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A NOTE ON “ON THE APPEARANCE
OF EISENSTEIN SERIES THROUGH DEGENERATION” .

THÉRÈSE FALLIERO

Abstract. Let M = Γ\H be a geometrically finite hyperbolic surface, realized as the quotient of the
hyperbolic upper half plane H by a geometrically finite discrete group of isometries acting on H. To

a parabolic element of the uniformizing group Γ, there is an associated 1-form parabolic Eisenstein

series. To a primitive hyperbolic element, then, following ideas due to Kudla–Millson, there is a
corresponding 1-form hyperbolic Eisenstein series. In this article, we study the limiting behavior

of these hyperbolic Eisenstein series on a degenerating family of hyperbolic Riemann surfaces of
finite type, using basically the limiting behavior of counting functions associated to degenerating

hyperbolic Riemann surfaces. In this sense, we generalize the results obtained in Garbin, Jorgenson

and Munn (Comment Math Helv 83:701–721, 2008) to the case of geometrically finite hyperbolic
surfaces of infinite volume and form-valued parabolic and hyperbolic Eisenstein series.

1. Introduction.

There is a vast literature addressing problems in the study of spectral theory degenerating hyper-
bolic Riemann surfaces and within, on degeneration of Poincaré series and Eisenstein series, see [3],
[7], [8], [15], [18], [19], [20] to cite some examples.

Our context and our aim are the following. Let Γ contained in PSL(2,R) be a Fuchsian group
finitely generated of the first or second kind acting on the upper half plane H without elliptic elements.
The quotient Γ\H is a hyperbolic geometrically finite surface. This means that Γ admits a finite sided
polygonal fundamental domain in H. Throughout this article we refer to parabolic Eisenstein series
p̂s associated to a parabolic element of the uniformizing group Γ or equivalently to a cusp p and
hyperbolic Eisenstein series ĉs associated to a primitive hyperbolic element or equivalently to a simple
closed oriented geodesic c.

Precise definitions and references to all concepts will be given in Section 2 below. However, with
these comments made, we are able to state the main result of the paper.

Main Theorem
Let Ml be a degenerating family of geometrically finite hyperbolic surfaces with limit surface M0.

(1) Let ĉl
s be the hyperbolic Eisenstein series on Ml associated to a non-separating simple closed

geodesic of length l, then

lim
l→0

1

ls
ĉl
s = p̂s − q̂s ,

where p and q are the cusps arising from the pinching geodesic cl.
(2) Let ĉl

s be the hyperbolic Eisenstein series on Ml associated to the boundary of a funnel then

lim
l→0

1

ls
ĉl
s = p̂s .

In all instances, the convergence is uniform on compact subsets of M0 bounded away from the devel-
oping cusps, and in half-planes of the form Re (s) ≥ 1 + δ for any δ > 0.
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Remark 1.1. The main tool of the demonstration is the study of the limiting behavior of counting
functions as in [7].

In the cited article the authors are working with scalar-values hyperbolic Eisenstein series. Casu-
ally we point out that there is a difference between scalar-values Eisenstein series and form-valued
Eisenstein series studied in [17] an in [3]: if the degenerating Riemann surface has a single pinching
geodesic which is non-separating, then the associated hyperbolic Eisenstein series does not converge
to the sum of two parabolic Eisenstein series corresponding to the two newly formed cusps but to the
difference.

At the end of this paper, we make the remark that a same result occurs in the general infinite volume
case.

2. Background material.

2.1. Geometrically finite hyperbolic surface. Let us recall the standard geometric notations
which will be used.

A topologically finite (i.e. finite Euler characteristic ) surface is a surface homeomorphic to a
compact surface with finitely many points excised and a geometrically finite hyperbolic surface M is
a topologically finite, complete Riemann surface of constant curvature -1. It can be decomposed into
a compact core K plus cusps Ci and funnels Fj ([1]):

M = K ∪ (C1 ∪ ... ∪ Cnc) ∪ (F1 ∪ ... ∪ Fnf ) .

The boundary of K consists of nf closed geodesics (uniquely determined) and nc horocycles (the
choice of which is not unique) along which K is glued to the funnel and cusp ends, respectively.

