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Hybrid maximum principle with regionally switching parameter

Térence Bayen∗ Anas Bouali† Loïc Bourdin‡

April 12, 2022

Abstract

In this paper we consider a Mayer optimal control problem governed by a hybrid control system
defined over a partition of the state space. We assume that the control system depends on a regionally
switching parameter that remains constant in each region but that can change its value when the state
position crosses interfaces. This new framework allows to deal, as a particular case, with control systems
including non-control regions. In this paper our objective is to provide the corresponding necessary
optimality conditions in a Pontryagin form. Our approach is based on a thorough sensitivity analysis of
the hybrid control system under needle-like perturbations of the control and under convex perturbations
of the parameter. To this aim we invoke implicit function arguments to deal with the interface crossings
that are assumed to be transverse. The paper is concluded with a simple academic example showing that
our framework allows to fill a gap in the literature.

Keywords: hybrid systems, optimal control, necessary optimality conditions, hybrid maximum principle,
Pontryagin maximum principle, sensitivity analysis.

AMS classification: 34A38, 49K15, 93C57.

1 Introduction
Optimal control theory was developed at the end of the fifties with two major mathematical theorems,
namely, the Hamilton-Jacobi-Bellman equation [12] (in short, HJB equation) and the Pontryagin Maximum
Principle [52] (in short, PMP). The HJB equation focuses on sufficient optimality conditions, while the PMP
represents, in some say, its counterpart about necessary optimality conditions. The objective of the present
paper is to extend the latter in a new framework related to hybrid control systems.

To get into details of our new setting, we need to recall first the usual context of application of the PMP
and some of its key issues. In many areas (such as engineering, biology, aeronautics, aerospace, etc.), cost
functionals (like energies, time transfer, etc.) have to be minimized among solutions of a control system of
the form

ẋ(t) = f(x(t), u(t), t), a.e. t ∈ [0, T ],

where x (resp. u) stands for the state position (resp. the control) and where f : Rn × Rm × [0, T ] → Rn is
(usually) a C1 function called dynamics of the control system. The PMP has been developed especially to
deal with such optimal control problems. It provides a so-called Hamiltonian maximization condition which
guarantees, in particular, that the optimal control can be expressed as a feedback of the state position and a
costate function.

Initial motivation: control systems with non-control regions. At this step, it is worth noticing that
the literature usually presupposes that it is possible to change the control value u(t) at any real time t ∈ [0, T ].
In that case we speak of a permanent control. However, in several application models such as in automation,
one can consider only a piecewise constant control (also known as sampled-data control) whose value can be
modified only at certain instants (and remains constant otherwise). For instance, in the digital controller
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design for renewable energy systems [51], changes of the control value u(t) are possible only at t = kτ for
all k ∈ N, for some fixed τ > 0. To cope with such situations of sampled-data controls, the PMP has recently
been adapted [19, 20, 21, 22] and the corresponding version provides a so-called averaged Hamiltonian gradient
condition instead of the usual Hamiltonian maximization condition.

The initial motivation of the present work was to consider a related situation in which a control system
possesses non-control regions. To illustrate this new concept, consider a finite partition of the state space

Rn =

N⋃
j=1

Xj ,

in which the Xj are disjoint nonempty connected open subsets of Rn. Now consider that, according to the
state position x(t) in the above partition, it may be no longer possible to change the control value u(t) in a
permanent way. In other words, each region Xj is either a control region (in which the control value u(t)
can be modified in a permanent way) or a non-control region (in which the control value u(t) is frozen and
remains constant as long as x(t) ∈ Xj). As an example of such a problematic, we can cite the problem of
shadow effect in aerospace problems [35, 39, 42]. It is also of interest in population dynamics models when
considering safety zones in which no change of the control value is applied for economic reasons (see the time
crisis problem [11] in the context of viability [3]).

Our approach: hybrid control systems with a regionally switching parameter. In a control system
including non-control regions, the control function can be seen as a permanent control in a control region,
and as a constant parameter in a non-control region. Therefore, to address this setting, our approach was to
write the control system as

ẋ(t) =

{
f(x(t), u(t), t) if x(t) belongs to a control region,
f(x(t), λ(t), t) if x(t) belongs to a non-control region, a.e. t ∈ [0, T ],

where λ is a regionally switching parameter, in the sense that λ is a function that remains constant while
the state position x(t) stays inside a region, and can switch (that is, can change its value) only when the
state position x(t) goes from one region to another. Note that λ is not necessarily constant over the whole
interval [0, T ]. It can have different values if different regions are visited (and can even have different values in
the same region if the state position x(t) quits and visits several times this region). Hence one can see λ as a
piecewise constant control but we insist on the fact that this framework strongly differs from the sampled-data
control setting since the possibility (or not) of changing the value of λ depends on the state position x(t)
(and not on the time variable t).

With the above approach, a crucial point is that the dynamics is no longer continuous at the interfaces
between control regions and non-control regions. Therefore our framework falls into the domain of hybrid
control systems (that is, control systems with discontinuous dynamics). Such control systems are naturally
present in many areas such as aircraft planning [59, 61], motion planning [37] or population dynamics [47]. Note
that situations of hybrid control systems are various. For example, the dynamics may change discontinuously
(only) with respect to time (see, e.g., [31]). A more general possibility is to consider a switching law, that
may depend on several parameters, which governs the discontinuous changes of the dynamics. In that case
one may speak of switched systems or switching systems (see, e.g., [13, 29, 66]). To extend the PMP to such
discontinuous frameworks, the so-called Hybrid Maximum Principle (in short, HMP) has been developed in
various hybrid settings, in a series of papers such as [26, 27, 28, 38, 42, 50, 60] and references therein. In the
present article, in the spirit of previous works such as [25, 26, 38, 42], we consider the hybrid setting where
the dynamics changes discontinuously (only) according to the state position x(t) in a given partition of the
state space Rn. In that context, in contrary to the classical PMP in which the costate function is absolutely
continuous, the HMP provides a costate function that has discontinuity jumps when the state position x(t)
crosses interfaces.

As far as we know, the consideration of an additional regionally switching parameter λ (as presented
before) has never been considered in the literature. Furthermore, in contrary to a constant parameter (or to
a sampled-data control), the framework of a regionally switching parameter cannot be easily covered by an
augmentation technique or any other tricky procedure (see Remark 2.4 for details).
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Our main result. Hence, in this work, we consider the general hybrid control system, involving both a
permanent control and a regionally switching parameter, given by

ẋ(t) = h(x(t), λ(t), u(t), t), a.e. t ∈ [0, T ],

where λ is a regionally switching parameter (as presented above) and where h : Rn × Rd × Rm × [0, T ] → Rn

is a hybrid dynamics, in the sense that it is defined regionally by

h(x, λ, u, t) := hj(x, λ, u, t), when x ∈ Xj ,

where the hj : Rn ×Rd ×Rm × [0, T ] → Rn are C1 functions. We insist here on the fact that control systems
with non-control regions (which constitute our initial motivation) are a particular case of the above setting.
The main objective of this paper is to provide first-order necessary optimality conditions in a PMP form for
a Mayer optimal control problem

minimize ϕ(x(T )),

among solutions to the above hybrid control system. Therefore our main result (Theorem 2.1) is called hybrid
maximum principle with regionally switching parameter. As one can expect, given an optimal triplet (x, λ, u),
Theorem 2.1 asserts that u satisfies the classical Hamiltonian maximization condition, while λ satisfies the
averaged Hamiltonian gradient condition over each region visited. Furthermore, as usual in the hybrid setting
(as explained above), a jump of the costate function is observed at each crossing time.

Now let us discuss briefly the proof of Theorem 2.1 and the main difficulties encountered. In abstract
optimization, to derive necessary optimality conditions, one has to perform a sensitivity analysis of the
constraints. In our setting, this translates into a sensitivity analysis of the hybrid control system. To this
aim, we consider a perturbation of the control (needle-like perturbation as in [7, 34, 53]) and of the regionally
switching parameter (convex perturbation as in [19, 20]). Under such local perturbations, we obtain a
perturbed trajectory, but also a perturbed crossing time. We stress that the major difficulty of this work lies
in handling this perturbed crossing time. To prove its existence, we rely on implicit function arguments which
require two regularity assumptions: left and right continuity of the nominal control at the crossing time,
and a transverse crossing condition on the nominal trajectory. Such hypotheses are commonly used in the
hybrid setting (see, e.g., [9, 42, 50]). In addition, since the perturbed crossing time does perturb the next one,
and so on, and so on, an inductive reasoning is required to prove the existence of the remaining perturbed
crossing times. Once the sensitivity analysis is complete, the proof of our main result follows similar steps to
the PMP’s proof which is based on the construction of an adequate adjoint vector to maintain the constancy
of the inner product with all variation vectors. Let us note that, as usual in the hybrid setting, since the
variation vectors admit discontinuities at each crossing time (due to the perturbed ones, as explained above),
the adjoint vector also admits jumps at each crossing time.

Finally, the main novelties of this work are the variation vectors obtained with convex perturbations
of the regionally switching parameter (which lead to the averaged Hamiltonian gradient condition) and
the applicability of our main result to control systems with non-control regions (which is developed in a
companion proceeding [8]). Furthermore we emphasize that our goal was to provide a very complete and
rigorous proof of the HMP. Therefore the proof is quite long and technical and it is postponed to the end of
the paper. However, for pedagogical reasons and for the reader’s convenience, we provide in Section 2.4 a
short overview of the proof of Theorem 2.1.

Some remarks. Hereafter we provide a short list of comments that we thought important to highlight
before starting the paper:

(i) In contrary to what is claimed above (for simplicity), we actually consider in the present work the
possibility of a state partition that can be infinite, and also that can be not static (in other words, that
can be time dependent). The first extension is trivial. However the second extension requires two basic
continuity conditions on the time evolution of the partition (see Remark 2.1 for details).

(ii) In this paper we give a simple example showing, as noticed in [38], that a standard needle-like
perturbation of the control (as used in the literature for non-hybrid control systems) can produce a
non-admissible trajectory in the hybrid setting (see Item 2. in Section 2.4). This important issue leads
us to consider the construction of auxiliary controls on which we perform needle-like perturbations to
obtain admissible trajectories (see Section 2.4 for details).
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(iii) The present paper does not cover terminal state constraints (that is, constraints on x(0) and x(T )).
In the classical non-hybrid setting, several methods have been developed in the literature to take into
account such constraints. One can invoke the Ekeland variational principle [33] or some implicit function
arguments (see, e.g., [2, 58]). To the best of our knowledge, the Ekeland approach does not apply in
the present hybrid setting for several reasons, while the method based on an implicit function argument
should be adaptable but at the price of a heavy formalism (see Remark 2.11 for details). Since our
main objective in this work was to focus on the new concept of regionally switching parameter and
on the corresponding averaged Hamiltonian gradient condition, we decided to avoid the technicalities
related to the presence of terminal state constraints which are already well known in the literature.

(iv) Section 2.5 is dedicated to a list of comments on our main result and its consequences, and also on
possible extensions. For instance we discuss the behavior of the Hamiltonian function, and the possible
extension to a general Bolza cost (instead of a Mayer cost) or to a free final time T > 0.

(v) By means of a simple academic example, we show in Section 3 how to use Theorem 2.1 and that the new
framework considered in this paper fills a gap in the literature. Indeed, in that example, and as one can
expect, the optimal solution associated with a regionally switching parameter has a better cost than the
one associated with a constant parameter, but has a worse cost than the one considering a permanent
control instead of the regionally switching parameter. We highlight that this example remains simple
and academic. More concrete and complex examples will be the topics of further research works. Finally
let us refer to [8] for the specification of our main result to (non-hybrid) optimal control problems with
non-control regions.

Organization of the paper. The paper is structured as follows. Section 2 starts with notation and
functional framework. Then we introduce a general Mayer optimal control problem governed by a hybrid
control system including a regionally switching parameter. Our main result (Theorem 2.1) about the
corresponding first-order necessary optimality conditions in a PMP form is stated right after. Next we give an
overview of the proof of Theorem 2.1, as well as a list of comments and perspectives. Section 3 is dedicated
to a simple academic example. The last three sections are dedicated to the quite long and technical proof of
Theorem 2.1. Precisely, in the preliminary Sections 4 and 5, we provide a thorough sensitivity analysis of a
non-hybrid and of a hybrid control system respectively. Based on these technical results, Section 6 is devoted
to the complete proof of Theorem 2.1.

2 Main result
This section is dedicated to state our main result. To this aim, Section 2.1 is devoted to the required notations
and functional framework. In Section 2.2, the hybrid optimal control problem with regionally switching
parameter considered in this paper is presented, with terminology and assumptions. In Section 2.3, the
corresponding hybrid maximum principle, which constitutes our main result, is provided (see Theorem 2.1).
The proof of Theorem 2.1 is quite long and technical. Therefore it is postponed to the end of the paper.
Nonetheless, for the reader’s convenience, an overview of the proof of Theorem 2.1 is proposed in Section 2.4.
Finally a list of general comments on Theorem 2.1 and its consequences, and also on possible relaxations and
extensions is provided in Section 2.5.

2.1 Notations and functional framework
In this paper, for any positive integer d ∈ N∗, we denote by ⟨·, ·⟩Rd (resp. ∥ · ∥Rd) the standard inner
product (resp. Euclidean norm) of Rd. For any subset S ⊂ Rd, we denote by ∂S the boundary of S defined
by ∂S := S\Int(S), where S and Int(S) stand for the closure and the interior of S respectively. Furthermore,
for any extended-real number r ∈ [1,+∞] and any nonempty real interval I ⊂ R, we denote by:

• Lr(I,Rd) the standard Lebesgue space of r-integrable functions defined on I with values in Rd, endowed
with its usual norm ∥ · ∥Lr .
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• C(I,Rd) the standard space of continuous functions defined on I with values in Rd, endowed with its
standard uniform norm ∥ · ∥C.

• AC(I,Rd) the subspace of C(I,Rd) of absolutely continuous functions.

If a function γ : I → Rd admits left and right limits at some τ ∈ Int(I), we denote by

γ−(τ) := lim
t→τ
t<τ

γ(t) and γ+(τ) := lim
t→τ
t>τ

γ(t).

Now take I = [0, T ] for some T > 0. Recall that a partition of the interval [0, T ] is a finite set T = {tk}k=0,...,N ,
for some positive integer N ∈ N∗, such that 0 = t0 < t1 < . . . < tN−1 < tN = T . In this paper:

• A function γ ∈ L∞([0, T ],Rd) is said to be piecewise constant, with respect to a partition T = {tk}k=0,...,N

of the interval [0, T ], if the restriction of γ over each open interval (tk−1, tk) is almost everywhere equal
to a constant denoted by γk ∈ Rd. If so, γ is identified to the function γ : [0, T ] → Rd given by

γ(t) :=

{
γk if t ∈ [tk−1, tk) for all k ∈ {1, . . . , N − 1},
γN if t ∈ [tN−1, tN ] for k = N,

for all t ∈ [0, T ].

• A function γ : [0, T ] → Rd is said to be piecewise absolutely continuous, with respect to a partition T =
{tk}k=0,...,N of the interval [0, T ], if γ is continuous at 0 and T and the restriction of γ over each open
interval (tk−1, tk) admits an extension over [tk−1, tk] that is absolutely continuous. If so, γ admits left
and right limits at each tk ∈ (0, T ), denoted by γ−(tk) and γ+(tk) respectively.

In what follows we denote by PCT([0, T ],Rd) (resp. PACT([0, T ],Rd)) the space of all piecewise constant
functions (resp. piecewise absolutely continuous functions) respecting a given partition T of [0, T ]. Finally we
denote by PC([0, T ],Rd) (resp. PAC([0, T ],Rd)) the set of all piecewise constant functions (resp. piecewise
absolutely continuous functions), independently of the partition considered.

Finally, as usual in the literature, when (Z,dZ) is a metric set, we denote by BZ(z, ε) (resp. BZ(z, ε))
the standard open (resp. closed) ball of Z centered at z ∈ Z and of radius ε > 0.

2.2 A hybrid optimal control problem with regionally switching parameter
Let n, d, m ∈ N∗ be three fixed positive integers and T > 0 be a fixed positive real number. In this paper, in
the spirit of [42], we consider a time dependent partition of Rn given by

∀t ∈ [0, T ], Rn =
⋃
j∈J

Xj(t),

where J is a (possibly infinite) family of indexes and where, for all t ∈ [0, T ], the nonempty connected open
subsets Xj(t), called regions, are disjoint. This time dependent partition is furthermore assumed to satisfy
two basic continuity conditions given by:

(C1) for all j ∈ J and all x ∈ C([a, b],Rn) satisfying x(t) ∈ Xj(t) over [a, b], for some 0 ≤ a ≤ b ≤ T , there
exists a uniform σ > 0 such that BRn(x(t), σ) ⊂ Xj(t) for all t ∈ [a, b].

(C2) for all tc ∈ (0, T ) and all x ∈ C([tc−δ, tc+δ],Rn) satisfying x(t) ∈ Xj(t) over [tc−δ, tc) and x(t) ∈ Xj′(t)
over (tc, tc + δ], for some j, j′ ∈ J with j ̸= j′ and some small δ > 0, it holds that x(tc) ∈
∂Xj(t

c) ∩ ∂Xj′(t
c).

Remark 2.1. Note that the continuity conditions (C1) and (C2) are automatically satisfied whenever the
partition is static (that is, independent of the time variable t). In contrast, when the partition is not static,
the continuity conditions (C1) and (C2) guarantee, as one might expect, a kind of smooth and reasonable
time evolution of the regions composing the partition. We refer to Figure 1 for illustrations. Note that it
is not our aim here to use the technical tools from multi-valued analysis (see, e.g., [5, 57]) to describe the
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∂Xj(t
c − δ) ∩ ∂Xj′(t

c − δ)

xx

x(tc − δ)

x(tc + δ)

x(tc)

(b)

Figure 1: Illustrations of Condition (C1) on the left, and of Condition (C2) on the right.

continuity properties of the multi-valued functions Xj : [0, T ] ⇒ Rn. Indeed the continuity conditions (C1)
and (C2) are sufficient for our investigation. Precisely the present work focuses on optimal control problems
involving hybrid control systems associated with the partition. Our aim is to derive necessary optimality
conditions which are obtained, as usual in the literature, thanks to a thorough sensitivity analysis of the
hybrid control system under various perturbations. In our approach, the continuity conditions (C1) and (C2)
are used to construct appropriate perturbed trajectories which visit exactly (and in the same order) the same
regions than the nominal one. We refer to Section 2.4 for details and illustrations.

Additionally to the above time dependent partition of Rn, we consider a hybrid dynamics h : Rn × Rd ×
Rm × [0, T ] → Rn defined regionally by

∀(x, λ, u, t) ∈ Rn × Rd × Rm × [0, T ], h(x, λ, u, t) := hj(x, λ, u, t) when x ∈ Xj(t),

where the maps hj : Rn × Rd × Rm × [0, T ] → Rn are of class C1. Note that h(x, λ, u, t) is not defined
when x /∈ ∪j∈JXj(t) but this fact will have no impact on the rest of this work. In this paper we focus on the
hybrid control system with regionally switching parameter given by

(x, λ, u) ∈ AC([0, T ],Rn)× PC([0, T ],Rd)× L∞([0, T ],Rm),

ẋ(t) = h(x(t), λ(t), u(t), t), a.e. t ∈ [0, T ],

x(0) = xinit,

λ is a regionally switching parameter associated with x,

(CS)

where the fixed initial condition xinit belongs to Xj1(0) for some j1 ∈ J . In the control system (CS), as usual
in the literature, x ∈ AC([0, T ],Rn) is called the state (or the trajectory) and u ∈ L∞([0, T ],Rm) is called
the control. In the literature, there are many references that discuss the additional presence of a constant
parameter λ ∈ Rd (see, e.g., [17]). The novelty of the present work lies in the consideration of a regionally
switching parameter λ ∈ PC([0, T ],Rd) meaning, roughly speaking, that the parameter λ remains constant
while the trajectory x stays inside a region, but is authorized to switch (that is, to change its value) when
the trajectory x crosses a boundary, going from one region to another. The precise definition of a solution
to (CS) is given below.

