initial conditions in Ω3 ∪Γ3 ∪Ω4 ∪Γ4 ∪Ω5 ∪Γ5 ∪Ω6, we observe that the optimal control u⋆ admits
two switching times. The structure of the optimal control in the presence of a loss control region is thus
more complex than in the classical setting (for which every optimal control has at most one switching
time).

(v) For initial conditions in Ω6, we point out a non-intuitive property. Indeed it can be proved from
the classical Pontryagin maximum principle that the fastest way to reach Γ5 from Ω6 consists in
taking u(t) = −1. However, from Theorem 3.1, the optimal control u⋆ from an initial condition in Ω6

consists in taking u⋆(t) = +1 until reaching Γ5. We deduce that the optimal strategy in Theorem 3.1
from an initial condition in Ω6 does not consist in reaching Γ5 in minimal time.

Remark 4.3. As it is shown in the proof of Theorem 3.1, every optimal trajectory visits the loss control
region X2 at most one time. In view of this behavior, a direct analysis (that is, without using the Pontryagin
maximum principle stated in Proposition 2.2) may lead to the same Theorem 3.1. Nevertheless our approach
should also apply to more complicate situations in which the optimal trajectory would visit a loss control
region more than one time. In particular it could be used to tackle a loss control region in a minimal
time problem associated with the harmonic oscillator, or in an optimal control problem associated with an
oscillatory controlled system (such as the Lotka-Volterra system [25]).

4.2 Several perspectives
In this paper we have investigated the minimal time problem for the double integrator with a loss control
region given by X2 := {x ∈ R2 | x1 < 0}. Of course this study could be extended to many different loss
control regions, such as the ones depicted in Figure 8.

−6 −3 0 3 6

−3

0

3

X1X2

∂X

(a)

−6 −3 0 3 6

−3

0

3

X1

X2

∂X

(b)

−6 −3 0 3 6

−3

0

3

X1

X2

∂X

(c)

−3 0 3

−3

0

3 X1

X2

∂X

(d)

Figure 8: Illustration of other possible loss control regions.

As mentioned in Remark 4.3, this study could be extended also to other control systems than the double
integrator, such as the harmonic oscillator, Zermelo-type models, controlled Lotka-Volterra systems, etc. In
this section our aim is to discuss several perspectives in view of a general (theoretical and/or numerical)
treatment of optimal control problems including loss control regions. These objectives are of course out of
the scope of the present paper and could be the subject of further research works.

Controllability/reachability. When adding a loss control region in the control system, it is clear that the
set of admissible controls is reduced. As a consequence, controllability issues may appear. Typically, for a
minimum time problem, depending on the choice of the loss control region, the target may not be reachable.
Therefore a natural question concerns the robustness of the reachability of a target under the presence of
a loss control region. We refer to [15] for a similar study in the context of control sampling. From a more
general point of view, one could be interested in finding sufficient conditions on the control system, the target
and the loss control region to ensure the reachability of the target. As a natural first step, one may look for
including loss control regions in the classical Kalman theory about controllability of linear control systems.
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Existence of an optimal control. In this paper note that the existence of a solution to Problem (P)
has not been investigated. From a general point of view, one may be interested in extending the classical
Filippov’s existence theorem [20] to the context of loss control regions (for minimal time problems or more
general Bolza optimal control problems). We believe that, if one is able to give an upper bound on the
number of times the state visits the loss control region, then existence of an optimal control could be ensured
under standard hypotheses (such as compactness of the set of admissible triplets trajectory/control/final
time and convexity of the so-called augmented velocities set).

Pontryagin maximum principle. Proposition 2.2 provides first-order necessary optimality conditions in
a Pontryagin form for a general minimum time problem including a loss control region, but under strong
hypotheses (see Remark 2.3). This result was sufficient to investigate Problem (P) in Section 3. In future
works, we shall extend Proposition 2.2 to a more general setting. First we want to cover the case of a
general Bolza optimal control problem including mixed initial-final state constraints. Second, the transverse
assumption (A) does not hold in general. Therefore we want to extend Proposition 2.2 under a weaker
transverse assumption (involving only the optimal pair (x⋆, u⋆) for example). This could be done by using an
augmentation technique as in the proof of Proposition 2.2. It would serve to solve more involved application
models involving loss control regions, from a theoretical approach as well as by using numerical tools as
explained below.