A hyperbolic transformation T ∈ PSL(2,R) generates a cyclic hyperbolic group 〈T 〉. The quotient
Cl = 〈T 〉\H is a hyperbolic cylinder of diameter l = l(T ). By conjugation we can identify the
generator T with the map σl : z 7→ elz, and we define Γσl to be the corresponding cyclic group.
A natural fundamental domain for Γσl would be the region Fl = {z ∈ H, 1 ≤ |z| ≤ el}. The
y−axis is the lift of the only simple closed geodesic on Cl, whose length is l. The standard funnel
of diameter l > 0, Fl, is the half hyperbolic cylinder Γσl\H, Fl = (R+)r × (R\Z)x with the metric

ds2 = dr2 + l2 cosh2(r)dx2.
We can always conjugate a parabolic cyclic group 〈T 〉 to the group Γ∞ generated by z 7→ z + 1, so
the parabolic cylinder is unique up to isometry. A natural fundamental domain for Γ∞ is F∞ = {0 ≤
Re z ≤ 1} ⊂ H. The standard cusp C∞ is the half parabolic cylinder Γ∞\H, C∞ = ([0,∞[)r×(R\Z)x
with the metric ds2 = dr2 + e−2rdx2. The funnels Fj and the cusps Ci are isometric to the preceding
standard models.

2.2. Hodge operator. We define the Hodge operator (or conjugation operator) on smooth differential
forms on a Riemann surface M as follows: for a 1-form w given in local coordinate z = x + iy on
M by ω = f dx + g dy, we associate ∗ω = −g dx + f dy. To define the operator ∗ on functions and
2-forms, we denote by vH = y−2dx∧ dy the volume form. If f is a function, we set ∗f = f(z)vH . For
a 2-form Ω, we set ∗Ω = Ω/vH .

We are interested primarily in 1-forms. If ω is given in complex notation by u(z) dz+ v(z) dz, then
∗ω = −iu(z) dz + iv(z) dz. We define a pointwise scalar product at z of two 1-forms ϕ and ψ by
ϕ ∧ ∗ψ = 〈ϕ,ψ〉vH and the pointwise norm of a 1-form ω is defined by ω ∧ ∗ω = ||ω||2vH .

2.3. Hyperbolic and parabolic Eisenstein series. The study of parabolic Eisenstein series is a
classical part of mathematical literature (see [16] just to cite one reference) and more precisely in the
case of infinite area hyperbolic Riemann surfaces the study of such series can be found also in [1], p.
102.

As underlined by Gérardin in [9], an explicit construction of hyperbolic Eisenstein series can be
found in [6] and the convergence of these Eisenstein series can be found in [6], p. 184. Kudla and
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Millson give an invariant construction of hyperbolic Eisenstein series that we follow here (for more
details see [9] and [4]). Let us recall the definitions of hyperbolic and parabolic Eisenstein series.
If X is an horocycle of H with the direct orientation, we denote by dX (z) the oriented distance
between X and z ∈ H, (z : X) = edX(z), vX the volume form on X invariant under ΓX , the stabilizer
of X in Γ, pX the orthogonal projection from H to X. Then define a 1-form on H, wX = ∗p∗XvX such
that ||wX || = (z : X).
If Y is an oriented geodesic of H, we denote by dY (z) the oriented distance between Y and z ∈ H,
(z : Y ) = 1/ cosh dY (z), vY the volume form on Y invariant under ΓY , the stabilizer of Y in Γ,
pY the orthogonal projection from H to Y . Then define a 1-form on H, wY = ∗p∗Y vY such that
||wY || = (z : Y ).
Let ξ an oriented horocycle on M associated to a point p and H (ξ) the set of horocycles on H that
project under the canonical projection H → M on ξ. The Eisenstein series associated to ξ is the
1-form

ξ̂s =
∑

X∈H(ξ)

||wX ||s−1wX ,

defined for Re s > 1 and called horocyclic Eisenstein series.

If we denote by |ξ| the width of the horocycle ξ then the form |ξ|−sξ̂s is independent of the choice of
the horocycle ξ associated to the point p. We denoted this series by p̂s and we will call it a parabolic
Eisenstein series.
In the same way let η be a closed oriented geodesic on M and H (η) the set of oriented geodesics on
H that project to η. The Eisenstein series associated to η is, up to some normalization, the 1-form

η̂s =
∑

Y ∈H(η)

||wY ||s−1wY ,

defined for Re s > 1 and called hyperbolic Eisenstein series.

In each case, for s ∈ C, Re s > 1, we define the 1-form on M with Z = X (respectively, Z = Y )
and the notation ||wZ ||s−1wZ = wsZ : ∑

wsZ

called an horocyclic Eisenstein series (respectively, an hyperbolic Eisenstein series).
Fix Y0 in H (η) and denote by ΓY0

its stabilizer in Γ, then H (η) = ΓY0 = (Γ\ΓY0
)Y0

η̂s =
∑

γ∈Γ\ΓY0

wsγY0
.