Definition 2.1 (Solution to (CS)). A triple (x, λ, u) ∈ AC([0, T ],Rn)× PC([0, T ],Rd)× L∞([0, T ],Rm) is
said to be a solution to (CS) if the following conditions are satisfied:

(i) There exists a partition T = {tck}k=0,...,N of the interval [0, T ] such that

∀k ∈ {1, . . . , N}, ∃j(k) ∈ J , ∀t ∈ (tck−1, t
c
k), x(t) ∈ Xj(k)(t),

with j(k) ̸= j(k − 1) for all k ∈ {2, . . . , N}, with x(0) ∈ Xj(1)(0) and x(T ) ∈ Xj(N)(T ).

(ii) λ is a regionally switching parameter associated with x, that is, λ ∈ PCT([0, T ],Rd).

(iii) The state equation ẋ(t) = hj(k)(x(t), λk, u(t), t) is satisfied for almost every t ∈ (tck−1, t
c
k) and all k ∈

{1, . . . , N}.

6



(iv) The initial condition x(0) = xinit is satisfied (and thus j(1) = j1).

In that case, for the ease of notations, we simply denote by fk := hj(k) and Ek := Xj(k) for all k ∈ {1, . . . , N}.
With this system of notations we get that

∀k ∈ {1, . . . , N},

{
x(t) ∈ Ek(t), ∀t ∈ (tck−1, t

c
k),

ẋ(t) = fk(x(t), λk, u(t), t), a.e. t ∈ (tck−1, t
c
k),

and x(0) ∈ E1(0), x(T ) ∈ EN (T ). Furthermore the times tck, for k ∈ {1, . . . , N − 1}, are called the crossing
times, corresponding to the times at which the trajectory x goes from the region Ek to the region Ek+1, and
thus x(tck) ∈ ∂Ek(t

c
k) ∩ ∂Ek+1(t

c
k) from the continuity condition (C2). We refer to Figure 2 for an illustration.

∂E1(t
c
1) ∩ ∂E2(t

c
1) ∂Ek(t

c
k) ∩ ∂Ek+1(t

c
k) ∂EN−1(t

c
N−1) ∩ ∂EN (tcN−1)

x(0) = xinit

x(T )... ...

Figure 2: Illustration of Definition 2.1.

Remark 2.2. In control theory, the terminology hybrid control systems refers to control systems governed
by dynamics that can change discontinuously. They arise in many application models such as in automatic
control [6, 15, 49, 56], aircraft planning [59, 61], or motion planning [37], etc. They are also considered in
population dynamics [47] and in viability theory [11] when dealing with a discontinuous Lagrange cost function
to be minimized such as in time crisis problems [10]. Other examples can be found in the monographs [40, 63].

Note that situations of hybrid control systems are various. For example, the dynamics may change
discontinuously (only) with respect to time (see, e.g., [31]). A more general possibility is to consider a
switching law, that may depend on several parameters, which governs the discontinuous changes of the
dynamics. In that case one may speak of switched systems or switching systems (see, e.g., [13, 29, 66]). In
this paper, in the spirit of previous works such as [25, 26, 38, 42], we consider the case where the dynamics
changes discontinuously (only) according to the position of the state in a given time dependent partition of
the state space Rn.

The main novelty of the present work is to take into account an additional regionally switching parameter
that remains constant in each visited region but may switch at each boundary crossing. To the best of our
knowledge, this framework is new and is motivated by several applications. Typically, in the satellite orbit
transfer problem or in the aerospace domain, a controlled spacecraft may enter into shadow zones in which
the control value cannot be modified anymore and thus remains constant (see, e.g., [35, 39] and references
therein). As explained in Introduction, such optimal control problems with non-control regions are particular
cases of our setting. Note that, in population models, epidemiology, or in viability theory, it may be useful
for a practitioner to stop changing the control value permanently in the complement of crisis sets [11], which
also falls into the framework of non-control regions.

Remark 2.3. In this paper, note that the fixed initial condition xinit belongs to a region (and not to a
boundary) and, according to Definition 2.1, we deal (only) with trajectories x whose final condition x(T )
also belongs to a region (and not to a boundary). These restrictions allow us, similarly to the continuity
conditions (C1) and (C2) (see Remark 2.1), to avoid situations in which the sensitivity analysis of the hybrid
control system (CS) would involve perturbed trajectories that would visit more regions than the nominal
one. However we are confident that, at the price of a slightly more cumbersome analysis, the methodology
developed in this paper (in particular the assumptions and techniques used to deal with the boundary
crossings over the open time interval (0, T )) could be easily adapted to deal with terminal conditions that
might belong to boundaries.
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Our objective in the present work is to derive first-order necessary optimality conditions, in the form of a
Pontryagin maximum principle, for the hybrid optimal control problem with regionally switching parameter
given by

minimize ϕ(x(T )),

subject to (x, λ, u) ∈ AC([0, T ],Rn)× PC([0, T ],Rd)× L∞([0, T ],Rm) solution to (CS),

(λ(t), u(t)) ∈ Λ×U, a.e. t ∈ [0, T ],

(OCP)

where the Mayer cost function ϕ : Rn → R is of class C1, the parameter constraint set Λ is a nonempty convex
subset of Rd and the control constraint set U is a nonempty closed subset of Rm. We refer to Section 2.4
(Item 11) for comments on how the hypotheses made on Λ and U are used in our approach, and to Remark 2.10
for possible relaxations.

Remark 2.4. Note that several versions of necessary optimality conditions for hybrid optimal control
problems, in the form of a Pontryagin maximum principle, are already available in the literature (see,
e.g., [31, 38, 42] and references therein). However, to the best of our knowledge, none of them allows to deal
with our framework. Indeed:

• First, note that a hybrid optimal control problem with an additional constant parameter λ ∈ Rd

can be easily treated, thanks to the classical method of augmenting the control system with the
equation λ̇(t) = 0Rd (see, e.g., [17]). One obtains a necessary optimality condition written as an
averaged Hamiltonian gradient condition over the whole interval [0, T ].

• Second, in the case where λ ∈ PCT([0, T ],Rd) is a piecewise constant control (also known as sampled-data
control), with a given and fixed partition T = {tk}k=0,...,N (independent of the state), one can easily
deduce necessary optimality conditions from the previous item. Indeed, using an adequate change of
time variable (transforming all intervals [tk−1, tk] into a common interval [0, 1]), all the values λk ∈ Rd

become constant parameters and one can deduce an averaged Hamiltonian gradient condition over each
interval [tk−1, tk] (see, e.g., [20, 21]). Note that, in case of a free partition T (but with a fixed positive
integer N ∈ N∗), one can consider each tk as a parameter and derive a necessary optimality condition
given by the continuity of the corresponding Hamiltonian function (see, e.g., [19]).

The techniques and results presented above are well known in the non-hybrid setting, and can certainly be
generalized to the hybrid setting with no major difficulty. However, even if considering a regionally switching
parameter might seem as easy as dealing with sampled-data controls, it is not. The main technical issue here
lies in the fact that the possibility of changing the parameter value depends on the state position (and not on
the time variable). To the best of our knowledge, this point has never been discussed in the literature, and
cannot be addressed easily with a technical trick. Hence the major contribution of this paper is to fill this
gap in the literature.

2.3 Hybrid maximum principle with regionally switching parameter
Our main result (Theorem 2.1) is based on some regularity assumptions made on the behavior of the optimal
triple (x, λ, u) at the crossing times tck. These hypotheses are precised in the next definition.

Definition 2.2 (Regular solution to (CS)). Following the notations introduced in Definition 2.1, a so-
lution (x, λ, u) ∈ AC([0, T ],Rn) × PC([0, T ],Rd) × L∞([0, T ],Rm) to (CS) is said to be regular if there
exist 0 < δ ≤ 1

3 mink=1,...,N |tk − tk−1| and ν > 0 such that:

(A1) At each crossing time tck, the control u is continuous over [tck − δ, tck) and over (tck, t
c
k + δ], and admits

left and right limits at tck, denoted by u−(tck) and u+(tck) respectively.

(A2) At each crossing time tck, there exists a C1 function Fk : BRn(x(tck), ν)× [tck − δ, tck + δ] → R such that

∀(y, t) ∈ BRn(x(tck), ν)× [tck − δ, tck + δ],


y ∈ Ek(t) ⇔ Fk(y, t) < 0,

y ∈ ∂Ek(t) ∩ ∂Ek+1(t) ⇔ Fk(y, t) = 0,

y ∈ Ek+1(t) ⇔ Fk(y, t) > 0.
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In particular it holds that Fk(x(t
c
k), t

c
k) = 0.

(A3) At each crossing time tck, the transverse conditions given by

⟨∇xFk(x(t
c
k), t

c
k), (fk)

−(tck)⟩Rn +∇tFk(x(t
c
k), t

c
k) > 0,

⟨∇xFk(x(t
c
k), t

c
k), (fk+1)

+(tck)⟩Rn +∇tFk(x(t
c
k), t

c
k) > 0,

where (fk)
−(tck) := fk(x(t

c
k), λk, u

−(tck), t
c
k) and (fk+1)

+(tck) := fk+1(x(t
c
k), λk+1, u

+(tck), t
c
k), are both

satisfied. We refer to Figure 3 for a geometrical illustration.

∂Ek(t
c
k) ∩ ∂Ek+1(t

c
k)

x

Figure 3: Geometrical illustration of a transversal boundary crossing (see Assumption (A3)).

Remark 2.5. Let us comment the assumptions presented in Definition 2.2. In this paper, necessary
optimality conditions for (OCP) will be obtained thanks to a sensitivity analysis of (CS) with respect to
(local) perturbations of the regionally switching parameter and the control. However, considering such a local
perturbation in a given region Ek leads, as usual, to a perturbed trajectory, but also to a perturbed crossing
time between the two consecutive regions Ek and Ek+1. Our approach to guarantee the existence of this
perturbed crossing time relies on the application of an implicit function theorem (see Lemma 5.1) which
requires Assumption (A2) to benefit a local description (in space and time) of the boundary between Ek

and Ek+1. This gives us an explicit function whose regularity is guaranteed by Assumption (A1) and whose
the invertibilty of the partial derivative (with respect to time) is guaranteed by the first transverse condition
in Assumption (A3). Finally, the second transverse condition in Assumption (A3) allows us to guarantee
that the perturbed trajectory enters in the next open region Ek+1. We then proceed by induction, region
after region. We refer to Section 2.4 for details and illustrations.

Before stating the main result of this paper we just need to recall some basics, such as the standard
definition of the (convex) normal cone to Λ at a point λ ∈ Λ given by

NΛ[λ] := {λ′′ ∈ Rd | ∀λ′ ∈ Λ, ⟨λ′′, λ′ − λ⟩Rd ≤ 0},

and the usual definition of the Hamiltonian H : Rn ×Rd ×Rm ×Rn × [0, T ] → R associated with the optimal
control problem (OCP) given by

∀(x, λ, u, p, t) ∈ Rn × Rd × Rm × Rn × [0, T ], H(x, λ, u, p, t) := ⟨p, h(x, λ, u, t)⟩Rn .

We are now in a position to state the main result of this paper.

Theorem 2.1 (Hybrid maximum principle with regionally switching parameter). If (x, λ, u) ∈ AC([0, T ],Rn)×
PC([0, T ],Rd) × L∞([0, T ],Rm) is a solution to (OCP), that is moreover a regular solution to (CS), then,
following the notations introduced in Definitions 2.1 and 2.2, there exists an adjoint vector p ∈ PACT([0, T ],Rn)
(also called costate) such that:

(i) The adjoint equation ṗ(t) = −∇xfk(x(t), λk, u(t), t)
⊤p(t) is satisfied for almost every t ∈ (tck−1, t

c
k) and

all k ∈ {1, . . . , N}.

(ii) The final condition p(T ) = −∇ϕ(x(T )) is satisfied.
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(iii) At each crossing time tck, the adjoint discontinuity condition

p+(tck)− p−(tck) = − ⟨p+(tck), (fk+1)
+(tck)− (fk)

−(tck)⟩Rn

⟨∇xFk(x(tck), t
c
k), (fk)

−(tck)⟩Rn +∇tFk(x(tck), t
c
k)

∇xFk(x(t
c
k), t

c
k), (AD)

is satisfied.

(iv) The Hamiltonian maximization condition

u(t) ∈ argmax
v∈U

H(x(t), λk, v, p(t), t), (HM)

holds true for almost every t ∈ (tck−1, t
c
k) and all k ∈ {1, . . . , N}.

(v) The averaged Hamiltonian gradient condition∫ tck

tck−1

∇λH(x(s), λk, u(s), p(s), s) ds ∈ NΛ[λk], (AHG)

holds true for all k ∈ {1, ..., N}.
The proof of Theorem 2.1 is quite long and technical. Therefore it is postponed to Section 6, after the

two preliminary Sections 4 and 5 that are dedicated to sensitivity analyses of non-hybrid and hybrid control
systems respectively. Nonetheless, for the reader’s convenience, an overview of the proof of Theorem 2.1 is
proposed in the next Section 2.4. Finally a list of comments on Theorem 2.1 and its consequences, and also
on possible relaxations and extensions is provided in Section 2.5.

2.4 Overview of the proof of Theorem 2.1
This section is dedicated to an overview of the proof of Theorem 2.1. For the reader’s convenience, our
presentation is divided into twelve major items in which we take care to highlight at which point of the proof
the continuity conditions (C1) and (C2) and the regularity assumptions (A1), (A2) and (A3) are used.

Before, we would like to emphasize a crucial point: Item 2 provides a simple example showing that a
standard needle-like perturbation of the control may be not admissible in the hybrid setting, in the sense
that the corresponding perturbed trajectory may not uniformly converge to the nominal one, or may not be
a global solution to the control system. This counterexample reveals an erroneous assertion in [42, beginning
of Section 2.1.1] and highlights interesting comments given in [38, pp. 1872]. As a conclusion, handling
needle-like perturbations of the control in the hybrid setting requires a careful attention.

1. From the point of view of abstract optimization, sensitivity analysis of constraints (with respect to
given parameters) plays a fundamental role in order to derive necessary optimality conditions. In
optimal control theory, this translates into a sensitivity analysis of the control system with respect to
perturbations of the control u. To derive the classical Pontryagin maximum principle, the standard
method is to consider a needle-like perturbation defined by uα(t) := v for all t ∈ (τ − α, τ) and uα(t) :=
u(t) elsewhere, for all α > 0 and where v ∈ Rm and τ ∈ (0, T ) are fixed. Then one has to identify the
corresponding variation vector, that is the uniform limit of xα−x

α when α → 0, where xα stands for
the perturbed trajectory associated with the perturbed control uα (see Figure 4), as the solution to a
linearized control system.

t

Rm

v

ττ − α T

uα u

(a)

t

Rn

xα

x

τ − α T

(b)

Figure 4: Illustrations of a needle-like perturbation (left) and the corresponding perturbed trajectory (right).
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2. However a needle-like perturbation may be not admissible in the hybrid setting, in the sense that
the corresponding perturbed trajectory xα does not necessarily converge uniformly to x over [0, T ]
when α → 0, or even may be not defined globally over the whole interval [0, T ]. Let us provide a
simple counterexample which highlights this issue which is not encountered in the classical non-hybrid
setting. Consider T = 2, n = m = 1 and the static partition R = X1 ∪X2, where X1 = {y ∈ R | y < 1}
and X2 = {y ∈ R | y > 1}. Now consider the hybrid control system given by

ẋ(t) =

{
+u(t) if x(t) ∈ X1,
−u(t) if x(t) ∈ X2,

with the initial condition xinit = 0. By taking the control u(t) = +1 over [0, 1) and u(t) = −1 over (1, 2],
we get the corresponding trajectory x given by x(t) = t over [0, 2], with tc1 = 1 as unique crossing time.
Note that all conditions considered in this paper are satisfied, including the regularity assumptions (A1),
(A2) and (A3). Now we apply needle-like perturbations of the control u at some τ ∈ (0, 1) and we refer
to Figure 5 for illustrations.

(i) If v = −1 we get a perturbed trajectory xα satisfying xα(t) ∈ X1 over the whole interval [0, 2] and
thus xα does not uniformly converge to x over [0, 2] when α → 0.

(ii) If v = 2 we get a perturbed trajectory xα defined over [0, t̃(α)) for some t̃(α) < 1. Note that xα

is not defined over [t̃(α), 2] since, by contradiction, one would obtain ẋα(t̃(α)−) = +1 and
ẋα(t̃(α)+) = −1 implying that xα does not enter into the open region X2 over (t̃(α), 1). In that
context, note that different approaches can be explored, such as differential inclusions (see, e.g., [4])
and sliding modes (see, e.g., [62]), to consider a generalized notion of solution to the hybrid control
system. However these approaches would not solve the issue presented in Item (i) anyway, and
thus we will not go any further in that direction.

The reason of this feature in the hybrid setting lies in the fact that standard needle-like perturbations
of the control u do not take into account the perturbation of the next crossing time.

t

R
x

tc1 2

1

τ
τ − α

v = −1

v = 2

Figure 5: Illustration of the counterexample of Item 2.

3. We are now in a position to provide an overview of the proof of Theorem 2.1. Let (x, λ, u) be a solution
to (OCP), that is moreover a regular solution to (CS). To overcome the difficulty of handling needle-like
perturbations in the hybrid setting (as discussed in Item 2), we shall introduce, for all k ∈ {1, . . . , N}, an
auxiliary control, denoted by ũk, that coincides with the control u over (tck−1, t

c
k) and that is continuously

extended to a constant function outside (tck−1, t
c
k) thanks to Assumption (A1) (see Figure 6 and the

exact definition of ũk in Section 5.1). In the sequel we will apply needle-like perturbations only to
auxiliary controls ũk (and not to the nominal control u).
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t

Rm

u

tc1 tck−1 tck tcN−1 tcN

......

(a)

t

Rm

ũk

tc1 tck−1 tck

......

tcN−1 tcN

(b)

Figure 6: Illustration of an auxiliary control ũk. In this illustration, for simplicity, we have chosen a control u
that is continuous over each (tck−1, t

c
k) but it is not necessary. We only know that u satisfies the continuity

properties given in Assumption (A1).

4. Now let us fix k ∈ {1, ..., N} (from now and until Item 11). The pair (λk, ũk) allows us to define the
auxiliary non-hybrid trajectory, denoted by z̃k, as the unique solution to the non-hybrid state equation
defined with the dynamics fk only (that is, with the dynamics fk all over Rn, even outside Ek) and
with the constant parameter λk only (that is, with the constant parameter λk all over [0, T ], even
outside (tck−1, t

c
k)), together with the initial condition z̃k(t

c
k−1) = x(tck−1). Observe that z̃k represents

an extension of the nominal trajectory x as illustrated in Figure 7.

t

Rn

z̃k
......

tc1

x

tck−1 tck tcN−1 t
c
N

Figure 7: Illustration of the auxiliary non-hybrid trajectory z̃k.

