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Abstract

This note establishes a limiting formula for the conic Lagrangian dual of a
convex in�nite optimization problem, correcting the classical version of Karney
[Math. Programming 27 (1983) 75-82] for convex semi-in�nite programs. A
reformulation of the convex in�nite optimization problem with a single constraint
leads to a limiting formula for the corresponding Lagrangian dual, called sup-
dual, and also for the primal problem in the case when strong Slater condition
holds, which also entails strong sup-duality.

Key words Convex in�nite programming � Lagrangian duality� Haar duality� Lim-
iting formulas

Mathematics Subject Classi�cation Primary 90C25; Secondary 49N15 � 46N10

1 Introduction

Given a real linear spaceX; consider the (algebraic) convex in�nite programming (CIP)
problem

(P ) inf
x2X

f(x); s:t: ft(x) � 0; t 2 T;

where T is an in�nite index set and f; ft : X �! R := R[f�1g ; t 2 T; are convex
proper functions. We denote by

E :=
T
t2T

[ft � 0] = fx 2 X : ft(x) � 0; t 2 Tg

the feasible set of (P ) and de�ne

M :=
T
t2T

dom ft � E and � :=M \ dom f:

�Department of Mathematics, University of Alicante, Alicante, Spain (mgoberna@ua.es). Corre-
sponding author.

yAvignon University, LMA EA 2151, Avignon, France (michel.volle@univ-avignon.fr)

1



Let R(T )+ be the positive cone of the space R(T ) of functions � = (�)t2T : T ! R
whose support supp� := ft 2 T : �t 6= 0g is �nite and let 0R(T ) be its null element. The
ordinary Lagrangian function associated to (P ) is (see [7], [8], etc.) is L0 : X�R(T )+ �!
R such that L0 (x; �) := f(x) +

P
t2T �tft(x); whereX

t2T
�tft(x) :=

� P
t2supp� �tft(x); if � 6= 0R(T ) ;

0; if � = 0R(T ) :

A slightly di¤erent Lagrangian is the one associated with the cone constrained re-
formulation of (P ); that is [14, page 138], the function L : X � R(T )+ �! R such
that

L (x; �) :=

�
f(x) +

P
t2T �tft(x); if x 2M; � 2 R

(T )
+ ;

+1; else.

We call L the conic Lagrangian of (P ):

For each x 2 X we have

sup
�2R(T )+

L0 (x; �) = sup
�2R(T )+

L (x; �) = f(x) + �E(x);

where �E is the indicator of E; that is, �E (x) = 0 if x 2 E and �E (x) = +1 otherwise.
Consequently,

inf
x2X

sup
�2R(T )+

L0 (x; �) = inf
x2X

sup
�2R(T )+

L (x; �) = inf(P ):

The ordinary and conic-Lagrangian dual problems of (P ) read, respectively,

(D0) sup
�2R(T )+

inf
x2X

 
f(x) +

X
t2T

�tft(x)

!
;

and

(D) sup
�2R(T )+

inf
x2M

 
f(x) +

X
t2T

�tft(x)

!
;

and one has
sup(D0) � sup(D) � inf (P ) : (1.1)

Note that, if dom f � M; then sup(D0) = sup(D): This is, in particular, the case
when the functions ft; t 2 T; are real-valued. But it may happen that sup(D0) <
sup(D) even if T is �nite and Slater condition holds. This is the case in the next
example.

Example 1.1 Consider X = R2; T = f1g ; f (x1; x2) = ex2 ; and

f1 (x1; x2) =

�
x1; if x2 � 0;
+1; if x2 < 0:

We then have
max(D0) = 0 < 1 = max(D) = min (P ) :
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Du¢ n [5] observed that a positive duality gap might occur when one considers the
ordinary Lagrangian dual (D0) of (P ) : The same happens when (D0) is replaced by
(D) even though, according to (1.1), the gap may be smaller. Di¤erent ways have
been proposed to close the duality gap, e.g., by adding a linear perturbation to the
saddle function f +

P
t2T �tft; and sending it to zero in the limit [5]. Blair, Du¢ n

and Jeroslow [1] used the conjugate duality theory to extend the limiting phenomena
to the general minimax setting. Pomerol [12] showed that it was possible to obtain
in�sup theorems, including that of [1], by using a slightly more general form of the
duality theory. In turn, Karney and Morley [9] proved that, when X = Rn; either the
convex semi-in�nite programming (CSIP in brief) problem (P ) satis�es some recession
condition guaranteeing a zero duality gap or there exists d 2 Rn� f0ng such that the
problem