Choose and fix any point z ∈ M , which we lift to a point z ∈ H. As dγY0
(z) = dY0

(
γ−1z

)
, we have

also

η̂s (z) =
∑

δ∈ΓY0
\Γ

1

cosh dY0
(δz)

s−1

ddY0
(δz)

cosh dY0
(δz)

.

Remark 2.1. dY0
is the Fermi-coordinate x2 in [17].

In the same way, fix X0 in H (ξ) and denote by ΓX0 its stabilizer in Γ, then H (ξ) = ΓX0 =
(Γ\ΓX0

)X0 then

ξ̂s (z) =
∑

γ∈Γ\ΓX0

wsγX0
(z) .

Choose and fix any point z ∈M , which we lift to a point z ∈ H. As dγX0
(z) = dX0

(
γ−1z

)
, we have

also

ξ̂s (z) =
∑

δ∈ΓX0
\Γ

esdX0
(δz) ddX0 (δz) .
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2.4. Stieltjes integrals. In order to be consistent with the notations of [7] we will fix Z0 in the
set of oriented geodesics of H that project to η (respectively, in the set of oriented horocycles of
H that project to ξ) and we will write dhyp (z, Z0) the geodesic distance and as before dZ0 (z), the
oriented geodesic distance from z to Z0. With all this, we will re-write the counting functions in [7], p.
705, in the following way: the hyperbolic counting function (respectively, parabolic counting function
associated to X0) is define as

Nhyp,M,η (T ; z) = card{δ ∈ ΓY0
\Γ,−T < dY0

(δz) < T}

(respectively, Npar,M0,p (T ; z, ξ) = card{δ ∈ ΓX0\Γ,−T < dX0 (δz) < T}) .

As η is non-separating one needs to take into account that geodesic lengths from z to η enter the
cylinder about the pinching geodesic from the two different sides.

η̂s (z) =
∑

δ∈ΓY0
\Γ

1

cosh dY0 (δz)
s−1

ddY0 (δz)

cosh dY0
(δz)

(1)

=
∑

δ∈ΓY0
\Γ

dY0
(δz)≥0

1

cosh dY0
(δz)

s−1

ddY0
(δz)

cosh dY0
(δz)

+
∑

δ∈ΓY0
\Γ

dY0
(δz)<0

1

cosh dY0
(δz)

s−1

ddY0
(δz)

cosh dY0
(δz)

.(2)

Let then write

Nhyp,M,η (x; z) = NL
hyp,M,η (x; z) +NR

hyp,M,η (x; z) ;

where

NL
hyp,M,η (x; z) = card{δ ∈ ΓY0

\Γ, 0 ≤ dY0
(δz) < x}

and

NR
hyp,M,η (x; z) = card{δ ∈ ΓY0\Γ,−x < dY0 (δz) ≤ 0} .

They are increasing step-functions and give rise to a Stieltjes measure dNhyp,M,η (respectively,
dNpar,M0,p, dN

L
hyp,M,η, dNR

hyp,M,η).

If we denote wY0
(x) = dx

cosh x , we can express the hyperbolic Eisenstein series as a Stieltjes integral,
namely

η̂s (z) =

∫ ∞
0

(
1

coshx

)(s−1)

wY0
(x) dNhyp,M,η (x; z) =

∫ ∞
0

(
1

coshx

)(s−1)

wY0 (x) dNL
hyp,M,η (x; z)−

∫ ∞
0

(
1

coshx

)(s−1)

wY0 (x) dNR
hyp,M,η (x; z) .

We have the following inequality

||η̂s (z) || ≤
∫ ∞

0

||
(

1

coshx

)(s−1)

wY0
(x) ||dNhyp,M,η (x; z) =

∫ ∞
0

(
1

coshx

)(Re s)

dNhyp,M,η (x; z) .

We can choose X0 such that Npar,M0,p (T ; z, ξ) = card{δ ∈ ΓX0\Γ,−T < dX0 (δz) ≤ 0} . If we
denote wX0

(x) = exdx, we can express the parabolic Eisenstein series as a Stieltjes integral, namely

ξ̂s (z) =

∫ ∞
0

(
e−x

)(s−1)
wX0 (−x) dNpar,M0,p (x; z) ;

and we have the same preceding remark.
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3. Convergence.

