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Let M = Γ\H be a geometrically finite hyperbolic surface, realized as the quotient of the hyperbolic upper half plane H by a geometrically finite discrete group of isometries acting on H. To a parabolic element of the uniformizing group Γ, there is an associated 1-form parabolic Eisenstein series. To a primitive hyperbolic element, then, following ideas due to Kudla-Millson, there is a corresponding 1-form hyperbolic Eisenstein series. In this article, we study the limiting behavior of these hyperbolic Eisenstein series on a degenerating family of hyperbolic Riemann surfaces of finite type, using basically the limiting behavior of counting functions associated to degenerating hyperbolic Riemann surfaces. In this sense, we generalize the results obtained in Garbin, Jorgenson and Munn (Comment Math Helv 83:701-721, 2008) to the case of geometrically finite hyperbolic surfaces of infinite volume and form-valued parabolic and hyperbolic Eisenstein series.

Introduction.

There is a vast literature addressing problems in the study of spectral theory degenerating hyperbolic Riemann surfaces and within, on degeneration of Poincaré series and Eisenstein series, see [START_REF] Falliero | Dégénérescence de séries d'Eisenstein hyperboliques[END_REF], [START_REF] Garbin | On the appearance of Eisenstein series through degeneration[END_REF], [START_REF] Pippich | On the Behavior of Eisenstein Series Through Elliptic Degeneration[END_REF], [START_REF] Ji | Spectral degeneration of hyperbolic Riemann surfaces[END_REF], [START_REF] Obitsu | The asymptotic Behavior of Eisenstein Series and a Comparison of the Weil-Petersson and the Zograf-Takhtajan Metrics[END_REF], [START_REF]Asymptotics of degenerating Eisenstein series, Infinite dimensional Teichmüller spaces and moduli spaces[END_REF], [START_REF] Wolpert | Spectral limits for hyperbolic surfaces[END_REF] to cite some examples.

Our context and our aim are the following. Let Γ contained in P SL(2, R) be a Fuchsian group finitely generated of the first or second kind acting on the upper half plane H without elliptic elements. The quotient Γ\H is a hyperbolic geometrically finite surface. This means that Γ admits a finite sided polygonal fundamental domain in H. Throughout this article we refer to parabolic Eisenstein series ps associated to a parabolic element of the uniformizing group Γ or equivalently to a cusp p and hyperbolic Eisenstein series ĉs associated to a primitive hyperbolic element or equivalently to a simple closed oriented geodesic c.

Precise definitions and references to all concepts will be given in Section 2 below. However, with these comments made, we are able to state the main result of the paper.

Main Theorem

Let M l be a degenerating family of geometrically finite hyperbolic surfaces with limit surface M 0 .

(1) Let ĉl s be the hyperbolic Eisenstein series on M l associated to a non-separating simple closed geodesic of length l, then lim l→0 1 l s ĉl s = ps -qs , where p and q are the cusps arising from the pinching geodesic c l . (2) Let ĉl s be the hyperbolic Eisenstein series on M l associated to the boundary of a funnel then lim l→0 1 l s ĉl s = ps .

In all instances, the convergence is uniform on compact subsets of M 0 bounded away from the developing cusps, and in half-planes of the form Re (s) ≥ 1 + δ for any δ > 0.

Remark 1.1. The main tool of the demonstration is the study of the limiting behavior of counting functions as in [START_REF] Garbin | On the appearance of Eisenstein series through degeneration[END_REF].

In the cited article the authors are working with scalar-values hyperbolic Eisenstein series. Casually we point out that there is a difference between scalar-values Eisenstein series and form-valued Eisenstein series studied in [START_REF] Kudla | Harmonic differentials and closed geodesics on a Riemann surface[END_REF] an in [START_REF] Falliero | Dégénérescence de séries d'Eisenstein hyperboliques[END_REF]: if the degenerating Riemann surface has a single pinching geodesic which is non-separating, then the associated hyperbolic Eisenstein series does not converge to the sum of two parabolic Eisenstein series corresponding to the two newly formed cusps but to the difference.

At the end of this paper, we make the remark that a same result occurs in the general infinite volume case.

2. Background material.

2.1.

Geometrically finite hyperbolic surface. Let us recall the standard geometric notations which will be used.