(P") inf
x2X

f(x) + " hd; xi ; s:t: ft(x) � 0; t 2 T;

satis�es the mentioned recession condition for " > 0 su¢ ciently small, with (P") en-
joying strong duality, and inf (P ) = lim

"#0
(P") : The theory developed in [9] subsumed

the CSIP versions of some results on limiting Lagrangians in [2] and [6]. Three years
before, Karney gave, in the CSIP setting, a limiting formula for the dual problem (D0) :

sup(D0) = lim
"#0
inf ff(x) : ft(x) � "; t 2 Tg : (1.2)

According to [8, Proposition 3.1], this formula comes from [13, Theorem 7] and [2,
Corollary 2], and does not require any constraint quali�cation (other than E 6= ;; or
something stronger as E\dom f 6= ;; E � cl dom f; ...). The next example shows that
[8, Proposition 3.1] fails even in linear semi-in�nite programming, where dom f = X =
Rn; while [13, Theorem 7] and [2, Corollary 2] hold.

Example 1.2 Consider the following optimization problem, with T = N :

(P ) infx2R2 x2
s.t. x1 � 0; (t = 1)

�x2 � 1; (t = 2)
t�1x1 � x2 � 0; t = 3; 4; :::

Its dual problem (D0) ; that is also (D) ; is equivalent to the Haar dual (see, e.g., [7])

sup
�2R(N)+

��2

s.t. �1

�
�1
0

�
+ �2

�
0
1

�
+
P

t�3 �t

�
�t�1
1

�
=

�
0
1

�
;

whose unique feasible solution is � 2 R(N)+ such that �2 = 1 and �t = 0 for t 6= 2: So,
max (D0) = �1 while E = f(x1; x2) : x1 � 0; x2 � 0g ; so that min (P ) = 0: On the
other hand, given " > 0;�

x 2 R2 : ft(x) � "; t 2 N
	
=
n
x 2 R2 : x1 � "; x2 � �";

x1
3
� x2 � "

o
;
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so that
min fx2 : ft(x) � "; t 2 Ng = �"

is attained at f(x1;�") : x1 � 0g : Hence,

max (D0) = �1 < 0 = lim
"#0
min fx2 : ft(x) � "; t 2 Ng :

From [8, Proposition 3.1] Karney obtained, following the suggestion of an unknown
referee, the reverse strong duality theorem [8, Theorem 3.2] guaranteeing zero dualily
gap with primal attainment, i.e.,

min (P ) = sup (D0) ;

under some recession condition. However, he asserted in [8, Section 5] that he had two
(longer) unpublished proofs. In either case, his result has been recently proved from a
new strong duality theorem for CIP (see [4, Corollary 3.2 and Remark 3.2]).

In this note we show in a simpler way, for general CIP problems, that, under the
strong Slater condition

9� > 0;9a 2 dom f : ft(a) � ��; 8t 2 T;

(1.2) entails that zero duality gap holds:

sup(D0) = inf (P ) :

This duality theorem is obtained by studying the Lagrangian dual (D1) associated with
the representation of E by a single constraint (the so-called sup-function). Section 2
(resp. Section 3) provides a limiting formula for sup(D) (resp. sup(D1)). Under the
strong Slater condition, the limiting formula for sup(D1) also holds for inf (P ) together
with the strong duality theorem inf (P ) = max(D1):

2 Conic-Lagrangian duality

Problem (D) receives a perturbational interpretation (see [3], [14], etc.) in terms of
the ordinary value function v : RT �! R associated with (P ) de�ned by

v (y) := inf ff(x) : ft(x) � yt; t 2 Tg ;8y = (yt)t2T 2 RT :

Let us make this approach explicit. The linear space Y := RT ; equipped with the
product topology, is a locally convex Hausdor¤ topological vector space whose topo-
logical dual is R(T ) via the bilinear pairing

h�; �i : Y � R(T ) �! R such that hy; �i =
X
t2T

�tyt:
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The Fenchel conjugate of v is (see [3], [14], etc.)