A family of degenerating geometrically finite hyperbolic surfaces consists of a surface M and a
smooth family (gl)l>0 of Riemannian metrics that meet the following assumptions:

(1) The Riemannian manifold Ml = (M, gl) is a geometrically finite hyperbolic surface for each l.
(2) There are finitely many disjoint open subsets Cl,i ⊂ M that are diffeomorphic to cylinders

R\Z × Ji where Ji ⊂ R is a connected neighborhood of 0 with the metric (x, a) 7→ (li(l)
2 +

a2)dx2 + ((li(l)
2 + a2)−1da2 and li(l) → 0 as l → 0. The curve ci = R\Z × {0} is a closed

geodesic of length li(l).
(3) The complement of (C1 ∪ ...∪Cnc)∪ (F1 ∪ ...∪Fnf )∪i Cl,i where we may have some Fj ⊂ Cl,i

is relatively compact.
(4) On M0 := M\ ∪i ci, the metrics gl converge smoothly to a hyperbolic metric g0 as l→ 0. M0

is a possibly non connected hyperbolic surface that contains a pair of cusps for each i.

In the following, we will assume that Ml has a single family of degenerating geodesics; the more
general situation is easily obtained with only a slight modification of notation. More precisely we
contemplate two cases: the case the degenerating geodesic is non-separating and the case the de-
generating geodesic is the boundary of a funnel. In the first case we have for any 0 < ε < 1/2,
Cl,ε = R\Z×]− ε/2,+ε/2[ with total volume equal to ε. In the second case Cl,ε = R\Z×]− ε/2,+∞[
contains the funnel Fl.

In both cases we consider a degenerating family of groups {Γl} with Ml = H\Γl degenerating to the
surface M0, Γl containing the transformation σl (z) = elz and its stabilizer Γσl . We also write σl for
the associated closed geodesic. Then the geodesic in H fixed by σl is the line Y0 = {Re(z) = 0} ∩H.
For any point z ∈Ml, which we lift to a point z ∈ H, let dl(z) denote the geodesic distance from z to
Y0. We denote by p and q the two cusps of M0 arising from pinching σl, the limit of respectively the
right side and the left side of the σl-collar Cl,ε.

To prevent burdensome notation, we write

Nhyp,l := Nhyp,Ml,cl

N
L(R)
hyp,l := N

L(R)
hyp,Ml,cl

In the case the degenerating geodesic cl is non-separating, we denote by ∂CLl,ε (respectively, ∂CRl,ε)
the left (respectively, right) boundary of the collar Cl,ε and the corresponding counting functions
Nhyp,∂CLl,ε

(x; z) = card{δ ∈ Γσl\Γl, 0 ≤ d∂CLl,ε (δz) < x} (respectively, Nhyp,∂CRl,ε
(x; z) = card{δ ∈

Γσl\Γl,−x < d∂CRl,ε (δz) ≤ 0}).
In the case the degenerating geodesic cl is the boundary of the funnel Fl we are only interested in

the right side of the collar and the corresponding definitions.

3.1. Convergence of counting functions. We can rewrite Lemma 3.3 of [7] in the following way

Lemma 3.1. Assume ε > 0 is sufficiently small so that Cl,ε is embedded in Ml. Let τ (ε, l) being the
half width of the collar Cl,ε, then for any x > 0 we have:

(1) In the case the degenerating geodesic cl is non-separating

Nhyp,∂CLl,ε
(x; z) = NL

hyp,l (x+ τ (ε, l) ; z) ;

lim
l→0

NL
hyp,l (x+ τ (ε, l) ; z) = Npar,M0,q (x; z, ξq,ε)

with |ξq,ε| = ε/2.
In the same way

Nhyp,∂CRl,ε
(x; z) = NR

hyp,l (x+ τ (ε, l) ; z) ;

lim
l→0

NR
hyp,l (x+ τ (ε, l) ; z) = Npar,M0,p (x; z, ξp,ε)
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with |ξp,ε| = ε/2.
(2) In the case the degenerating geodesic cl is the boundary of a funnel, Nhyp,l (T ; z) is equal to

card{δ ∈ Γσl\Γl,−T < dl (δz) ≤ 0} and we have

lim
l→0

Nhyp,l (x+ τ (ε, l) ; z) = Npar,M0,p (x; z, ξp,ε) .

In all instances, the convergence is uniform on compact subsets of the complement of Cl,ε.

