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Stabilization of the chemostat system with mutations and

application to microbial production∗

T. Bayen†, J. Coville‡, F. Mairet§

August 11, 2022

Abstract

In this paper, we consider the chemostat system with n ≥ 1 species, one limiting substrate, and
mutations between species. Our objective is to globally stabilize the corresponding dynamical system
around a desired equilibrium point. Doing so, we introduce auxostat feedback controls which are controllers
allowing the regulation of the substrate concentration. We prove that such feedback controls globally
stabilize the resulting closed-loop system near the desired equilibrium point. This result is obtained by
combining the theory of asymptotically autonomous systems and an explicit computation of solutions to
the limit system. The performance of such controllers is illustrated on an optimal control problem of
Lagrange type which consists in maximizing the production of species over a given time period w.r.t. the
dilution rate chosen as control variable.

Keywords : Dynamical system, chemostat system, global stabilization, feedback control, optimal control,
Pontryagin maximum principle.

1 Introduction

The chemostat system describes the evolution in time of bacteria interacting with a resource, and it was
introduced simultaneously by Monod and Novick & Szilard in the fifties [31, 32, 33]. Such a dynamical system
is widely used for ecological purpose for analyzing the growth of micro-organisms in natural environments
(mountain lakes, lagoon, see, e.g., [43]). It also serves in biotechnology to describe processes such as anaerobic
digestion, waste water treatment, or engineering systems related to the production of molecules of industrial
interest [2, 16, 17].

An important part of the literature related to the chemostat model deals with the stabilization of the
corresponding dynamical system at a nominal point [17]. Such a questioning is of great interest, typically
for maximizing microbial growth at steady state in anaerobic digestion models [4, 37], but also to cope with
uncertainties (which is often encountered in bioprocesses) and delays on measurements [19, 27, 28, 29, 36].
The main objective of this paper is to study the stabilization of the chemostat system whenever mutations
for microorganisms are incorporated [3, 5, 6]. This means that, in addition to the classical equations of the
chemostat, each species is able to convert into neighbor ones. It is relevant whenever the number of species is
high in order to take into account evolution (see [1, 3, 25]). Such a phenomenon leading to a coupling term
between species may be related to transposable elements, gene transfer [12, 13], or mutations (among other
possible factors). In the sequel, we employ the wording “mutations” to describe the coupling between species
that is considered throughout this work. Note that the resulting system with mutations can be viewed as an
approximation of population dynamics models involving a phenotypic trait (see, e.g., [30]).

In order to stabilize the chemostat system with mutations near a desired equilibrium point, we introduce a
linear feedback control of the state that maintains constant the substrate concentration at a desired value. Such
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a regulating feedback is usually called an auxostat (see [5] and references herein). Our main result is Theorem
2.1 which asserts that the auxostat globally stabilizes (in the corresponding forward invariant domain) the
resulting closed-loop system at the corresponding steady state. The proof of this result combines the theory of
asymptotically autonomous systems (see [41]) and an explicit computation of solutions to the limit system (see
[35]) after proving the convergence of the substrate concentration to the desired value. The same convergence
result is also established replacing the preceding feedback by a non-linear variant of practical interest when one
has access to measurements of the global biological activity (e.g., biogas production or oxygen consumption,
depending on which process is considered). It is worth mentioning that Theorem 2.1 is proved with Monod
kinetics for the species because in that case, the Perron-Frobenius Theorem guarantees the uniqueness of a
steady-state apart the washout. When considering Haldane’s kinetics, it is well-known that stability properties
of the chemostat system are more involved since various stable equilibria exist [23, 40] (bistability for instance).
When mutations are present, the system with a constant dilution rate also exhibits several equilibria. For each
feedback control, we provide in this case a discussion about global stability of the resulting closed-loop system.
To conclude the exposition about stability properties of the chemostat system with mutations, we would like
to emphasize that global stability is an open question whenever the dilution rate is constant (except for small
enough values of the dilution rate [3] or in the case where kinetics are close to a nominal one [12]). Thus, it
is of great interest to consider feedback controls that globally stabilize the resulting closed-loop system.

The second issue addressed in this paper is concerned with analyzing the benefit of employing auxostat
controllers in a real-world microbial production problem (see, e.g., [20, 22] for related problems). Doing so, we
consider an optimal control problem which consists in maximizing w.r.t. the dilution rate (chosen as an open
loop control) the total production of species in a chemostat system with mutations over a time frame (see,
e.g., [6, 14, 15]). We start by giving properties of optimal controls that can be found using the Pontryagin
Maximum Principle (PMP), see [34]. We also inspect the Legendre-Clebsch condition which allows us to
obtain insights into the optimal synthesis and the turnpike structure of optimal controls [42]. Next, we turn
to the definition of auxostat controllers via the resolution of the static optimization problem that is naturally
associated to the optimal control problem under investigation. Its solution provides a nominal equilibrium
point allowing the startup of the feedback controls. We then compare for various time frames the value of
the cost function computed for the auxostat controls to the value function of the optimal control problem
(computed numerically via a direct solver bocop [8]). We observe that whenever the time period increases,
the gap between the value function and the cost function computed for the auxostat controls tends to be very
small. In contrast, when the dilution rate is fixed as an optimization parameter (maximizing the cost function
at steady-state), numerical simulations indicate that the approximation of the value function is less accurate.

The paper is structured as follows. In Section 2, we introduce the stabilization problem and we prove
Theorem 2.1 which is our main result. We end-up this section by relating the desired steady-state (defined
thanks to a given nominal value of the substrate) to the coexistence equilibrium when considering a constant
dilution rate (see [3]). We also discuss global stability properties when Haldane’s kinetics are considered in
place of Monod functions. In section 3, we introduce the optimal control problem related to the maximization of
species and we first derive properties on optimal controls using the PMP. Next, we compare the performance
of the auxostat controllers defined in Section 2 to the optimal solution computed numerically via a direct
method. We end up the paper with conclusions and perspectives (Section 4).

2 Stabilization via auxostat controllers

2.1 Statement of the problem and main result

Throughout this paper, we consider a chemostat system with n ≥ 1 species, one limiting substrate, and
mutations between species (represented by a linear coupling). The resulting dynamical system can be written:∣∣∣∣∣∣∣

ẋi = µi(s)xi − uxi + ε(Mx)i, 1 ≤ i ≤ n,

ṡ = −
n∑
j=1

µj(s)xj + u(1− s), (2.1)

where xi, resp. s denotes the concentration of species i, resp. the substrate concentration, u is the dilution
rate (at this step, u is constant), µi : R+ → R+ is the growth function associated with species i, M is the
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mutation matrix1

M :=


−1 1 0 · · · 0
1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 −2 1
0 · · · 0 1 −1

 , (2.2)

and the input substrate concentration sin has been normalized to 1 (with regards to classical notation in the
literature, see, e.g., [23], this amounts to take sin = 1 which is always possible from a mathematical point of
view). Note also that we assumed yield coefficients to be all equal (based on experimental studies (see, e.g.,
[33] and remarks about this point in [3]) and thus also normalized to 1. The positive number ε is called the
mutation parameter.