A topologically finite (i.e. finite Euler characteristic ) surface is a surface homeomorphic to a compact surface with finitely many points excised and a geometrically finite hyperbolic surface M is a topologically finite, complete Riemann surface of constant curvature -1. It can be decomposed into a compact core K plus cusps C i and funnels F j ( [START_REF] Borthwick | Spectral Theory of Infinite-Area Hyperbolic Surfaces[END_REF]):

M = K ∪ (C 1 ∪ ... ∪ C nc ) ∪ (F 1 ∪ ... ∪ F n f ) .
The boundary of K consists of n f closed geodesics (uniquely determined) and n c horocycles (the choice of which is not unique) along which K is glued to the funnel and cusp ends, respectively.

A hyperbolic transformation T ∈ P SL(2, R) generates a cyclic hyperbolic group T . The quotient C l = T \H is a hyperbolic cylinder of diameter l = l(T ). By conjugation we can identify the generator T with the map σ l : z → e l z, and we define Γ σ l to be the corresponding cyclic group. A natural fundamental domain for Γ σ l would be the region F l = {z ∈ H, 1 ≤ |z| ≤ e l }. The y-axis is the lift of the only simple closed geodesic on C l , whose length is l. The standard funnel of diameter l > 0, F l , is the half hyperbolic cylinder Γ σ l \H, F l = (R + ) r × (R\Z) x with the metric ds 2 = dr 2 + l 2 cosh 2 (r)dx 2 . We can always conjugate a parabolic cyclic group T to the group Γ ∞ generated by z → z + 1, so the parabolic cylinder is unique up to isometry. A natural fundamental domain for Γ ∞ is

F ∞ = {0 ≤ Re z ≤ 1} ⊂ H. The standard cusp C ∞ is the half parabolic cylinder Γ ∞ \H, C ∞ = ([0, ∞[) r × (R\Z) x
with the metric ds 2 = dr 2 + e -2r dx 2 . The funnels F j and the cusps C i are isometric to the preceding standard models.

2.2. Hodge operator. We define the Hodge operator (or conjugation operator) on smooth differential forms on a Riemann surface M as follows: for a 1-form w given in local coordinate z = x + iy on M by ω = f dx + g dy, we associate * ω = -g dx + f dy. To define the operator * on functions and 2-forms, we denote by v H = y -2 dx ∧ dy the volume form. If f is a function, we set

* f = f (z)v H . For a 2-form Ω, we set * Ω = Ω/v H .
We are interested primarily in 1-forms. If ω is given in complex notation by u(z) dz + v(z) dz, then * ω = -iu(z) dz + iv(z) dz. We define a pointwise scalar product at z of two 1-forms ϕ and ψ by ϕ ∧ * ψ = ϕ, ψ v H and the pointwise norm of a 1-form ω is defined by ω ∧ * ω = ||ω|| 2 v H . 2.3. Hyperbolic and parabolic Eisenstein series. The study of parabolic Eisenstein series is a classical part of mathematical literature (see [START_REF] Kubota | Elementary theory of Eisenstein series[END_REF] just to cite one reference) and more precisely in the case of infinite area hyperbolic Riemann surfaces the study of such series can be found also in [START_REF] Borthwick | Spectral Theory of Infinite-Area Hyperbolic Surfaces[END_REF], p. 102.

As underlined by Gérardin in [START_REF] Gerardin | Formes automorphes associées aux cycles géodésiques des surfaces de Riemann hyperboliques[END_REF], an explicit construction of hyperbolic Eisenstein series can be found in [START_REF]Fourier coefficients of the resolvent for a Fuchsian group[END_REF] and the convergence of these Eisenstein series can be found in [START_REF]Fourier coefficients of the resolvent for a Fuchsian group[END_REF], p. 184. Kudla and Millson give an invariant construction of hyperbolic Eisenstein series that we follow here (for more details see [START_REF] Gerardin | Formes automorphes associées aux cycles géodésiques des surfaces de Riemann hyperboliques[END_REF] and [START_REF]Hyperbolic Eisenstein series for geometrically finite hyperbolic surfaces of infinite[END_REF]). Let us recall the definitions of hyperbolic and parabolic Eisenstein series. If X is an horocycle of H with the direct orientation, we denote by d X (z) the oriented distance between X and z ∈ H, (z : X) = e d X (z) , v X the volume form on X invariant under Γ X , the stabilizer of X in Γ, p X the orthogonal projection from H to X. Then define a 1-form on H, w X = * p * X v X such that ||w X || = (z : X). If Y is an oriented geodesic of H, we denote by d Y (z) the oriented distance between Y and z ∈ H, (z :