5. Now we will consider either a basic convex perturbation of λk given by λk +α(λk −λk) for some λk ∈ Λ,
either a classical needle-like perturbation of the auxiliary control ũk for some τ ∈ (tck−1, t

c
k) and

some v ∈ U (see Figure 8). In both cases, this gives us a perturbed auxiliary non-hybrid trajectory
denoted by z̃αk . Since we deal here with a classical non-hybrid setting (with the dynamics fk only), we
can use standard results from the literature such as the uniform convergence of z̃αk to z̃k when α → 0,
and the existence of the corresponding variation vector, denoted by wk, solution to a linearized control
system with an initial condition at tck−1 reduced to 0Rn .
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t

Rm

ũα
k

tc1 tck−1

v

τ − α

τ
tck

......

tcN−1 tcN

Figure 8: Illustration of a needle-like perturbation of ũk (recall Figure 6).

6. The next step is to prove that the trajectory z̃αk crosses the boundary ∂Ek ∩ ∂Ek+1 at a perturbed
crossing time t̃k(α) (see Figure 9). To this aim we invoke an implicit function theorem (see Lemma 5.1)
to the map Gk : (α, t) 7→ Fk(z̃

α
k (t), t) that can be applied thanks to the regular assumptions (A1), (A2)

and (A3) and the construction of ũk. In particular note that ∇tGk is invertible at (0, tck) thanks to the
first transverse condition in Assumption (A3).

∂Ek−1(t
c
k−1) ∩ ∂Ek(t

c
k−1) ∂Ek(t

c
k) ∩ ∂Ek+1(t

c
k)

∂Ek(t̃k(α)) ∩ ∂Ek+1(t̃k(α))

z̃αk
z̃k

x

(a)

∂Ek−1(t
c
k−1) ∩ ∂Ek(t

c
k−1) ∂Ek(t

c
k) ∩ ∂Ek+1(t

c
k)

∂Ek(t̃k(α)) ∩ ∂Ek+1(t̃k(α))

z̃αk

z̃k
x

(b)

Figure 9: Plot of z̃αk under a convex perturbation of λk (left). Plot of z̃αk under a needle-like perturbation
of ũk (right). In both cases z̃αk crosses the boundary ∂Ek ∩ Ek+1 at some time t̃k(α).

7. From the construction of the trajectory z̃αk , it can be proved that z̃αk stays inside Ek over (tck−1, t̃k(α)).
Indeed, thanks to Assumption (A3), one can prove by contradiction that there exist tck−1 < s′k <

sk < min{tck, t̃k(α)}, uniformly with respect to α, such that z̃αk has values in Ek over (tck−1, s
′
k) and

over (sk, t̃k(α)) (see Lemmas 5.3 and 5.6 for technical details). Then, from Condition (C1) and the
uniform convergence of z̃αk to z̃k = x over [s′k, sk], we obtain that z̃αk has values in Ek over [s′k, sk] also.

8. After having considered perturbations in the region Ek (see Items 4 and 5) and the consequences in
the region Ek only (see Items 6 and 7), our aim now is to analyze the resulting perturbations in the
next regions Ek+1, . . . , EN . For the reader’s convenience, we will detail here only the passage to the
region Ek+1 (the other regions are treated with a basic induction, see Item 10). Similarly to Item 4,
the pair (λk+1, ũk+1) allows us to define the auxiliary non-hybrid trajectory, denoted by z̃k+1, as the
unique solution to the non-hybrid state equation considered with the dynamics fk+1 only and with the
constant parameter λk+1 only, together with the initial condition z̃k+1(t

c
k) = x(tck). Now, in contrary to

Item 5 (in which we have proceeded either to a perturbation of the parameter, either to a perturbation
of the control), we will consider here the perturbation of the initial time tck by t̃k(α) (constructed in
Item 6) and the perturbation of the initial condition x(tck) by z̃αk (t̃k(α)). This gives us the perturbed
auxiliary non-hybrid trajectory z̃αk+1. This construction will allow us to proceed to a concatenation of
the perturbed auxiliary non-hybrid trajectories z̃αk and z̃αk+1 (see Figure 10).
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∂Ek(t
c
k) ∩ ∂Ek+1(t

c
k)

∂Ek(t̃k(α)) ∩ ∂Ek+1(t̃k(α))

z̃αk
z̃k+1x

z̃αk+1

Figure 10: Perturbed auxiliary non-hybrid trajectory z̃αk+1 under perturbations of the initial time and of
the initial condition.

Since we deal here with a classical non-hybrid setting (with the dynamics fk+1 only), we can use
standard results from the literature such as the uniform convergence of z̃αk+1 to z̃k+1 when α → 0,
and the existence of the corresponding variation vector, denoted by wk+1, solution to a linearized
control system with an initial condition at tck given by wk(t

c
k−1) plus an additional term due to the

perturbations of the initial time and of the initial condition. Finally, similarly to Item 6, we prove
that z̃αk+1 crosses the boundary ∂Ek+1 ∩ ∂Ek+2 at a perturbed crossing time t̃k+1(α).

9. Using similar arguments to Item 7, it can be proved that the trajectory z̃αk+1 stays inside Ek+1

over (t̃k(α), t̃k+1(α)).

10. Finally we proceed by induction, region after region, in order to construct the perturbed auxiliary
non-hybrid trajectories z̃αq and the corresponding variation vectors wq for all q ∈ {k, ..., N}. Then
we construct a "global" perturbed trajectory xα of x over the whole time interval [0, T ] (resp. a
"global" variation vector w) by concatenation of the perturbed auxiliary non-hybrid trajectories z̃αq
over [t̃q−1(α), t̃q(α)] (resp. of the variation vectors wq over [tcq−1, t

c
q)). This construction allows to

guarantee several properties. First xα visits exactly (and in the same order) the same regions that
the nominal trajectory x. Second xα converges uniformly to x over [0, T ] when α → 0. Third the
"global" variation vector w corresponds to the variation vector associated with the "global" perturbed
trajectory xα of x. It is worth mentioning that, as reported in Item 8, the "global" variation vector w
has a discontinuity jump at each crossing time tcq.

11. From convexity of Λ, note that the convex perturbation of λk belongs to Λ. Similarly, since v ∈ U
and from the construction of ũk and the closedness of U, note that the needle-like perturbation of ũk

has values in U. Therefore the constraints of Problem (OCP) are satisfied and thus, from optimality
of the triple (x, λ, u), it is clear that ϕ(xα(T ))−ϕ(x(T ))

α ≥ 0 which leads to ⟨∇ϕ(x(T )), w(T )⟩Rn ≥ 0
when α → 0. One has to note that this last inequality is satisfied for any variation vector w constructed
as in the previous items, and thus is satisfied for any λk ∈ Λ, any v ∈ U, any τ ∈ (0, T ) and for
any k ∈ {1, . . . , N}.

12. To conclude the proof, the method is now very similar to the standard non-hybrid setting found in
the literature. The idea is to construct an adjoint vector p which guarantees the constancy of the
inner product between the adjoint vector p and any variation vector w constructed as in the previous
items. To this aim we define p as solution to the opposite of the transpose of the linearized control
system satisfied by the variation vectors w (which corresponds exactly to the adjoint equation in
Theorem 2.1). On the other hand, to handle the discontinuity jumps of the variation vectors w at each
crossing time, we impose appropriate discontinuity jumps on p (which correspond exactly to the adjoint
discontinuity jumps in Theorem 2.1). Finally, imposing the final condition p(T ) = −∇ϕ(x(T )), we
obtain that ⟨p(T ), w(T )⟩Rn ≤ 0 for any variation vector w. Using the classical Duhamel formula and
thanks to the constancy of the inner product between the adjoint vector p and any variation vector w,
this last inequality can be rewritten as the averaged Hamiltonian gradient condition in Theorem 2.1 (if
we have considered a variation vector w associated with a convex perturbation of the parameter) or as
the Hamiltonian maximization condition in Theorem 2.1 (if we have considered a variation vector w
associated with a needle-like perturbation of an auxiliary control). The proof is complete.
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Remark 2.6. From the above overview of the proof of Theorem 2.1, we observe that a complete sensitivity
analysis of non-hybrid state equations under perturbations of the parameter, of the control, but also of the
initial time and of the initial condition, should be carried out. This is exactly the aim of the preliminary
Section 4.

2.5 A list of comments on Theorem 2.1
This section is dedicated to a list of comments on Theorem 2.1 and its consequences, and also on possible
relaxations and extensions.

Remark 2.7. Consider the framework of Theorem 2.1 and let us discuss the structure of the adjoint
vector p ∈ PACT([0, T ],Rn) that is piecewise absolutely continuous, respecting the same partition T =
{tck}k=0,...,N associated with the solution (x, λ, u) (see Definition 2.1). Hence the restriction of p over each
open interval (tck−1, t

c
k) admits an extension over [tck−1, t

c
k] that is absolutely continuous, satisfying the adjoint

equation provided in Theorem 2.1. Furthermore, at each crossing time tck, the adjoint vector p admits a
discontinuity jump satisfying the equality (AD). Note that (AD) is written in a backward way, in the sense
that p−(tck) is expressed explicitly in terms of p+(tck). Nevertheless we emphasize that (AD) can also be
written in a forward way as

p+(tck)− p−(tck) = − ⟨p−(tck), (fk+1)
+(tck)− (fk)

−(tck)⟩Rn

⟨∇xFk(x(tck), t
c
k), (fk)

+(tck)⟩Rn +∇tFk(x(tck), t
c
k)

∇xFk(x(t
c
k), t

c
k).

On the other hand, due to the fact that a fixed initial condition is considered in Problem (OCP) with no
final state constraint, let us note that the necessary optimality conditions imposed to the adjoint vector p
in Theorem 2.1 imply its uniqueness. However this property would not be true with general terminal state
constraints as evoked in Item (i) of Remark 2.11.

Remark 2.8. Consider the framework of Theorem 2.1. Note that the Hamiltonian system

ẋ(t) = ∇pH(x(t), λk, u(t), p(t), t), ṗ(t) = −∇xH(x(t), λk, u(t), p(t), t),

is satisfied for almost every t ∈ (tck−1, t
c
k) and all k ∈ {1, . . . , N}. As usual in the literature let us introduce

the Hamiltonian function H : [0, T ] → R defined by

H(t) := H(x(t), λ(t), u(t), p(t), t),

for almost every t ∈ [0, T ]. Using similar arguments as in [34, Theorem 2.6.1 pp. 71], one can prove from the
above Hamiltonian system, from (HM) and from the piecewise constancy of the parameter λ, that H is equal
almost everywhere over each interval (tck−1, t

c
k) to an absolutely continuous function which satisfies

Ḣ(t) = ∇tH(x(t), λk, u(t), p(t), t),

for almost every t ∈ (tck−1, t
c
k) and all k ∈ {1, . . . , N}. Therefore we write H ∈ PACT([0, T ],R) and one can

easily obtain from simple computations that the discontinuity jumps of H are given by

H+(tck)−H−(tck) =
⟨p−(tck), (fk+1)

+(tck)− (fk)
−(tck)⟩Rn

⟨∇xFk(x(tck)), (fk+1)+(tck)⟩Rn +∇tFk(x(tck), t
c
k)

∇tFk(x(t
c
k), t

c
k).

As in Remark 2.7, we emphasize that the above formula can be rewritten in terms of p+(tck) (instead of p−(tck)).
Finally, from the results presented in this remark, we deduce that:

(i) If the partition is static, then the discontinuity jumps of H are reduced to zero and thus H ∈ C([0, T ],R).

(ii) If the hybrid dynamics is autonomous, then H is constant over each interval (tck−1, tk) and thus H ∈
PCT([0, T ],R).

(iii) In the joint case where the partition is static and the hybrid dynamics is autonomous, then H is constant
over [0, T ].
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Remark 2.9. Note that the averaged Hamiltonian gradient condition (AHG) obtained in Theorem 2.1 was
already derived in previous works [19, 20, 21, 22] in the context of optimal sampled-data control problems
(that is, with piecewise constant controls but, compared to the present work, in the simpler context where the
corresponding partition is independent of the state position). It is worth mentioning that (AHG) is implicit
in general since λk intervenes, not only in both sides of the equation, but moreover in the values of x and p
along the interval (tck−1, t

c
k). Furthermore we do not know in advance the values of tck−1 and tck. However,

as already seen in the previous works mentioned and as we will see in Section 3, the averaged Hamiltonian
gradient condition (AHG) can be useful to determine the optimal values of regionally switching parameters.
From a numerical point of view, when Λ is closed, note that λk can be expressed as the fixed point

λk = projΛ

(
λk +

∫ tck

tck−1

∇λH(x(s), λk, u(s), p(s), s) ds
)
,

where projΛ : Rd → Rd stands for the standard projection operator onto Λ. We also note that Item (i) in
Remark 2.8 is in accordance with the main result obtained in [19] stating that, when the partition associated
with sampled-data controls is free, then the corresponding necessary optimality condition coincides with
the continuity of the Hamiltonian function H. Finally, let us also mention that, under some additional
appropriate convexity assumptions made on the dynamics (see, e.g., [44]), it should be possible to derive an
averaged Hamiltonian maximization condition of the form

λk ∈ argmax
µ∈Λ

∫ tck

tck−1

H(x(s), µ, u(s), p(s), s) ds,

but this point is out of the scope of the present work.

Remark 2.10. In this paper we have considered a certain framework which is, of course, not the most
general possible. In fact we have made certain choices to make the presentation and the notations as simple
and pleasant to read as possible, while keeping the essence of our work. In this remark our aim is to gather a
number of possible relaxations and extensions of Theorem 2.1. One can easily be convinced by the validity of
these generalizations by reading the proof of Theorem 2.1 in Sections 4, 5 and 6 (or the overview of the proof
provided in Section 2.4).

(i) The convexity hypothesis made on Λ can be removed by using a generalized version of the normal cone.
More precisely, instead of using basic convex perturbations of the form λk + α(λk − λk) in the proof
of Theorem 2.1, one can invoke a general perturbation λ̃k(α) where λ̃k : [0, 1] → Λ is a continuous
function satisfying λ̃k(0) = λk and that is differentiable at 0 with derivative denoted by λ̃′

k(0). Therefore
Theorem 2.1 remains valid by considering the generalized notion of normal cone to Λ at some λ ∈ Λ
given by

Ngen
Λ [λ] := {λ′′ ∈ Rd | ⟨λ′′, λ̃′(0)⟩Rd ≤ 0 for all continuous functions λ̃ : [0, 1] → Λ with λ̃(0) = λ

and differentiable at 0 with derivative denoted by λ̃′(0)}.

(ii) The closedness hypothesis made on U can be removed by assuming in Theorem 2.1 that all the
limits u−(tck) and u+(tck) belong to U. Indeed, in our proof of Theorem 2.1, we only need that the
auxiliary controls ũk are with values in U.

(iii) The right continuity after each crossing time tck, and the left continuity before the last crossing time tcN−1,
of the control u (see Definition 2.2) are useless in our proof of Theorem 2.1. We have adopted these
hypotheses for the sake of simplicity of the presentation. However they can be removed.

(iv) Theorem 2.1 is stated for a solution to (OCP) in a global sense. However Theorem 2.1 remains valid
for a solution to (OCP) in (only) a local sense to be precised.

(v) The C1-regularity of the map ϕ can be relaxed. Indeed only the differentiability of ϕ is required for
our proof of Theorem 2.1. Similarly the C1-regularity of the maps hj can be relaxed. Indeed our

16



proof of Theorem 2.1 (precisely the sensitivity analyses developed in the preliminary Sections 4 and 5)
requires (only) that, for all j ∈ J , the map hj is continuous, is differentiable with respect to its two
first variables with ∇xhj and ∇λhj continuous, and is Lipschitz continuous with respect to its three
first variables on any compact subset of Rn × Rd × Rm × [0, T ]. We refer to [14] where similar relaxed
regularity assumptions have been considered.

(vi) A possible extension of our work is to consider, for each region Xj , a parameter constraint set Λj ⊂ Rd

and a control constraint set Uj ⊂ Rm. Such a generalized context is interesting to impose the
values of the regionally switching parameter and/or of the control in certain regions (for example by
taking Λj = {0Rd} and/or Uj = {0Rm} for some j ∈ J ). However, be careful, we emphasize that our
proof is based on the construction of auxiliary controls (and, in some way, of auxiliary parameters)
which would require that the parameter constraint sets Λj are all subsets of the same space Rd, and
that the control constraint sets Uj are all subsets of the same space Rm. Hence, to the best of our
knowledge, one cannot extend our proof to the case of different dj and mj .

(vii) A possible generalization of our work is to extend the space partition of Rn to a space-time partition of
the form Rn × [0, T ] = ∪j∈J Yj . Such an extension would cover, in particular, the framework of optimal
sampled-data control problems developed in [19, 20, 21, 22].

(viii) Using the classical technique of augmenting the state of the control system (see, e.g., [17]), one can
easily extend Theorem 2.1 to deal with Bolza costs, that is, when the cost of (OCP) is replaced by a
cost of the form

ϕ(x(T )) +

∫ T

0

L(x(s), λ(s), u(s), s) ds,

where the hybrid Lagrangian L : Rn × Rd × Rm × [0, T ] → R is defined regionally by

∀(x, λ, u, t) ∈ Rn × Rd × Rm × [0, T ], L(x, λ, u, t) := Lj(x, λ, u, t) when x ∈ Xj(t),

where the maps Lj : Rn × Rd × Rm × [0, T ] → R are of class C1. In that context Theorem 2.1 remains
valid by replacing the definition of the Hamiltonian H by

H(x, λ, u, p, t) := ⟨p, h(x, λ, u, t)⟩Rn − L(x, λ, u, t),

for all (x, λ, u, p, t) ∈ Rn × Rd × Rm × Rn × [0, T ], and by replacing (AD) by

p+(tck)− p−(tck)

= −⟨p+(tck), (fk+1)
+(tck)− (fk)

−(tck)⟩Rn − ((Lk+1)
+(tck)− (Lk)

−(tck))

⟨∇xFk(x(tck), t
c
k), (fk)

−(tck)⟩Rn +∇tFk(x(tck), t
c
k)

∇xFk(x(t
c
k), t

c
k).

(ix) One can also consider a hybrid control system of the form ẋ(t) = h(x(t), µ, λ(t), u(t), t) involving an
additional constant parameter µ ∈ Rd′

for some d′ ∈ N∗. In that context we emphasize that µ is not a
regionally switching parameter: it is constant over the whole interval [0, T ]. Then one can consider
the additional parameter constraint µ ∈ M in Problem (OCP), where M is a nonempty convex subset
of Rd′

. By adapting the proof of Theorem 2.1, one can easily see that Theorem 2.1 remains valid by
replacing the definition of the Hamiltonian H by

H(x, µ, λ, u, p, t) := ⟨p, h(x, µ, λ, u, t)⟩Rn ,

for all (x, µ, λ, u, p, t) ∈ Rn × Rd′ × Rd × Rm × Rn × [0, T ], and by adding the necessary optimality
condition given by ∫ T

0

∇µH(x(s), µ, λ(s), u(s), p(s), s) ds ∈ NM[µ].

(x) One can also consider a version of Problem (OCP) with a free final time T > 0 and in which the Mayer
cost is of the form ϕ(T, x(T )). Such a framework is important to deal with minimal time problems
(see, e.g., [26, Section 3]). By using the classical technique of change of time variable t = Ts, one can
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transform the variable T to optimize as a constant parameter. Thanks to the previous item and the
results obtained in Remark 2.8, one can prove that Theorem 2.1 remains valid with the additional
necessary optimality condition given by

H(T ) = ∇Tϕ(T, x(T )),

where H : [0, T ] → R is the Hamiltonian function introduced in Remark 2.8.