Remark 2.1. When ε = 0, we retrieve the classical chemostat system whose properties such as the competitive
exclusion principle can be found in [23, 40]. The mutation matrix M is related to the discretization of the
one-dimensional Laplace equation (Poisson problem) with Neumann boundary conditions [30]. A more general
mutation matrix could be considered in place of M as long as the equality

∑n
j=1mi,j = 0 remains valid for

every 1 ≤ i ≤ n in order to ensure mass conservation. Here, we can see that for every 2 ≤ i ≤ n − 1,
species i converts into i− 1 and i+ 1 whereas for i = 1 and i = n, it converts into species 2 and n− 1. The
particular expression of the mutation matrix in the first and last row is required for mass conservation. If yield
coefficients are not equal, the study of (2.1) may be more involved since mass conservation will no longer hold
true. So we chose not to address this issue here.

In what follows (except in Sections 2.3 and 3.5), we suppose that for 1 ≤ i ≤ n, µi is of Monod type, i.e.,

µi(s) =
mis

ki + s
,

where parameters mi, ki are positive for all 1 ≤ i ≤ n. Following [3], initial conditions for (2.1) are in the set

D := Rn+\{0Rn} × (0, 1],

that is forward invariant by (2.1). The next property can be easily obtained from [3, Property 2.2].

Property 2.1. Let v : R × Rn × R → R+, (t, x, s) 7→ v(t, x, s) be a real-valued measurable function with
non-negative values, ε > 0, and (x0, s0) ∈ D. If there exists a global2 solution (x(·), s(·)) to (2.1) with u = v
such that (x(0), s(0)) = (x0, s0), then,

∀ t > 0, ∀ 1 ≤ i ≤ n, xi(t) > 0. (2.3)

Our main aim in this work is to stabilize system (2.1) near a desired steady-state via an autonomous
feedback control of the state. Doing so, we consider (2.1) in which u is replaced by a function ϕ : Rn×R→ R,
(x, s) 7→ ϕ(x, s), which amounts to write:∣∣∣∣∣∣∣

ẋi = µi(s)xi − ϕ(x, s)xi + ε(Mx)i, 1 ≤ i ≤ n,

ṡ = −
n∑
j=1

µj(s)xj + ϕ(x, s)(1− s). (2.4)

Let us now introduce a feedback control ϕσ as

ϕσ(x) :=
1

1− σ

n∑
j=1

µj(σ)xj , x ∈ Rn, (2.5)

where σ ∈ (0, 1) is fixed. Such a linear control w.r.t. x is called auxostat [5]. This terminology is justified by
the following property : if we put ϕσ in place of ϕ in (2.4), then, for every t0 ≥ 0, one has

s(t0) = σ ⇒ s(t) = σ, ∀ t ≥ t0,
1As usual, matrices are named using capital letters and coefficients are represented by lower case letters.
2i.e., defined over R+
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by uniqueness of solutions in Cauchy-Lipschitz’s Theorem. For practical interest in bioprocesses [26], it is also
relevant to introduce the feedback control ψσ given by

ψσ(s, x) :=
1

1− σ

n∑
j=1

µj(s)xj , (s, x) ∈ (0, 1]× Rn, (2.6)

where σ ∈ (0, 1) is fixed. Its interest comes from the fact that ψσ is related to microbial growth in a bioreactor,
and one can have easily access to measurements of this quantity. Our main result about global stabilization
in this paper can be stated as follows.

Theorem 2.1. For every (ε, σ) ∈ R∗+ × (0, 1), the system (2.4) in which ϕ = ϕσ or ϕ = ψσ has a unique
steady-state (xσ,ε, σ) ∈ D that is globally asymptotically stable in the set D.

As we will see in Section 2.2, the equilibrium point (xσ,ε, σ) ∈ D is defined as the unique solution to the
system

Dsx− ux+ εMx = 0 ;

n∑
j=1

xj + s = 1 ; s = σ, (2.7)

where Ds ∈ Rn×n is the diagonal matrix Ds := diag(µ1(s), ..., µn(s)) and u is the Perron root of the quasi-
positive irreducible matrix3

Aε,s := Ds + εM ∈ Rn×n,

(see, e.g., [3]). Note that the first equality in (2.7) defines the vector x as the Perron vector of Aε,σ up to a
positive multiplicative constant, i.e., x = κaε,σ for some κ > 0 where aε,σ is the unitary Perron vector of Aε,σ.
The second equality in (2.7) allows to uniquely define the eigenvector vector x as x = 1

κaε,σ where κ := aε,σ · 1̄,
1̄ := (1, ..., 1) ∈ Rn, and · denotes the standard inner product of Rn.

2.2 Proof of Theorem 2.1

To prove Theorem 2.1, we start by studying the asymptotic behavior of the total mass of the system

b :=

n∑
j=1

xj + s,

and of s(·) in the case where ϕ = ϕσ in (2.4).

Lemma 2.1. Let (ε, σ) ∈ R∗+ × (0, 1) and let (x0, s0) ∈ D. Then, the unique solution of (2.4) associated with
the feedback control given by (2.5) starting from (x0, s0) at time t = 0 satisfies

lim
t→+∞

b(t) = 1 and lim
t→+∞

s(t) = σ.

Proof. From (2.4), b satisfies ḃ = ϕσ(x)(1− b), therefore b(t) = 1 + (b(0)− 1)e−
∫ t
0
ϕσ(x(τ)) dτ for all t ≥ 0. Let

us then consider the three following cases.
Case 1: b(0) = 1. Then, b(t) = 1 for every t ≥ 0 so that limt→+∞ b(t) = 1.
Case 2: b(0) > 1. It follows that b > 1 and that b(·) decreases over R+. Thus there exists ` ≥ 1 such that
limt→+∞ b(t) = `. We deduce that b and x are bounded over R+ and so is ẋ. We suppose by contradiction
that ` > 1. By applying Barbalat’s Lemma (see [24]), one must have ḃ(t) → 0 as t → +∞ which implies
that ϕσ(x(t)) → 0 as t → +∞. Hence, for every 1 ≤ k ≤ n, one has xk(t) → 0 as t → +∞. It follows that
s(t) → ` > 1 as t → +∞ which contradicts the fact that [0, 1] is invariant by the equation of ṡ in (2.4) (see
Property 2.1).
Case 3: b(0) < 1. Similarly as in case 2, one has b < 1 and b(·) also increases over R+, thus, there is ` ∈ (0, 1]
such that limt→+∞ b(t) = `. We again argue by contradiction supposing that ` < 1. By Barbalat’s Lemma,
one must have ḃ(t) → 0 as t → +∞, and similarly as previously, we deduce that ϕσ(x(t)) → 0 as t → +∞,

