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Minimum time synthesis for the double integrator
including a loss control region

Térence Bayen∗ Anas Bouali† Löıc Bourdin‡

December 6, 2022

Abstract

In this paper, we address the minimum time problem to reach the origin for the double integrator, and,
in addition to the classical version of this problem, we assume the existence of a subset ⌦ of the state space
such that the control should remain constant as long as the state remains in ⌦. Such a set corresponds
to a loss-control region, and, in particular, it prevents switching points to occur in ⌦. This framework
entails the use of a spatially hybrid maximum principle including parameters in order to characterize
optimal trajectories. The purpose of this paper is to highlight the use of this principle in this setting. We
provide an exact analytical description of optimal trajectories using the necessary optimality conditions
that involve a jump on the covector at the interface between ⌦ and its complement, and the averaged
gradient condition for determining an optimal constant control value in ⌦.

1 Introduction

Geometric control theory is developed since the sixties and it now plays a central role in optimal control
theory. Based on the Pontryagin Maximum Principle [21] and di↵erential geometry, it provides mathematical
tools in order to determine optimal controls and to synthesize optimal feedback controls related to a given
cost functional [1, 10, 11, 22]. For minimum time problems to reach the origin, several well-known examples
in the literature illustrate various phenomena arising in this framework. We can cite for instance the double
integrator problem for which every optimal control has zero or one switching point, the harmonic oscillator for
which every optimal control has a finite number of switching points (depending on the initial condition), and
Fuller’s problem which provides the most standard example of an optimal synthesis that exhibits an infinite
number of switching points over a finite time interval.

The objective of this paper is to study a variant of the double integrator problem in which the control
should be constant as long as the corresponding state belongs to a given subset ⌦ ⇢ R2 of the state space
called a loss-control region (or non-control region). This problem can be written as follows:

minimize T,

subject to ẍ(t) = u(t), a.e. t 2 [0, T ],

(x(0), ẋ(0)) = x0 2 R2 and (x(T ), ẋ(T )) = (0, 0),

u(t) 2 [�1, 1] a.e. t 2 [0, T ], u is constant in ⌦, and T 2 R+,

(1.1)

where the initial condition is fixed. The consideration of optimal control problems involving non-control regions
(i.e., subsets of the state space in which the control is “frozen” to a value to be determined as long as the state
belongs to such a set) is motivated by various applications. For instance, in the context of aerospace, this
question arises in order to take into account the shadow e↵ect in the the low-thrust transfer problem [18, 20].
Other examples arise when considering optimal control problems in the setting of viability theory [2]. In this
context, in order to reduce operating costs, constant controls can be applied whenever the system belongs to

∗Avignon Université, Laboratoire de Mathéematiques d’Avignon (EA 2151) F-84018 terence.bayen@univ-avignon.fr
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a safety zone (typically, the viability kernel), see, e.g., time crisis problems [8]. Our choice to focus in this
paper on the double integrator is twofold. First, we shall see that, depending on the choice of ⌦, the analysis
of optimal trajectories can be much more involved than in the usual case. Second, as far as we know, problems
like (1.1) have not been treated in the literature. So, the study that we propose in this paper could serve in
the community of optimal control in order to highlight the construction of optimal paths in this framework
(see, e.g., [17] in which the double integrator problem is also investigated but with a pathwise constraint).

At this step, we can observe that (1.1) depends on the choice of the set ⌦. For instance, if the optimal
feedback for the classical double integrator problem1 is constant in ⌦, then, both problems with ⌦ (i.e.,
Problem (1.1)) and without ⌦ are obviously equivalent. In this paper, we shall be interested in studying
(1.1) in the case where ⌦ is a half space. Remind that the switching locus for the classical double integrator
problem is the union of two half parabola, hence, such a non-control set necessary intersects this locus leading
necessarily to a di↵erent analysis than for the classical double integrator problem. Throughout this paper, we
shall study (1.1) for this subset ⌦, but, other similar choices for the non-control set could be possible leading
to a similar analysis. Our objective is also to solve (1.1) for every initial condition for a given choice of ⌦
leading that way to an optimal synthesis in this setting.

Our methodology to solve (1.1) is to follow the approach of [6] which provides the necessary optimality
conditions (in Pontryagin’s form) for optimal control problems involving loss-control regions. The main result
of [6] is an averaged gradient condition2 to characterize optimal constant values of the control (whenever
the state belongs to a loss control region) as well as the (usual) Hamiltonian maximization condition in the
complement of those regions. It is worth mentioning that the framework of [6] is a particular instance of
[5] in which a spatially3 hybrid framework with regionally constant parameters is considered, but without
terminal constraints. Another important feature mentioned in [6] is that the system may visit more than once
a given stratum, but, the constant value of the control may change. Since (1.1) involves terminal constraints
on the state and [5, 6] do not consider this issue, we shall rather use the necessary conditions developed in
[7] which considers regionally hybrid optimal control problems including initial-terminal constraints and a
constant parameter. The use of [7] in place of [5] will be made possible by proving an important property
related to optimal solutions of (1.1), namely that every optimal trajectory of (1.1) visits at most once the
non-control set ⌦. The paper is structured as follows.

• In Section 2, we consider in a general framework a Mayer optimal control problem including a terminal
constraint and a loss-control region. We provide the necessary optimality conditions for an optimal
solution that visits at most once time the set ⌦. This result will be used in the next section.

• In Section 3, we provide an exact analytical solution to (1.1) when ⌦ is a half-plane (Theorem 3.2). Doing
so, we first prove that an optimal solution visits at most once the set ⌦. Next, the optimal synthesis is
obtained analytically by application of the hybrid maximum principle (HMP) with parameter and the
application of the averaged gradient condition as in [7]. We end-up by giving some remarks about the
Hamilton-Jacobi-Bellman Equation (HJB) in this setting.

Finally, we would like to point out that, for more general controlled systems, if an optimal path visits more
than once the non-control set, then, we do not know which principle (in Pontryagin’s form) to apply in order to
write the necessary optimality conditions. Indeed, this would require the use of a spatially hybrid maximum
principle with regionally constant parameter (as in [7, 6]) together with terminal constraints, which is not
available in the literature to our best knowledge.

2 A general framework

In this section, we consider a general Mayer optimal control problem including a loss control region ⌦ and a
terminal constraint set. Based on [7], we provide first order necessary optimality conditions for an optimal
solution visiting at most once the non-control region ⌦.