Y ) = 1/ cosh d Y (z), v Y the volume form on Y invariant under Γ Y , the stabilizer of Y in Γ, p Y the orthogonal projection from H to Y . Then define a 1-form on H, w Y = * p * Y v Y such that ||w Y || = (z : Y ).
Let ξ an oriented horocycle on M associated to a point p and H (ξ) the set of horocycles on H that project under the canonical projection H → M on ξ. The Eisenstein series associated to ξ is the 1-form ξs = X∈H(ξ) ||w X || s-1 w X , defined for Re s > 1 and called horocyclic Eisenstein series.

If we denote by |ξ| the width of the horocycle ξ then the form |ξ| -s ξs is independent of the choice of the horocycle ξ associated to the point p. We denoted this series by ps and we will call it a parabolic Eisenstein series.

In the same way let η be a closed oriented geodesic on M and H (η) the set of oriented geodesics on H that project to η. The Eisenstein series associated to η is, up to some normalization, the 1-form

ηs = Y ∈H(η) ||w Y || s-1 w Y ,
defined for Re s > 1 and called hyperbolic Eisenstein series.

In each case, for s ∈ C, Re s > 1, we define the 1-form on M with Z = X (respectively, Z = Y ) and the notation ||w Z || s-1 w Z = w s Z : w s Z called an horocyclic Eisenstein series (respectively, an hyperbolic Eisenstein series). Fix Y 0 in H (η) and denote by Γ Y0 its stabilizer in Γ, then

H (η) = ΓY 0 = (Γ\Γ Y0 ) Y 0 ηs = γ∈Γ\Γ Y 0 w s γY0 .
Choose and fix any point z ∈ M , which we lift to a point z ∈ H. As d γY0 (z) = d Y0 γ -1 z , we have also

ηs (z) = δ∈Γ Y 0 \Γ 1 cosh d Y0 (δz) s-1 dd Y0 (δz) cosh d Y0 (δz) . Remark 2.1. d Y0 is the Fermi-coordinate x 2 in [17].
In the same way, fix X 0 in H (ξ) and denote by Γ X0 its stabilizer in Γ, then

H (ξ) = ΓX 0 = (Γ\Γ X0 ) X 0 then ξs (z) = γ∈Γ\Γ X 0 w s γX0 (z) .
Choose and fix any point z ∈ M , which we lift to a point z ∈ H. As d γX0 (z) = d X0 γ -1 z , we have also

ξs (z) = δ∈Γ X 0 \Γ
e sd X 0 (δz) dd X0 (δz) .

Stieltjes integrals.

In order to be consistent with the notations of [START_REF] Garbin | On the appearance of Eisenstein series through degeneration[END_REF] we will fix Z 0 in the set of oriented geodesics of H that project to η (respectively, in the set of oriented horocycles of H that project to ξ) and we will write d hyp (z, Z 0 ) the geodesic distance and as before d Z0 (z), the oriented geodesic distance from z to Z 0 . With all this, we will re-write the counting functions in [START_REF] Garbin | On the appearance of Eisenstein series through degeneration[END_REF], p. 705, in the following way: the hyperbolic counting function (respectively, parabolic counting function associated to X 0 ) is define as

N hyp,M,η (T ; z) = card{δ ∈ Γ Y0 \Γ, -T < d Y0 (δz) < T } (respectively, N par,M0,p (T ; z, ξ) = card{δ ∈ Γ X0 \Γ, -T < d X0 (δz) < T }) .
As η is non-separating one needs to take into account that geodesic lengths from z to η enter the cylinder about the pinching geodesic from the two different sides.

ηs (z) = δ∈Γ Y 0 \Γ 1 cosh d Y0 (δz) s-1 dd Y0 (δz) cosh d Y0 (δz) (1) = δ∈Γ Y 0 \Γ d Y 0 (δz)≥0 1 cosh d Y0 (δz) s-1 dd Y0 (δz) cosh d Y0 (δz) + δ∈Γ Y 0 \Γ d Y 0 (δz)<0 1 cosh d Y0 (δz) s-1 dd Y0 (δz) cosh d Y0 (δz) . ( 2 
)
Let then write

N hyp,M,η (x; z) = N L hyp,M,η (x; z) + N R hyp,M,η (x; z) ; where N L hyp,M,η (x; z) = card{δ ∈ Γ Y0 \Γ, 0 ≤ d Y0 (δz) < x} and N R hyp,M,η (x; z) = card{δ ∈ Γ Y0 \Γ, -x < d Y0 (δz) ≤ 0} .
They are increasing step-functions and give rise to a Stieltjes measure dN hyp,M,η (respectively, dN par,M0,p , dN L hyp,M,η , dN R hyp,M,η ).