3Recall that given a quasi-positive irreducible matrix A ∈ Rn×n, the Perron-Frobenius Theorem ensures that the Perron root
of A denoted by λ(A) (its greatest eigenvalue) is simple and that the Perron vector x (the associated eigenvector) is with positive
coordinates. The fact that Aε,s is quasi-positive irreducible is standard (see, e.g., [3]).
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hence, for every 1 ≤ k ≤ n, one must have xk(t) → 0 as t → +∞. This implies that s(t) → ` as t → +∞.
Observe now that one has

n∑
j=1

ẋj(t) =

n∑
j=1

µj(s(t))xj(t)−
( n∑
j=1

µj(σ)

1− σ
xj(t)

)( n∑
j=1

xj(t)
)
.

Now, there is α > 0 and t0 ≥ 0 such that for every t ≥ t0, one has µi(s(t)) ≥ α for every 1 ≤ i ≤ n and every

t ≥ t0. If we set β := max1≤i≤n
µi(σ)
1−σ , we obtain for every t ≥ t0:

n∑
j=1

ẋj(t) ≥ α
n∑
j=1

xj(t)− β
( n∑
j=1

xj(t)
)2

= α
( n∑
j=1

xj(t)
)(

1− β

α

n∑
j=1

xj(t)
)
.

From the previous inequality, we deduce that
∑n
j=1 xj is necessarily increasing over some time interval [t′0,+∞)

where t′0 ≥ t0. This contradicts the fact that it converges to zero as t→ +∞. Hence, one must have ` = 1 as
was to be proved.

We now address the convergence of s(·). From (2.4) with ϕ = ϕσ and using Property 2.1, one has for every
time t ≥ 0, ṡ(t)|s=1

= −
∑n
j=1 µj(1)xj(t) < 0. We deduce that s(t) < 1 for every t > 0. Now, the ODE4

satisfied by s can be equivalently written as follows:

ṡ(t) = (1− s(t))
n∑
j=1

xj(t)

[
µj(σ)

1− σ
− µj(s(t))

1− s(t)

]
= (1− s(t))(σ − s(t))

n∑
j=1

aj(t)xj(t), (2.8)

where for 1 ≤ j ≤ n,

aj(t) :=

∫ 1

0

ρ′j(s(t) + ξ(σ − s(t))) dξ and ρj(ζ) :=
µj(ζ)

1− ζ
, ζ ∈ (0, 1). (2.9)

By a direct computation, we find that for ζ ∈ [0, 1), one has

ρ′j(ζ) =
µ′j(ζ)(1− ζ) + µj(ζ)

(1− ζ)2
.

Hence, there exists m > 0 such that for every ζ ∈ [0, 1), one has ρ′j(ζ) ≥ m for every ζ ∈ [0, 1) implying that
for every t ≥ 0, one has aj(t) ≥ m.
Case 1: s(0) = σ. Then, s(t) = σ for every time t ≥ 0 implying that s(t)→ σ as t→ +∞.
Case 2: s(0) > σ. In that case, s(·) decreases over R+, thus it converges to some value s̃ ∈ [σ, 1). Without any
loss of generality, we can assume that s(0) < 1 (since s(·) decreases). Now, let η > 0. Because s(·) decreases
and

∑n
j=1 xj(t) → 1 − s̃ as t → +∞, we deduce that there exists t0 ≥ 0 such that for every t ≥ t0, one has

s(t) ≤ 1− η and
∑n
j=1 xj(t) ≥

1−s̃
2 . We obtain the inequality

ṡ(t) ≤ mη(1− s̃)
2

(σ − s(t)),

for every t ≥ t0, thus s(t)→ σ as t→ +∞ as was to be proved.
Case 3: s(0) < σ. In that case, s(·) increases over R+, thus it converges to some value s̃ ≤ σ (and we can
assume that s̃ > 0). Similarly as in case 2, there is t0 ≥ 0 such that

∑n
j=1 xj(t) ≥

1−s̃
2 for every t ≥ t0. We

deduce that for t ≥ t0, one has

ṡ(t) ≥ m(1− s̃)(1− σ)

2
(σ − s(t)).

We conclude in the same way.

The same properties as in Lemma 2.1 hold true with ϕ = ψσ in (2.4). For sake of completeness, we give
details of the proof in that case because the closed loop system (2.4) with ϕ = ψσ is not identical to (2.4) with
ϕ = ϕσ, thus, the proof slightly differs.

4Ordinary Differential Equation.
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Lemma 2.2. Let (ε, σ) ∈ R∗+ × (0, 1) and let (x0, s0) ∈ D. Then, the unique solution of (2.4) associated with
the feedback control given by (2.6) starting from (x0, s0) at time t = 0 satisfies

lim
t→+∞

b(t) = 1 and lim
t→+∞

s(t) = σ.

Proof. First, we check that

ḃ = ψσ(x, s)(1− b) and ṡ = −ψσ(x, s)(s− σ), (2.10)

from which we deduce that b and s are monotone and bounded, so there exist ` := limt→+∞ b(t) and s̃ :=
limt→+∞ s(t). In addition, we claim that s̃ ∈ (0, 1). Indeed, if s(0) = σ, the result is clear from Cauchy-
Lipschitz’s Theorem. If s(0) < σ, resp. s(0) > σ, then, s(·) is increasing, resp. decreasing, whence the result.
Case 1 : b(0) = 1. It follows that b(t) = 1 for t ≥ 0. If s̃ 6= σ, according to Barbalat’s Lemma in (2.10), we
obtain that ψσ(x(t), s(t))→ 0 as t→ +∞ and

∑n
j=1 xj(t)→ 0 as well. Using that b(t) = 1 =

∑n
j=1 xj(t)+s(t)

for t ≥ 0, we obtain that s(t)→ 1 as t→ +∞ which is a contradiction. Thus, s̃ = σ.
Case 2 : b(0) > 1. It follows that ` ≥ 1. Suppose that ` > 1. Using Barbalat’s Lemma, we obtain
that ψσ(x(t), s(t)) → 0 as t → +∞ and