Numerical methods. There are two predominant kinds of numerical methods in classical optimal control
theory. In one hand, direct numerical methods consist in a full discretization of the optimal control problem
which results into a constrained finite-dimensional optimization problem that can be solved using standard
numerical optimization algorithms. On the other hand, indirect numerical methods consist in the numerical
solving by a shooting method of the boundary value problem satisfied by the pair state/costate given by
the Pontryagin maximum principle. We emphasize that neither method is inherently better to the other.
For a detailed discussion on the advantages and drawbacks of each method, we refer to [28, pp. 178-179].
A challenge to solve application problems involving loss control regions would be to extend direct/indirect
numerical methods to that context. The main focus would be the possibility to constrain the control to
be constant without knowing in advance when and how many times the corresponding state visits the loss
control region. Furthermore note that the extension of indirect numerical methods is anyway conditioned in
a first place by the extension of the Pontryagin maximum principle mentioned above.

Some insights into the HJB equation. In the literature, it is well known [3, 16, 27] how to define
the Hamilton-Jacobi-Bellman (HJB) equation associated with the classical Problem (CP). As well, the
characterization of its value function V as the unique solution (in a certain sense) to the HJB equation is also
well known. In contrast, when considering a loss control region, it is not clear how to define a HJB equation
associated with Problem (P) and also if the corresponding value function W is a solution (in a certain sense)
to this extended HJB equation. The aim of this paragraph is to give an insight into this question. In the
sequel, in order to ease the notations, we write x in place of x0 for the initial condition. Recall that the value
function V associated with Problem (CP) is given by

V (x) =

 2

√
x2
2

2 + x1 + x2 if x ∈ Ω1,

2

√
x2
2

2 − x1 − x2 if x ∈ Ω0,

and that it is continuous and C1-piecewise. Moreover, setting H : R2 × R × R2 → R the corresponding
Hamiltonian defined by H(x, u, p) := p1x2 + p2u for all (x, u, p) ∈ R2 × R× R2 → R, the value function V
can be characterized as the unique continuous and C1-piecewise solution to the HJB equation

1 + min
u∈[−1,1]

H(x, u,∇V (x)) = 0, x ∈ Ω1 ∪ Ω0,

that can be rewritten as

1 + ∂1V (x1, x2)x2 − |∂2V (x1, x2)| = 0, x ∈ Ω1 ∪ Ω0. (HJBCP)
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Going back to our setting, one can show (from simple computations and from the results obtained in the
proof of Theorem 3.1) that the value function W associated with Problem (P) is continuous, C1-piecewise
and that it fulfills the equalities

1 + ∂1W (x1, x2)x2 − |∂2W (x1, x2)| = 0, if x ∈ Ω1,
1 + ∂1W (x1, x2)x2 + ∂2W (x1, x2)µ

⋆(x) = 0, if x ∈ Ω2 ∪ Ω3 ∪ Ω4 ∪ Ω5 ∪ Ω6,
(HJBP)

where µ⋆(x) is given in Theorem 3.1 for x ∈ Ω2 ∪ Ω3 ∪ Ω4 and µ⋆(x) = 1 for x ∈ Ω5 ∪ Ω6. Note that both
HJB equations (HJBCP) and (HJBP) are the same in Ω1 (since Problems (CP) and (P) coincide for initial
conditions in Ω1). On the contrary, when x /∈ Ω1, note that the term minu∈[−1,1] H(x, u,∇V (x)) in (HJBCP)
is replaced by H(x, µ⋆(x),∇V (x)) in (HJBP).

Future works should investigate how to properly define a HJB equation when considering an optimal
control problem involving a loss control region, as well as a characterization of the value function as the unique
solution (in a certain sense) to this extended HJB equation. To this aim, a possible way could be to consider
an augmented technique (as in the proof of Proposition 2.2), to apply the classical methodology [4, 22, 24] to
the augmented system and try to the reverse the augmentation procedure.

A Proof of Proposition 2.2
In this appendix we prove Proposition 2.2 by separating the two cases xtarg /∈ ∂X and xtarg ∈ ∂X. In the
sequel, when (Z, dZ) is a metric set, we denote by BZ(z, r) the standard closed ball of Z centered at z ∈ Z
and of radius r > 0.

A.1 The case xtarg /∈ ∂X.
Assume that xtarg /∈ ∂X and let (x⋆, u⋆, T ⋆) be a solution to Problem (GP), associated with a partition T⋆ =
{τ⋆k}k=0,...,N of the interval [0, T ⋆].