Given d 2 N and r 2 N [ {+1}, Lr(I,Rd) stands for the Lebesgue space of r-integrable functions defined
on I with values in Rd, endowed with its usual norm k · kLr and AC(I,Rd) denotes the space of absolutely

1i.e., without considering u constant whenever the state is in ⌦.
2This necessary condition occurs in optimal control problems involving a constant parameter [9, 12, 14].
3In contrast with switched systems, see, e.g., [16], a change of dynamics only occurs regionally, i.e., whenever the state of the

system goes from a region to another one.
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continuous functions. Also, Int(A) denotes the interior of a subset A ⇢ Rk, @A its boundary, Ā its closure,
A

c := Rn\A its complement, and h·, ·iRk stands for the inner product in Rk where k 2 N⇤. The (convex)
normal cone to a convex subset A ⇢ Rk is defined as NA(x) := {⇠ 2 Rk ; h⇠, y � xiRk  0 ; 8y 2 A} for x 2 A.
Let m,n, d 2 N⇤, f : Rn ⇥ Rm ! Rn of class C1, g : Rn ! Rd of class C1, and � : R ⇥ Rn ! R of class C1.
We consider the optimal control problem:

minimize �(T, x(T )),

subject to (x, u, T ) 2 AC([0, T ],Rn)⇥ L
1([0, T ],Rn)⇥ R+,

ẋ(t) = f(x(t), u(t)) a.e. t 2 [0, T ],

x(0) = x0 and g(x(T )) 2 S,

u(t) 2 U a.e. t 2 [0, T ] and u is constant in ⌦,

(2.1)

where the initial condition x0 2 Rn is fixed, U is a non-empty closed convex subset of Rm, S is a non-empty
closed convex subset of Rd with a boundary of class C1, and the so-called non-control set ⌦ ⇢ Rn is open with
a boundary of class C

1. Let us insist on the fact that the constraint on the control u means that t 7! u(t)
should remain constant (to some unknown value to be determined) as long as x(t) 2 ⌦. If for instance,
x(t) 2 ⌦ over (⌧1, ⌧2) [ (⌧3, ⌧4) (with ⌧1 < ⌧2 < ⌧3 < ⌧4) and x(t) /2 ⌦ over [0, T ]\((⌧1, ⌧2) [ (⌧3, ⌧4)), this
means that for a.e. t 2 (⌧1, ⌧2), resp., t 2 (⌧3, ⌧4), one has u(t) = ū1, resp., u(t) = ū2 for some ū1, ū2 2 U (not
necessarily equal). In what follows, we also do not discuss the existence of an optimal control of (2.1) which
is not our purpose here (we shall simply assume the existence of an optimal control). By admissible solution,
we mean a triplet (x, u, T ) 2 AC([0, T ],Rn) ⇥ L

1([0, T ],Rn) ⇥ R+ satisfying the constraints of Problem 2.1.
Before stating the HMP in our setting, let us introduce the notion of transverse crossing time.

Definition 2.1. Given an admissible solution (x, u, T ) of (2.1), we say that ti 2 (0, T ) is a transverse crossing
time if there is ↵ > 0 such that for every time t 2 [ti�↵, ti), resp. (ti, ti+↵], one has x(t) 2 ⌦, resp. x(t) 2 ⌦c,
if u is left and right continuous at t = ti (with values u(t±i )), and if the transverse condition holds true:

⌦
rFi(x(ti)), f(x(ti), u(t

�
i ))

↵
Rn > 0 and

⌦
rFi(x(ti)), f(x(ti), u(t

+
i ))

↵
Rn > 0,

where Fi : Rn ! R is a C
1 mapping describing locally the boundary of ⌦.

Define the Hamiltonian associated with (2.1) as H(x, p, u) := hp, f(x, u)iRn where p 2 Rn.

Theorem 2.1. Let x0 2 Rn\@⌦ and let (x?
, u

?
, T

?) be an optimal solution of (2.1) such that x?(T ?) /2 @⌦ and
such that g is submersive at x?(T ?). Suppose that x? has at most two consecutive transverse crossing times
t1, t2 2 (0, T ⇤) respectively from ⌦c into ⌦ and from ⌦ into ⌦c. Then, there is p

0 2 {0, 1} and a piecewise
absolutely continuous function p : [0, T ?] ! Rn with (p0, p(·)) 6= 0 and such that:

• the Hamiltonian system is satisfied:

ẋ
?(t) = rpH(x?(t), p(t), u?(t)) and � ṗ(t) = rxH(x?(t), p(t), u?(t)) a.e. t 2 [0, T ?],

• there is ⇠ 2 NS(g(x?(T ?))) such that the transversality condition holds true:

�p(T ?) = p
0rx�(T

?
, x

?(T ?)) +rg(x?(T ?))>⇠,

• the Hamiltonian condition holds true:

u
?(t) 2 argmax

!2U
H(x?(t), p(t),!) a.e. t 2 (0, T ?)\[t1, t2],

• for i = 1, 2, there is ⌫i 2 R such that p has at most two discontinuity points at t = ti:

p(t+i )� p(t�i ) = ⌫irFi(x
?(ti)), i = 1, 2,

• there is ū 2 U satisfying u
?(t) = ū for a.e. t 2 [t1, t2] together with the inclusion:

Z t2

t1

ruH(x?(t), p(t), ū) dt 2 NU (ū).
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Proof. Since we only consider optimal solutions of (2.1) visiting at most once the set ⌦, we can transform the
controlled dynamics in (2.1) in n + 1 space variables (x, ū) adding the equation ˙̄u = 0 over the time period.
This transformation yields the controlled system in Rn+1

(
ẋ(t) = f̃(x(t), u(t), ū(t)),

˙̄u(t) = 0,
a.e. t 2 [0, T ], (2.2)

where the hybrid dynamics f̃ : Rn ⇥ Rm ⇥ Rm ! Rn is defined as

f̃(x, u, ū) :=

����
f(x, u) if x 2 ⌦c

,

f(x, ū) if x 2 ⌦.

Because ti, i = 1, 2, are transverse crossing times, g is submersive at x?(T ?), and x0, x
?(T ?) /2 @⌦, we are in

a position to apply the regionally HMP ([7, Theorem 3.1]) to Problem (2.1) with the dynamics (2.2) in place
of f . This provides the existence of a piecewise absolutely continuous adjoint vector p as in Theorem 2.1.

Remark 2.1. (i). The scalar ⌫i in the jump of p at t = ti can be explicited using that the Hamiltonian
function t 7! H(x?(t), p(t), u?(t)) is constant a.e. over [0, T ?] (we refer to [7] for this property).

(ii). Theorem 2.1 also covers the case where x
? has zero or a single (transverse) crossing time.