�v� (��) =
(
infx2�

�
f (x) +

P
t2T �tft (x)

�
; if � 6= ; and � 2 R(T )+ ;

�1; if � = ; or � 2 R(T )�R(T )+ :
(2.1)

If � 6= ; we the have

v�� (0Y ) = sup�2R(T ) �v� (�) = sup�2R(T ) �v� (��) = sup�2R(T )+
�v� (��)

= sup
�2R(T )+

infx2�
�
f (x) +

P
t2T �tft (x)

�
= sup(D):

Note that, if � = ; we have dom v = ; and v�� (0Y ) = +1 = sup(D): Therefore, in
all cases we have

sup(D) = v�� (0Y ) � v (0Y ) � v (0Y ) = inf (P ) ; (2.2)

where v is the lower semicontinuous (lsc in brief) hull of v for the product topology on
Y = RT : A neighborhood basis of the origin 0Y is furnished by the family�

V H" : " > 0; H 2 F (T )
	
;

where F (T ) is the class of non-empty �nite subsets of T; and

V H" := fy 2 Y : jytj � "; t 2 Hg :

We now give a general explicit formula for v (0Y ) :

Lemma 2.1 v (0Y ) = sup
">0;H2F(T )

inf
x2M

ff (x) : ft (x) � "; t 2 Hg :

Proof For each " > 0 and H 2 F (T ) one has

inf
y2V H"

v (y) = inf ff (x) : ft (x) � yt; t 2 T ; jytj � "; t 2 Hg

= inf ff (x) : ft (x) � "; t 2 H; ft (x) < +1; t =2 Hg
= inf

x2M
ff (x) : ft (x) � "; t 2 Hg :

Since v (0Y ) = sup
">0;H2F(T )

inf
y2V H"

v (y) ; we are done. �

Remark 2.1 From Lemma 2.1 one gets

v (0Y ) � lim
"#0
inf ff (x) : ft (x) � "; t 2 Tg :
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Remark 2.2 In the case when the index set T is �nite, the formula provided by Lemma
2.1 can be simpli�ed as follows:

v (0Y ) = lim
"#0
inf ff (x) : ft (x) � "; t 2 Tg :

In such a case we also have M =
T
t2T

dom ft and

v�� (0Y ) = sup
�2RT+

inf
x2M

 
f (x) +

X
t2T

�tft (x)

!
:

Proposition 2.1 (Limiting formula for sup(D)) Assume either v (0Y ) 6= +1 or
sup(D) 6= �1: Then we have

sup(D) = sup
">0;H2F(T )

inf
x2M

ff (x) : ft (x) � "; t 2 Hg :

Proof We know that sup(D) = v�� (0Y ) (see (2.2)). Since the functions f and ft;
t 2 T; are convex, the value function v is convex, too. By [2, Proposition 1], we then
have sup(D) = v (0Y ) and Lemma 2.1 concludes the proof. �

Remark 2.3 Condition v (0Y ) 6= +1 is in particular satis�ed if inf(P ) 6= +1; that
is E \ dom f 6= ;:
Condition sup(D) 6= �1 is satis�ed if and only if there exists � 2 R(T )+ and r 2 R
such that

x 2M =) f (x) +
X
t2T

�tft (x) � r:

Remark 2.4 By (1.1), (2.1) and (2.2), we have

sup(D0) � sup(D) � lim
"#0
inf ff (x) : ft (x) � "; t 2 Tg :

In [8, Proposition 3.1] it is claimed that for X = Rn; f and ft; t 2 T; are proper, lsc
and convex, and E 6= ;; it holds that

sup(D0) = lim
"#0
inf ff (x) : ft (x) � "; t 2 Tg :

To the best of our knowledge, this fact has not been proved anywhere. We prove in
Proposition 3.2 below an exact formula for its right-hand side.
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3 Sup-Lagrangian duality

Let h := sup
t2T

ft be the sup-function of (P ) which allows to represent its feasible set E

with a single constraint. We associate with (P ) another Lagrangian L1 : X�R+ �! R;
called sup-Lagrangian, such that

L1 (x; s) :=

�
f(x) + sh(x); if x 2 �1 := dom f \ domh and s � 0;
+1; else.