Remark 2.11. This last remark is dedicated to a nonexhaustive list of possible nontrivial perspectives:

(i) The present paper does not cover terminal state constraints (that is, constraints on x(0) and x(T ))
which are common in most applications of optimal control theory. This is clearly a criticism that can
be made on the present work. In the classical non-hybrid setting, several methods have been developed
in the literature to take into account such terminal state constraints. One can invoke the Ekeland
variational principle [33] or some implicit function arguments (see, e.g., [2, 58]). In one hand, it is worth
mentioning that, to the best of our knowledge, the Ekeland approach does not apply in the present
hybrid setting for two main reasons. First, this approach requires to define a continuous penalized
functional on a L1-neighborhood of the optimal control u. However we have seen in Item 2 of Section 2.4
that such a construction is obstructed in the present hybrid setting. Second, the control sequence
produced by the Ekeland variational principle (which converges in L1-norm to the optimal control u)
would have no reason to satisfy the regularity assumption (A1) and therefore the sensitivity analysis
developed in the preliminary Section 5 may be not valid on the control sequence. On the other hand,
we are confident that a method based on an implicit function argument could be adapted to the present
hybrid setting. However this approach is also based on a separation argument within the so-called
Pontryagin convex cone constructed thanks to the consideration of multiple needle-like perturbations
of the control (see, e.g., [1, 24, 30, 32, 46, 52] and references therein). In the present hybrid setting,
this would have required the consideration of multiple needle-like perturbations of the control in each
region simultaneously. This would have significantly increased the complexity of the analysis and the
notations. Since our main objective in this work was to focus on the concept of regionally switching
parameter and on the corresponding averaged Hamiltonian gradient condition (AHG), we decided to
avoid the technicalities related to the presence of terminal state constraints which are already well
known in the literature and to keep the reading of the technical proof of Theorem 2.1 as pleasant as
possible. A fortiori, the same comment holds true for the consideration of running state constraints as
developed in [17, 18, 20] and references therein.

(ii) The regularity assumptions introduced in Definition 2.2 are crucial to develop the sensitivity analysis of
the hybrid control system in the preliminary Section 5, precisely to construct perturbed trajectories
which visit exactly (and in the same order) the same regions than the nominal trajectory. To the best of
our knowledge, an open question is how to obtain a hybrid maximum principle without these regularity
assumptions. In that direction, note that a similar sensitivity analysis can be developed in a hybrid
framework where Assumption (A3) is removed, as it has been studied in the case of two static regions
from a dynamic programming standpoint in [7].

(iii) As mentioned in Introduction, the original motivation of the present work was to deal with (non-hybrid)
optimal control problems involving non-control regions (in which the control should remain constant).
This framework is actually a particular case of the present work that has been developed in details
in [8] and is motivated by applications related to aerospace, for example thrust problems with shadow
zones causing inability to thrust while the spacecraft is passing through an eclipse, due to the low
power generated by the solar panels (see [35, 41, 45, 64]). One could also consider a slightly different
setting where, in non-control regions, the control is an affine feedback of the state (and thus is not
necessarily constant). Again, this framework can be seen as a particular case of the present work and
will be developed in details in a forthcoming research work.

(iv) In the field of mathematical epidemiology, hybrid frameworks provide an accurate description of some
infectious diseases and their spread. We refer for instance to [47] where the authors take into account
that the contact rate between members of the population changes throughout each season, or to [16] in
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which the authors provide a version of the SIR model that takes into consideration different control
strategies (vaccination, isolation, culling, etc.). An interesting research perspective would be to consider
a time crisis problem (such as in [9, 10]) related to a COVID-19 model, in order to provide better
control strategies. To this aim, using the approach of optimal control problems with non-control regions
presented in [8] (which is a particular case of the present work) is privileged. Moreover, since time crisis
problems deal with Bolza costs with a discontinuous Lagrangian function, one can note that our main
result (Theorem 2.1) tackles perfectly this discontinuity (see Remark 2.10).

(v) In this work we have investigated the necessary optimality conditions for hybrid optimal control problems
with regionally switching parameter. However note that many other standard investigations from
optimal control theory can be developed for that framework. First, one may develop existence results,
by extending for example the classical Filippov theorem [36]. This would certainly require to introduce
adequate differential inclusions (see, e.g., [4]), in particular at the interfaces where the dynamics is not
defined. Sufficient optimality conditions could also be investigated, at least in the case of LQ-problems
(see related studies in [54, 55, 65] for switched systems). Also a complete extension of the Riccati theory
in the present hybrid setting with regionally switching parameter constitutes an attractive perspective
for future works (see [23] for a related study with sampled-data controls). Finally, from a numerical
point of view, another perspective could be the formulation of a multiple shooting method as in [42]
taking into account the averaged Hamiltonian gradient condition (AHG).

3 Application to an academic example
The objective of this section is to show that our work fills a gap in the literature. Precisely, based on the
necessary optimality conditions derived in Theorem 2.1, we solve a hybrid optimal control problem involving
a regionally switching parameter and we show (see Figure 12) that the corresponding optimal cost is strictly
between, in one hand, the best cost that can be obtained when replacing the regionally switching parameter
by a classical permanent control and, in the other hand, the best cost that can be obtained when replacing
the regionally switching parameter by a classical constant parameter. The example studied in this section is
a simple academic example whose only purpose is to fulfill the objective of this section. The application of
Theorem 2.1 to concrete and sophisticated application models as evoked in Items (iii) and (iv) of Remark 2.11,
in particular to optimal control problems with non-control regions (as specified in [8]), will be the focus of
our forthcoming research works.

3.1 Presentation of the example
Take T = 8, n = d = m = 1, xinit = −1 and the static partition R = X1 ∪X2 ∪X3 where

X1 =

{
y ∈ R | y < −1

2

}
, X2 =

{
y ∈ R | −1

2
< y <

1

4

}
, X3 =

{
y ∈ R | y >

1

4

}
.

In this section we consider the hybrid optimal control problem with regionally switching parameter given by

minimize −x(8),

subject to (x, λ, u) ∈ AC([0, 8],R)× PC([0, 8],R)× L∞([0, 8],R),

ẋ(t) = h(x(t), λ(t), u(t)), a.e. t ∈ [0, 8],

x(0) = −1,

λ is a regionally switching parameter associated with x,

λ(t) ∈ [− 3
2 ,

3
4 ], a.e. t ∈ [0, 8],

u(t) ∈ [−1, 1], a.e. t ∈ [0, 8],

(Pex)
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where the (autonomous) hybrid dynamics h : R× R× R → R is given by

h(x, λ, u) =


u(x− 1) + λ if x ∈ X1,

λx+ 1
2u if x ∈ X2,

u(x− 1) + λ if x ∈ X3,

for all (x, λ, u) ∈ R×R×R. We refer to Figure 11 for an illustration of the setting of Problem (Pex) in which
the objective is to maximize the final value x(8) starting from the initial condition xinit = −1. Then let us
recall that the Hamiltonian H : R× R× R× R → R associated with Problem (Pex) is given by

H(x, λ, u, p) =


p(u(x− 1) + λ) if x ∈ X1,

p(λx+ 1
2u) if x ∈ X2,

p(u(x− 1) + λ) if x ∈ X3,

for all (x, λ, u, p) ∈ R× R× R× R.

− 1
2

1
4

xinit

ẋ(t) = u(t)(x(t)− 1) + λ(t) X3

ẋ(t) = λ(t)x(t) + 1
2u(t) X2

ẋ(t) = u(t)(x(t)− 1) + λ(t) X1

t

x

Figure 11: Illustration of the setting of Problem (Pex). Here the objective is to maximize the final value x(8)
starting from the initial condition xinit = −1.

Since existence results are out of the scope of the present work (see Item (v) of Remark 2.11), we assume
here that (Pex) has a solution (x, λ, u) and we denote by T the corresponding partition. Our aim in the
next section is to identify such a triple thanks to the necessary optimality conditions stated in Theorem 2.1.
Therefore we assume furthermore that the regularity assumptions (A1), (A2) and (A3) are fulfilled. Finally,
to simplify the analysis and according to the nature of the objective of (Pex), we assume that x(8) > 1, that x
is increasing over [0, 8], with exactly two crossing times 0 < tc1 < tc2 < 8, and that

∀t ∈ (0, tc1), (x(t), λ(t)) ∈ X1 × {λ1},
∀t ∈ (tc1, t

c
2), (x(t), λ(t)) ∈ X2 × {λ2},

∀t ∈ (tc2, 8), (x(t), λ(t)) ∈ X3 × {λ3},

for some λ1, λ2, λ3 ∈ [− 3
2 ,

3
4 ].

3.2 Application of Theorem 2.1
Let us denote by p ∈ PACT([0, T ],R) the adjoint vector provided in Theorem 2.1. Our aim in this section is
to identify the triple (x, λ, u) thanks to the necessary optimality conditions stated in Theorem 2.1. To this
aim we reason backward in time.

Analysis over the interval (tc2, 8). Since x(t) ∈ X3 over (tc2, 8), the adjoint equation and the final condition
give {

ṗ(t) = −u(t)p(t), a.e. t ∈ (tc2, 8),
p(8) = 1,
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which implies that p(t) > 0 over (tc2, 8]. Since the averaged Hamiltonian gradient condition writes∫ 8

tc2

p(s) ds ∈ N[− 3
2 ,

3
4 ]
(λ3),

we deduce that λ3 = 3
4 . Since p(t) > 0 over (tc2, 8], one can easily derive from the Hamiltonian maximization

condition that
u(t) ∈ argmax

v∈[−1,1]

v(x(t)− 1),

for almost every t ∈ (tc2, 8). Since x(8) > 1, x(tc2) = 1
4 and x is increasing over [tc2, 8], there exists a

unique t∗ ∈ (tc2, 8) such that x(t∗) = 1 and we obtain that

u(t) =

{
+1, a.e. t ∈ (t∗, 8),
−1, a.e. t ∈ (tc2, t

∗).

We deduce that

p(t) =

{
e8−t, for all t ∈ [t∗, 8],

e8−t∗et−t∗ , for all t ∈ (tc2, t
∗],

and x(t) =

{
3
4e

t−t∗ + 1
4 , for all t ∈ [t∗, 8],

− 6
4e

tc2−t + 7
4 , for all t ∈ [tc2, t

∗].

Finally, from the continuity of x at t∗, we get that t∗ = tc2 + ln(2).

Analysis over the interval (tc1, tc2). The adjoint discontinuity condition at tc2 writes p−(tc2) = p+(tc2)
(f3)

+(tc2)
(f2)−(tc2)

which implies, from Assumption (A3), that p−(tc2) > 0 and, from t∗ = tc2 + ln(2), that p−(tc2) =
3e8−tc2

2λ2+4u−(tc2)
.

Since x(t) ∈ X2 over (tc1, t
c
2), when adding the adjoint equation, we obtain that ṗ(t) = −λ2p(t), a.e. t ∈ (tc1, t

c
2),

p−(tc2) =
3e8−tc2

2λ2+4u−(tc2)
,

which implies that p(t) > 0 over (tc1, t
c
2). The Hamiltonian maximization condition leads to

u(t) ∈ argmax
v∈[−1,1]

vp(t),

and thus to u(t) = 1 for almost every t ∈ (tc1, t
c
2). We deduce that

p(t) =
3e8−tc2

2λ2 + 4
eλ2(t

c
2−t) and x(t) =


1

2λ2

(
eλ2(t−tc2) − 1

)
+ 1

4e
λ2(t−tc2), if λ2 ̸= 0,

t−tc2
2 + 1

4 , if λ2 = 0,

for all t ∈ (tc1, t
c
2). Since x(tc1) = − 1

2 and λ2 ∈ [− 3
2 ,

3
4 ], we get that

tc2 − tc1 =


1
λ2

ln
(

1+
λ2
2

1−λ2

)
, if λ2 ̸= 0,

3
2 , if λ2 = 0.

Since 3e8−tc2

2λ2+4 > 0, the averaged Hamiltonian gradient condition is equivalent to υ(λ2) ∈ N[− 3
2 ,

3
4 ]
(λ2) where

υ(λ2) :=



∫ tc2

tc1

1

2λ2
+

1

4
− 1

2λ2
eλ2(t

c
2−s) ds =

1

2λ2
2

(
1 +

λ2

2

)
ln

(
1 + λ2

2

1− λ2

)
− 3

4λ2(1− λ2)
, if λ2 ̸= 0,∫ tc2

tc1

s− tc2
2

+
1

4
ds = − 3

16
, if λ2 = 0.

We find that:
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• if λ2 = 3
4 , then υ(λ2) ≃ −1.916 < 0, while N[− 3

2 ,
3
4 ]
(λ2) = R+, which is a contradiction.

• if λ2 = − 3
2 , then υ(λ2) ≃ 0.072 > 0, while N[− 3

2 ,
3
4 ]
(λ2) = R−, which is a contradiction.

We deduce that λ2 ∈ (− 3
2 ,

3
4 ) and thus N[− 3

2 ,
3
4 ]
(λ2) = {0}. Solving the equation υ(λ2) = 0 over (− 3

2 ,
3
4 ), we

find that λ2 ≃ −0.754.

Analysis over the interval (0, tc1). The adjoint discontinuity condition at tc1 writes p−(tc1) = p+(tc1)
(f2)

+(tc1)
(f1)−(tc1)

which implies, from Assumption (A3), that p−(tc1) > 0 and, from tc2 − tc1 = 1
λ2

ln(
1+

λ2
2

1−λ2
), one can obtain

that p−(tc1) =
3e8−tc2

8(λ1− 3
2u

−(tc1))
. Since x(t) ∈ X1 over (0, tc1), when adding the adjoint equation, we obtain that{

ṗ(t) = −u(t)p(t), a.e. t ∈ (0, tc1),

p−(tc1) =
3e8−tc2

8(λ1− 3
2u

−(tc1))
.

Following similar arguments as in the analysis over the interval (tc2, 8), one can prove that λ1 = 3
4 and u(t) = −1

for almost every t ∈ (0, tc1).

Conclusion. From the above analysis we obtain that

x(t) =


− 11

4 e−t + 7
4 , for all t ∈ [0, tc1],

− 1
2λ2

((λ2 − 1)eλ2(t−tc1) + 1), for all t ∈ [tc1, t
c
2],

− 6
4e

−(t−tc2) + 7
4 , for all t ∈ [tc2, t

∗],

+ 3
4e

t−t∗ + 1
4 , for all t ∈ [t∗, 8],

and

λ(t) =


3
4 , for a.e. t ∈ (0, tc1),

λ2, for a.e. t ∈ (tc1, t
c
2),

3
4 , for a.e. t ∈ (tc2, 8),

u(t) =


−1, for a.e. t ∈ (0, tc1),

+1, for a.e. t ∈ (tc1, t
c
2),

−1, for a.e. t ∈ (tc2, t
∗),

+1, for a.e. t ∈ (t∗, 8).

with λ2 ≃ −0.754, tc1 = ln( 119 ) ≃ 0.2, tc2 = tc1 +
1
λ2

ln(
1+

λ2
2

1−λ2
) ≃ 1.57 and t∗ = tc2 + ln(2) ≃ 2.26.

3.3 Comparisons with standard settings found in the literature
Our objective in this section is to emphasize that our work fills a gap in the literature. To this aim we
will show on the present academic example that the optimal trajectory x computed in the previous section
(associated with a regionally switching parameter λ) is exactly between the optimal trajectory x† when λ is
considered as a classical permanent control (that is, when λ ∈ L∞([0, 8],R)), and the optimal trajectory x̂
when λ is considered as a classical constant parameter (that is, when λ ∈ R). Precisely:

• First, let us consider the case where λ ∈ L∞([0, 8],R) is a classical permanent control in Problem (Pex)
(and not a regionally switching parameter that has to remain constant in each region) constrained to
be with values in [− 3

2 ,
3
4 ]. By developing a similar analysis to the previous section, but by using a

Hamiltonian maximization condition to determine the values λ(t) over the whole interval [0, T ], we get
that the optimal triple (x†, λ†, u†) is given by

x†(t) =



− 11
4 e−t + 7

4 , for all t ∈ [0, (tc1)
†],

− 5
6e

− 3
2 (t−(tc1)

†) + 1
3 , for all t ∈ [(tc1)

†, (t∗1)
†],

+ 2
3e

3
4 (t−(t∗1)

†) − 2
3 , for all t ∈ [(t∗1)

†, (tc2)
†],

− 3
2e

−(t−(tc2)
†) + 7

4 , for all t ∈ [(tc2)
†, (t∗2)

†],

+ 3
4e

t−(t∗2)
†
+ 1

4 , for all t ∈ [(t∗2)
†, 8],
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and

λ†(t) =



+ 3
4 , for a.e. t ∈ (0, (tc1)

†),

− 3
2 , for a.e. t ∈ ((tc1)

†, (t∗1)
†),

+ 3
4 , for a.e. t ∈ ((t∗1)

†, (tc2)
†),

− 3
2 , for a.e. t ∈ ((tc2)

†, (t∗2)
†),

+ 3
4 , for a.e. t ∈ ((t∗2)

†, 8),

u†(t) =


−1, for a.e. t ∈ (0, (tc1)

†),

+1, for a.e. t ∈ ((tc1)
†, (tc2)

†),

−1, for a.e. t ∈ ((tc2)
†, (t∗2)

†),

+1, for a.e. t ∈ ((t∗2)
†, 8).

with (tc1)
† = tc1 ≃ 0.2, (t∗1)† ≃ 0.81, (tc2)† ≃ 1.23, (t∗2)† ≃ 2.07. The detailed computations are left to the

reader.

• Second, let us consider the case where λ ∈ R is a classical constant parameter in Problem (Pex) (that
cannot switch at boundary crossings) constrained to belong to [− 3

2 ,
3
4 ]. By developing a similar analysis

to the previous section, but by using the averaged Hamiltonian gradient condition given in Item (ix) of
Remark 2.10, we get that the optimal triple (x̂, λ̂, û) is given by

x̂(t) =


− 11

4 e−t + 7
4 , for all t ∈ [0, t̂c1],

+ 5
3e

3
4 (t−t̂c1) − 2

3 , for all t ∈ [t̂c1, t̂
c
2],

− 3
2e

−(t−t̂c2) + 7
4 , for all t ∈ [t̂c2, t̂

∗
2],

− 3
4e

−(t−t̂∗) + 7/4, for all t ∈ [t̂∗2, 8],

and

λ̂ =
3

4
, û(t) =


−1, for a.e. t ∈ (0, t̂c1),

+1, for a.e. t ∈ (t̂c1, t̂
c
2),

−1, for a.e. t ∈ (t̂c2, t̂
∗),

+1, for a.e. t ∈ (t̂∗, 8).

with t̂c1 = tc1 ≃ 0.2, t̂c2 ≃ 2.47, and t̂∗ = 3.16. The detailed computations are left to the reader.

We refer to Figure 12 for the plots of the three trajectories x†, x and x̂. As expected, the trajectory x†

(associated with a classical permanent control) provides a better cost than the trajectory x (associated with a
regionally switching parameter) which provides a better cost than the trajectory x̂ (associated with a classical
constant parameter). This figure emphasizes that the present work allows to fill a gap in the literature.

− 1
2

1
4

xinit

t

R

x

x̂

x†

Figure 12: Trajectories x†, x and x̂ (zoom on the time interval [0, 7
2 ]).

4 Preliminaries: sensitivity analysis in the non-hybrid context
As explained in the overview of the proof of Theorem 2.1 developed in Section 2.4, for the needs of the
sensitivity analysis in the hybrid context performed in the next Section 5, we need to provide a complete
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sensitivity analysis of a general non-hybrid parameterized control system with respect to perturbations of the
parameter, the control, the initial time and the initial condition. This is precisely the aim of the present
section. We will work on the time interval [0, T ]. Nevertheless our results can be trivially extended to any
compact time interval [a, b] with a < b. In fact note that we will use these results in the next Section 5 on
compact subintervals of [0, T ].