∑n
j=1 xj(t) → 0 as t → +∞. We deduce that s(t) → ` ≥ 1 as

t → +∞ in contradiction with s̃ ∈ (0, 1). Hence, ` = 1. Going back to b =
∑n
j=1 xj + s, we obtain that∑n

j=1 xj(t) → 1 − s̃ > 0 as t → +∞. Again by Barbalat’s lemma, if s̃ 6= σ, then, one should have ṡ(t) → 0

when t → +∞ as well as ψσ(x(t), s(t)) → 0 when t → +∞ from which we deduce that
∑n
j=1 xj(t) → 0 as

t→ +∞ which is a contradiction. Hence, we obtain s̃ = σ.
Case 3 : b(0) < 1. In that case, suppose that ` < 1. Then, again, we obtain that ψσ(x(t), s(t)) → 0 as
t→ +∞, thus xi(t)→ 0 as t→ +∞ for every 1 ≤ i ≤ n. Hence, the following expression

n∑
j=1

ẋj(t) =

n∑
j=1

µj(s(t))xj(t)
[
1− 1

1− σ

n∑
j=1

xj(t)
]

is necessarily positive for t large enough which contradicts the fact that ψσ(x(t), s(t))→ 0 as t→ +∞. This
concludes the proof.

We now turn to the existence of steady-states for the closed loop system (2.4) with the feedback control
ϕσ or ψσ.

Proposition 2.1. For every (ε, σ) ∈ R∗+×(0, 1) system (2.4) with ϕ = ϕσ or ϕ = ψσ has a unique steady-state
(xσ,ε, σ) ∈ D defined by (2.7).

Proof. Fix (ε, σ) ∈ R∗+×(0, 1) and let (x, s) ∈ D be a steady-state of (2.4) with ϕ = ϕσ and note that x 6= 0Rn .
It follows that (x, s) is a solution to the system

n∑
j=1

xj + s = 1 ;

n∑
j=1

[ρj(s)− ρj(σ)]xj = 0, (2.11)

where ρj is defined in (2.9). Since the kinetics are of Monod type, the second above equality implies that
s = σ. Now, in the case where ϕ = ψσ, a steady-state (x, s) ∈ D of (2.4) with ϕ = ϕσ necessarily verifies

n∑
j=1

xj + s = 1 ;
n∑
j=1

µj(s)xj

[
1− 1− s

1− σ

]
= 0, (2.12)

implying also that s = σ (since in the set D, s 6= 0 and x 6= 0Rn). It follows that a point (x, s) ∈ D is a
steady-state of (2.4) with ϕ = ϕσ or ϕ = ψσ if and only if

Aε,σx = ux and

n∑
j=1

xj + σ = 1,

where u = ϕσ(x) or u = ψσ(x, σ). By the Perron-Frobenius Theorem, the matrix Aε,σ has a unique positive
eigenvector xσ,ε (the Perron eigenvector of Aε,σ) up to a positive multiplicative constant and thus u is nec-
essarily the Perron root associated with Aε,σ. Using that b = 1, we deduce that xσ,ε ∈ Rn\{0Rn} is unique.
We can conclude that for every ε > 0 and every σ ∈ (0, 1), system (2.4) with ϕ = ϕσ or ϕ = ψσ has a unique
steady-state (xσ,ε, σ) in D and that λ(Aε,σ) = ϕσ(xσ,ε) = ψσ(xσ,ε, σ).
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Remark 2.2. If the invariant domain D is replaced by the set Rn\{0Rn}× [0, 1], then, (2.4) with ϕ = ψσ has
another equilibrium point (x, s) such that xi = 1/n for all 1 ≤ i ≤ n and s = 0. But we have seen in Lemma
2.2 that for every initial condition such that s(0) > 0, then, s(t) → σ as t → +∞. So, convergence to this
equilibrium point occurs only if s(0) = 0 which is excluded by definition of D. We shall also see in Section
3 that s = 0 is not interesting from an application point of view because in that case, the cost function to be
maximized is minimal at s = 0 (see Proposition 3.2). That is why, we have excluded s = 0 in the set D.

Our next aim is to establish a global convergence result for the system

ẋ = Dσx− ϕσ(x)x+ εMx (2.13)

in the invariant and attractive set

Dσ :=
{
x ∈ Rn+\{0Rn} ;

n∑
j=1

xj = 1− σ
}
.

Lemma 2.3. For every (ε, σ) ∈ R∗+ × (0, 1) and for every x0 ∈ Dσ, the unique solution to (2.13) such that
x(0) = x0 verifies

x(t) = (1− σ)
etAε,σx0∑n

j=1(etAε,σx0)j
, t ≥ 0. (2.14)

In addition, one has limt→+∞ x(t) = xσ,ε.

Proof. The proof of the next Lemma is adapted from [35] taking into account the presence of mutations. For
1 ≤ i ≤ n, the function qi := xi

1−σ verifies the ODE:

q̇i = qi

(
µi(σ)−

n∑
j=1

µj(σ)qj

)
+ ε(Mq)i. (2.15)

Let then r(·) denotes the unique solution to the (linear) Cauchy problem{
ṙ = Aε,σr,

r(0) = q(0).

A direct computation shows that if we set z := r∑n
i=1 ri

, then z satisfies (2.15). In addition,
∑n
j=1 rj(0) =∑n

j=1
xj(0)
1−σ = 1 because x0 ∈ Dσ. It follows that z(0) = r(0) = q(0), hence, by uniqueness of a solution to a

Cauchy problem, we deduce that q(t) = z(t) for every t ≥ 0. Since x = (1− σ)q, we obtain (2.14).
Next, we prove the convergence of x(·) to xσ,ε. Doing so, let us denote by λ1 > λ2 · · · ≥ λn the n

eigenvalues of Aε,σ (we omit hereafter the dependency w.r.t. ε and σ to simplify the exposition). Recall that
λ1 is the Perron root of Aε,σ, hence the first inequality between λ1 and λ2 is strict by the Perron-Frobenius
Theorem. Let P ∈ Rn×n be the eigenvector matrix such that P−1Aε,σP = H where H is the diagonal matrix
H = diag(λ1, · · · , λn). The first column of P is a column vector that we denote by v and that is proportional
to xσ,ε, i.e., v = νxσ,ε for some ν > 0. If we set y := P−1x, we obtain from (2.14)

y(t) = (1− σ)
etHy(0)∑n

i=1(PetHy(0))i
, t ≥ 0.

Hence, for every 1 ≤ k ≤ n, one has

yk(t) = (1− σ)
eλktyk(0)∑n

j=1 p̃je
λjtyj(0)

, t ≥ 0,

where p̃j :=
∑n
i=1 pi,j for 1 ≤ j ≤ n. It follows that for 2 ≤ k ≤ n, one has yk(t) → 0 as t → +∞ and for

k = 1, we find that y1(t)→ 1−σ
p̃1

. Going back to x(·), we obtain that x(t) = y1(t)v+ o(1) as t→ +∞ implying
that

1− σ =

n∑
j=1

xj(t) = y1(t)

n∑
j=1

vj + o(1) = y1(t)p̃1 + o(1) = y1(t)ν(1− σ) + o(1).