We will denote by Xq (respectively, Xp) a horocycle in H corresponding to ξq,ε (respectively, ξp,ε).
Let us illustrate this result by a change of variables. To study the left side of the collar use

the change of variables lζ = − log (−z), with the principal branch: then

(
1

l

dz

z

)2

= (dζ)
2

and(
|dz|
Im z

)2

=

(
l|dζ|
sin lb

)2

for ζ = a+ ib.

We consider q the cusp ofM0 limit of the left side of the σl-collar. Now, as above, let lζ = − log (−z),
z ∈ H, and conjugate Γl by the map ζ (z) to obtain Γ̃l acting on Sl = {ζ|0 < Im ζ < π/l}. Γ̃l is a

(non-Möbius) group of desk transformations acting on Sl; the quotient Sl\Γ̃l is Ml.
There exist homeomorphisms fl from Ml −{cl} to M0, with fl tending to isometries C2-uniformly

on compact subsets of the complement of Cl,ε; fl has a lift f̃l, a homeomorphism from a sub domain
of Sl (containing the left half-collar {−1 < Re ζ ≤ 0, c < Im ζ < π/2l}) to H; fl induces a group

homomorphism ρl: Γ0 → Γ̃l by the rule A→ f̃−1
l Af̃l, A ∈ Γ0. We call ρl (A) ∈ Γ̃l the element corre-

sponding to A ∈ Γ0. Now by our normalizations for Γ̃l and Γ0, the translation ζ 7→ ζ − 1 corresponds
to itself. If we specify the further normalization f̃l (i) = i, then the lifts f̃l are uniquely determined and
tend uniformly on compact subsets to the identity, and thus for A ∈ Γ0, the corresponding elements
ρl (A) tend uniformly on compact subsets to A.

3.2. Convergence of Eisenstein series. In this section, we prove the Main Theorem.
First assume cl is non-separating. Let then write

ĉl
s (z) = ĉl

s
L (z)− ĉlsR (z)

with

ĉl
s
L (z) =

∫ ∞
0

(
1

coshx

)(s−1)

wY0
(x) dNL

hyp,l (x; z)

and corresponding definition for ĉl
s
R (z). To begin, we write

(3)

ĉl
s
L (z) =

∫ T0+τ(ε,l)

0

(
1

coshx

)(s−1)

wY0
(x) dNL

hyp,l (x; z)+

∫ ∞
T0+τ(ε,l)

(
1

coshx

)(s−1)

wY0
(x) dNL

hyp,l (x; z) ,

where τ (ε, l) is given in Lemma 3.1.

For the integral over [T0 + τ (ε, l) ,∞), we have∣∣∣∣∣
∣∣∣∣∣
∫ ∞
T0+τ(ε,l)

(
1

coshx

)(s−1)

wY0
(x) dNL

hyp,l (x; z)

∣∣∣∣∣
∣∣∣∣∣ ≤

∫ ∞
T0+τ(ε,l)

(
1

coshx

)Re s

dNL
hyp,l (x; z) .

Now, we recall the fundamental geometric lemma which applies in our context (see Lemma 1.4 of
[14]):

Lemma 3.2. Let M = Γ\H be a hyperbolic Riemann surface of finite type. For any point z ∈ M
with injectivity radius r and any x > T0 > r, we have

(4) Nhyp,M,η (x; z) ≤ Nhyp,M,η (T0; z) +
sinh2

(
x+r

2

)
− sinh2

(
T0−r

2

)
sinh2

(
r
2

) .
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From this lemma we deduce the following inequality, as in [7] p. 718, with σ = Re s and r the
injectivity radius of Ml at z:

(5) 2−σeστ(ε,l)

∫ ∞
T0+τ(ε,l)

(
1

coshx

)Re s

dNL
hyp,l (x; z) ≤ e(−σ+1)T0

er

sinh2 (r/2)

(
σ

σ − 1

)
.

By choosing

T0 ≥
1

σ − 1

(
− lnµ+ ln

(
er

sinh2 (r/2)

(
σ

σ − 1

)))
,

we have that the upper bound in (5) can be made smaller than any µ > 0.
In the same way,

ξ̂sq,ε (z) =

∫ ∞
0

(
e−x

)(s−1)
wXq (−x) dNpar,M0,q (x; z)

and

(6)

∣∣∣∣∣∣∣∣∫ ∞
T0

(
e−x

)(s−1)
wXq (−x) dNpar,M0,q (x; z)

∣∣∣∣∣∣∣∣ ≤ e−T0(σ−1)

4 sinh2(r/2)

(
1 +

2 sinh(r)

sinh2(r/2)

)
,

can be made, for T0 sufficiently big, as small as we want uniformly on compact subsets of M0 bounded
away from the developing cusps and in half-planes of the form Re (s) ≥ 1 + δ for any δ > 0.