If we denote w Y0 (x) = dx cosh x , we can express the hyperbolic Eisenstein series as a Stieltjes integral, namely

ηs (z) = ∞ 0 1 cosh x (s-1) w Y0 (x) dN hyp,M,η (x; z) = ∞ 0 1 cosh x (s-1) w Y0 (x) dN L hyp,M,η (x; z) - ∞ 0 1 cosh x (s-1) w Y0 (x) dN R hyp,M,η (x; z) .
We have the following inequality

||η s (z) || ≤ ∞ 0 || 1 cosh x (s-1) w Y0 (x) ||dN hyp,M,η (x; z) = ∞ 0 1 cosh x (Re s) dN hyp,M,η (x; z) .
We can choose X 0 such that N par,M0,p (T ; z, ξ) = card{δ ∈ Γ X0 \Γ, -T < d X0 (δz) ≤ 0} . If we denote w X0 (x) = e x dx, we can express the parabolic Eisenstein series as a Stieltjes integral, namely ξs (z) = ∞ 0 e -x (s-1) w X0 (-x) dN par,M0,p (x; z) ; and we have the same preceding remark.

Convergence.

A family of degenerating geometrically finite hyperbolic surfaces consists of a surface M and a smooth family (g l ) l>0 of Riemannian metrics that meet the following assumptions:

(1) The Riemannian manifold M l = (M, g l ) is a geometrically finite hyperbolic surface for each l.

(2) There are finitely many disjoint open subsets C l,i ⊂ M that are diffeomorphic to cylinders R\Z × J i where J i ⊂ R is a connected neighborhood of 0 with the metric (x, a)

→ (l i (l) 2 + a 2 )dx 2 + ((l i (l) 2 + a 2 ) -1 da 2 and l i (l) → 0 as l → 0. The curve c i = R\Z × {0} is a closed geodesic of length l i (l). (3) The complement of (C 1 ∪ ... ∪ C nc ) ∪ (F 1 ∪ ... ∪ F n f ) ∪ i C l,i
where we may have some F j ⊂ C l,i is relatively compact. (4) On M 0 := M \ ∪ i c i , the metrics g l converge smoothly to a hyperbolic metric g 0 as l → 0. M 0 is a possibly non connected hyperbolic surface that contains a pair of cusps for each i. In the following, we will assume that M l has a single family of degenerating geodesics; the more general situation is easily obtained with only a slight modification of notation. More precisely we contemplate two cases: the case the degenerating geodesic is non-separating and the case the degenerating geodesic is the boundary of a funnel. In the first case we have for any 0 < < 1/2, C l, = R\Z×] -/2, + /2[ with total volume equal to . In the second case C l, = R\Z×] -/2, +∞[ contains the funnel F l .

In both cases we consider a degenerating family of groups {Γ l } with M l = H\Γ l degenerating to the surface M 0 , Γ l containing the transformation σ l (z) = e l z and its stabilizer Γ σ l . We also write σ l for the associated closed geodesic. Then the geodesic in H fixed by σ l is the line Y 0 = {Re(z) = 0} ∩ H. For any point z ∈ M l , which we lift to a point z ∈ H, let d l (z) denote the geodesic distance from z to Y 0 . We denote by p and q the two cusps of M 0 arising from pinching σ l , the limit of respectively the right side and the left side of the σ l -collar C l, .

To prevent burdensome notation, we write

N hyp,l := N hyp,M l ,c l N L(R) hyp,l := N L(R) hyp,M l ,c l
In the case the degenerating geodesic c l is non-separating, we denote by ∂C L l, (respectively, ∂C R l, ) the left (respectively, right) boundary of the collar C l, and the corresponding counting functions

N hyp,∂C L l, (x; z) = card{δ ∈ Γ σ l \Γ l , 0 ≤ d ∂C L l, (δz) < x} (respectively, N hyp,∂C R l, (x; z) = card{δ ∈ Γ σ l \Γ l , -x < d ∂C R
l, (δz) ≤ 0}). In the case the degenerating geodesic c l is the boundary of the funnel F l we are only interested in the right side of the collar and the corresponding definitions.