Consequently, y1(t)→ 1
ν as t→ +∞. Since x = Py, we deduce that x(t)→ v

ν = xσ,ε as wanted.
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Proof of Theorem 2.1. Take an initial condition in D. System (2.4) with ϕ = ϕσ can be written

ẋ = Ds(t)x− ϕσ(x)x+ εMx,

whereas with ϕ = ψσ, (2.4) becomes

ẋ = Ds(t)x− ψσ(x, s(t))x+ εMx.

From Lemmas 2.1 and 2.2, one has s(t) → σ as t → +∞, thus the two preceding systems are asymptotically
autonomous systems and the limit equation is (2.13) (since s(t) → σ as t → +∞ and the convergence of the
dynamics is also uniform in x). From Lemmas 2.1 and 2.2, one also has b(t) → 1 as t → +∞. Now, every
solution to (2.4) is bounded and is such that its ω-limit set is a subset of Dσ×{σ}. We deduce from Lemma 2.3
and from the theory of asymptotically autonomous systems (see [41]) that x(t) converges to xσ,ε as t→ +∞,
which ends the proof. �

2.3 Comments and remarks about Theorem 2.1

We start by giving a relationship between steady-states of the closed-loop system (2.4) with ϕ(s, x) = ϕσ(x)
or ϕ(s, x) = ψσ(s, x) and steady-states of (2.1) associated with a constant control u. For ε > 0 and s ∈ [0, 1],
set uc(ε) := λ(D1 + εM) and µ̂(s) := max(µ1(s), ..., µn(s)). Remind from [3] that for every (ε, u) ∈ R∗+ × R∗+
such that u < uc(ε), system (2.1) has a unique locally asymptotically stable equilibrium point Eε,u ∈ Rn+1

that is called coexistence steady-state (since every species is present asymptotically).

Proposition 2.2. (i) Given (ε, σ) ∈ R∗+× (0, 1) such that µ̂(σ) < µ̂(1)−2ε, there is a unique uσ,ε ∈ (0, uc(ε))
such that the steady-state (xσ,ε, σ) defined by (2.7) verifies (xσ,ε, σ) = Eε,uσ,ε .

(ii) Conversely, given u ∈ (0, uc(ε)), there is a unique σ := sε,u ∈ (0, 1) such that Eε,u = (xσ,ε, σ).

Proof. Let us prove (i). Thanks to Theorem 2.1, the Perron root of Aε,σ fulfills the equality

λ(Aε,σ) = ϕσ(xσ,ε) = ψσ(σ, xσ,ε) =

∑n
j=1 µj(σ)(xσ,ε)j∑n

j=1(xσ,ε)j
.

Thus, if we set uσ,ε :=
∑n
j=1 µj(σ)(xσ,ε)j∑n

j=1(xσ,ε)j
, we have

uσ,ε ≤ µ̂(σ) < µ̂(1)− 2ε ≤ λ(D1 + εM),

where the last inequality follows from [3, Proposition 3.2]. It follows that (xσ,ε, σ) is a steady-state of (2.1)
with u = uσ,ε, hence (xσ,ε, σ) = Eε,uσ,ε . In order to show the uniqueness property, suppose that there is
u ∈ (0, uc(ε)) such that (xσ,ε, σ) = Eε,u. We then have u = λ(Aε,σ), hence u = uσ,ε as was to be proved.

Conversely, given u ∈ (0, uc(ε)), let us set σ := sε,u where sε,u is the unique solution to the equation
λ(Ds + εM) = u. Since Monod kinetics are increasing, the mapping s 7→ λ(Ds + εM) is increasing over [0, 1].
Because 0 < u < λ(D1 + εM), we deduce that 0 < sε,u < 1. Finally, observe that the steady-state Eε,u is the
unique solution to the system

(Ds + εM)x = ux ;

n∑
j=1

xj + s = 1 u = λ(Ds + εM). (2.16)

By uniqueness of the solution to (2.7), we thus deduce the desired equality Eε,u = (xσ,ε, σ).

Thanks to the preceding proposition, instead of considering a nominal substrate concentration σ ∈ (0, 1)
(giving raise to the unique equilibrium given in Theorem 2.1), we can also pick up a dilution rate u ∈ (0, uc(ε))
defining a unique coexistence steady-state Eε,u, and, next, we can apply an auxostat controller that globally
stabilizes the closed-loop system (2.4) around Eε,u (remind that it is still an open question if Eε,u is globally
asymptotically stable for (2.1)). We end-up this section by two remarks in the case where ε = 0 and whenever
the kinetics is of Haldane type.
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• For ε = 0, the techniques above still apply to globally stabilize (2.4) around a desired equilibrium
point for which only the dominant species survives. More precisely, let us given σ ∈ (0, 1) such that
µ1(σ) > · · · > µn(σ). From Lemmas 2.1 and 2.2, one has s(t) → σ and b(t) → 1 as t → +∞. Now, in
contrast with Proposition 2.1, system (2.4) with ε = 0 has n equilibria apart the washout. But, Lemma
2.3 still applies with ε = 0 showing that limt→+∞ x(t) = (1− σ, 0, ..., 0) (which is also the limit of (2.1)
with u := ϕσ(xσ,ε) thanks to the competitive exclusion principle [23, 40]). The rest of the proof using the
theory of asymptotically autonomous systems remains unchanged. More generally, note that as long as
µi(σ) 6= µj(σ) for i 6= j, then, limt→+∞ x(t) = (0, ..., 0, 1−σ, 0, ..., 0) where the only non-zero coordinate
corresponds to the unique i0 ∈ {1, ...., n} such that µ̂(σ) = µi0(σ).

• In this remark, we highlight the interest of considering auxostat controllers in the case where kinetics
are of Haldane type (although hypotheses of Theorem 2.1 are no longer fulfilled in that case). Recall
that Haldane’s kinetics are given by

µi(s) :=
mis

ki + s+ s2

k′i

,

where all parameters are positive and 1 ≤ i ≤ n. In contrast with Monod’s kinetics, µi is no longer
monotone (see Fig. 2). This implies that given (ε, u) ∈ R∗+ × (0, uc(ε)), the mapping s 7→ λ(Ds + εM)
is no longer strictly monotone, so, the equation λ(Ds + εM) = u may have several solutions over [0, 1].
It follows that the coexistence equilibrium Eε,u may no longer be unique (apart the washout). But, one
can still consider (2.4) in closed-loop form with ϕ = ψσ. Lemma 2.2 and Proposition 2.1 still hold true
in that case, so that Lemma 2.3 can be applied to prove that ψσ renders (2.4) globally asymptotically
stable. In contrast, when ϕ = ϕσ, the corresponding closed-loop system may have several equilibria
apart the washout (the mapping ρj is no longer monotone in (2.11)). Because µi is non-monotone, the
convergence of s(t) to σ as t → +∞ is no longer guaranteed (Lemma 2.1 no longer holds true). In
conclusion, both feedbacks may still be implemented in practice, however, in that case, only ψσ globally
stabilizes the resulting closed-loop system at the desired steady-state point.