For the first integral in (3), with an adequate T0 chosen, we begin by writing∫ T0+τ(ε,l)

0

(
1

coshx

)(s−1)

wY0
(x) dNL

hyp,l (x; z) =

∫ T0

0

(
1

cosh (x+ τ (ε, l))

)(s−1)

wY0
(x+ τ (ε, l)) dNhyp,∂CLl,ε

(x; z) .

Let us assume, for convenience, that T0 is a point of continuity of Npar,M0,q (x; z, ξq,ε), meaning there
is no geodesic path from z to ξq,ε onM0 with length equal to T0. Then, as liml→0N

L
hyp,l (T0 + τ (ε, l) ; z) =

Npar,M0,q (T0; z, ξq,ε), there exists l0 = l0 (T0, ε) such that, for l < l0,
N = NL

hyp,l (T0 + τ (ε, l) ; z) = Npar,M0,q (T0; z, ξq,ε). Let {tk,l, 1 ≤ k ≤ nl} ⊂ [0, T0] (respectively,

{tk, 1 ≤ k ≤ n} ⊂ [0, T0]) be the set of lengths on Ml (respectively, M0) such that for any η > 0 we
have

NL
hyp,l (tk,l + τ (ε, l)− η; z) < NL

hyp,l (tk,l + τ (ε, l) + η; z) .

(respectively, Npar,M0,q (tk − η; z, ξq,ε) < Npar,M0,q (tk + η; z, ξq,ε)).
We denote by {mk,l, 1 ≤ k ≤ nl} (respectively, {mk, 1 ≤ k ≤ n}) the multiplicities of {tk,l} (respec-
tively, {tk, 1 ≤ k ≤ n}).

Then we have

∫ T0+τ(ε,l)

0

(
1

coshx

)(s−1)

wY0 (x) dNL
hyp,l (x; z) =

nl∑
k=1

cosh (tk,l + τ (ε, l))
−s
mk,ld (tk,l + τ (ε, l)) .

In the same way,

ξ̂sq,ε (z) =

∫ ∞
0

(
e−x

)(s−1)
wXq (−x) dNpar,M0,q (x; z)

and ∫ T0

0

(
e−x

)(s−1)
wXq (−x) dNpar,M0,q (x; z) = −

n∑
k=1

e−tksmkdtk .

In the following take l < l0. As liml→0N
L
hyp,l (t1 + τ (ε, l) ; z) = 0, ∃l1 = l1 (t1) , l < l1, N

L
hyp,l (t1 + τ (ε, l) ; z) =

0, so t1 ≤ t1,l.
In a similar way, liml→0N

L
hyp,l (t2 + τ (ε, l) ; z) = m1,0, for l sufficiently small, NL

hyp,l (t2 + τ (ε, l) ; z) =
m1,0 > 0, so t2 > t1,l.
In conclusion there exists l2 = l2 (T2) < l1 and sufficiently small so that for l < l2, t1 ≤ t1,l < t2 ≤ t2,l
and m1,l = m1,0. Repeating this argument there exists li sufficiently small so that for l < li,
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∀j, 1 ≤ j ≤ i, tj ≤ tj,l < tj+1 and mj,l = mj,0. As
∑n
k=1mk =

∑nl
k=1mk,l, there exists ln suffi-

ciently small so that for l < ln, nl = n and ∀j, 1 ≤ j ≤ n, tj ≤ tj,l < tj+1 and mj,l = mj,0.
Moreover as for all T, t1 < T ≤ t2, we have liml→0N

L
hyp,l (T + τ (ε, l) ; z) = m1,0, we deduce that

liml→0 t1,l = t1 and the same for all others tj,l, 1 ≤ j ≤ n.

Then for l < ln we can write,∫ T0+τ(ε,l)

0

(
1

coshx

)(s−1)

wY0
(x) dNL

hyp,l (x; z) =

n∑
k=1

cosh (tk,l + τ (ε, l))
−s
mkd (tk,l + τ (ε, l)) .

Now we use the preceding change of variables lζ = − log (−z) to see that limt→0 ||d (tk,l + τ (ε, l))−
dtk|| = 0.