Note that �1 � �: For each x 2 X we have

sup
s�0

L1 (x; s) = f(x) + �E (x) ;

and
inf
x2X

sup
s�0

L1 (x; s) = inf (P ) :

The corresponding Lagrangian dual problem, say sup-dual problem, reads

(D1) sup
s�0

inf
x2�1

(f(x) + sh(x)) :

Let us introduce the sup-value function v1 : R �!R associated with (P ) via L1; namely,

v1 (r) := inf ff(x) : h(x) � rg ; r 2 R;

which is non-increasing and satis�es

v1 (0) = lim
"#0
v1 (") = lim

"#0
inf ff (x) : ft (x) � "; t 2 Tg : (3.1)

Lemma 3.1 sup(D) � sup(D1) � inf (P ) :

Proof Let us prove the �rst inequality (the second being obvious). Given � 2 R(T )+ ;
one has to check that

inf
x2�

 
f (x) +

X
t2T

�tft (x)

!
� sup(D1):

If supp� = ;; then

inf
x2�

 
f (x) +

X
t2T

�tft (x)

!
= inf

x2�
f � inf

x2�1
f � sup(D1)

and we are done.
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If supp� 6= ;; one has, for s =
P

t2T �t;

sup(D1) � infx2�1 (f(x) + sh(x))
� infx2�1

�
f(x) + s

P
t2T

�t
s
ft (x)

�
� infx2�1

�
f (x) +

P
t2T �tft (x)

�
� infx2�

�
f (x) +

P
t2T �tft (x)

�
:

�

Proposition 3.1 (Limiting formula for sup(D1)) Assume that either v1 (0) 6= +1
or sup(D1) 6= �1: Then we have

sup(D1) = lim
"#0
inf ff (x) : ft (x) � "; t 2 Tg :

Proof By (3.1), the right-hand side of (3.1) coincides with v1 (0) : By de�nition of v1
we have (as for v), v��1 (0) = sup(D1): Since v1 is convex and either v1 (0) 6= +1 or
v��1 (0) 6= �1; we then have, by [2, Proposition 1], sup(D1) = v1 (0) and we are done.
�

Proposition 3.2 (Limiting formula for inf (P )) Assume that the strong Slater con-
dition

9� > 0; 9a 2 dom f : ft(a) � ��; 8t 2 T; (3.2)

holds. Then we have

inf (P ) = max
s�0

inf
x2�1

(f(x) + sh(x)) = lim
"#0
inf ff (x) : ft (x) � "; t 2 Tg : (3.3)

Proof By de�nition of h we have

inf (P ) = inf ff(x) : h(x) � 0g :

Note that (3.2) amounts to the usual Slater condition relative to h :

9a 2 dom f : h(a) < 0:

Since the functions f and h are convex, we then have (see, e.g., [10, Lemma 1])

inf (P ) = max
s�0

inf
x2�1

(f(x) + sh(x)) = max (D1) :

By (3.2) we have v1 (0) � v1 (0) < +1: By Proposition 3.1 it follows that

sup(D1) = lim
"#0
inf ff (x) : ft (x) � "; t 2 Tg

and we are done. �
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Let us revisit Example 1.2, where (3.3) fails. Any candidate a to be strong Slater
point is feasible. Let a be a feasible solution of (P ) : Then a = (a1; 0) ; with a1 � 0; and
h (a) � sup ft�1a1 : t = 3; 4; :::g = 0: Thus, h (a) = 0 and the strong Slater constraint
quali�cation (3.2) fails. However, by Proposition 3.1, we have

sup(D1) = lim
"#0
inf ff (x) : h (x) � "g = lim

"#0
�" = 0

and, �nally,

�1 = sup(D0) = sup(D) < sup(D1) = 0 = min (P )
= inf ff (x) : h (x) = 0g = lim

"#0
inf ff (x) : h (x) � "g :

Remark 3.1 In the case when T is �nite, condition (3.2) reads

9a 2 dom f : ft(a) < 0; 8t 2 T;

that is the familiar Slater constraint quali�cation. One also has �1 =

�T
t2T

dom ft

�
\

dom f and, by Proposition 3.2, there exists s � 0 such that

inf (P ) = inf
x2�1

(f(x) + sh(x)) = inf
x2�1

sup
�2ST

 
f(x) + s

X
t2T

�tft (x)

!
;

where ST =
�
� 2 RT+ :

P
t2T �t = 1

	
is the unit simplex in RT : By the minimax theorem

[14, Theorem 2.10.1], with A = ST and B = �1; there exists � 2 ST such that

inf (P ) = inf
x2�1

 
f(x) + s

X
t2T

�tft (x)

!
� sup(D) � inf (P )

and, consequently, inf (P ) = max (D) ; which is the strong duality theorem [14, Theorem
2.9.3] without assuming a topological structure on the basic linear space X (see also
[11, Remark 8]).

Concerning Example 1.1, let us note that

max(D0) = 0 < 1 = max(D) = lim
"#0
inf ff (x) : f1 (x) � "g = min (P ) ;

which also contradicts [8, Proposition 3.1].
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