Let g : Rn×Rd×Rm× [0, T ] → Rn be a general (non-hybrid) dynamics of class C1. For any quadruplet θ =
(λ, u, r, yr) ∈ Rd × L∞([0, T ],Rm)× [0, T ]× Rn, the Cauchy-Lipschitz theorem ensures the existence and the
uniqueness of the maximal solution to the Cauchy problem{

ẏ(t) = g(y(t), λ, u(t), t), a.e. t ∈ [0, T ],
y(r) = yr.

This maximal solution is denoted by y(·, g, θ) and is defined over the maximal interval denoted by I(g, θ) ⊂
[0, T ]. Recall that the blow-up theorem ensures that, either I(g, θ) = [0, T ] (in that case we speak of a
global solution), either y(·, g, θ) is unbounded over I(g, θ). In the sequel we denote by Glob(g) the set of all
quadruplets θ such that I(g, θ) = [0, T ].

For the technical needs of this section, for any quadruplet θ = (λ, u, r, yr) ∈ Glob(g) and any R ≥ ∥u∥L∞ ,
we denote by M(g, θ, R) ≥ 0 a common bound of ∥g∥Rn , ∥∇xg∥Rn×n , ∥∇λg∥Rn×d and ∥∇ug∥Rn×m over the
compact set

K(g, θ, R) :=
{
(x, µ, v, t) ∈ Rn × Rd × Rm × [0, T ] | ∥x− y(t, g, θ)∥Rn ≤ 1, ∥µ− λ∥Rd ≤ 1, ∥v∥Rm ≤ R

}
.

Note that (y(t, g, θ), λ, u(t), t) ∈ K(g, θ, R) for almost every t ∈ [0, T ]. Since K(g, θ, R) is convex with respect
to its first three components, one can easily get that

∥g(y2, µ2, v2, t)− g(y1, µ1, v1, t)∥Rn ≤ M(g, θ, R)(∥y2 − y1∥Rn + ∥µ2 − µ1∥Rd + ∥v2 − v1∥Rm),

for all (y2, µ2, v2, t), (y1, µ1, v1, t) ∈ K(g, θ, R).
We are now in a position to state and prove the next continuous dependence result for the trajectory y(·, g, θ)

with respect to the quadruplet θ.

Lemma 4.1. For any quadruplet θ = (λ, u, r, yr) ∈ Glob(g) and any R ≥ ∥u∥L∞ , there exists ε > 0 such
that the neighborhood of θ given by

N (g, θ, R, ε) := BRd(λ, ε)×
(
BL1(u, ε) ∩ BL∞(0L∞ , R)

)
×
(
[r − ε, r + ε] ∩ [0, T ]

)
× BRn(yr, ε),

is included in Glob(g). Furthermore, for all quadruplets θ′ = (λ′, u′, r′, y′r) ∈ N (g, θ, R, ε), it holds
that (y(t, g, θ′), λ′, u′(t), t) ∈ K(g, θ, R) for almost every t ∈ [0, T ]. Finally the map

F : N (g, θ, R, ε) → C([0, T ],Rn)
θ′ 7→ y(·, g, θ′),

is Lipschitz continuous, in the sense that there exists L(g, θ, R) ≥ 0 such that

∥y(·, g, θ′′)− y(·, g, θ′)∥C ≤ L(g, θ, R)(∥λ′′ − λ′∥Rd + ∥u′′ − u′∥L1 + |r′′ − r′|+ ∥y′′r − y′r∥Rn),

for all θ′ = (λ′, u′, r′, y′r), θ′′ = (λ′′, u′′, r′′, y′′r ) ∈ N (g, θ, R, ε).

Proof. Let θ = (λ, u, r, yr) ∈ Glob(g) and R ≥ ∥u∥L∞ . In this proof, for the ease of notations, we denote
by M := M(g, θ, R). Let us fix ε > 0 such that ε(1+M(2+T ))eMT < 1 and let us prove that N (g, θ, R, ε) ⊂
Glob(g). To this aim let θ′ = (λ′, u′, r′, y′r) ∈ N (g, θ, R, ε) and introduce the sets

I1 := {t ∈ I(g, θ′) ∩ [0, r′] | ∥y(t, g, θ′)− y(t, g, θ)∥Rn > 1}
and I2 := {t ∈ I(g, θ′) ∩ [r′, T ] | ∥y(t, g, θ′)− y(t, g, θ)∥Rn > 1}.
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If I1 ∪ I2 = ∅, then the solution y(·, g, θ′) is bounded over I(g, θ′), and thus θ′ ∈ Glob(g) from the blow-up
theorem. Therefore, by contradiction, let us assume that I1 ∪ I2 ̸= ∅. In the sequel we only deal with the
case I2 ≠ ∅ (the case where I2 = ∅, and thus I1 ̸= ∅, is similar). From integral representations it holds that

y(t, g, θ′)− y(t, g, θ) = (y′r − yr) +

∫ t

r′
g(y(s, g, θ′), λ′, u′(s), s)− g(y(s, g, θ), λ, u(s), s) ds

−
∫ r′

r

g(y(s, g, θ), λ, u(s), s) ds,

for all t ∈ I(g, θ′). Now let t2 := inf I2 ≥ r′. From continuity and definition of t2 we know that ∥y(t2, g, θ′)−
y(t2, g, θ)∥Rn ≥ 1 and thus r′ < t2 since

∥y(r′, g, θ′)− y(r′, g, θ)∥Rn ≤ ∥y′r − yr∥Rn +

∣∣∣∣∣
∫ r′

r

∥g(y(s, g, θ), λ, u(s), s)∥Rn ds

∣∣∣∣∣
≤ ∥y′r − yr∥Rn +M |r′ − r| ≤ ε(1 +M) < 1.

From definition of t2 we deduce that ∥y(t, g, θ′) − y(t, g, θ)∥Rn ≤ 1 for all t ∈ [r′, t2]. Therefore, since
moreover ∥λ′ − λ∥Rd ≤ ε < 1 and ∥u′∥L∞ ≤ R, we deduce that (y(t, g, θ′), λ′, u′(t), t) ∈ K(g, θ, R) for almost
every t ∈ [r′, t2]. Hence, from integral representations, we get that

∥y(t, g, θ′)− y(t, g, θ)∥Rn

≤ ∥y′r − yr∥Rn +M |r′ − r|+M

∫ t

r′
∥y(s, g, θ′)− y(s, g, θ)∥Rn + ∥λ′ − λ∥Rd + ∥u′(s)− u(s)∥Rm ds

≤ ∥y′r − yr∥Rn +M |r′ − r|+M

∫ t

r′
∥y(s, g, θ′)− y(s, g, θ)∥Rn ds+MT∥λ′ − λ∥Rd +M∥u′ − u∥L1 ,

for all t ∈ [r′, t2]. From the Grönwall lemma we obtain that

∥y(t, g, θ′)− y(t, g, θ)∥Rn ≤ (∥y′r − yr∥Rn +M |r′ − r|+MT∥λ′ − λ∥Rd +M∥u′ − u∥L1)eMT

≤ ε(1 +M(2 + T ))eMT < 1,

for all t ∈ [r′, t2], which raises a contradiction at t = t2. Thus we have proved that I1 ∪ I2 = ∅ which
gives θ′ ∈ Glob(g) but also (y(t, g, θ′), λ′, u′(t), t) ∈ K(g, θ, R) for almost every t ∈ [0, T ]. Hence the proofs of
the first two parts of Lemma 4.1 are complete. Now let us prove the last part. To this aim let θ′ = (λ′, u′, r′, y′r),
θ′′ = (λ′′, u′′, r′′, y′′r ) ∈ N (g, θ, R, ε). From integral representations it holds that

y(t, g, θ′′)− y(t, g, θ′) = (y′′r − y′r) +

∫ t

r′′
g(y(s, g, θ′′), λ′′, u′′(s), s)− g(y(s, g, θ′), λ′, u′(s), s) ds

−
∫ r′′

r′
g(y(s, g, θ′), λ′, u′(s), s) ds,

for all t ∈ [0, T ]. Using similar arguments than before (in particular using the Grönwall lemma), we get that

∥y(t, g, θ′′)− y(t, g, θ′)∥Rn ≤ (∥yr′′ − yr′∥Rn +M |r′′ − r′|+MT∥λ′′ − λ′∥Rd +M∥u′′ − u′∥L1)eMT ,

for all t ∈ [0, T ], which concludes the proof of the last part of Lemma 4.1.

In the next proposition we state a differentiability result for the trajectory y(·, g, θ) with respect to
perturbations of the quadruplet θ ∈ Glob(g). As explained in the overview of the proof of Theorem 2.1
developed in Section 2.4, this proposition will be useful in the next Section 5 to construct perturbed trajectories
of the hybrid control system (CS) which visit exactly (and in the same order) the same regions than a given
nominal trajectory.
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Proposition 4.1. Consider the perturbation of a quadruplet θ = (λ, u, r, yr) ∈ Glob(g) given by θ̃(α) :=
(λ̃(α), ũ(α), r̃(α), ỹr(α)) for all α ∈ [0, 1] where:

• λ̃ : [0, 1] → Rd satisfies λ̃(0) = λ and is differentiable at 0 with derivative denoted by λ̃′(0).

• either ũ : [0, 1] → L∞([0, T ],Rm) is given by ũ(α) := u for all α ∈ [0, 1] (no perturbation of the control),
either ũ : [0, 1] → L∞([0, T ],Rm) is the needle-like perturbation of u given by

ũ(α)(t) :=

{
v if t ∈ [τ − α, τ),
u(t) if t /∈ [τ − α, τ),

(4.1)

for almost every t ∈ [0, T ] and all α ∈ [0, 1], where v ∈ Rm and τ ∈ (0, T ] is a Lebesgue point of the
map g(y(·, g, θ), λ, u(·), ·).

• either r̃ : [0, 1] → [0, T ] is constantly equal to r (no perturbation of the initial time), either r̃ : [0, 1] →
[0, T ] satisfies r̃(0) = r and is differentiable at 0 with derivative denoted by r̃′(0) (in that second context,
assume that r ∈ [0, T ) is a Lebesgue point of the map g(y(·, g, θ), λ, u(·), ·) and, in case of needle-like
perturbation of the control, assume furthermore that r ̸= τ).

• ỹr : [0, 1] → Rn satisfies ỹr(0) = yr and is differentiable at 0 with derivative denoted by ỹ′r(0).

Then:

(i) There exists 0 < α ≤ 1 such that θ̃(α) ∈ Glob(g) for all α ∈ [0, α].

(ii) The perturbed trajectory y(·, g, θ̃(α)) uniformly converges to y(·, g, θ) over [0, T ] when α → 0.

(iii) The map
P : [0, α] → C([ς, T ],Rn)

α 7→ y(·, g, θ̃(α)),
with ς := τ in case of needle-like perturbation of the control and ς := 0 otherwise, is differentiable at
0 and its derivative is equal to wλ̃ + wũ + w(r̃,ỹr), where wλ̃, wũ and w(r̃,ỹr) are the three variation
vectors respectively defined as the unique maximal solutions (which are global) to the three linearized
Cauchy problems given by{

ẇ(t) = ∇xg(y(t, g, θ), λ, u(t), t)w(t) +∇λg(y(t, g, θ), λ, u(t), t)λ̃
′(0), a.e. t ∈ [0, T ],

w(r) = 0Rn ,{
ẇ(t) = ∇xg(y(t, g, θ), λ, u(t), t)w(t), a.e. t ∈ [0, T ],

w(τ) = g(y(τ, g, θ), λ, v, τ)− g(y(τ, g, θ), λ, u(τ), τ),{
ẇ(t) = ∇xg(y(t, g, θ), λ, u(t), t)w(t), a.e. t ∈ [0, T ],

w(r) = ỹ′r(0)− r̃′(0)g(y(r, g, θ), λ, u(r), r).

(iv) If furthermore the three functions λ̃, ỹr and r̃ are assumed to be continuous over [0, 1], then the
map (α, t) ∈ [0, α]× [0, T ] 7→ y(t, g, θ̃(α)) ∈ Rn is continuous.

Proof. This proof is dedicated to the case of a needle-like perturbation of the control and of a perturbation of
the initial time (the other cases are similar and simpler). Let R ≥ ∥u∥L∞+∥v∥Rm . As in the proof of Lemma 4.1,
we denote by M := M(g, θ, R). Consider ε > 0 provided in Lemma 4.1. It is clear that θ̃(α) ∈ N (g, θ, R, ε) for
sufficiently small α > 0. As a consequence, from Lemma 4.1, there exists 0 < α ≤ 1 such that θ̃(α) ∈ Glob(g)
for all α ∈ [0, α] which concludes the proof of the first item. The second and fourth items are trivial
consequences of the Lipschitz continuity provided in Lemma 4.1. Now our aim is to prove the third item. To
this aim let us introduce

χα(t) :=
y(t, g, θ̃(α))− y(t, g, θ)

α
− wλ̃(t)− wũ(t)− w(r̃,ỹr)(t),
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for all t ∈ [0, T ] and all α ∈ (0, α]. Our aim is to prove that χα uniformly converges to zero over [τ, T ]
when α → 0. To this aim we write χα = χα

1 + χα
2 + χα

3 where

χα
1 (t) :=

ỹα(t)− ỹα1 (t)

α
− wλ̃(t), χα

2 (t) :=
ỹα2 (t)− y(t)

α
− wũ(t), χα

3 (t) :=
ỹα1 (t)− ỹα2 (t)

α
− w(r̃,ỹr)(t),

for all t ∈ [0, T ] and all α ∈ (0, α], where we use the notations

ỹα(t) := y(t, g, θ̃(α)), ỹα1 (t) := y(t, g, θ̃1(α)), ỹα2 (t) := y(t, g, θ̃2(α)), y(t) := y(t, g, θ),

and

θ̃1(α) := (λ, ũ(α), r̃(α), ỹr(α)) ∈ N (g, θ, R, ε) and θ̃2(α) := (λ, ũ(α), r, yr) ∈ N (g, θ, R, ε),

for all t ∈ [0, T ] and all α ∈ [0, α]. From Lemma 4.1, for almost every t ∈ [0, T ] and all α ∈ [0, α], the five
elements

(y(t), λ, u(t), t), (ỹα(t), λ̃(α), u(α)(t), t), (ỹα(t), λ, u(α)(t), t), (ỹα1 (t), λ, ũ(α)(t), t), (ỹα2 (t), λ, ũ(α)(t), t),

belong to K(g, θ, R), but also their convex combinations. Also note that ỹα, ỹα1 and ỹα2 uniformly converge
to y over [0, T ] when α → 0 from the Lipschitz continuity provided in Lemma 4.1.

In what follows, as in the proof of Lemma 4.1, we will use integral representations and the Grönwall
lemma to prove that χα

1 , χα
2 and χα

3 uniformly converge to zero over [τ, T ] when α → 0. To reduce the
notation in integrands, we will use the notation ρ(·) := (y(·, g, θ), λ, u(·), ·).

Step 1: Let us prove that χα
1 uniformly converges to zero over [0, T ] when α → 0. From integral

representations it holds that

χα
1 (t) = χα

1 (r) +

∫ t

r

g(ỹα(s), λ̃(α), ũ(α)(s), s)− g(ỹα(s), λ, ũ(α)(s), s)

α
−∇λg(ρ(s))λ̃

′(0) ds

+

∫ t

r

g(ỹα(s), λ, ũ(α)(s), s)− g(ỹα1 (s), λ, ũ(α)(s), s)

α
−∇xg(ρ(s))wλ̃(s) ds,

for all t ∈ [0, T ] and all α ∈ (0, α]. Using Taylor expansions with integral rest, we obtain that

∥χα
1 (t)∥Rn ≤ ∥χα

1 (r)∥Rn +

∫ T

0

∫ 1

0

∥∥∥∇λg(ỹ
α(s), λ+ η(λ̃(α)− λ), ũ(α)(s), s)

∥∥∥
Rn×d

∣∣∣∣∣ λ̃(α)− λ

α
− λ̃′(0)

∣∣∣∣∣ dη ds︸ ︷︷ ︸
Γ1(α)

+

∫ T

0

∫ 1

0

∥∥∥∇λg(ỹ
α(s), λ+ η(λ̃(α)− λ), ũ(α)(s), s)−∇λg(ρ(s))

∥∥∥
Rn×d

|λ̃′(0)|dη ds︸ ︷︷ ︸
Γ2(α)

+

∣∣∣∣∣∣∣∣∣
∫ t

r

∫ 1

0

∥∇xg(ỹ
α
1 (s) + η(ỹα(s)− ỹα1 (s)), λ, ũ(α)(s), s)∥Rn×n

∥∥∥∥∥∥∥∥∥
ỹα(s)− ỹα1 (s)

α
− wλ̃(s)︸ ︷︷ ︸

χα
1 (s)

∥∥∥∥∥∥∥∥∥
Rn

dη ds

∣∣∣∣∣∣∣∣∣
+

∫ T

0

∫ 1

0

∥∇xg(ỹ
α
1 (s) + η(ỹα(s)− ỹα1 (s)), λ, ũ(α)(s), s)−∇xg(ρ(s))∥Rn×n ∥wλ̃(s)∥Rn dη ds︸ ︷︷ ︸

Γ3(α)

,

for all t ∈ [0, T ] and all α ∈ (0, α]. The Grönwall lemma leads to

∥χα
1 (t)∥Rn ≤

(
∥χα

1 (r)∥Rn + Γ1(α) + Γ2(α) + Γ3(α)
)
eMT ,

for all t ∈ [0, T ] and all α ∈ (0, α]. From the differentiability of λ̃(·) at 0, the boundedness of ∥∇xg∥Rn×n

and ∥∇λg∥Rn×d over K(g, θ, R), the uniform convergences of ỹα and ỹα1 to y over [0, T ] when α → 0 and from
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the dominated convergence theorem, we prove that Γ1(α),Γ2(α) and Γ3(α) converge to zero when α → 0. It
remains to prove that ∥χα

1 (r)∥Rn converges to zero when α → 0. From integral representations it holds that

χα
1 (r) =

1

α

∫ r

r̃(α)

g(ỹα(s), λ̃(α), ũ(α)(s), s)− g(ỹα1 (s), λ, ũ(α)(s), s) ds,

for all α ∈ (0, α], and, using similar arguments than before, we obtain that

∥χα
1 (r)∥Rn ≤ M

α

∣∣∣∣∣
∫ r

r̃(α)

∥ỹα(s)− ỹα1 (s)∥Rn + ∥λ̃(α)− λ∥Rd ds

∣∣∣∣∣
≤ M

∣∣∣∣ r̃(α)− r

α

∣∣∣∣ (∥ỹα − ỹα1 ∥C + ∥λ̃(α)− λ∥Rd),

for all α ∈ (0, α], which concludes the proof of Step 1 from the differentiability of r̃(·) and the continuity
of λ̃(·) at 0 and from the uniform convergences of ỹα and ỹα1 to y over [0, T ] when α → 0. The proof of Step 1
is complete.