(iii). It may be restrictive to suppose that an optimal path has at most two crossing times, however, depending
on the example under consideration, this property can be verified as we do for the double integrator (see Section
3). Of course, this property depends on the dynamics and on the set ⌦.

(iv). If an optimal path visits more than once the set ⌦, the necessary optimality conditions would require the
use of a HMP including a regionally constant parameter as in [5]. Indeed, in that case, an optimal path may
enter the set ⌦ over di↵erent sub-intervals of [0, T ?] with di↵erent values for the constant control. Observe
that in [5], the necessary optimality conditions do not involve terminal conditions in contrast with the HMP
in [7] (which does not cover the case of regionally constant parameters). Hence, to the best of our knowledge,
it is not clear how to write necessary optimality conditions for optimal control problems such as (2.1) with a
nominal trajectory visiting more than two times the set ⌦. However, it is to expect that the HMP as in [7] can
be extended to the setting of hybrid optimal control problems including regionally constant parameters using
augmentation techniques as in [5] (see also, e.g., [3]).

3 Construction of the optimal synthesis

3.1 Statement of the problem and preliminary properties

Given some initial condition x
0 := (x0

1, x
0
2) 2 R2, the minimal time control problem governed by the double

integrator can be stated as

minimize T,

subject to ẋ1(t) = x2(t) a.e. t 2 [0, T ],

ẋ2(t) = u(t) a.e. t 2 [0, T ],

(x1(0), x2(0)) = (x0
1, x

0
2) 2 R2 and (x1(T ), x2(T )) = (0, 0),

u(t) 2 [�1, 1] a.e. t 2 [0, T ] and T 2 R+.

(3.1)

As usual, T (or Tu) is the first entry time of an admissible trajectory into the target point and u 2
L
1([0, T ], [�1, 1]). We now recall the minimal time synthesis for (3.1), see Fig. 1. Let � := �� [ �+ where

�� :=
n⇣

� x
2
2

2
, x2

⌘
; x2 � 0

o
; �+ :=

n⇣
x
2
2

2
, x2

⌘
; x2  0

o
,

and let �>, resp. �< be the (strict) epigraph, resp. hypograph of �.
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Theorem 3.1. The minimal time synthesis can be described in feedback form over R2 as follows:

u
†[x1, x2] :=

⇢
�1 if x 2 �> [ ��,
+1 if x 2 �< [ �+.

(3.2)

The control u†[·] is an optimal feedback for (3.1) and for every initial condition x
0 2 R2, (3.1) has a unique

open loop solution u
†
x0(·) up to a set of zero measure such that u†(t) = u

†[x(t)] for a.e. t 2 [0, Tu† ].

Figure 1: Fig. left: optimal synthesis for the double integrator (Theorem 3.1). In the blue region (including
�+), the feedback equals +1 and in the red region the feedback equals �1 (including ��). Fig. right: plot of
the non-control zone ⌦1 in red.

As a consequence, every optimal control u†
x0(·) either has zero switching point (if x0 2 �) or it has exactly

one switching point on the switching curve �. We now turn to the minimal time control problem involving a
non-control region. Thoughout this section, we consider as non-control set the set ⌦1 defined as

⌦1 := {(x1, x2) 2 R2 ; x1 < 0},

and we denote by ⌦2 := R2\⌦1 its complement, see Fig. 1. The variant of (3.1) we investigate reads as follows:

minimize T,

subject to ẋ1(t) = x2(t) a.e. t 2 [0, T ],

ẋ2(t) = u(t) a.e. t 2 [0, T ],

(x1(0), x2(0)) = (x0
1, x

0
2) 2 R2 and (x1(T ), x2(T )) = (0, 0),

u(t) 2 [�1, 1] a.e. t 2 [0, T ], u is constant in ⌦1, and T 2 R+.

(3.3)

Let us remind that on each (maximal) interval of time where the trajectory belongs to ⌦1, the control u
should remain constant equal to some unknown value to be determined. We do not know in advance these
time intervals and their numbers. Also, there is no need to specify the dynamics on the boundary since
trajectories enter into ⌦1 or into ⌦2 transversally namely because h(1, 0), (x2, u)iR2 = x2 is always non-zero
(except if the trajectory has reached the origin). To prove the existence of an optimal control to (3.3), one
cannot straightforwardly apply Fillipov’s existence Theorem. However, we can adapt this theorem to (3.3)
once we know that every admissible trajectory visiting at least twice ⌦1 is not optimal (see Lemma 3.1). Next,
we denote by v(·), w(·) the value functions (defined over R2) associated respectively with (3.1) and (3.3). Since
every measurable control u(·) with values in [�1, 1] is admissible for (3.1), we have for every x

0 2 R2,

v(x0)  w(x0).

Given x
0 2 R2, we denote by �†x0 the optimal path associated with u

†
x0 , by �?x0 the graph of an optimal solution

of (3.3) associated with an optimal control denoted by u
?
x0(·). In what follows, we denote by B± a bang arc

± (such that over a certain time interval, one has u(t) = +1 or u(t) = �1), and we also denote by P an
arc of trajectory for which there is a maximal time interval [t0, t1] such that x(t) 2 ⌦1 for every t 2 (t0, t1).
The corresponding constant control value is then denoted by � 2 (�1, 1). An important remark about the
dynamics is that the system can enter into ⌦1, resp. ⌦2 only though the semi-axis {x2 < 0}, resp. {x2 > 0}.
We give now an important property related to the number of times ⌦1 is visited by �?x0 .
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Lemma 3.1. For every x
0 2 R2, �?x0 has at most two crossing times respectively from ⌦2 into ⌦1 and from

⌦1 into ⌦2.

Proof. From Theorem 3.1, the result is clear if x0 2 �> [ �. Next, let x0 2 �<. If the origin is reached from
⌦1 with a constant value of the parameter, then, �?x0 has no crossing time and the result is also clear. Now,
suppose that the trajectory x(·) does not reach the origin from the set ⌦1. Then, it necessarily leaves ⌦1

through the positive x2-axis, say at time t1 � 0. Suppose now that the trajectory bypasses the origin and
leaves ⌦2 through the semi-axis {x2 < 0}. By optimality of u†

x(t1)
for (3.1), we have,

w(x0)� t1 > v(x(t1)).

Consider now the trajectory defined as the concatenation of �?x0 |[0,t1] and �
†
x(t1)

. The preceding inequality
shows that its cost is strictly less than the cost of �?x0 . This contradiction ends the proof.