3 Optimization of microbial production

In this section, we study the problem of maximizing biomass production (i.e., the production of every species)
w.r.t. the dilution rate t 7→ u(t). Remind that the dilution rate can be easily controlled from an application
point of view, so, it is commonly used as a control variable in bioprocesses. Our aim is to show the efficiency of
the feedback controls (2.5) and (2.6) in this context w.r.t. optimal strategies giving that way an alternative to
classical approaches using the PMP or numerical methods. Let T > 0 and let us consider the optimal control
problem of Lagrange type:

max
u(·)∈[0,umax]

JT (u) :=

∫ T

0

u(t)

n∑
j=1

xj(t) dt, (3.1)

where (x(·), s(·)) is the unique solution to (2.1) starting at some fixed initial condition in D and associated with
a measurable function t 7→ u(t) with values within [0, umax] over [0, T ]. Here umax > 0 is fixed and represents
the maximal feed rate of the reactor that can always be chosen large enough from a practical point of view
(in particular, in such a way that singular arcs are always admissible, see, e.g., [7] in which saturation in the
chemostat occurs). Now, the existence of an optimal control of (3.1) is straightforward since the problem is
linear w.r.t. the entry u. Our approach to study (3.1) is as follows.

• In Section 3.1, we apply the Pontryagin Maximum Principle on (3.1) which allows us to derive properties
on optimal controls.

• In Section 3.2, we study the Legendre-Clebsch condition along any singular arc. This enables us to
formulate a conjecture about the structure of optimal controls.

• In section 3.4, we describe an alternative approach for studying (3.1) based on Section 2 and the utiliza-
tion of feedback control laws.

• In Section 3.5, we provide numerical results about the comparison between the value function associated
with (3.1) (i.e., maxu(·) JT (u)) and the value of JT computed with the feedback controls ϕσ and ψσ.
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3.1 Application of the Pontryagin Maximum Principle

In its present form, the most convenient way to derive necessary optimality conditions on optimal solutions
of (3.1) is to apply the PMP (see [34]). Since there are no terminal constraints on the state, the Hamiltonian
H = H(x, s, λ, u) associated with (3.1) can be written in normal form as follows:

H =

n∑
j=1

(λj − λn+1)µj(s)xj + ε

n∑
j=1

λj(Mx)j + u
[ n∑
j=1

(1− λj)xj + λn+1(1− s)
]
, (3.2)

where λ ∈ Rn+1 is the covector. Let (x, s, u) be an optimal triple of (3.1). According to the PMP, there is
an absolutely continuous function λ : [0, T ] → Rn+1 (the adjoint vector) such that the quadruple (x, s, λ, u)
fulfills the following conditions:

• The adjoint vector satisfies the terminal condition λ(T ) = 0 together with the adjoint equation

λ̇(t) = −∇x,sH(x(t), s(t), λ(t), u(t)) a.e. t ∈ [0, T ],

that can be equivalently written{
λ̇i = (λn+1 − λi)µi(s)− ε(Mλ)i + u(λi − 1), 1 ≤ i ≤ n,
λ̇n+1 =

∑n
j=1(λn+1 − λj)µ′j(s)xj + uλn+1.

• The optimal control u satisfies the Hamiltonian maximization condition:

u(t) ∈ argmaxv∈[0,umax]H(x(t), s(t), λ(t), v) a.e. t ∈ [0, T ].

In order to make more explicit this condition, let us denote by φ the switching function

φ :=

n∑
j=1

(1− λj)xj + (1− s)λn+1.

The Hamiltonian condition then implies that every optimal control u satisfies the following property

φ(t) > 0 ⇒ u(t) = umax,
φ(t) < 0 ⇒ u(t) = 0,

(3.3)

for almost every t ∈ [0, T ], except along (possible) singular arcs5 S[t1,t2] which are sub-arcs such that φ ≡ 0 on
the corresponding time interval [t1, t2] (recall that (3.1) is affine w.r.t. the control). Next, we denote by B−,
resp. B+ a bang arc u = 0, resp. u = umax. Remind that a switching time ts is an instant such that the control
is non-constant in every neighborhood of t = ts, so that we necessarily have φ(ts) = 0. Before developing
further the analysis of singular arcs, we give the following property about optimal controls in a neighborhood
of the terminal time.

Property 3.1. For every initial condition in D and for every optimal control u of (3.1), there is η ∈ (0, T )
such that

∀t ∈ [T − η, T ], u(t) = umax. (3.4)

In addition, for every 1 ≤ i ≤ n, the function ρi := λn+1 − λi is negative over [T − η, T ).

Proof. Since λ(T ) = 0, we deduce that φ(T ) > 0 which implies (3.4). Now, using the adjoint equation, we
deduce that for 1 ≤ i ≤ n, ρi satisfies the ODE:

ρ̇i =

n∑
j=1

µ′j(s(t))xj(t)ρj + (u(t)− µi(s(t)))ρi + u(t) + ε(Mλ)i. (3.5)

Thanks to the terminal condition, we obtain that for 1 ≤ i ≤ n, one has ρi(T ) = 0 and ρ̇i(t) = umax + o(1)
when t→ T . Hence, taking η small enough if necessary, we get that ρi < 0 over [T − η, T ) for every 1 ≤ i ≤ n
as wanted.

Thanks to this property, every optimal trajectory ends up with a bang arc B+. Thus, a maximum of
biomass is harvested at the end of the culture.

5We refer to [9, 10, 38] for more details about singular arcs.

10



3.2 Optimality of singular arcs

In this section, we investigate the structure of optimal controls through the analysis of singular arcs. We would
like to know if an optimal control is rather of bang-bang type, or if it can contain a singular arc. To study
qualitative properties of singular arcs, we need to differentiate twice the switching function w.r.t. the time t
following geometric control theory for mono-input control-affine systems (see [9, 10, 38]). We find that φ̇ and
φ̈|u are given by the following expressions (next, we omit the variable t to simplify the notation):

φ̇ =
∑n
j=1 µj(s)xj + (1− s)

∑n
j=1(λn+1 − λj)µ′j(s)xj ,

φ̈|u = 2(1− s)
∑n
j=1 µ

′
j(s)xj + (1− s)2

∑n
j=1(λn+1 − λj)µ′′j (s)xj ,

over [0, T ]. Recall from [9, 10, 38] that if a singular arc is optimal over a time interval [t1, t2], then one must
have

φ(t) = φ̇(t) = 0 and φ̈|u(t) ≥ 0,

for every t ∈ [t1, t2]. The non-negativity of φ̈|u is known as the Legendre-Clebsch necessary optimality condition.