Step 2: Let us prove that χα
2 uniformly converges to zero over [τ, T ] when α → 0. From integral

representations it holds that

χα
2 (t) = χα

2 (τ) +

∫ t

τ

g(ỹα2 (s), λ, u(s), s)− g(y(s), λ, u(s), s)

α
−∇xg(ρ(s))wũ(s) ds,

for all t ∈ [τ, T ] and all α ∈ (0, α]. Using a Taylor expansion with integral rest, we obtain that

∥χα
2 (t)∥Rn ≤ ∥χα

2 (τ)∥Rn

+

∫ t

τ

∫ 1

0

∥∇xg(y(s) + η(ỹα2 (s)− y(s)), λ, u(s), s)∥Rn×n

∥∥∥∥∥∥∥∥∥
ỹα2 (s)− y(s)

α
− wũ(s)︸ ︷︷ ︸

χα
2 (s)

∥∥∥∥∥∥∥∥∥
Rn

dη ds

+

∫ T

τ

∫ 1

0

∥∇xg(y(s) + η(ỹα2 (s)− y(s)), λ, u(s), s)−∇xg(ρ(s))∥Rn×n ∥wũ(s)∥Rn dη ds,︸ ︷︷ ︸
Γ4(α)

for all t ∈ [τ, T ] and all α ∈ (0, α]. The Grönwall lemma leads to

∥χα
2 (t)∥Rn ≤ (∥χα

2 (τ)∥Rn + Γ4(α)) e
MT ,

for all t ∈ [τ, T ] and all α ∈ (0, α]. From the uniform convergence of ỹα2 to y over [0, T ] when α → 0 and from
the dominated convergence theorem, we prove that Γ4(α) converges to zero when α → 0. It remains to prove
that ∥χα

2 (τ)∥Rn converges to zero when α → 0. From integral representations it holds that

χα
2 (τ) =

∫ τ

τ−α

g(ỹα2 (s), λ, v, s)− g(y(s), λ, v, s)

α
ds+

∫ τ

τ−α

g(y(s), λ, v, s)− g(y(s), λ, u(s), s)

α
ds− wũ(τ).

for all α ∈ (0, α]. From the uniform convergence of ỹα2 to y over [0, T ] when α → 0, one can easily prove that
the first term tends to 0Rn when α → 0. Finally, since τ is a Lebesgue point of the map g(y(·), λ, u(·), ·) and
from the value of wũ(τ), the second term tends to 0Rn when α → 0. The proof of Step 2 is complete.

Step 3: Let us prove that χα
3 uniformly converges to zero over [0, T ] when α → 0. From integral

representations it holds that

χα
3 (t) = χα

3 (r) +

∫ t

r

g(ỹα1 (s), λ, ũ(α)(s), s)− g(ỹα2 (s), λ, ũ(α)(s), s)

α
−∇xg(ρ(s))w(r̃,ỹr)(s) ds,
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for all t ∈ [0, T ] and all α ∈ (0, α]. Using a Taylor expansion with integral rest, we obtain that

∥χα
3 (t)∥Rn ≤ ∥χα

3 (r)∥Rn

+

∣∣∣∣∣∣∣∣∣
∫ t

r

∫ 1

0

∥∇xg(ỹ
α
2 (s) + η(ỹα1 (s)− ỹα2 (s)), λ, ũ(α)(s), s)∥Rn×n

∥∥∥∥∥∥∥∥∥
ỹα1 (s)− ỹα2 (s)

α
− w(r̃,ỹr)(s)︸ ︷︷ ︸

χα
3 (s)

∥∥∥∥∥∥∥∥∥
Rn

dη ds

∣∣∣∣∣∣∣∣∣
+

∫ T

0

∫ 1

0

∥∇xg(ỹ
α
2 (s) + η(ỹα1 (s)− ỹα2 (s)), λ, ũ(α)(s), s)−∇xg(ρ(s))∥Rn×n ∥w(r̃,ỹr)(s)∥Rn dη ds,︸ ︷︷ ︸

Γ5(α)

for all t ∈ [0, T ] and all α ∈ (0, α]. The Grönwall lemma leads to

∥χα
3 (t)∥Rn ≤ (∥χα

3 (r)∥Rn + Γ5(α)) e
MT ,

for all t ∈ [0, T ] and all α ∈ (0, α]. From the uniform convergences of ỹα1 and ỹα2 to y over [0, T ] when α → 0
and from the dominated convergence theorem, we prove that Γ5(α) converges to zero when α → 0. It remains
to prove that ∥χα

3 (r)∥Rn converges to zero when α → 0. From integral representations it holds that

χα
3 (r) =

(
ỹr(α)− yr

α
− ỹ′r(0)

)
+

(
r̃′(0)g(y(r), λ, u(r), r) +

1

α

∫ r

r̃(α)

g(ỹα1 (s), λ̃(α), ũ(α)(s), s) ds

)
,

for all α ∈ (0, α]. From differentiability of ỹr(·) at 0, the first term converges to 0Rn when α → 0. Since r ̸= τ
and from the continuity of r̃(·) at 0, we know that the second term can be rewritten as

r̃′(0)g(y(r), λ, u(r), r) +
1

α

∫ r

r̃(α)

g(y(s), λ, u(s), s) ds− 1

α

∫ r

r̃(α)

g(y(s), λ, u(s), s)− g(ỹα1 (s), λ̃(α), u(s), s) ds,

for sufficiently small α > 0. Since r is a Lebesgue point of the map g(y(·, g, θ), λ, u(·), ·) and from the
differentiability of r̃(·) at 0, the sum of the two first terms in the above equation converges to 0Rn when α → 0.
Finally the norm of the last term in the above equation can be bounded by∣∣∣∣∣ 1α

∫ r

r̃(α)

∥g(y(s), λ, u(s), s)− g(ỹα1 (s), λ̃(α), u(s), s)∥Rn ds

∣∣∣∣∣ ≤ M

∣∣∣∣ r̃(α)− r

α

∣∣∣∣ (∥y − ỹα1 ∥C + ∥λ− λ̃(α)∥Rd),

which tends to zero when α → 0, thanks to the differentiability of r̃(·) at 0, to the continuity of λ̃(α) at 0
and from the uniform convergence of ỹα1 to y over [0, T ] when α → 0. The proof of Step 3 is complete. This
completes the proof of Proposition 4.1.

5 Preliminaries: sensitivity analysis in the hybrid context
As explained in the overview of the proof of Theorem 2.1 developed in Section 2.4, a sensitivity analysis of
the hybrid control system (CS) has to be performed to construct perturbed trajectories which visit exactly
(and in the same order) the same regions than a given nominal trajectory. This is exactly the aim of the
present section. To this aim we will use the results stated in the previous Section 4, but we will also invoke
at several occasions the following conic implicit function theorem to prove the existence of perturbed crossing
times (see Section 2.4 for more details).

Lemma 5.1 (A conic implicit function theorem). Let α > 0, tc ∈ (0, T ) and δ > 0. Consider a continuous
map

G : [0, α]× [tc − δ, tc + δ] → R
(α, t) 7→ G(α, t),
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satisfying G(0, tc) = 0, such that ∇αG(0, tc) exists and such that ∇tG exists and is continuous over [0, α]× [tc−
δ, tc + δ] with ∇tG(0, tc) ̸= 0. Then there exist 0 < β ≤ α and an implicit function t̃ ∈ C([0, β], [tc − δ, tc + δ]),
satisfying t̃(0) = tc and G(α, t̃(α)) = 0 for all α ∈ [0, β], that is differentiable at 0 with derivative t̃′(0) =

−∇αG(0,tc)
∇tG(0,tc) .

Proof. Consider the extension G0 : [−α, α]× [tc − δ, tc + δ] → R defined by

∀(α, t) ∈ [−α, α]× [tc − δ, tc + δ], G0(α, t) :=

{
G(α, t) if α ∈ [0, α],
2G(0, t)− G(−α, t) if α ∈ [−α, 0].

From the assumptions of Lemma 5.1, one can easily derive that G0(0, t
c) = 0, ∇αG0(0, t

c) exists and ∇tG0

exists and is continuous over [−α, α] × [tc − δ, tc + δ] with ∇tG0(0, t
c) ̸= 0. Using a classical version of

the implicit function theorem (see [48, Theorem 9.3] and [43, Theorem E]), there exist 0 < β ≤ α and an
implicit function t̃ ∈ C([−β, β], [tc − δ, tc + δ]), satisfying t̃(0) = tc and G0(α, t̃(α)) = 0 for all α ∈ [−β, β],
differentiable at 0 with derivative t̃′(0) = −∇αG0(0,t

c)
∇tG0(0,tc)

. To conclude the proof, one has just to consider
the restriction of the function t̃ to the interval [0, β] and to use the facts that ∇αG0(0, t

c) = ∇αG(0, tc)
and ∇tG0(0, t

c) = ∇tG(0, tc).

5.1 A regular solution to (CS) and auxiliary non-hybrid trajectories
Throughout Section 5 we fix (x, λ, u) ∈ AC([0, T ],Rn) × PC([0, T ],Rd) × L∞([0, T ],Rm) being a regular
solution to (CS) and we will use the notations introduced in Definitions 2.1 and 2.2. For all k ∈ {1, ..., N},
we introduce, following the notations from Section 4, the auxiliary non-hybrid trajectory z̃k := y(·, fk, θk)
associated with the quadruplet θk := (λk, ũk, t

c
k−1, x(t

c
k−1)), where the auxiliary control ũk ∈ L∞([0, T ],Rm)

is defined by

ũk(t) :=


u+(tck−1), for a.e. t ∈ (tc0, t

c
k−1),

u(t), for a.e. t ∈ (tck−1, t
c
k),

u−(tck), for a.e. t ∈ (tck, t
c
N ).

We refer to Figure 6 in Section 2.4. Note that z̃k = x over [tck−1, t
c
k] for all k ∈ {1, ..., N} (see Figure 7

in Section 2.4). As a consequence, from Cauchy-Lipschitz theorem and up to reducing δ > 0 provided
in Definition 2.2, we will consider in the sequel that [tck−1 − δ, tck + δ] ∩ [0, T ] ⊂ I(fk, θk) for all k ∈
{1, ..., N}. Furthermore, up to reducing δ > 0 again, we will consider that z̃k(t) ∈ BRn(x(tck−1),

ν
2 ) for

all t ∈ [tck−1 − δ, tck−1 + δ] and all k ∈ {2, . . . , N}, and that z̃k(t) ∈ BRn(x(tck),
ν
2 ) for all t ∈ [tck − δ, tck + δ]

and all k ∈ {1, . . . , N − 1}.
Furthermore, from (A1) and for any k ∈ {1, . . . , N−1}, note that ũk is continuous over [tck−δ, T ] and thus z̃k

is of class C1 over [tck − δ, tck + δ] with żk(t) = fk(z̃k(t), λk, ũk(t), t) for all t ∈ [tck − δ, tck + δ]. In particular tck
is a Lebesgue point of the map fk(z̃k(·), λk, ũk(·), ·) and it holds that żk(tck) = (fk)

−(tck). Similarly, from (A1)
and for any k ∈ {1, . . . , N − 1}, note that ũk+1 is continuous over [0, tck + δ] and thus z̃k+1 is of class C1

over [tck − δ, tck + δ] with żk+1(t) = fk+1(z̃k+1(t), λk+1, ũk+1(t), t) for all t ∈ [tck − δ, tck + δ]. In particular tck is
a Lebesgue point of the map fk+1(z̃k+1(·), λk+1, ũk+1(·), ·) and it holds that żk+1(t

c
k) = (fk+1)

+(tck).

5.2 Convex perturbation of the regionally switching parameter
Consider the framework of Section 5.1. This entire Section 5.2 is dedicated to the proof of the next proposition
which states a differentiability result at time t = T for the trajectory x with respect to a convex perturbation
of the regionally switching parameter λ.

Proposition 5.1. Consider the framework of Section 5.1. Let k ∈ {1, ..., N} and let λk ∈ Rd. Then
there exists 0 < α ≤ 1 such that, for all α ∈ (0, α], there exists a perturbed solution (xα, λα, uα) ∈
AC([0, T ],Rn)× PC([0, T ],Rd)× L∞([0, T ],Rm) to (CS) such that:

(i) The corresponding perturbed partition of [0, T ], denoted by {t̃q(α)}q=0,...,N(α), satisfies N(α) = N ,
with t̃q(α) = tcq for all q ∈ {1, ..., k − 1}, and t̃q(α) tends to tcq when α → 0 for all q ∈ {k, ..., N − 1}.
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(ii) The perturbed trajectory xα follows the same regions than x, that is, xα satisfies

xα(t) ∈ Eq(t) for all t ∈ (t̃q−1(α), t̃q(α)) and all q ∈ {1, . . . , N},

with xα(0) = xinit ∈ E1(0) and xα(T ) ∈ EN (T ). Moreover xα uniformly converges to x over [0, T ]
when α → 0.

(iii) The perturbed regionally switching parameter λα is given by the convex perturbation

λα(t) =

{
λk + α(λk − λk) for a.e. t ∈ (t̃k−1(α), t̃k(α)),
λq for a.e. t ∈ (t̃q−1(α), t̃q(α)) and all q ∈ {1, . . . , N}\{k}.

(iv) The perturbed control uα is given by

uα(t) = ũq(t) for a.e. t ∈ (t̃q−1(α), t̃q(α)) and all q ∈ {1, . . . , N},

where ũq stands for the auxiliary control defined in Section 5.1 for all q ∈ {1, . . . , N}.

(v) The limit

lim
α→0

xα(T )− x(T )

α
= w(T ),

holds true, where

w(t) :=

{
wq(t) for all t ∈ [tcq−1, t

c
q) and all q ∈ {k, ..., N − 1},

wN (t) for all t ∈ [tcN−1, t
c
N ],

where wk is the variation vector defined as the unique maximal solution (which is global) to the
linearized Cauchy problem given by ẇ(t) = ∇xfk(z̃k(t), λk, ũk(t), t)w(t) +∇λfk(z̃k(t), λk, ũk(t), t)(λk − λk),

a.e. t ∈ [tck−1 − δ, tck + δ] ∩ [0, T ],
w(tck−1) = 0Rn ,

and wq is the variation vector defined by induction as the unique maximal solution (which is global) to
the linearized Cauchy problem given by{

ẇ(t) = ∇xfq(z̃q(t), λq, ũq(t), t)w(t), a.e. t ∈ [tcq−1 − δ, tcq + δ] ∩ [0, T ],
w(tcq−1) = wq−1(t

c
q−1) + ξq−1,

for all q ∈ {k + 1, ..., N}, where ξq ∈ Rn stands for the jump vector defined by

ξq :=
⟨∇xFq(x(t

c
q), t

c
q), wq(t

c
q)⟩Rn

⟨∇xFq(x(tcq), t
c
q), (fq)

−(tcq)⟩Rn +∇tFq(x(tcq), t
c
q)
((fq+1)

+(tcq)− (fq)
−(tcq)),

for all q ∈ {k, ..., N − 1}.

(vi) The limit

lim
α→0

t̃q(α)− tcq
α

= −
⟨∇xFq(x(t

c
q), t

c
q), wq(t

c
q)⟩Rn

⟨∇xFq(x(tcq), t
c
q), (fq)

−(tcq)⟩Rn +∇tFq(x(tcq), t
c
q)
,

holds true for all q ∈ {k, . . . , N − 1}.
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5.2.1 Construction of perturbed auxiliary non-hybrid trajectories

Lemma 5.2 (Construction of perturbed auxiliary non-hybrid trajectories). Consider the frameworks of
Section 5.1 and Proposition 5.1. Let k ∈ {1, ..., N} and let λk ∈ Rd. Then there exists 0 < α ≤ 1 and, for
all q ∈ {k, ..., N − 1}, there exists a function t̃q ∈ C([0, α], [tcq − δ, tcq + δ]) differentiable at 0 with t̃q(0) = tcq
and

t̃′q(0) = −
⟨∇xFq(x(t

c
q), t

c
q), wq(t

c
q)⟩Rn

⟨∇xFq(x(tcq), t
c
q), (fq)

−(tcq)⟩Rn +∇tFq(x(tcq), t
c
q)
,

such that the perturbed auxiliary non-hybrid trajectories z̃αq := y(·, fq, θαq ) associated with the perturbed
quadruplets θαq defined by the induction

θαq :=

{
(λk + α(λk − λk), ũk, t

c
k−1, x(t

c
k−1)) if q = k,

(λq, ũq, t̃q−1(α), z̃
α
q−1(t̃q−1(α))) if q ∈ {k + 1, . . . , N},

for all α ∈ [0, α] and all q ∈ {k, . . . , N}, satisfy:

• for all q ∈ {k, . . . , N}, it holds that [tcq−1 − δ, tcq + δ] ∩ [0, T ] ⊂ I(fq, θ
α
q ) for all α ∈ [0, α], that z̃αq

uniformly converges to z̃q over [tcq−1 − δ, tcq + δ] ∩ [0, T ] when α → 0, and

lim
α→0

z̃αq (t
c
q)− z̃q(t

c
q)

α
= wq(t

c
q).

• for all q ∈ {k, . . . , N − 1}, it holds that z̃αq (t) ∈ BRn(x(tcq), ν) for all (α, t) ∈ [0, α] × [tcq − δ, tcq + δ],
that Fq(z̃

α
q (t̃q(α)), t̃q(α)) = 0 for all α ∈ [0, α], and that the map α ∈ [0, α] 7→ z̃αq (t̃q(α)) ∈ Rn is

continuous over [0, α] and differentiable at 0 with

lim
α→0

z̃αq (t̃q(α))− z̃q(t
c
q)

α
= wq(t

c
q) + t̃′q(0)(fq)

−(tcq).

Proof. Let us fix k ∈ {1, ..., N} and λk ∈ Rd. The case k = N follows directly from Proposition 4.1. In the
sequel we deal with the case k ∈ {1, . . . , N − 1} and we will proceed by induction over q ∈ {k, . . . , N}. Note
that we will construct 0 < α ≤ 1 in the base case and that it will be reduced a finite number of times at each
step of the induction.

Base case q = k. We deduce from Proposition 4.1 that there exists 0 < α ≤ 1 such that [tck−1 − δ, tck + δ]∩
[0, T ] ⊂ I(fk, θ

α
k ) for all α ∈ [0, α], that z̃αk uniformly converges to z̃k over [tck−1− δ, tck+ δ]∩ [0, T ] when α → 0

(as illustrated in Figure 9(a) in Section 2.4), and that the map

(α, t) ∈ [0, α]× ([tck−1 − δ, tck + δ] ∩ [0, T ]) 7→ z̃αk (t) ∈ Rn, (5.1)

is continuous. Since moreover z̃k(t) ∈ BRn(x(tck),
ν
2 ) for all t ∈ [tck − δ, tck + δ], up to reducing α > 0, we

have z̃αk (t) ∈ BRn(x(tck), ν) for all (α, t) ∈ [0, α]× [tck − δ, tck + δ]. We are now in a position to define the map

Gk : [0, α]× [tck − δ, tck + δ] → R
(α, t) 7→ Fk(z̃

α
k (t), t),

where Fk : BRn(x(tck), ν)× [tck − δ, tck + δ] → R is the C1 function provided in Definition 2.2.
Let us check that Gk satisfies all the assumptions of the conic implicit function theorem (Lemma 5.1).

First, Gk is continuous from the continuity of the map (5.1) and Gk(0, t
c
k) = Fk(x(t

c
k), t

c
k) = 0. Second, for

any α ∈ [0, α], since ũk is continuous over [tck − δ, tck + δ] (see Figure 6 in Section 2.4), we know that z̃αk is of
class C1 over [tck − δ, tck + δ]. This implies that ∇tGk(α, t) exists with

∇tGk(α, t) = ⟨∇xFk(z̃
α
k (t), t), fk(z̃

α
k (t), λk + α(λk − λk), ũk(t), t)⟩Rn +∇tFk(z̃

α
k (t), t),

for all (α, t) ∈ [0, α]× [tck−δ, tck+δ]. Furthermore, from the continuity of the map (5.1), one can see that ∇tGk

is continuous over [0, α]× [tck − δ, tck + δ] and, from (A3), it holds that

∇tGk(0, t
c
k) = ⟨∇xFk(x(t

c
k), t

c
k), (fk)

−(tck)⟩Rn +∇tFk(x(t
c
k), t

c
k) ̸= 0.
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Finally, from the third item of Proposition 4.1, we get that

lim
α→0

z̃αk (t
c
k)− z̃k(t

c
k)

α
= wk(t

c
k),

which implies that ∇αGk(0, t
c
k) exists with ∇αGk(0, t

c
k) = ⟨∇xFk(x(t

c
k), t

c
k), wk(t

c
k)⟩Rn .