3.1. Convergence of counting functions. We can rewrite Lemma 3.3 of [START_REF] Garbin | On the appearance of Eisenstein series through degeneration[END_REF] in the following way Lemma 3.1. Assume > 0 is sufficiently small so that C l, is embedded in M l . Let τ ( , l) being the half width of the collar C l, , then for any x > 0 we have:

(1) In the case the degenerating geodesic c l is non-separating

N hyp,∂C L l, (x; z) = N L hyp,l (x + τ ( , l) ; z) ; lim l→0 N L hyp,l (x + τ ( , l) ; z) = N par,M0,q (x; z, ξ q, )
with |ξ q, | = /2.

In the same way In all instances, the convergence is uniform on compact subsets of the complement of C l, .

N hyp,∂C R l, (x; z) = N R hyp,l (x + τ ( , l) ; z) ; lim l→0 N R hyp,l (x + τ ( , l) ; z) = N par
We will denote by X q (respectively, X p ) a horocycle in H corresponding to ξ q, (respectively, ξ p, ). We consider q the cusp of M 0 limit of the left side of the σ l -collar. Now, as above, let lζ = -log (-z), z ∈ H, and conjugate Γ l by the map ζ (z) to obtain Γl acting on S l = {ζ|0 < Im ζ < π/l}. Γl is a (non-Möbius) group of desk transformations acting on S l ; the quotient S l \ Γl is M l .

There exist homeomorphisms f l from M l -{c l } to M 0 , with f l tending to isometries C 2 -uniformly on compact subsets of the complement of C l, ; f l has a lift fl , a homeomorphism from a sub domain of S l (containing the left half-collar

{-1 < Re ζ ≤ 0, c < Im ζ < π/2l}) to H; f l induces a group homomorphism ρ l : Γ 0 → Γl by the rule A → f -1 l A fl , A ∈ Γ 0 .
We call ρ l (A) ∈ Γl the element corresponding to A ∈ Γ 0 . Now by our normalizations for Γl and Γ 0 , the translation ζ → ζ -1 corresponds to itself. If we specify the further normalization fl (i) = i, then the lifts fl are uniquely determined and tend uniformly on compact subsets to the identity, and thus for A ∈ Γ 0 , the corresponding elements ρ l (A) tend uniformly on compact subsets to A.

Convergence of Eisenstein series.

In this section, we prove the Main Theorem.

First assume c l is non-separating. Let then write

ĉl s (z) = ĉl s L (z) -ĉl s R (z) with ĉl s L (z) = ∞ 0 1 cosh x (s-1) w Y0 (x) dN L hyp,l (x; z)
and corresponding definition for ĉl s R (z). To begin, we write (3)

ĉl s L (z) = T0+τ ( ,l) 0 1 cosh x (s-1) w Y0 (x) dN L hyp,l (x; z)+ ∞ T0+τ ( ,l) 1 cosh x (s-1) w Y0 (x) dN L hyp,l (x; z) ,
where τ ( , l) is given in Lemma 3.1.

For the integral over [T 0 + τ ( , l) , ∞), we have

∞ T0+τ ( ,l) 1 cosh x (s-1) w Y0 (x) dN L hyp,l (x; z) ≤ ∞ T0+τ ( ,l) 1 cosh x Re s dN L hyp,l (x; z) .
Now, we recall the fundamental geometric lemma which applies in our context (see Lemma 1.4 of [START_REF] Jorgenson | Convergence of the Normalized Spectral Counting Function on Degenerating Hyperbolic Riemann Surfaces of Finite Volume[END_REF]):

Lemma 3.2. Let M = Γ\H be a hyperbolic Riemann surface of finite type. For any point z ∈ M with injectivity radius r and any x > T 0 > r, we have

(4) N hyp,M,η (x; z) ≤ N hyp,M,η (T 0 ; z) + sinh 2 x+r 2 -sinh 2 T0-r 2 sinh 2 r 2 .
From this lemma we deduce the following inequality, as in [START_REF] Garbin | On the appearance of Eisenstein series through degeneration[END_REF] p. 718, with σ = Re s and r the injectivity radius of M l at z:

(5) 2 -σ e στ ( ,l) ∞ T0+τ ( ,l) 1 cosh x Re s dN L hyp,l (x; z) ≤ e (-σ+1)T0
e r sinh 2 (r/2) σ σ -1 .