If one has φ̈|u > 0 over [t1, t2], we say that the strict Legendre-Clebsch condition is verified.

Proposition 3.1. Let u be an optimal control of (3.1) with ε = 0. If u has a non-saturated6 singular arc over
a time interval [t1, t2] and if ρi < 0 over [t1, t2], the strict Legendre-Clebsch necessary optimality condition is
verified over [t1, t2].

Proof. In view of the expressions of µi, one has µ′′i < 0 for every 1 ≤ i ≤ n. It follows that the second sum
in the expression of φ̈|u is positive. Since the first sum in the expression of φ̈|u is also positive, the result
follows.

Remark 3.1. (i) Showing that ρi < 0 along a singular arc is an open question that could be addressed using
the fact that (3.5) is cooperative (see [39]). This property is not straightforward : we only know that ρi < 0
in some time interval [T − η, T ] (Property 3.1). Establishing this property globally is more involved and out of
the scope of the paper.

(ii) Under the hypotheses of Proposition 3.1, only singular arcs of first order may occur. This means that the
corresponding singular control can be derived from the expression of φ̈ since φ̈|u > 0 as a feedback control of
the state and covector, see [9, 10, 38]). In particular, no chattering occurs.

(iii) From a numerical point of view, the Legendre-Clebsch condition can be used to confirm the optimality of
a singular arc once a candidate has been computed numerically (via a direct or an indirect shooting method).

Based on the preceding remarks and on numerical simulations (see Section 3.5), we posit the following
conjecture related to the structure of an optimal control.

Conjecture 3.1. Given T > 0 and (x0, s0) ∈ D, an optimal control u of (3.1) is of turnpike type, i.e., it
consists of three arcs concatenaed as follows:

B± − S[t1,t2] − B+.

The structure of the control given above is in line with the turnpike phenomenon [42]. This means that
an optimal control is everywhere almost stationary (i.e., the extremal (x, s, λ, u) is close to a stationary point
of the associated static optimization problem, see Section 3.3 and Fig. 4 and 5) except in a neighborhood of
t = 0 and t = T . However, the optimal control problem under investigation is linear w.r.t. the entry, so, it is
not clear a priori how to apply the results of [42] in our setting. At time t = 0, the bang arc B± depends on
the initial condition and it is difficult to know in advance if one has u(t) = 0 or u(t) = umax in a neighborhood
of t = 0. Nevertheless, the existence of a last bang arc B+ is given by Property 3.1. In any case, providing
an optimal synthesis (i.e., the construction of an optimal control in feedback form) in a high dimensional
(non-linear) optimal control problem is in general non tractable. The theoretical properties obtained from the
PMP serve to have insights into the structure of an optimal control. The study of optimal controls can be
completed by a numerical study in two steps:

6i.e., the associated singular control is with admissible values within 0 and umax over [t1, t2].
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• the optimal control problem is solved numerically by a direct method (like bocop, see [8]) which provides
a control uε (see Section 3.5 for the numerical results) ;

• the control uε serves to initialize an indirect shooting method (taking as parameters λ(0), t1 and t2) to
compute an optimal control u?ε.

Following this procedure, we would obtain that way a numerical approximation of an optimal control t 7→ u(t)in
open loop associated with some initial condition. Due to uncertainties in the process and measurements in the
reactor (biogas or concentration), it is desirable from an application point of view to synthesize an efficient
strategy in feedback form (also called sub-optimal strategy). This is what we do in what follows.

3.3 Static optimization problem

Our objective now is to implement the feedback controls ϕσ and ψσ in (3.1) in order to compare the corre-
sponding value of the cost function to the value function associated with (3.1). Note that the controllers ϕσ
and ψσ depend on a parameter σ that needs to be determined. This parameter will be defined as the solu-
tion to the following (static) optimization problem associated with (3.1). Remind that system (2.7) uniquely
characterizes the coexistence steady-state. Hence, the static optimization problem associated with (3.1) can
be gathered into

max
(u,x,s)∈Ω

u

n∑
j=1

xj s.t.

∣∣∣∣∣∣∣
Aε,sx = ux,∑n
j=1 xj + s = 1,

λ(Aε,s) = u,

(3.6)

where Ω := [0, umax] × Rn+ × [0, 1] (remind that λ(A) denotes the greatest eigenvalue of a quasi-positive
irreducible matrix A ∈ Rn×n).

Proposition 3.2. The optimization problem (3.6) has a solution and it is equivalent to

max
s∈(0,1)

λ(Aε,s)(1− s). (3.7)

Proof. Clearly, (3.6) is equivalent to (3.7). Moreover, the existence is straightforward using the continuity of
s 7→ λ(Aε,s)(1− s) over [0, 1] (see, e.g., [3]) and the fact that s 7→ λ(Aε,s)(1− s) is non-negative, vanishes at
s = 0 (because in that case λ(Aε,s) = λ(M) = 0) and at s = 1.

Remark 3.2. Based on numerical simulations, we believe that the solution to (3.6) is unique in the case of
Monod kinetics for (2.4). Nevertheless, we have not detailed this issue here to avoid complicated computations
involving the second derivative of the Perron root λ.

On Fig. 1, we depict the mapping s 7→ λ(Aε,s)(1 − s) over [0, 1] verifying numerically the existence and
uniqueness of a maximizer of this function over [0, 1] for various values of the parameters defining the kinetics.
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Figure 1: Plot of s 7→ λ(Aε,s)(1 − s) over [0, 1] for ε = 0 (left), ε = 0.01 (middle), and ε = 0.1 (right). The
number of species is n = 5 and kinetics are arbitrary Monod functions.
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3.4 Definition of sub-optimal strategies

We now furnish an alternative method to the PMP or numerical simulations via a direct or indirect method
for studying (3.1). First, we suppose that umax fulfills the inequality

umax > µ̂(1), (3.8)

in order to ensure the admissibility of the feedback controls (without saturation). As mentioned previously,
umax can always be taken large enough from a practical point of view. The next property is related to the
admissibility of the feedback controls ϕ = ϕσ and ϕ = ψσ

Property 3.2. Given (ε, σ) ∈ R∗+ × (0, 1), there is a time t0 ≥ 0 such that for every solution to (2.4) with
ϕ = ϕσ or ϕ = ψσ, one has:

∀t ≥ t0, ϕσ(x(t)) ≤ umax and ψσ(x(t), s(t)) ≤ umax.