We deduce from the conic implicit function theorem (Lemma 5.1) that, up to reducing α > 0 (pre-
cisely, by taking α = β), there exists a function t̃k ∈ C([0, α], [tck − δ, tck + δ]), such that t̃k(0) = tck
and Fk(z̃

α
k (t̃k(α)), t̃k(α)) = 0 for all α ∈ [0, α] (see Figure 9(a) in Section 2.4), that is differentiable at 0 with

t̃′k(0) = − ⟨∇xFk(x(t
c
k), t

c
k), wk(t

c
k)⟩Rn

⟨∇xFk(x(tck), t
c
k), (fk)

−(tck)⟩Rn +∇tFk(x(tck), t
c
k)

.

From the continuities of the function t̃k and of the map (5.1), we deduce that the map α ∈ [0, α] 7→ z̃αk (t̃k(α)) ∈
Rn is continuous over [0, α]. It remains to prove that

lim
α→0

z̃αk (t̃k(α))− z̃k(t
c
k)

α
= wk(t

c
k) + t̃′k(0)(fk)

−(tck).

To this aim, using integral representations, one can write

z̃αk (t̃k(α))− z̃k(t
c
k)

α
=

z̃αk (t
c
k)− z̃k(t

c
k)

α
+

t̃k(α)− tck
α

1

t̃k(α)− tck

∫ t̃k(α)

tck

fk(z̃k(s), λk, ũk(s), s) ds

+
1

α

∫ t̃k(α)

tck

fk(z̃
α
k (s), λk + α(λk − λk), ũk(s), s)− fk(z̃k(s), λk, ũk(s), s) ds,

for all α ∈ (0, α]. We already proved that the first term tends to wk(t
c
k) when α → 0. Since tck is a

Lebesgue point of the map fk(z̃k(·), λk, ũk(·), ·) and since t̃k is differentiable at 0, the second term tends
to t̃′k(0)(fk)

−(tck), finally the third term tends to zero when α → 0, since z̃αk uniformly converges to z̃k
over [tck − δ, tck + δ], fk is of class C1 and t̃k is differentiable at 0. Hence the proof for the base case is complete.

Inductive step. Let q ∈ {k + 1, ..., N} and assume that the induction hypothesis holds true for all ℓ ∈
{k, ..., q − 1}. The case q = N follows directly from Proposition 4.1 and from the induction hypothesis (in
particular from the differentiabilities at 0 of the function t̃N−1 and of the map α ∈ [0, α] 7→ z̃αN−1(t̃N−1(α)) ∈
Rn). Therefore, in the sequel, we deal with the case q ∈ {k + 1, . . . , N − 1} and we will proceed similarly to
the base case. Therefore some details will be omitted.

Thanks to the induction hypothesis ensuring the continuities of the function t̃q−1 and of the map α ∈
[0, α] 7→ z̃αq−1(t̃q−1(α)), we deduce from Proposition 4.1 that, up to reducing α, it holds that [tcq−1−δ, tcq+δ] ⊂
I(fq, θ

α
q ) for all α ∈ [0, α], that z̃αq uniformly converges to z̃q over [tcq−1 − δ, tcq + δ] when α → 0 (see Figure 10

in Section 2.4 where q = k + 1), and that the map

(α, t) ∈ [0, α]× [tcq−1 − δ, tcq + δ] 7→ z̃αq (t) ∈ Rn, (5.2)

is continuous. Similarly to the base case, up to reducing α > 0, we get that z̃αq (t) ∈ BRn(x(tcq), ν) for
all (α, t) ∈ [0, α]× [tcq − δ, tcq + δ] and thus we are in a position to define the map

Gq : [0, α]× [tcq − δ, tcq + δ] → R
(α, t) 7→ Fq(z̃

α
q (t), t).

Similarly to the base case, Gq is continuous, Gq(0, t
c
q) = Fq(x(t

c
q), t

c
q) = 0 and ∇tGq(α, t) exists and is

continuous over [0, α]× [tcq − δ, tcq + δ] and

∇tGq(0, t
c
q) = ⟨∇xFq(x(t

c
q), t

c
q), (fq)

−(tcq)⟩Rn +∇tFq(x(t
c
q), t

c
q) ̸= 0.

Finally, from the third item of Proposition 4.1 and from the induction hypothesis (in particular from the
differentiabilities at 0 of the function t̃q−1 and of the map α ∈ [0, α] 7→ z̃αq−1(t̃q−1(α)) ∈ Rn), we get that

lim
α→0

z̃αq (t
c
q)− z̃q(t

c
q)

α
= wq(t

c
q),
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which implies that ∇αGq(0, t
c
q) exists with ∇αGq(0, t

c
q) = ⟨∇xFq(x(t

c
q), t

c
q), wq(t

c
q)⟩Rn .

From the conic implicit function theorem (Lemma 5.1), up to reducing α > 0, there exists a function t̃q ∈
C([0, α], [tcq−δ, tcq+δ]), such that t̃q(0) = tcq and Fq(z̃

α
q (t̃q(α)), t̃q(α)) = 0 for all α ∈ [0, α], that is differentiable

at 0 with

t̃′q(0) = −
⟨∇xFq(x(t

c
q), t

c
q), wq(t

c
q)⟩Rn

⟨∇xFq(x(tcq), t
c
q), (fq)

−(tcq)⟩Rn +∇tFq(x(tcq), t
c
q)
.

From the continuities of the function t̃q and of the map (5.2), we deduce that the map α ∈ [0, α] 7→ z̃αq (t̃q(α)) ∈
Rn is continuous over [0, α]. Similarly to the base case, one can easily prove that

lim
α→0

z̃αq (t̃q(α))− z̃q(t
c
q)

α
= wq(t

c
q) + t̃′q(0)(fq)

−(tcq),

which completes the proof for the inductive step.

5.2.2 Admissibility of the perturbed auxiliary non-hybrid trajectories

Lemma 5.3. Consider the framework of Lemma 5.2. Then, up to reducing α, the following properties are
satisfied:

1. There exists s′k−1 ∈ (tck−1, t
c
k−1 + δ] such that z̃αk (t) ∈ Ek(t) for all (α, t) ∈ [0, α]× (tck−1, s

′
k−1] (and for

all (α, t) ∈ [0, α]× [tc0, s
′
k−1] if k = 1).

2. For all q ∈ {k, ..., N − 1}, there exists sq ∈ [tcq − δ, tcq) such that z̃αq (t) ∈ Eq(t) for all (α, t) ∈
[0, α]× [sq, t̃q(α)).

3. For all q ∈ {k, ..., N − 1}, there exists s′q ∈ (tcq, t
c
q + δ] such that z̃αq+1(t) ∈ Eq+1(t) for all (α, t) ∈

[0, α]× (t̃q(α), s
′
q].

4. There exists sN ∈ [tcN − δ, tcN ) such that z̃αN (t) ∈ EN (t) for all (α, t) ∈ [0, α]× [sN , tcN ].

Proof. This proof does not require induction. We will prove each item separately. Note that we will reduce α
in each item.

Proof of the fourth item. Recall that z̃N = x over [tcN−1, t
c
N ] and that x(t) ∈ EN (t) for all t ∈ [tcN − δ, tcN ].

From (C1) and since z̃αN converges uniformly to z̃N over [tcN−1 − δ, tcN ] ∩ [0, T ] when α → 0, one can easily
conclude the proof of the fourth item by reducing α > 0 and by taking sN = tcN − δ.

Proof of the first item. If k = 1, then the proof is similar to the above fourth item. Therefore let
us deal with the case k ∈ {2, . . . , N}. Recall that z̃k(t) ∈ BRn(x(tck−1),

ν
2 ) for all t ∈ [tck−1 − δ, tck−1 + δ].

Since z̃αk uniformly converges to z̃k over [tck−1 − δ, tck + δ] ∩ [0, T ] when α → 0, up to reducing α > 0,
we get that z̃αk (t) ∈ BRn(x(tck−1), ν), and therefore z̃αk (t) ∈ Ek(t) if and only if Fk−1(z̃

α
k (t), t) > 0, for

all (α, t) ∈ [0, α]× [tck−1 − δ, tck−1 + δ]. By contradiction let us assume that

∀s′k−1 ∈ (tck−1, t
c
k−1 + δ], ∀0 < β ≤ α, ∃α ∈ [0, β], ∃t ∈ (tck−1, s

′
k−1], Fk−1(z̃

α
k (t), t) ≤ 0. (5.3)

Let s′k−1 ∈ (tck−1, t
c
k−1 + δ] and 0 < β ≤ α and consider (α, t) given in (5.3). Since Fk−1(z̃

α
k (t

c
k−1), t

c
k−1) =

Fk−1(x(t
c
k−1), t

c
k−1) = 0, we obtain that

Fk−1(z̃
α
k (t), t)− Fk−1(z̃

α
k (t

c
k−1), t

c
k−1) ≤ 0.

Since z̃αk is of class C1 over [tck−1 − δ, tck−1 + δ], note that the above inequality can be rewritten as

1

t− tck−1

∫ t

tck−1

Ψk−1(s) ds ≤
1

t− tck−1

∫ t

tck−1

Ψk−1(s)−Ψα
k−1(s) ds, (5.4)

where
Ψk−1(s) := ⟨∇xFk−1(z̃k(s), s), fk(z̃k(s), λk, ũk(s), s)⟩Rn +∇tFk−1(z̃k(s), s),
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and
Ψα

k−1(s) := ⟨∇xFk−1(z̃
α
k (s), s), fk(z̃

α
k (s), λk + α(λk − λk), ũk(s), s)⟩Rn +∇tFk−1(z̃

α
k (s), s),

for all s ∈ [tck−1 − δ, tck−1 + δ]. Since ũk is continuous at tck−1, note that tck−1 is a Lebesgue point of Ψk−1.
Therefore, when making tend s′k−1 → tck−1 and β → 0, we make tend α → 0 and t → tck−1 and thus the left
term of (5.4) tends to

⟨∇xFk−1(x(t
c
k−1), t

c
k−1), (fk)

+(tck−1)⟩Rn +∇tFk−1(x(t
c
k−1), t

c
k−1).

It remains to prove that the right term of (5.4) converges to zero when α → 0 and t → tck. To this aim recall
that z̃αk (t) ∈ BRn(x(tck−1), ν) for all (α, t) ∈ [0, α] × [tck−1 − δ, tck−1 + δ] and that ∇xFk−1 and ∇tFk−1 are
uniformly continuous over the compact set BRn(x(tck−1), ν)× [tck−1 − δ, tck−1 + δ] (since Fk−1 is of class C1).
Therefore, since z̃αk uniformly converges to z̃k over [tck−1 − δ, tck−1 + δ] when α → 0, one can easily prove that
the right term of (5.4) tends to zero when α → 0 and t → tck.

Hence we have obtained that

⟨∇xFk−1(x(t
c
k−1), t

c
k−1), (fk)

+(tck−1)⟩Rn +∇tFk−1(x(t
c
k−1), t

c
k−1) ≤ 0,

which raises a contradiction with (A3). Therefore we have proved the negation of (5.3) which is given by

∃s′k−1 ∈ (tck−1, t
c
k−1 + δ], ∃0 < β ≤ α, ∀α ∈ [0, β], ∀t ∈ (tck−1, s

′
k−1], Fk−1(z̃

α
k (t), t) > 0,

which concludes the proof of the first item by reducing α > 0 to β.

Proof of the second item. Let q ∈ {k, ..., N − 1} be fixed. This proof is similar to the above one, with
an additional difficulty due to the presence of the implicit function t̃q. Recall that z̃αq (t) ∈ BRn(x(tcq), ν),
and therefore z̃αq (t) ∈ Eq(t) if and only if Fq(z̃

α
q (t), t) < 0, for all (α, t) ∈ [0, α]× [tcq − δ, tcq + δ]. Also recall

that t̃q(α) tends to tcq when α → 0. Therefore, for any sq ∈ [tcq − δ, tcq), there exists 0 < β(sq) ≤ α such
that sq < t̃q(α) ≤ tcq + δ for all α ∈ [0, β(sq)]. By contradiction let us assume that

∀sq ∈ [tcq − δ, tcq), ∀0 < β ≤ β(sq), ∃α ∈ [0, β], ∃t ∈ [sq, t̃q(α)), Fq(z̃
α
q (t), t) ≥ 0. (5.5)

Let sq ∈ [tcq − δ, tcq) and 0 < β ≤ β(sq) and consider (α, t) given in (5.5). Since Fq(z̃
α
q (t̃q(α)), t̃q(α)) = 0 (see

Lemma 5.2), we obtain that
Fq(z̃

α
q (t̃q(α)), t̃q(α))− Fq(z̃

α
q (t), t) ≤ 0.

Since z̃αq is of class C1 over [tcq − δ, tcq + δ], note that the above inequality can be rewritten as

1

t̃q(α)− t

∫ t̃q(α)

t

Ψq(s) ds ≤
1

t̃q(α)− t

∫ t̃q(α)

t

Ψq(s)−Ψα
q (s) ds, (5.6)

where

Ψq(s) :=

{
⟨∇xFk(z̃k(s), s), fk(z̃k(s), λk, ũk(s), s)⟩Rn +∇tFk(z̃k(s), s), if q = k,
⟨∇xFq(z̃q(s), s), fq(z̃q(s), λq, ũq(s), s)⟩Rn +∇tFk(z̃q(s), s), if q ∈ {k + 1, ..., N − 1},

and

Ψα
q (s) :=

{
⟨∇xFk(z̃

α
k (s), s), fk(z̃

α
k (s), λk + α(λk − λk), ũk(s), s)⟩Rn +∇tFk(z̃

α
k (s), s), if q = k,

⟨∇xFq(z̃
α
q (s), s), fq(z̃

α
q (s), λq, ũq(s), s)⟩Rn +∇tFq(z̃

α
q (s), s), if q ∈ {k + 1, ..., N − 1},

for all s ∈ [tcq − δ, tcq + δ]. Since ũq is continuous at tcq, note that tcq is a Lebesgue point of Ψq. Therefore,
when making tend sq → tcq and β → 0, we make tend α → 0, t̃q(α) → tcq and t → tcq and thus the left term
of (5.6) tends to

⟨∇xFq(x(t
c
q), t

c
q), (fq)

−(tcq)⟩Rn +∇tFq(x(t
c
q), t

c
q),

and, using similar arguments as in the proof of the first item, we obtain that the right term of (5.6) tends to
zero when α → 0, t̃q(α) → tcq and t → tcq.
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Hence we have obtained that

⟨∇xFq(x(t
c
q), t

c
q), (fq)

−(tcq)⟩Rn +∇tFq(x(t
c
q), t

c
q) ≤ 0,

which raises a contradiction with (A3). Therefore we have proved the negation of (5.5) which is given by

∃sq ∈ [tcq − δ, tcq), ∃0 < β ≤ β(sq), ∀α ∈ [0, β], ∀t ∈ [sq, t̃q(α)), Fq(z̃
α
q (t), t) > 0.

which concludes the proof of the second item by reducing α > 0 to β.

Proof of the third item. The proof is similar to the above one.

Lemma 5.4 (Admissibility of the perturbed auxiliary non-hybrid trajectories). Consider the framework of
Lemma 5.2. Then, up to reducing α > 0, it holds that:

1. z̃αk (t) ∈ Ek(t) for all (α, t) ∈ [0, α]× (tck−1, t̃k(α)) (and for all (α, t) ∈ [0, α]× [tc0, t̃k(α)) if k = 1).

2. z̃αq (t) ∈ Eq(t) for all (α, t) ∈ [0, α]× (t̃q−1(α), t̃q(α)) and all q ∈ {k + 1, ..., N − 1}.

3. z̃αN (t) ∈ EN (t) for all (α, t) ∈ [0, α]× (t̃N−1(α), t
c
N ].

Proof. This proof does not require induction. Let us prove the second item only. The other items can be
proved similarly (and note that α > 0 is reduced in each item). Let q ∈ {k+1, . . . , N − 1}. From Lemma 5.3,
we know that:

• there exists s′q−1 ∈ (tcq−1, t
c
q−1 + δ] such that z̃αq (t) ∈ Eq(t) for all (α, t) ∈ [0, α]× (t̃q−1(α), s

′
q−1].

• there exists sq ∈ [tcq − δ, tcq) such that z̃αq (t) ∈ Eq(t) for all (α, t) ∈ [0, α]× [sq, t̃q(α)).

Now recall that z̃q = x over [tcq−1, t
c
q] and that x(t) ∈ Eq(t) for all t ∈ (tcq−1, t

c
q) and thus for all t ∈ [s′q−1, sq].

From (C1) and since z̃αq converges uniformly to z̃q over [tcq−1 − δ, tcq + δ] when α → 0, one can easily see
that, up to reducing α > 0, one has z̃αq (t) ∈ Eq(t) for all (α, t) ∈ [0, α] × [s′q−1, sq]. We finally deduce
that z̃αq (t) ∈ Eq(t) for all (α, t) ∈ [0, α]× (t̃q−1(α), t̃q(α)). The proof of the second item is complete.

5.2.3 Proof of Proposition 5.1

Let us fix k ∈ {1, ..., N} and λk ∈ Rd. Consider the perturbed auxiliary non-hybrid trajectories z̃αq = y(·, fq, θαq )
over [tcq−1 − δ, tcq + δ] ∩ [0, T ] for all q ∈ {k, . . . , N} and all α ∈ (0, α] constructed in Lemma 5.2, together
with the corresponding implicit functions t̃q for all q ∈ {k, . . . , N − 1}. As explained in Section 2.4, we define
by concatenation

xα(t) :=


x(t) for all t ∈ [tc0, t

c
k−1],

z̃αk (t) for all t ∈ [tck−1, t̃k(α)],
z̃αq (t) for all t ∈ [t̃q−1(α), t̃q(α)] and all q ∈ {k + 1, . . . , N − 1},
z̃αN (t) for all t ∈ [t̃N−1(α), t

c
N ],

and

λα(t) :=


λ(t) for a.e. t ∈ (tc0, t

c
k−1),

λk + α(λk − λk) for a.e. t ∈ (tck−1, t̃k(α)),
λq for a.e. t ∈ (t̃q−1(α), t̃q(α)) and all q ∈ {k + 1, . . . , N − 1},
λN for a.e. t ∈ (t̃N−1(α), t

c
N ),

and

uα(t) :=


u(t) for a.e. t ∈ (tc0, t

c
k−1),

ũk(t) for a.e. t ∈ (tck−1, t̃k(α)),
ũq(t) for a.e. t ∈ (t̃q−1(α), t̃q(α)) and all q ∈ {k + 1, . . . , N − 1},
ũN (t) for a.e. t ∈ (t̃N−1(α), t

c
N ),
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for all α ∈ (0, α]. From the construction and the results developed in Lemmas 5.2 and 5.4, one can easily
see that (xα, λα, uα) ∈ AC([0, T ],Rn) × PC([0, T ],Rd) × L∞([0, T ],Rm) is a (perturbed) solution to (CS),
admitting the t̃q(α) as crossing times, where we have introduced t̃q(α) := tcq for all q ∈ {1, . . . , k − 1} and
all α ∈ (0, α]. The first, third, fourth and sixth items of Proposition 5.1 also directly follow, as well as the first
assertion of the second item. The second assertion of the second item follows from the uniform convergence
of z̃αq to z̃q over [tcq−1 − δ, tcq + δ] ∩ [0, T ] for all q ∈ {k, . . . , N} when α → 0, from the convergence of t̃q(α)
to tcq for all q ∈ {k, . . . , N − 1} when α → 0, and from the equality z̃q = x over [tcq−1, t

c
q] for all q ∈ {k, . . . , N}.