Note that once an optimal trajectory x(·) enters into ⌦2 through the semi-axis {x1 = 0} at some instant
t = t1, then, an optimal control is u†

x(t1)
over the remaining time interval. Observe also that the target point

belongs to the boundary of ⌦1 and that �+ is tangent to the axis {x1 = 0} at the origin. So, in order to
apply Theorem 2.1, it is desirable to reformulate (3.3) with a terminal pay-o↵ and an augmented target set
such that the terminal state does not belong to @⌦1. Doing so, we consider the optimal control problem:

minimize ⌧ � x2(⌧),

subject to ẋ1(t) = x2(t) a.e. t 2 [0, ⌧ ],

ẋ2(t) = u(t) a.e. t 2 [0, ⌧ ],

(x1(0), x2(0)) = (x0
1, x

0
2) 2 R2 and g(x(⌧)) 2 {0}⇥ R�,

u(t) 2 [�1, 1] a.e. t 2 [0, ⌧ ], u is constant in ⌦1, and ⌧ 2 R+,

(3.4)

where g : R2 ! R2 (x1, x2) :=
⇣
x1 � x2

2
2 , x2

⌘
. Observe that x 2 �+ if and only if g(x) 2 S and that g is

submersive everywhere.

Lemma 3.2. Let x0 := (0, x0
2) be an initial condition such that x0

2 > 0. Then, (3.3) and (3.4) are equivalent.

Proof. First, if a point x = (x1, x2) 2 �+, then, the time to reach the origin with u = +1 equals �x2. Now, an
optimal triplet (x†

, u
†
, T

†) of (3.3) defines an admissible path for (3.4). On the other hand, if the restriction
of u† to the interval [0, t2] (where t2 is the first entry time of x† into �+), is not optimal for (3.4), then, there
is a solution (x̃, ũ, ⌧̃) of (3.4) such that x̃2(⌧̃) 2 �+ and such that ⌧̃ � x̃2(⌧̃) < t2�x

†
2(t2) = T

†. This inequality
contradicts the optimality of u† for (3.3), hence, u† is optimal for (3.4) which ends the proof.

Now, problem (3.4) is such that the terminal state does not belong to the interface between ⌦1 and ⌦2.
In addition, g is submersive, so, Theorem 2.1 can be applied. The rest of the analysis is organized as follows.
First, we consider initial conditions in the set �> [ � [ ⌦2 for which classical tools can be applied. Next, we
consider initial conditions in the set ⌦1\�< and we apply the HMP provided by Theorem 2.1 on (3.3) thanks
to Lemma 3.1 and Lemma 3.2.

3.2 Optimal synthesis in �> [ � [ ⌦2

For initial conditions in � [ �>, problems (3.1) and (3.3) are equivalent as shows the next result.

Proposition 3.1. For every x
0 2 �> [ �, an optimal solution to (3.3) is u

†
x0 .

Proof. Take x
0 2 �> \ ⌦1. Then, the path generated by u

†
x0 is admissible for (3.3) since no switching occurs

in ⌦1. It follows that w(x0)  v(x0) and thus w(x0) = v(x0). Hence, u† is optimal. Similarly, for every initial
condition x

0 2 ��, the path generated by u
†
x0 has no switching, thus, we conclude in the same way. Finally,

if x0 2 ⌦2 is such that x0 2 �> [ �, then the path generated by u
†
x0 is also admissible for (3.3) which implies

w(x0)  v(x0), whence the result in this case.
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For initial conditions in �< such that x0
1 � 0, the synthesis is as follows.

Proposition 3.2. If x0 2 �< is such that x
0
1 � 0, then, the trajectory �?x0 is of type B+B�B+. The two

switching points occur on the semi-axis {x2 > 0} and on �+.

Proof. Step 1: consider an initial x0 = (0, x0
2) such that x

0
2 < 0. From Lemma 3.1, the trajectory �?x0 is of

type PB�B+ and it reaches the semi-axis {x2 > 0} at some time t = t1 from which the optimal control is
u = u

†
x(t1)

. Thus, the trajectory �?x0 is as follows : the control remains constant over [0, t1] (equal to some

positive value � > 0), then the control is u(t) = �1 until the trajectory reaches �+ at some time t = t2,
and finally the origin is reached at some terminal time ⌧(x0

2,�). Simple computations give x2(t1) = �x
0
2,

t1 = � 2x0
2

� , x2(t2) = �x2(t1)p
2

, t2 � t1 = �x2(t2), and ⌧(x0
2,�)� t2 = �x2(t2). This gives

⌧(x0
2,�) = �x

0
2


1 +

p
2 +

2

�

�
. (3.5)

Clarly � 7! ⌧(x0
2,�) is minimal over (0, 1] for � = 1 which proves the desired result.

Step 2: consider an initial x0 = (x0
1, x

0
2) 2 �< such that x

0
1 > 0 and let (x(·), u(·)) be an admissible pair for

(3.3) starting from x
0. Since the origin cannot be reached from x

0 while remaining in the set ⌦2, the trajectory
necessary enters into ⌦1 (at some point located on the semi-axis {x2 < 0}). Next, we denote by ✓u the first
entry time into ⌦1:

✓u := min{t > 0 ; x1(t) = 0},
so that x(✓u) belongs to the semi-axis {x2 < 0}. When entering into ⌦1, the control remains constant to some
unknown value � until the trajectory exits ⌦1 at some time t = t2 on the semi-axis {x2 > 0}. We know from
step 1 that for t > t2, the trajectory is necessarily of type B�B+ (the switching occuring on �+). Using (3.5),
the terminal time associated with this trajectory is ✓u � ⌧(xu(✓u), 1) (note that we necessarily have � = 1
from the monotonicity of ⌧ w.r.t. �, see (3.5)). It thus remains to determine the value of an optimal control
u over [0, ✓u]. Taking into account the preceding property, (3.3) is equivalent to the optimal control problem:

inf
u(·)2[�1,1]

 (✓u, x(✓u)) := ✓u � x2(✓u)(3 +
p
2) s.t. x1(✓u) = 0.

We are in a position to apply the classical PMP4 to this problem [23]. If u is an optimal control, there is
✓u � 0, a covector p : [0, ✓u] ! R2, and p0  0 such that (p(·), p0) 6= 0 and

⇢
ṗ1 = 0,
ṗ2 = �p1,

In addition, the Hamiltonian condition implies that u(t) = sign(p2(t)) for a.e. t 2 [0, ✓u] (thanks to the non-
triviality condition, we can easily verify that singular arcs are not possible). Since the terminal time is free,
we have the terminal condition (on the maximized Hamitonian):

p1x2(✓u) + |p2(✓u)| = �p0rt (✓u, x(✓u)) = �p0,

Finally, the following transversality condition is fulfilled : there exists � 2 R such that

p(✓u)� p0rx (✓u, x(✓u)) = �(1, 0)>.