Proof. Consider a solution to (2.1) starting in D with u = ϕσ(x) or u = ψσ(x, s). Theorem 2.1 implies that
when t→ +∞, one has ϕσ(x(t))→ uσ,ε and ψσ(x(t), s(t)) as well. Now, uσ,ε ≤ µ̂(σ) < µ̂(1) < umax and the
result follows.

So, if the feedbacks are non
Next, given ε ∈ R∗+ and T ∈ R∗+, we propose the following sub-optimal strategy in feedback form:

• Step 1 : we compute σ?ε ∈ (0, 1) as a solution to (3.6) and we consider (2.1) with a single input u ;

• Step 2 : if the state x is an available output, we apply the feedback control (2.5) with σ = σ?ε . If
microbial growth7 is an available output, then we apply (2.6) with σ = σ?ε .

In the next section, we compare the optimal value of cost function to the cost function computed thanks to
the above strategy.

3.5 Numerical simulations

We have carried out numerical simulations of (3.1) with four strategies:

• the functional JT is computed with the constant dilution rate u(t) = usε corresponding to the optimal
solution of the static problem ;

• the functional JT is computed with the feedback control ϕσ?ε to regulate the substrate concentration at
the optimal value of the static problem ;

• the functional JT is computed with the feedback control ψσ?ε , with the same set-point ;

• the minimum of JT si computed numerically with a direct solver bocop [8], using Lobatto IIIC discretiza-
tion method with 200 time steps.

In the simulations, we consider 10 species and their specific growth rates are taken of Monod type, as follows:

µi(s) =
i · s
i2 + s

, i = 1, ..., 10.

This represents a trade-off between substrate affinity and maximum growth rate (in line with [21]), so that
each species is the best for certain substrate concentrations (see Fig. 2). The other parameters are taken as
follows: ε = 0.01, sin = 100 (in place of sin = 1 in (2.1)), and umax = 5.

Trajectories are represented in Fig. 3. With the two feedbacks, the substrate concentration rapidly reaches
its set-point, while this takes more time with the constant dilution rate. The optimal trajectory obtained
with bocop is very similar to the feedback trajectories: the substrate concentration rapidly reaches the static
optimal value σ?ε . The main difference is the Bang arc B+ at the end, in order to harvest all the biomass.

We also compare the performances of the four above strategies as a function of the time horizon T (see
Fig. 4), using the numerical optimal solution (obtained via bocop) as a reference. When the time horizon is

7Microbial growth and biogas activity in a continuous stirred tank reactor are quantities proportional to
∑n

j=1 µj(s(t))xj(t).
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Figure 2: Specific growth rates µi(·) over [0, sin] for the ten species used for our simulations. Fig. left: Monod
functions. Fig. right: Haldane functions.
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Figure 3: Trajectories with Monod growth functions using either a constant dilution rate usε, the feedbacks
ϕσ?ε or ψσ?ε , or the optimal trajectory obtained numerically with bocop.

short, the constant dilution rate strategy performs the worst, while the two feedback strategies are similar,
slightly under the optimal value of the cost function. When the time horizon becomes large enough, all the
strategies give almost the same performance. All the trajectories stay the majority of the time on the optimal
steady states, and the differences in the function appearing during the transients (t = 0 and t = T ) become
negligible.
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Figure 4: Comparison of the criteria between the different strategies, as a function of the time horizon. The
curves for the two feedbacks are overlapped.

Finally, we have also considered specific growth rates with Haldane type (see Fig. 2):

µi(s) =
i · s

i2 + s+ i−0.1 · s2
, i = 1, ..., 10,

and for the other parameters, we have chosen ε = 0.01, sin = 30 (in place of sin = 1 in (2.1)), and umax = 1.
The same four strategies are simulated and numerical results are depicted on fig. 5. When using a constant
dilution rate, we observe that washout occurs. Actually, when considering inhibition, it is well known that
the monospecies chemostat model presents bi-stability [18]. It appears that our system possesses a similar
behavior : if we start with a high value of the dilution rate and a high input substrate concentration, the
chemostat is washed out. On the other hand, the two feedback controls give accurate results with a production
(i.e., the value of JT ) close to the optimal one computed numerically via bocop.

4 Conclusion and perspectives

In this paper, we have introduced feedback auxostat controllers in the chemostat system with mutations
allowing the regulation of the substrate concentration at a desired value. The feedback control ϕσ requires
measurements of the concentration of species xi whereas the feedback ψσ can be used if one has access to
measurements of the microbial growth. We have proved that the resulting closed-loop system is globally
asymptotically stable around the desired steady-state of the system.

Next, we have considered an optimal control problem which consists in maximizing the production of all
species in the chemostat system over a given time interval. Thanks to the PMP, we have given qualitative
properties of optimal controls and singular arcs that confirm the turnpike structure of optimal controls obtained
numerically. Since this approach furnishes an open loop control for each initial condition, it may suffer from
lack of robustness in presence of uncertainties. So, we introduced sub-optimal strategies using the auxostat
controllers regulated at the optimal solution to the static optimization problem associated with (3.1). We
have seen that when the terminal time is large enough, these sub-optimal strategies provide an accurate
approximation of the optimal cost value whereas with a constant control, the approximation of the optimal
cost value is less accurate.

One main feature is that the proposed control strategies depend on the state only, so, once the static
optimization problem has been solved, they can be used in practice to face uncertainties under the condition
that one has access to one-line measurements of the state. Thanks to numerical simulations, we have also seen
that the feedback controls are also of interest in the case where the kinetics are of Haldane type (in that case,
global convergence results may no longer be guaranteed depending on the choice of the feedback control).

Future works related to the first part of the paper about the chemostat system with mutations could
investigate the study of global convergence of (2.4) in the case where the control u is constant (this question
remains difficult, see [3]) and in the more general case of Haldane’s kinetics for the species. Another perspective
could be to consider the case where yield coefficients are no longer equal to one (so that mass conservation is
no longer guaranteed) and with a more general mutation matrix M .
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Figure 5: Trajectories with Haldane growth functions using either a constant dilution rate u∗, the feedbacks
ϕσ?ε or ψσ?ε , or the optimal trajectory obtained numerically with bocop

Concerning the second part of the paper about the study of the maximization of the production of species,
it could be interesting to refine our approach by incorporating two bang arcs (over [0, t1] and [t2, T ] in line
with Pontryagin’s Principle) while keeping a stabilizing feedback control over [t1, t2] (or taking the constant
static optimal value of the control), and to optimize the cost function w.r.t. the switching instants (see, e.g.,
[11]).
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