Step 1: augmentation proceduce. Define (y⋆, v⋆, λ⋆) ∈ AC([0, 1],RnN )× L∞([0, 1],RmN1)× RmN2 by
y⋆k(s) := x⋆(τ⋆k−1 + (τ⋆k − τ⋆k−1)s) for all s ∈ [0, 1] and all k ∈ {1, . . . , N},
v⋆k(s) := u⋆(τ⋆k−1 + (τ⋆k − τ⋆k−1)s) for all s ∈ [0, 1] and all k ∈ I⋆

1 ,
λ⋆
k := u⋆

k for all k ∈ I⋆
2 ,

where N1 := card(I⋆
1 ) and N2 := card(I⋆

2 ). It is clear that the quadruplet (y⋆, v⋆, λ⋆,T⋆) is admissible for
the classical (that is, without loss control region) augmented optimal control problem involving parameters
and endpoint constraints given by

minimize τN ,

subject to (y, v, λ,T) ∈ AC([0, 1],RnN )× L∞([0, 1],RmN1)× RmN2 × RN+1,

ẏ(s) = g(y(s), v(s), λ,T), a.e. s ∈ [0, 1],

v(s) ∈ UN1 , a.e. s ∈ [0, 1],

(λ,T) ∈ UN2 ×∆,

y1(0) = x0, yN (1) = xtarg,

yk(0) = yk−1(1), for all k ∈ {2, . . . , N},
F (yk(1)) = 0, for all k ∈ {1, . . . , N − 1},

(AP)

where g = (gk)k=1,...,N : RnN × RmN1 × RmN2 × RN+1 → RnN is defined by

gk(y, v, λ,T) :=
{

(τk − τk−1)f(yk, vk) if k ∈ I⋆
1 ,

(τk − τk−1)f(yk, λk) if k ∈ I⋆
2 ,

for all (y, v, λ,T) ∈ RnN ×RmN1 ×RmN2 ×RN+1 and all k ∈ {1, . . . , N}, and where ∆ := {T = {τk}k=0,...,N ∈
RN+1 | 0 = τ0 ≤ τ1 ≤ . . . ≤ τN−1 ≤ τN} is a nonempty closed convex subset of RN+1.
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Step 2: the quadruplet (y⋆, v⋆, λ⋆,T⋆) is a local solution to Problem (AP). Let us prove that there
exists η > 0 such that τ⋆N ≤ τN for any quadruplet (y, v, λ,T) admissible for Problem (AP) satisfying

∥y − y⋆∥C + ∥v − v⋆∥L1 + ∥λ− λ⋆∥RnN1 + ∥T− T⋆∥RN+1 ≤ η.

To this aim let η > 0 and (y, v, λ,T) be an admissible triplet admissible for Problem (AP) satisfying the
above inequality. In the sequel we explain how to reduce η > 0 (step by step, and independently of the
quadruplet (y, v, λ,T)) to obtain that τ⋆N ≤ τN .

(i) First one has to reduce η > 0 so that 0 = τ0 < τ1 < . . . < τN−1 < τN and then one can correctly
define (x, u, T ) ∈ AC([0, T ],Rn)× L∞([0, T ],Rm)× (0,+∞) by

x(t) := yk

(
t− τk−1

τk − τk−1

)
for all t ∈ [τk−1, τk] and all k ∈ {1, . . . , N},

and

u(t) :=

 vk

(
t− τk−1

τk − τk−1

)
for a.e. t ∈ (τk−1, τk) if k ∈ I⋆

1 ,

λk for a.e. t ∈ (τk−1, τk) if k ∈ I⋆
2 ,

for all k ∈ {1, . . . , N},

and T := τN . To obtain that τ⋆N ≤ τN , which is equivalent to T ⋆ ≤ T , it is sufficient to prove that the
triplet (x, u, T ) is admissible for Problem (GP). This is our aim in the next step.

(ii) It is clear that the triplet (x, u, T ) satisfies ẋ(t) = f(x(t), u(t)) and u(t) ∈ U for almost every t ∈ [0, T ],
and x(0) = x0 and x(T ) = xtarg. Therefore, since u is constant over the intervals (τk−1, τk) when k ∈ I⋆

2 ,
it only remains to prove that x is with values in X1 (resp. in X2) over the intervals (τk−1, τk) when k ∈ I⋆

1

(resp. when k ∈ I⋆
2 ). This is possible by reducing η > 0 and by using the transverse assumption (A),

the compactness of U, the fact that xtarg /∈ ∂X and the openness of the regions X1 and X2.