We deduce that p1 = � and p2(✓u) = �p0(3 +
p
2), thus:

p1 =
�p0 � |p2(✓u)|

x2(✓u)
=

�p0 + p0(3 +
p
2)

x2(✓u)
=

p
2(1 +

p
2)p0

x2(✓u)
 0.

We can conclude that p2 is given by:

p2(t) = �p1(t� ✓u) + p2(✓u) = �
p
2(1 +

p
2)p0

x2(✓u)
(t� ✓u)� p0(3 +

p
2).

Because x2(✓u) < 0, we deduce that p2 > 0 over [0, ✓u] which allows to conclude that u(t) = 1 a.e. over [0, ✓u]
as wanted. This ends the proof.

4Pontryagin Maximum Principle.
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Remark 3.1. For x
0 as in Proposition 3.1, our approach shows that it is not necessary to apply the HMP at

this step. Observe also that the minimal time synthesis possesses similarities with the one for (3.3), but, since
no switching of the control may occur in ⌦1, the optimal trajectory x(·) must re-enter into ⌦2 at some time
t = t1 from which the optimal control is u

†
x(t1)

. Another interesting point is that the minimal time problem to

reach the semi-axis {x2 < 0} consists in taking u(t) = �1 (this easily follows from the PMP). So, for these
initial conditions, the solution to (3.3) does not consist in reaching ⌦1 in minimal time.

3.3 Optimal synthesis in ⌦1 \ �<

We now turn to initial conditions in the set ⌦1\{x1 < 0}. This case requires a careful analysis. In particular,
we will use the averaged gradient condition and the jump of the covector to determine for every initial condition
an optimal constant value of the control (while the trajectory remains in ⌦1) for each initial condition. Let
us introduce a number

�x0 :=
(x0

2)
2

2x0
1

,

whenever x0
1 6= 0. We start by giving the possible structure of optimal paths.

Lemma 3.3. (i) If x0 2 �< is such that x0
1 < 0 and x

0
2 > 0, then, �?x0 is of type P (and the control equals

�x0) or of type PB�B+ (and u
?
x0(t) = u

†
x(t1)

(t) for t � t1 where t1 is the entry time of �?x0 into ⌦2).

(ii) If x0 2 �< is such that x0
1 < 0 and x

0
2  0, (i) holds true except that only the structure PB�B+ is possible.

Proof. Let x
0 2 �< be such that x

0
1 < 0. If �?x0 reaches the origin with a constant control value �, then,

we necessarily have � = �x0 and x
0
2 > 0. Otherwise, the control should remain constant until the trajectory

leaves ⌦1 through the semi-axis {x2 > 0} at some time t = t1. Since the trajectory reaches the origin without
leaving ⌦2 (Lemma 3.1), the optimal control from x(t1) is u = u

†
x(t1)

until reaching the origin.

In the case where the trajectory enters into ⌦2 before reaching the origin, we must determine the constant
control value for every initial condition in ⌦1. This is the purpose of the next proposition.. Remind that for
x
0
1 < 0, then �x0 2 (�1, 0] and that �x0 = �1 if and only if x0 2 ��. Also, we set c0 :=

p
2� 1

Lemma 3.4. Let x
0 2 ⌦1 \ �<. If �?x0 is of type PB�B+, then the constant control value � satisfies � 2

{0,�+x0 ,�
�
x0 , 1} where

�
±
x0 :=

p
c0

⇣p
c0 ± 2

p
��x0)

⌘
. (3.6)

The terminal time Tx0(�) of an extremal of type P or PB�B+ is

x
0
2 > 0 )

8
<

:

Tx0(�) = x
0
2

h�
1 +

p
2 + 1

�

�q
1� �

�x0
� 1

�

i
for � 2 {�x0 ,�

±
x0 , 1},

Tx0(0) = x
0
2

h
1 +

p
2� 1

2�x0

i
for � = 0,

x
0
2 = 0 ) Tx0(�) =

�
1 +

p
2 + 1

�

�
(
p

�2�x0
1 � 1

� ) for � 2 {
p
2� 1, 1}

x
0
2 < 0 ) Tx0(�) = �x

0
2

h�
1 +

p
2 + 1

�

�q
1� �

�x0
� 1

�

i
for � 2 {�±x0 , 1}

(3.7)

Proof. Observe first that for every x
0 2 ⌦1 \ �<, the control �1 is never admissible (the corresponding path

never reaches ⌦2 or the origin).
Suppose first that x0

2 > 0 and that � 6= 1. Consider an extremal PB�B+ that switches at some time t = t1

on the semi-axis {x2 > 0} and on the parabola �+ at some time t2 > t1. We denote by � the constant control
value over [0, t1) and by Tx0(·) the terminal time (as a function of � 2 [�1, 1]). If p is an adjoint vector defined
over [0, Tx0(�)], then, it satisfies the adjoint equation

⇢
ṗ1 = 0,
ṗ2 = �p1.

We know that p2 is continuous at t = t1 whereas p1 is discontinuous, hence, we set p1 := p
�
1 over [0, t1) and

p1 := p
+
1 over (t1, Tx0(�)].

Step 1: Analysis over [0, t1). We set p02 := p2(0). The extremal fulfills the conditions
⇢

ẋ1 = x2

ẋ2 = �
;

⇢
ṗ1 = 0
ṗ2 = �p

�
1

; H = p
�
1 x2 + p2�� 1 = 0 ;

Z t1

0
p2(t) dt = 0,
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where the last condition follows from the averaged gradient condition. Using, this condition, the conservation
of H, x1(t1) = 0, and p2(t) = �p

�
1 t+ p

0
2, we get

p
0
2 =

p
�
1 t1

2
; p�1 =

1

x
0
2 +

�t1
2

; x2(t1) = x
0
2

s

1� �

�x0
; p2(t1) = �p

�
1 t1

2
; t1 =

x
0
2

�

⇣r
1� �

�0
� 1

⌘
.

(Note that the denominator in p
�
1 is non-zero because H = 0).