The hyperbolic metric on the collar is given in polar coordinates by ds2 =
dr2 + r2dθ2

r2 sin2 θ
. Then, with the

substitution ln r = −la, θ = π − lb where ζ = a+ ib, ds2 =
l2
(
da2 + db2

)
sin2 lb

, which tends to
da2 + db2

b2
as l tends to zero. The convergence is uniform for y bounded, and for instance is not uniform for
ly ≤ π/2.

In Fermi coordinates sin θ = 1
ch x2

and dx2 = − l

sin lb
db tends to −db

b
as l tends to zero. Now,

remember that, with simplified notations: tk,l + τ (ε, l) = x2 (Z) = dl (Z), tk = −dX0
(Z) for some

Z = a + ib and ||d (tk,l + τ (ε, l)) − dtk|| = (lb/ sin(lb)− 1). It follows that ||d (tk,l + τ (ε, l)) − dtk||
tends to zero as l tends to zero.

Moreover for fixed x > 0 and s ∈ C with Re(s) > 0, we have

lim
r→∞

2−sers((cosh(x+ r))−s = e−sx

and the limit is uniform for all x > 0 and Re(s) ≥ 1+δ. Then liml→0 2−seτ(ε,l)s cosh (tk,l + τ (ε, l))
−s

=
e−stk and liml→0 ||d (tk,l)− d (tk) || = 0 give

lim
l→0

(
2−seτ(ε,l)s

n∑
k=1

cosh (tk,l + τ (ε, l))
−s
d (tk,l + τ (ε, l))mk

)
=

n∑
k=1

e−stkdtkmk .

In other words we have

lim
l→0

(
2−seτ(ε,l)s

∫ T0+τ(ε,l)

0

(
1

coshx

)(s−1)

wY0
(x) dNL

hyp,l (x; z)

)

= −
∫ T0

0

(
e−x

)(s−1)
wXq (−x) dNpar,M0,q (x; z)

and the convergence is uniform on compact subsets of the complement of Cl,ε and in half-planes of the
form Re (s) ≥ 1 + δ for any δ > 0.

Then we write
1

ls
ĉl
s
L(z) =

1

ls
2s

esτ(ε,l)
2−sesτ(ε,l)ĉl

s
L(z) .

We have

τ (ε, l) =

∫ π/2

cot−1(ε/2l)

dθ

sin θ
= log

(
ε

2l
+

√( ε
2l

)2

+ 1

)
,

such that

1

ls
2s

esτ(ε,l)
=

2s

εs
(1− sO(l2))
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converges uniformly on compact subsets of Re(s) > 1 to
( ε

2

)−s
.

Now

q̂s = |ξq,ε|−sξ̂sq,ε

=
( ε

2

)−s [∫ T0

0

(
e−x

)(s−1)
wX0 (−x) dNpar,M0,q (x; z) +

∫ ∞
T0

(
e−x

)(s−1)
wX0 (−x) dNpar,M0,q (x; z)

]
.

We now use (5), (6), the preceding limit and the triangle inequality in order to prove that

lim
l→0

1

ls
ĉl
s
L = −q̂s,

uniformly on compact subsets of the complement of Cl,ε and on compact subsets of Re(s) > 1.

To study the right side of the collar, use the change of variables lω = log (z), with the principal

branch: then

(
1

l

dz

z

)2

= (dω)
2

and

(
|dz|
Im z

)2

=

(
l|dω|
sin lv

)2

for ω = u+ iv.

The hyperbolic metric on the collar is given in polar coordinates by ds2 =
dr2 + r2dθ2

r2 sin2 θ
. Then, with

the substitution ln r = lu, θ = lv and ds2 =
l2
(
da2 + db2

)
sin2 lb

, which tends to
da2 + db2

b2
as l tends to

zero. The convergence is uniform for y bounded. In the same way we show that

lim
l→0

1

ls
ĉl
s
R = −p̂s .

In the case cl is the boundary of the funnel Fl, for z away from the developing cusps, we have only
to consider the right side of the σl-collar, Nhyp,l (T ; z) = NR

hyp,l (T ; z), and from the preceding study

lim
l→0

1

ls
ĉl
s = p̂s .

3.3. Final remarks. For geometrically infinite surfaces, that is to say a surface of infinite genus or
homeomorphic to a compact surface with infinitely many points removed, the notion of geometry
‘at infinity’ is ill-defined, and there is virtually nothing we can say about the spectral theory of the
Laplacian. However we can make the following remarks.