Finally the fifth item follows from Lemma 5.2 since it holds that

lim
α→0

xα(T )− x(T )

α
= lim

α→0

z̃αN (tcN )− z̃N (tcN )

α
= wN (tcN ) = w(T ),

which concludes the proof of Proposition 5.1.

5.3 Needle-like perturbation of the control
Consider the framework of Section 5.1. This entire Section 5.3 is dedicated to the proof of the next proposition
which states a differentiability result at time t = T for the trajectory x with respect to a needle-like
perturbation of the control u. Since the proofs of this section are very similar to the ones of the previous
Section 5.2, they are omitted.

Proposition 5.2. Consider the framework of Section 5.1. Let k ∈ {1, ..., N}, let v ∈ Rm and let τ ∈ (tck−1, t
c
k)

be a Lebesgue point of the map h(x(·), λ(·), u(·), ·). Then there exists 0 < α < min{1, τ − tck−1} such that, for
all α ∈ (0, α], there exists a perturbed solution (xα, λα, uα) ∈ AC([0, T ],Rn)×PC([0, T ],Rd)×L∞([0, T ],Rm)
to (CS) such that:

(i) The corresponding perturbed partition of [0, T ], denoted by {t̃q(α)}q=0,...,N(α), satisfies N(α) = N ,
with t̃q(α) = tcq for all q ∈ {1, ..., k − 1}, and t̃q(α) tends to tcq when α → 0 for all q ∈ {k, ..., N − 1}.

(ii) The perturbed trajectory xα follows the same regions than x, that is, xα satisfies

xα(t) ∈ Eq(t) for all t ∈ (t̃q−1(α), t̃q(α)) and all q ∈ {1, . . . , N},

with xα(0) = xinit ∈ E1(0) and xα(T ) ∈ EN (T ). Moreover xα uniformly converges to x over [0, T ]
when α → 0.

(iii) The perturbed regionally switching parameter λα is given by

λα(t) = λq for a.e. t ∈ (t̃q−1(α), t̃q(α)) and all q ∈ {1, . . . , N}.

(iv) The perturbed control uα is given by

uα(t) =


v for a.e. t ∈ (τ − α, τ),
ũk(t) for a.e. t ∈ (tck−1, τ − α) ∪ (τ, t̃k(α)),
ũq(t) for a.e. t ∈ (t̃q−1(α), t̃q(α)) and all q ∈ {1, . . . , N}\{k},

where ũq stands for the auxiliary control defined in Section 5.1 for all q ∈ {1, . . . , N}.

(v) The limit

lim
α→0

xα(T )− x(T )

α
= w(T ),

holds true, where

w(t) :=

{
wq(t), for all t ∈ [tcq−1, t

c
q) and all q ∈ {k, ..., N − 1},

wN (t), for all t ∈ [tcN−1, t
c
N ],
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where wk is the variation vector defined as the unique maximal solution (which is global) to the
linearized Cauchy problem given by{

ẇ(t) = ∇xfk(z̃k(t), λk, ũk(t), t)w(t), a.e. t ∈ [tck−1 − δ, tck + δ] ∩ [0, T ],
w(τ) = fk(z̃k(τ), λk, v, τ)− fk(z̃k(τ), λk, ũk(τ), τ),

and wq is the variation vector defined by induction as the unique maximal solution (which is global) to
the linearized Cauchy problem given by{

ẇ(t) = ∇xfq(z̃q(t), λq, ũq(t), t)w(t), a.e. t ∈ [tcq−1 − δ, tcq + δ] ∩ [0, T ],
w(tcq−1) = wq−1(t

c
q−1) + ξq−1,

for all q ∈ {k + 1, ..., N}, where ξq ∈ Rn stands for the jump vector defined by

ξq :=
⟨∇xFq(x(t

c
q), t

c
q), wq(t

c
q)⟩Rn

⟨∇xFq(x(tcq), t
c
q), (fq)

−(tcq)⟩Rn +∇tFq(x(tcq), t
c
q)
((fq+1)

+(tcq)− (fq)
−(tcq)),

for all q ∈ {k, ..., N − 1}.

(vi) The limit

lim
α→0

t̃q(α)− tcq
α

= −
⟨∇xFq(x(t

c
q), t

c
q), wq(t

c
q)⟩Rn

⟨∇xFq(x(tcq), t
c
q), (fq)

−(tcq)⟩Rn +∇tFq(x(tcq), t
c
q)
,

holds true for all q ∈ {k, . . . , N − 1}.

5.3.1 Construction of perturbed auxiliary non-hybrid trajectories

Lemma 5.5 (Construction of perturbed auxiliary non-hybrid trajectories). Consider the frameworks of
Section 5.1 and Proposition 5.2. Let k ∈ {1, ..., N}, let v ∈ Rm and let τ ∈ (tck−1, t

c
k) be a Lebesgue point of

the map h(x(·), λ(·), u(·), ·). Then there exists 0 < α < min{1, τ − tck−1} and, for all q ∈ {k, ..., N − 1}, there
exists a function t̃q ∈ C([0, α], [tcq − δ, tcq + δ]) differentiable at 0 with t̃q(0) = tcq and

t̃′q(0) = −
⟨∇xFq(x(t

c
q), t

c
q), wq(t

c
q)⟩Rn

⟨∇xFq(x(tcq), t
c
q), (fq)

−(tcq)⟩Rn +∇tFq(x(tcq), t
c
q)
,

such that the perturbed auxiliary non-hybrid trajectories z̃αq := y(·, fq, θαq ) associated with the perturbed
quadruplets θαq defined by the induction

θαq :=

{
(λk, ũ

α
k , t

c
k−1, x(t

c
k−1)) if q = k,

(λq, ũq, t̃q−1(α), z̃
α
q−1(t̃q−1(α)) if q ∈ {k + 1, . . . , N},

for all α ∈ [0, α] and all q ∈ {k, . . . , N}, where ũα
k is the needle-like perturbation of ũk (see Figure 8 in

Section 2.4) given by

ũα
k (t) :=

{
v if t ∈ [τ − α, τ),
ũk(t) if t /∈ [τ − α, τ),

for almost every t ∈ [0, T ], satisfy:

• for all q ∈ {k, . . . , N}, it holds that [tcq−1 − δ, tcq + δ] ∩ [0, T ] ⊂ I(fq, θ
α
q ) for all α ∈ [0, α], that z̃αq

uniformly converges to z̃q over [tcq−1 − δ, tcq + δ] ∩ [0, T ] when α → 0, and

lim
α→0

z̃αq (t
c
q)− z̃q(t

c
q)

α
= wq(t

c
q).

• for all q ∈ {k, . . . , N − 1}, it holds that z̃αq (t) ∈ BRn(x(tcq), ν) for all (α, t) ∈ [0, α] × [tcq − δ, tcq + δ],
that Fq(z̃

α
q (t̃q(α)), t̃q(α)) = 0 for all α ∈ [0, α], and that the map α ∈ [0, α] 7→ z̃αq (t̃q(α)) ∈ Rn is

continuous over [0, α] and differentiable at 0 with

lim
α→0

z̃αq (t̃q(α))− z̃q(t
c
q)

α
= wq(t

c
q) + t̃′q(0)(fq)

−(tcq).

Proof. The proof is very similar to the one of Lemma 5.2 and thus is omitted. The only difference is that, for
the base case, one must note that we fix δ0 ∈ [0, δ] such that τ < tck − δ0 in order to have ũα

k = ũk for almost
every t ∈ [tck − δ0, t

c
k + δ0] where τ ∈ (tck−1, t

c
k) stands for a Lebesgue point of h(x(·), λ(·), u(·), ·).
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5.3.2 Admissibility of the perturbed auxiliary non-hybrid trajectories

Lemma 5.6. Consider the framework of Lemma 5.5. Then, up to reducing α > 0, the following properties
are satisfied:

1. There exists s′k−1 ∈ (tck−1, t
c
k−1 + δ] such that z̃αk (t) ∈ Ek(t) for all (α, t) ∈ [0, α]× (tck−1, s

′
k−1] (and for

all (α, t) ∈ [0, α]× [tc0, s
′
k−1] if k = 1).

2. For all q ∈ {k, ..., N − 1}, there exists sq ∈ [tcq − δ, tcq) such that z̃αq (t) ∈ Eq(t) for all (α, t) ∈
[0, α]× [sq, t̃q(α)).

3. For all q ∈ {k, ..., N − 1}, there exists s′q ∈ (tcq, t
c
q + δ] such that z̃αq+1(t) ∈ Eq+1(t) for all (α, t) ∈

[0, α]× (t̃q(α), s
′
q].

4. There exists sN ∈ [tcN − δ, tcN ) such that z̃αN (t) ∈ EN (t) for all (α, t) ∈ [0, α]× [sN , tcN ].

Proof. The proof is very similar to the one of Lemma 5.3 and thus is omitted.

Lemma 5.7 (Admissibility of the perturbed auxiliary non-hybrid trajectories). Consider the framework of
Lemma 5.5. Then, up to reducing α > 0, it holds that:

1. z̃αk (t) ∈ Ek(t) for all (α, t) ∈ [0, α]× (tck−1, t̃k(α)) (and for all (α, t) ∈ [0, α]× [tc0, t̃k(α)) if k = 1).

2. z̃αq (t) ∈ Eq(t) for all (α, t) ∈ [0, α]× (t̃q−1(α), t̃q(α)) and all q ∈ {k + 1, ..., N − 1}.

3. z̃αN (t) ∈ EN (t) for all (α, t) ∈ [0, α]× (t̃N−1(α), t
c
N ].

Proof. The proof is very similar to the one of Lemma 5.4 and thus is omitted.

5.3.3 Proof of Proposition 5.2

Let us fix k ∈ {1, ..., N}, v ∈ Rm and τ ∈ (tck−1, t
c
k) being a Lebesgue point of the map h(x(·), λ(·), u(·), ·).

Consider the perturbed auxiliary non-hybrid trajectories z̃αq = y(·, fq, θαq ) over [tcq−1 − δ, tcq + δ] ∩ [0, T ] for
all q ∈ {k, . . . , N} and all α ∈ (0, α] constructed in Lemma 5.5, together with the corresponding implicit
functions t̃q for all q ∈ {k, . . . , N − 1}. As explained in Section 2.4, we define by concatenation

xα(t) :=


x(t) for all t ∈ [tc0, t

c
k−1],

z̃αk (t) for all t ∈ [tck−1, t̃k(α)],
z̃αq (t) for all t ∈ [t̃q−1(α), t̃q(α)] and all q ∈ {k + 1, . . . , N − 1},
z̃αN (t) for all t ∈ [t̃N−1(α), t

c
N ],

and

λα(t) :=


λ(t) for a.e. t ∈ (tc0, t

c
k−1),

λk for a.e. t ∈ (tck−1, t̃k(α)),
λq for a.e. t ∈ (t̃q−1(α), t̃q(α)) and all q ∈ {k + 1, . . . , N − 1},
λN for a.e. t ∈ (t̃N−1(α), t

c
N ),

and

uα(t) =


u(t) for a.e. t ∈ (tc0, t

c
k−1),

v for a.e. t ∈ (τ − α, τ),
ũk(t) for a.e. t ∈ (tck−1, τ − α) ∪ (τ, t̃k(α)),
ũq(t) for a.e. t ∈ (t̃q−1(α), t̃q(α)) and all q ∈ {k + 1, . . . , N − 1},
ũN (t) for a.e. t ∈ (t̃N−1(α), t

c
N ),

for all α ∈ (0, α]. The remaining details of the proof are omitted, since we use similar arguments than the
proof of Proposition 5.1.
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6 Proof of Theorem 2.1
Let (x, λ, u) ∈ AC([0, T ],Rn)× PC([0, T ],Rd)× L∞([0, T ],Rm) be a solution to (OCP), that is moreover a
regular solution to (CS). In the sequel we will use the notations introduced in Definitions 2.1 and 2.2 and the
results obtained in the previous Section 5.

Introduction of the adjoint vector. We define the adjoint vector p ∈ PACT([0, T ],Rn) as

p(t) :=

 p1(t) for all t ∈ [tc0, t
c
1),

pk(t) for all t ∈ (tck−1, t
c
k) and all k ∈ {2, ..., N − 1},

pN (t) for all t ∈ (tcN−1, t
c
N ],

where pN is defined as the unique maximal solution (which is global) to the linear Cauchy problem given by{
ṗ(t) = −∇xfN (z̃N (t), λN , ũN (t), t)⊤p(t), a.e. t ∈ [tcN−1 − δ, T ] ∩ [0, T ],
p(T ) = −∇ϕ(x(T )),

and pk is defined by backward induction as the unique maximal solution (which is global) to the linear Cauchy
problem given by{

ṗ(t) = −∇xfk(z̃k(t), λk, ũk(t), t)
⊤p(t), a.e. t ∈ [tck−1 − δ, tck + δ] ∩ [0, T ],

p−(tck) = p+k+1(t
c
k)− χk,

for all k ∈ {1, ..., N − 1}, where χk ∈ Rn stands for the jump vector defined by

χk := −
⟨p+k+1(t

c
k), (fk+1)

+(tck)− (fk)
−(tck)⟩Rn

⟨∇xFk(x(tck), t
c
k), (fk)

−(tck)⟩Rn +∇tFk(x(tck), t
c
k)

∇xFk(x(t
c
k), t

c
k),

for all k ∈ {1, ..., N − 1}.
Recall that z̃k(t) = x(t) for all t ∈ [tck−1, t

c
k] and all k ∈ {1, ..., N}. Through concatenation of the above

linear Cauchy problems, one can easily see that the first item of Theorem 2.1 is fullfilled. Furthermore, from
the above Cauchy conditions, the second and third items of Theorem 2.1 also trivially follow.

The Hamiltonian maximization condition. Let us fix k ∈ {1, ..., N}, v ∈ U and τ ∈ (tck−1, t
c
k) being

a Lebesgue point of h(x(·), λ(·), u(·), ·). Consider 0 < α < min{1, τ − tck−1} given in Proposition 5.2. From
the construction detailed in Proposition 5.2 and explained in detail in Section 2.4, and since U is assumed
to be closed (which guarantees that the limits u−(tck) and u+(tck) belongs to U), one can easily see that the
perturbed solution (xα, λα, uα) to (CS) satisfies all the constraints of Problem (OCP) for all α ∈ (0, α]. Thus,
from optimality of the triplet (x, λ, u), we get that

ϕ(xα(T ))− ϕ(x(T ))

α
≥ 0,

for all α ∈ (0, α] and, taking the limit α → 0, we get from Proposition 5.2 that ⟨∇ϕ(x(T )), w(T )⟩Rn ≥ 0
which can be rewritten as ⟨p(T ), w(T )⟩Rn ≤ 0.

From the linear Cauchy problems satisfied by p and w over each open interval (tcq−1, t
c
q) for q ∈ {k, . . . , N−

1} (and over (tcN−1, t
c
N ] for q = N), one can easily see that the scalar product ⟨p(·), w(·)⟩Rn is constant over

each of these intervals.
Now let us prove that ⟨p+(tcq), w+(tcq)⟩Rn = ⟨p−(tcq), w−(tcq)⟩Rn at each crossing time tq for q ∈ {k, . . . , N−

1}. To this aim note that the definition of χq has been selected to get that

⟨p+(tcq), (fq+1)
+(tcq)− (fq)

−(tcq)⟩Rn

⟨∇xFq(x(tcq), t
c
q), (fq)

−(tcq)⟩Rn +∇tFq(x(tcq), t
c
q)

=
⟨p−(tcq), (fq+1)

+(tcq)− (fq)
−(tcq)⟩Rn

⟨∇xFq(x(tcq), t
c
q), (fq+1)+(tcq)⟩Rn +∇tFq(x(tcq), t

c
q)
,

by replacing p−(tcq) in the above right-hand term by p−(tcq) = p+(tcq) − χq. In particular χq can thus be
rewritten as

χq = −
⟨p−(tcq), (fq+1)

+(tcq)− (fq)
−(tcq)⟩Rn

⟨∇xFq(x(tcq), t
c
q), (fq+1)+(tcq)⟩Rn +∇tFq(x(tcq), t

c
q)
∇xFq(x(t

c
q), t

c
q),
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which leads to ⟨p−(tcq), ξq⟩Rn+⟨χq, w
−(tcq)⟩Rn+⟨χq, ξq⟩Rn = 0. Therefore, from the equality ⟨p+(tcq), w+(tcq)⟩Rn =

⟨p−(tcq) + χq, w
−(tcq) + ξq⟩Rn , we get that ⟨p+(tcq), w+(tcq)⟩Rn = ⟨p−(tcq), w−(tcq)⟩Rn .

Finally, by simple backward induction, we have obtained that ⟨p(τ), w(τ)⟩Rn ≤ 0. From the value of w(τ)
given in Proposition 5.2, this inequality gives

H(z̃k(τ), λk, v, pk(τ), τ) ≤ H(z̃k(τ), λk, ũk(τ), pk(τ), τ),

which can be rewritten as

H(x(τ), λ(τ), v, p(τ), τ) ≤ H(x(τ), λ(τ), u(τ), p(τ), τ),

which concludes this paragraph.

The averaged Hamiltonian gradient condition. Let us fix k ∈ {1, ..., N}. Consider some λk ∈ Λ
and 0 < α ≤ 1 given in Proposition 5.1. From the convexity of Λ and the construction detailed in Proposition 5.1
and explained in detail in Section 2.4, one can easily see that the perturbed solution (xα, λα, uα) to (CS)
satisfies all the constraints of Problem (OCP) for all α ∈ (0, α]. Thus, from optimality of the triplet (x, λ, u),
we get that

ϕ(xα(T ))− ϕ(x(T ))

α
≥ 0,

for all α ∈ (0, α] and, taking the limit α → 0, we get from Proposition 5.1 that ⟨∇ϕ(x(T )), w(T )⟩Rn ≥ 0
which can be rewritten as ⟨p(T ), w(T )⟩Rn ≤ 0.

Using similar arguments than in the previous paragraph, one can derive that ⟨p−(tck), w−(tck)⟩Rn ≤ 0. Now
recall that the classical Duhamel formula leads to p(s) = Φ(tck, s)

⊤p−(tck) for all s ∈ (tck−1, t
c
k) and

w−(tck) =

∫ tck

tck−1

Φ(tck, s)∇λfk(z̃k(s), λk, ũk(s), s)(λk − λk) ds,

where Φ stands for the state transition matrix associated with the matrix function ∇xfk(z̃k(·), λk, ũk(·), ·).
Therefore the inequality ⟨p−(tck), w−(tck)⟩Rn ≤ 0 gives〈∫ tck

tck−1

∇λfk(z̃k(s), λk, ũk(s), s)
⊤p(s) ds, λk − λk

〉
Rd

≤ 0,

which can be rewritten as 〈∫ tck

tck−1

∇λH(x(s), λk, u(s), p(s), s) ds, λk − λk

〉
Rd

≤ 0.

Since the above inequality is satisfied for any λk ∈ Λ, this paragraph is complete, and so is the proof of
Theorem 2.1.
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