Step 2: Analysis over (t1, t2). Over this interval, the extremal fulfills u(t) = �1, a.e. t 2 [t1, t2] and

⇢
ẋ1 = x2

ẋ2 = �1
;

⇢
ṗ1 = 0
ṗ2 = �p

+
1

; H = p
+
1 x2 � p2 � 1 = 0,

until the trajectory reaches ��. Using the constancy of H, we obtain:

p
+
1 = p

�
1 +

p2(t1)(1 + �)

x2(t1)
= p

�
1


1� (1 + �)t1

2x2(t1)

�
. (3.8)

Integrating the state equation also gives x1 = �x2
2
2 + x2

2(t1)
2 Since at time t2, the trajectory crosses �+, we

obtain x2
2(t2)
2 = �x2(t2)

2

2 + x2(t1)
2

2 implying that

x2(t2) = �x2(t1)p
2

; t2 � t1 =
⇣
1 +

1p
2

⌘
x2(t1).

Now, t2 is a switching time from B� to B+. Using that p2(t) = �p
+
1 (t� t1) + p2(t1) for t 2 [t1, t2], we get:

p2(t2) = 0 () �p
+
1 (t2 � t1) + p2(t1) = 0

() �p
�
1


1� (1 + �)t1

2x2(t1)

�
(1 +

p
2)p

2
x2(t1)�

p
�
1 t1

2
= 0

() (2x2(t1)� (�+ 1)t1)(1 + 1/
p
2) + t1 = 0

() 2

✓
1 +

1p
2

◆
x2(t1) + t1

⇣
1� (1 + �)(1 + 1/

p
2)
⌘
= 0

() 2

✓
1 +

1p
2

◆
x2(t1)� t1

✓
1p
2
+ �

✓
1 +

1p
2

◆◆
= 0. (3.9)

Finally, replacing x2(t1) and t1 by their expression in terms of � and x
0 yields the equation

✓
�

✓
1 +

1p
2

◆
� 1p

2

◆s

1� �

�x0
+

1p
2
+ �

✓
1 +

1p
2

◆
= 0. (3.10)

Squaring this equation yields a cubic equation for which � = 0 is always a solution. We obtain � = �
±
x0 after

solving the remaining quadratic polynomial.
Step 3: It remains to compute the terminal time. If � 6= 0, the previous computations imply that

t1 =
x
0
2

�

⇣r
1� �

�0
�
⌘

and Tx0(�)� t2 = �x2(t2) =
x2(t1)p

2
.

It follows that Tx0(�) = (t2 � t1) + t1 +
x2(t1)p

2
, therefore we get that

Tx0(�) = (1 +
p
2)x2(t1) + t1 =) Tx0(�) = x

0
2

"✓
1 +

p
2 +

1

�

◆s

1� �

�x0
� 1

�

#
.

which is the desired expression. Note that it is still valid in the case of an extremal of type P for which

� = �x0 . If � = 0, a direct computation shows that Tx0(0) = x
0
2

⇣
1 +

p
2� 1

2�x0

⌘
. This concludes the proof of

the lemma whenever x0
2 > 0.
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Next, we suppose that x0
2 < 0 and that � 6= 1. Note that in this case, we necessarily have � > 0 (in such

a way that the trajectory can enter into ⌦2). Then, we proceed as previously except that the expressions of
x2(t1) and t1 must be replaced by

x2(t1) = �x
0
2

s

1� �

�x0
; t1 =

x2(t1)� x
0
2

�
=

�x
0
2

q
1� �

�x0
� x

0
2

�
.

We can check that � is also a solution to (3.10) which is unchanged. Using the previous expressions of x2(t1)

and t1, the terminal time becomes Tx0(�) = �x
0
2

h�
1 +

p
2 + 1

�

�q
1� �

�x0
+ 1

�

i

Finally, for x0
2 = 0, only � > 0 is possible. If � 6= 1, we find that �+x0 = �

�
x0 =

p
2� 1 replacing x2(t1) and

t1 respectively by
p

�2�x0
1 and

p
�2�x0

1/� in (3.9). The computation of the terminal time is similar as in
the two other cases.

We now examine the possibility for an optimal trajectory to be such that u(t) = +1 in ⌦1.

Lemma 3.5. Given x0 2 ⌦1, if u = 1 is optimal in ⌦1, then, x0 2
�
(x1, x2) 2 R� ⇥ R� ; x2

2 < x1(1�
p
2)
 
.

Proof. It is enough to consider an extremal of type B+B�B+ starting in the set ⌦1 \ �<. Let us denote by
(p�1 , p

0
2) the initial condition of the covector p(·) and by p

+
1 the value of p1 in ⌦2. By similar computations as

in the previous lemma, we get from the constancy of the Hamiltonian p
�
1 = 1�p2(t1)

x2(t1)
and p2(t1) = � (2+

p
2)p

2

(note that this value of p2(t1) does not depend on the initial condition). Now,

Z t1

0
p2(t) dt = t1

✓
1� p

�
1

✓
x
0
2 +

t1

2

◆◆
.

Case 1: x0
2 > 0. In that case, p�1 =

p
2(

p
2+1)

x2(t1)
, t1 = x2(t1)� x

0
2, and x2(t1) = x

0
2

q
1� 1

�x0
which gives

Z t1

0
p2(t) dt < 0.

This contradicts the fact that u = 1 over [0, t1]. Hence, this case is not possible.

Case 2: x0
2 = 0. In that case, p�1 = 1+

p
2p

�x0
1

and x2(t1) = t1 =
p
�2x0

1 which gives

Z t1

0
p2(t) dt = � t1p

2
< 0.

This contradicts the fact that u = 1 over [0, t1]. Hence, this case is also not possible.
Case 3: x0

2 < 0. Consider an optimal trajectory of type B+B�B+. If u = 1 over [0, t1], then,

Z t1

0
p2(t) dt = t1

✓
p
0
2 � p

�
1

t1

2

◆
= t1

✓
1� p

�
1

✓
x
0
2 +

t1

2

◆◆
.

From the constancy of the Hamiltonian we obtain p
�
1 = 1�p2(t1)

x2(t1)
, and using (3.8) we get p2(t1) = � (2+

p
2)p

2
.

This implies that p�1 = 2+
p
2

|x0
2|
q

1� 1
�0

. Therefore, for x0
2 < 0, we find that

Z t1

0
p2(t) dt =

t1

2
q
1� 1

�x0

✓
�
p
2

r
1� 1

�x0
+
p
2 + 2

◆
.

Note that t1
2
q

1� 1
�
x0

> 0 and that �x0 7! �
p
2
q
1� 1

�x0
+

p
2 + 2 is positive over

⇣
�1,

1�
p
2

2

⌘
. Hence, we

deduce that for x0
2 < 0, if u = 1 over [0, t1], then,

Z t1

0
p2(t) dt > 0 () �x0 <

1�
p
2

2
.
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In conclusion, if u = 1 in ⌦1, then, one has x0 2 {(x1, x2) 2 R� ⇥R� ; x2
2 < x1(1�

p
2)} (because for x0

2 < 0,

the inequality �x0 <
1�

p
2

2 is equivalent to x
2
2 < x1(1�

p
2)). This ends the proof.