Step 3: application of the classical Pontryagin maximum principle. Consider the Hamiltonian H̃ :
RnN × RmN1 × RmN2 × RN+1 × RnN → R associated with Problem (AP) defined by

H̃(y, v, λ,T, q) := ⟨q, g(y, v, λ,T)⟩RnN

=
∑
k∈I⋆

1

(τk − τk−1)⟨qk, f(yk, vk)⟩Rn +
∑
k∈I⋆

2

(τk − τk−1)⟨qk, f(yk, λk)⟩Rn ,

for all (y, v, λ,T, q) ∈ RnN ×RmN1 ×RmN2 ×RN+1×RnN . From the classical Pontryagin maximum principle
applied to the quadruplet (y⋆, v⋆, λ⋆,T⋆), there exists a nontrivial pair (q, q0) ∈ AC([0, 1],RnN )× R+ such
that:

(i) It holds that −q̇(s) = ∇yH̃(y⋆(s), v⋆(s), λ⋆,T⋆, q(s)) for almost every s ∈ [0, 1].

(ii) It holds that v⋆(s) ∈ argmaxω∈UN1 H̃(y⋆(s), ω, λ⋆,T⋆, q(s)) for almost every s ∈ [0, 1].

(iii) It holds that ∫ 1

0

∇λH̃(y⋆(s), v⋆(s), λ⋆,T⋆, q(s)) ds ∈ NUN2 [λ
⋆].

(iv) It holds that qk+1(0)− qk(1) = νk∇F (y⋆k(1)) for some νk ∈ R for all k ∈ {1, . . . , N − 1}.

(v) It holds that ∫ 1

0

∇TH̃(y⋆(s), v⋆(s), λ⋆,T⋆, q(s)) ds ∈ q0e+N∆[T⋆],

where e = (0, . . . , 0, 1)⊤ ∈ RN+1.
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Step 4: construction of the nontrivial pair (p, p0). Define p0 := q0 ∈ R+ and p ∈ PACT⋆([0, T ⋆],Rn)
by p(0) := q1(0), p(T ⋆) := qN (1) and by

p(t) := qk

(
t− τ⋆k−1

τ⋆k − τ⋆k−1

)
for all t ∈ (τ⋆k−1, τ

⋆
k ) and all k ∈ {1, . . . , N}.

From nontriviality of the pair (q, q0), it is clear that the pair (p, p0) is also nontrivial. Then the first four
above items allows to obtain the first four items of Proposition 2.2. At this step, one can obtain that, for
all k ∈ {1, . . . , N}, there exists ck ∈ R such that H(x⋆(t), u⋆(t), p(t)) = ck for almost every t ∈ (τ⋆k−1, τ

⋆
k ).

Indeed, the case k ∈ I⋆
1 is obtained from the Hamiltonian maximization condition over (τ⋆k−1, τ

⋆
k ) and [19,

Theorem 2.6.3], and the case k ∈ I⋆
2 is easily obtained from the constancy of u⋆ and the Hamiltonian system

over (τ⋆k−1, τ
⋆
k ).

Finally the above fifth item allows to obtain, in one hand, that ck = ck−1 for all k ∈ {2, . . . , N} and, in
the other hand, that cN = q0, which concludes the proof of Proposition 2.2 in the case xtarg /∈ ∂X.

A.2 The case xtarg ∈ ∂X

Assume that xtarg ∈ ∂X and let (x⋆, u⋆, T ⋆) be a solution to Problem (GP), associated with a partition T⋆ =
{τ⋆k}k=0,...,N of the interval [0, T ⋆]. For any ε > 0 small enough (precisely 0 < ε < T ⋆ − τ⋆N−1), we denote
by Tε := T ⋆ − ε and, from a standard dynamical programming argument, one can easily see that (x⋆, u⋆, Tε)
is a solution to Problem (GP) when replacing xtarg by xtarg

ε := x⋆(Tε) /∈ ∂X. Therefore one can follow exactly
the proof of Proposition 2.2 detailed in the previous subsection. For any ε > 0 small enough, it provides the
existence of a nontrivial pair (qε, q0ε) ∈ AC([0, 1],RnN )×R+ satisfying the above five items (just replacing T ⋆

by Tε everywhere). Using the fact that the nontrivial pair (qε, q
0
ε) can be renormalized (since it is defined up

to a positive multiplicative constant), compactness arguments and the fact that Tε → T ⋆ when ε → 0, one
can obtain the existence of a nontrivial pair (q, q0) ∈ AC([0, 1],RnN )× R+ satisfying the above five items
(with T ⋆, and not with Tε). Finally the proof of Proposition 2.2 is concluded in a similar way than Step 4 of
the previous subsection.
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