First note that it has already been pointed out (see [14]) that one can find results for spectral
counting functions on degenerating hyperbolic surfaces of infinite volume analogues to those obtained
for finite volume surfaces and with the same techniques.

The parabolic and hyperbolic Eisenstein series p̂s and ĉs, we work with are well defined. For
Re s > 1, il follows from the fundamental lemma (see [12], p. 178, [10], p. 27):

Proposition 3.1. For any Fuchsian group Γ, there exists a C(q,Γ) such that for all z ∈ H,

∑
γ∈Γ

y(γz)q

[1 + |γz|]2q
≤ C(q,Γ).

The constant C(q,Γ) depends only on q and Γ.

In fact these series converge for Re s > δ where δ is the exponent of convergence of the (relative)
Poincaré series

δ = inf{s > 0,
∑
T∈Γ

e−sd(z,Tw) <∞}

for some z, w ∈ H, where d(z, w) again denotes the hyperbolic distance from z ∈ H to w ∈ H. We
have 0 < δ < 1 for a geometrically infinite surface.
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There is no decomposition in a finite number of trousers and funnels as in the geometrically finite
case, we have the following result though. First we recall the definition (see [13], p. 84)

Definition 3.1. A family Y of simple closed curves on a surface S is called a multicurve if the
elements of Y are disjoint, no two are homotopic to each other, and none is homotopic to a point.

And then give the theorem (see [13], p. 84)

Theorem 3.1. Let X be a connected hyperbolic Riemann surface that is not simply connected, with
its hyperbolic metric. Then there exists a multicurve Y on X such that if Z denotes the closure of
Z = {x ∈ γ, γ ∈ Y }, then the closure of X − Z is isometric to either

(1) a trouser, with anywhere from zero to three cusps,
(2) a half-annulus |z| ≥ 1 in {1/R < |z| < R} for some 0 < R <∞, with its hyperbolic metric, or
(3) a half plane Rez ≤ 0 in H, with its hyperbolic metric.

Moreover, each component of Z − Z is a simple infinite geodesic bounding a half plane (i.e., case 3
above).

A geometrically infinite hyperbolic surface contains an infinite multicurve or case 3 is checked,
or both. This decomposition allows us to construct a degenerating family of geometrically infinite
surfaces (Ml)l>0, Ml = Γl\H, by letting the lengths of a finite number of geodesics approaching zero
as l tends to zero. These pinching geodesics can be taken as boundary components of a finite number
of trousers appearing in Theorem 3.1. Denote by Pl the union of such trousers, in the general case the
injectivity radius of Ml may not be always strictly positive outside the collars of the small geodesics
and a thick-thin decomposition is no more possible, however, using the same methods, we obtain the
previous results of degeneration on every compact of Ml\Pl.

In the following we give a more precise description of this claim. We may suppose without loss of
generality that there is only one pinching geodesic, cl, of length l, which is the boundary of a trouser
of the previous decomposition. The existence for any 0 < ε < 1/2, of the collar Cl,ε (see Section 3 (2))
is found for example in [13], p. 90. With this collar, one can construct homeomorphisms fl (see end of
Section 3.1) from Ml−{cl} to M0, with fl quasi-isometries outside a tiny neighborhood of cl, tending
to isometries C2-uniformly on compact subsets of the complement of Cl,ε in analogous manner to the
geometrically finite case (see for example [2], Proposition 3.1 p. 359, [5], [11], Theorem 1.18 p. 50).
The proof of Lemma 3.1 Section 3.1, in the case of geometrically infinite hyperbolic surfaces, follows.
Proof of Lemma 3.2 Section 3.2, which essentially uses the universal covering H and the fact that Γl
is a discrete subgroup of PSL(2,R) is also adapted to this case. The following theorem ensues

Theorem 3.2. Let (Ml)l>0 be a degenerating family of geometrically infinite hyperbolic surfaces with
limit surface M0, as described above. Let ĉl

s be the hyperbolic Eisenstein series on Ml associated to a
simple closed geodesic of length l, with Cl,ε the associated collar.

(1) If cl is non-separating, then

lim
l→0

1

ls
ĉl
s = p̂s − q̂s ,

where p and q are the cusps arising from the pinching geodesic cl.
(2) If cl is the boundary of a funnel, then

lim
l→0

1

ls
ĉl
s = p̂s ;

and the convergence is uniform on compact subsets of the complement of Cl,ε and in half-planes of the
form Re (s) ≥ 1 + δ for any δ > 0.
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84916 Avignon, France

E-mail address: therese.falliero@univ-avignon.fr