To conclude our study, we have to determine for every initial condition in ⌦1 \ �< which constant control
value is optimal. Doing so, let us introduce the sets5

⌦d
1 :=

n
(x1, x2) 2 R� ⇥ R+ ; �

p
2+1
2 x

2
2  x1 < � 1

2x
2
2

o
,

⌦�
1 :=

n
(x1, x2) 2 R� ⇥ R+ ; x1 < � (

p
2+1)x2

2
2

o
,

⌦+
1 :=

n
(x1, x2) 2 R� ⇥ R� ; x1  �(

p
2 + 1)x2

2

o
,

and we also set ⌦r
1 := (⌦1 \ �<)\(⌦d

1 [ ⌦+
1 [ ⌦�

1 ).

Proposition 3.3. Let x0 2 �< \ ⌦1 and let � be the optimal constant control value in ⌦1. Then, one has:

x
0 2 ⌦d

1 ) � = �x0 ,

x
0 2 ⌦±

1 ) � = �
±
x0 ,

x
0 2 ⌦r

1 ) � = 1.

Proof. Given some initial condition x
0 2 �<\⌦1, we denote by � the constant control value until the trajectory

exits ⌦1 or enters into the target point. Note that � = �1 is always non-admissible.
Case 1: Suppose that x

0
2 > 0. Using Lemma 3.4, � is necessarily such that � 2 {0,�±x0 ,�x0 , 1}. The value

� = 1 can be removed from Lemma 3.5.
(i) Suppose that �x0 2 (�1, 1�

p
2). By studying �x0 7! �

+
x0 , we obtain that �+x0 is strictly greater than one

over [�1, 1�
p
2) so that � necessary belongs to {0,��x0 ,�x0}. By comparison of the one real variable functions

�x0 7! Tx0(�x0), �x0 7! Tx0(0), and �x0 7! Tx0(��x0), we obtain the inequality

Tx0(�x0)  Tx0(��x0) < Tx0(0),

for every �x0 2 (�1, 1�
p
2]. The left inequality above is strict only over (�1, 1�

p
2) because the mapping

�x0 7! �
�
x0 � �x0 vanishes for �x0 = 1 �

p
2. Now, x0 2 ⌦d

1 if and only if �x0 2 (�1, 1 �
p
2). It follows that

� = �x0 in ⌦d
1 as wanted.

(ii) Suppose that �x0 2 [1�
p
2, 1�

p
2

2 ) which amounts to saying that x0 2 ⌦�
1 is such that x0

1 � � (x0
2)

2

p
2�1

. As

in (i), one has �+x0 > 1 in [1�
p
2, 1�

p
2

2 ) so that we necessarily have � 2 {0,�x0 ,�
�
x0}. We also verify that

Tx0(��x0)  Tx0(�x0) < Tx0(0),

for every �x0 2 (1�
p
2, 1�

p
2

2 ). As previously, the left inequality above is strict only over (1�
p
2, 1�

p
2

2 ). It

follows that � = �
�
x0 for those initial conditions of ⌦i

1 that are such that x0
1 � � (x0

2)
2

p
2�1

.

(iii) Finally, let us take �x0 2 [ 1�
p
2

2 , 0) which amounts to saying that x0 2 ⌦�
1 is such that x0

1  � (x0
2)

2

p
2�1

. We

obtain (using similar computations as in (i) and (ii)) that � = �
�
x0 remains optimal.

Case 2: Suppose that x0
2 = 0. The optimal control value is necessarily such that � 2 {�±x0}. Since �+x0 = �

�
x0

in this case, one has � = �
�
x0 = �

+
x0 =

p
2� 1. We deduce from case 1 (ii)-(iii) and case 2 that � = �

�
x0 in ⌦�

1

as desired.

Case 3: Suppose that x0
2 < 0. The optimal control value � is necessarily such that � 2 {x±

x0 , 1}.
(i) Suppose that �x0 2 [ 1�

p
2

4 , 0) which amounts to consider those initial conditions in ⌦+
1 that are such that

x
0
1  2(x0

2)
2

p
2�1

. By comparison of one real variable functions, we find that Tx0(�+x0) < Tx0(��x0) which implies

that � = �
+
x0 is optimal.

(ii) Suppose that �x0 2 [ 1�
p
2

2 ,
1�

p
2

4 ) which amounts to consider those initial conditions in ⌦+
1 that are such

that � 2(x0
2)

2

p
2�1

< x
0
1  � (x0

2)
2

p
2�1

. In this region, only �
+
x0 is possible. Combining (i) and (ii), we obtain that

� = �
+
x0 in ⌦+

1 as wanted (note that �+x0 equals one whenever x1 = �(
p
2 + 1)x2

2).
Finally, when x

0 2 ⌦r
1, Lemma 3.5 implies that u = 1 in ⌦1.

5The superscript d and r stand for “direct” and “rest” whereas the notation ⌦±
1 is motivated by the result in Proposition 3.3.
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As shows this proposition, the constant control value 0 is never optimal in ⌦1 although it is a candidate
according to Lemma 3.6.

3.4 Optimal synthesis for (3.3)

The next theorem provides the optimal synthesis for (3.3) and summarizes the preceding results (Proposition
3.1 for initial conditions in �> [ �, Proposition 3.2 for initial conditions in ⌦2 \ �<, and Proposition 3.3 for
initial conditions in ⌦d

1 [ ⌦±
1 [ ⌦r

1).

Theorem 3.2. (i) If x0 2 �> [ �, then, �?x0 is of type B�B+ and u
?
x0 = u

†
x0 .

(ii) If x0 2 (�< \ ⌦2) [ ⌦+
1 , then �

?
x0 is of type B+B�B+ and

u
?
x0(t) =

����
1 if t 2 [0, t1]
u
?
x?(t1)

(t) if t > t1
(3.11)

where t1 is the exit time of ⌦1.

(iii) If x0 2 ⌦±
1 , then �

?
x0 is of type PB�B+ and

u
?
x0(t) =

����
�
±
x0 if t 2 [0, t1]

u
?
x?(t1)

(t) if t > t1,
(3.12)

where t1 is the exit time of ⌦1.

(iv) If x0 2 ⌦d
1, then �

?
x0 is of type P and u

?
x0(t) = �x0 .

In contrast with the classical double integrator, there are four di↵erent structures for u
?
x0 depending on

the initial condition:
P ; B�B+ ; PB�B+ ; B+B�B+.

The partition of R2 arising from Theorem 3.2 separating the four structures for optimal paths is depicted
on Fig.2. Optimal paths in cases (ii) and (iv) of Theorem 3.2 are illustrated on Fig. 3.

Figure 2: Plot of the various subsets arising in Theorem 3.2. The sets ⌦d
1, ⌦

�
1 , ⌦

+
1 , and ⌦r

1 are depicted
respectively in magenta, yellow, cyan, and blue.

Remark 3.2. Our methodology can be adapted to other non-control regions such as other half planes. Of
course, if the geometry of the non-control set is more involved (for instance, if ⌦ is not connected), the
synthesis will be more delicate, nevertheless, for a fixed initial condition, we can apply the same tools based on
the hybrid maximum principle with parameter to obtain informations on some optimal control.

3.5 Remarks about the HJB equation associated with (3.3)

We end-up by giving an expression of the value function w associated with (3.3). In order to ease the reading,
we write x in place of x0 for the initial condition. Recall that the value function v of (3.1) is given by

v(x) =

8
<

:
2
q

x2
2
2 � x1 � x2 if x 2 �+ [ �>

,

2
q

x2
2
2 + x1 + x2 if x 2 �� [ �<

,

(3.13)
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Figure 3: Fig. left: example of an optimal trajectory reaching (0, 0) from x
0 2 ⌦d

1 without switching point
neither crossing time (Theorem 3.2 (iv) ; Fig. right: example of an optimal trajectory of type B+B�B+ arising
from x

0 2 ⌦r
1 (Theorem 3.2 (ii)).

and that it is continuous and C
1-piecewise. Moreover, it can be characterized as the unique solution to the

HJB equation
1 + @x1v(x)x2 � |@x2v(x)| = 0, x 2 R2\�, (3.14)

which null at x = 0. We refer for instance to [15] for the C
1-piecewise approach to the HJB equation. We set

s(x) := �
p
x
2
2 � 2x1 for x 2 R2 such that x1 2 [0, x2

2/2].

Proposition 3.4. The value function w associated with (3.3) is continuous, C1-piecewise and it is given by:

w(x) =

8
>>>>>><

>>>>>>:

v(x) if x 2 � [ �>
,

�2x1/x2 if x 2 ⌦d
1,

Tx(�±x ) if x 2 ⌦±
1 ,

Tx(1) if x 2 ⌦r
1,

s(x)� x2 + Ts(x)(1) if x 2 ⌦2 \ �<
.

(3.15)

Proof. First, the expressions of w in � [ �>, in ⌦±
1 , and in ⌦r

1 follow from Proposition 3.3 and from the
expression of Tx(�) provided by Lemma 3.4. The expression of w in ⌦d

1 is straightforward since the optimal
control is constant equal to �x until reaching (0, 0). For x 2 ⌦2 \ �<, the time to reach the semi-axis x2 = 0
at the point (0, s(x)) is s(x)� x2 applying u = 1. Next, according to Proposition 3.2, the time to reach (0, 0)
from the point (0, s(x)) can be written s(x)(3 +

p
2) = Ts(x)(1), whence the result for x 2 ⌦2 \ �<.

Next, to check the continuity of w, it is enough to verify its continuity at the various inferaces:
1. Continuity over ��. It follows from from the fact that v(x) = x2 for x 2 ��.
2. Continuity over ⌦̄�

1 \ ⌦̄d
1. It follows from the expression of Tx(��x ) using that ��x = �x in ⌦̄�

1 \ ⌦̄d
1.

3. Continuity over {x2 < 0}. It follow from the expressions of Tx(�±x ) using the fact that �x± !
p
2 � 1 as

x2 ! 0.
4. Continuity over ⌦̄�

1 \ ⌦̄d
1. It follows from the fact that �+x ! 1 when x 2 ⌦+

1 goes to some point of ⌦̄�
1 \ ⌦̄d

1.
5. Continuity over {x2 < 0}. When x 2 ⌦2 \ �< goes to some point of {x2 < 0}, we have �s(x) + x2 ! 0,
thus w(x) ! �x2 + Tx(1) which is equal to the left limit of w over the semi-axis {x2 < 0}.
6. Continuity over ��. One has v(x) ! �x2 as x conerges to some point of �+. On the other hand, s(x) ! 0
whenever x goes to some point of �+. We deduce that s(x)� x2 + Ts(x)(1) ! �x2 whenever x goes to some
point of �+ using that Ts(x)(1) goes to zero, whence the result.

Finally, the expressions defining w in each stratum of R2 given by (3.15) are of class C
1, so, w is C

1-
piecewise.

Remark 3.3. Concerning (3.3), we can check that w is also continuous and C
1-piecewise. However, we do not

know characterizations of the value function in the setting of optimal control problems including loss control
regions such as (2.1). A possible way to characterize the value function in this setting could be to consider an
augmented system (as for proving Theorem 2.1) and next to use characterizations of the value function over
stratified domains as for instance in [4, 19].
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4 Conclusion

In this paper, we have studied an optimal control problem involving a “non-classical” constraint w.r.t. classical
examples of minimum time control syntheses. The main di↵erence is that we assumed the control function
to be constant as long as the state belongs to some region of the state called non-control set. Because of
the spatial constraint related to the constancy of the control, this framework also di↵ers from sampled data
optimal control problems such as in [13] in which the control is supposed to be piecewise constant (but along
a given or free partition of the time period). Our analysis of the problem used the hybrid maximum principle
including a regionally constant parameter as in [5, 7]. For each initial condition, we have computed analytically
an optimal control leading that way to an optimal synthesis. We point out a di↵erence with classical optimal
control problems. Because the control function cannot be changed while the state of the system remains
in the non-control region, the terminology feedback control is not adapted to our setting (remind that each
initial condition in the non-control set defines a constant control value). Also, our synthesis shows that some
optimal control values belong to the interior of the admissible control set in contrast with bang-bang solutions
to classical optimal control problems (that do not involve singular arcs). We believe that the methodology
employed in this paper could serve to study theoretically and numerically other optimal control problems
including loss control regions (arising for instance in aerospace or in viability) and optimal solutions with
more than one arc in the non-control set (such as for the harmonic oscillator). These questions will be the
matter of future works.
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Mathématiques & Applications (Berlin) [Mathematics & Applications], Springer-Verlag, Berlin, 2003.

[11] U. Boscain and B. Piccoli, Optimal syntheses for control systems on 2-D manifolds, vol. 43 of
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