By choosing

T 0 ≥ 1 σ -1 -ln µ + ln e r sinh 2 (r/2) σ σ -1 ,
we have that the upper bound in ( 5) can be made smaller than any µ > 0.

In the same way, ξs q, (z) = ∞ 0 e -x (s-1) w Xq (-x) dN par,M0,q (x; z) and ( 6)

∞ T0
e -x (s-1) w Xq (-x) dN par,M0,q (x; z) ≤ e -T0(σ-1) 4 sinh 2 (r/2) 1 + 2 sinh(r) sinh 2 (r/2) , can be made, for T 0 sufficiently big, as small as we want uniformly on compact subsets of M 0 bounded away from the developing cusps and in half-planes of the form Re (s) ≥ 1 + δ for any δ > 0.

For the first integral in (3), with an adequate T 0 chosen, we begin by writing T0+τ ( ,l)

0 1 cosh x (s-1) w Y0 (x) dN L hyp,l (x; z) = T0 0 1 cosh (x + τ ( , l)) (s-1)
w Y0 (x + τ ( , l)) dN hyp,∂C L l, (x; z) . Let us assume, for convenience, that T 0 is a point of continuity of N par,M0,q (x; z, ξ q, ), meaning there is no geodesic path from z to ξ q, on M 0 with length equal to T 0 . Then, as lim l→0 N L hyp,l (T 0 + τ ( , l) ; z) = N par,M0,q (T 0 ; z, ξ q, ), there exists l 0 = l 0 (T 0 , ) such that, for l < l 0 , N = N L hyp,l (T 0 + τ ( , l) ; z) = N par,M0,q (T 0 ; z, ξ q, ). Let

{t k,l , 1 ≤ k ≤ n l } ⊂ [0, T 0 ] (respectively, {t k , 1 ≤ k ≤ n} ⊂ [0, T 0 ]
) be the set of lengths on M l (respectively, M 0 ) such that for any η > 0 we have N L hyp,l (t k,l + τ ( , l) -η; z) < N L hyp,l (t k,l + τ ( , l) + η; z) . (respectively, N par,M0,q (t k -η; z, ξ q, ) < N par,M0,q (t k + η; z, ξ q, )). We denote by {m k,l ,

1 ≤ k ≤ n l } (respectively, {m k , 1 ≤ k ≤ n}) the multiplicities of {t k,l } (respec- tively, {t k , 1 ≤ k ≤ n}).
Then we have T0+τ ( ,l)

0 1 cosh x (s-1) w Y0 (x) dN L hyp,l (x; z) = n l k=1 cosh (t k,l + τ ( , l)) -s m k,l d (t k,l + τ ( , l)) .
In the same way, ξs q, (z) = ∞ 0 e -x (s-1) w Xq (-x) dN par,M0,q (x; z) and T0 0 e -x (s-1) w Xq (-x) dN par,M0,q (x; z) = -n k=1 e -t k s m k dt k .

In the following take l < l 0 . As lim l→0 N L hyp,l (t

1 + τ ( , l) ; z) = 0, ∃l 1 = l 1 (t 1 ) , l < l 1 , N L hyp,l (t 1 + τ ( , l) ; z) = 0, so t 1 ≤ t 1,l .
In a similar way, lim l→0 N L hyp,l (t 2 + τ ( , l) ; z) = m 1,0 , for l sufficiently small, N L hyp,l (t 2 + τ ( , l) ; z) = m 1,0 > 0, so t 2 > t 1,l . In conclusion there exists l 2 = l 2 (T 2 ) < l 1 and sufficiently small so that for l < l 2 , t 1 ≤ t 1,l < t 2 ≤ t 2,l and m 1,l = m 1,0 . Repeating this argument there exists l i sufficiently small so that for l < l i , ∀j, 1 ≤ j ≤ i, t j ≤ t j,l < t j+1 and m j,l = m j,0 . As n k=1 m k = n l k=1 m k,l , there exists l n sufficiently small so that for l < l n , n l = n and ∀j, 1 ≤ j ≤ n, t j ≤ t j,l < t j+1 and m j,l = m j,0 . Moreover as for all T, t 1 < T ≤ t 2 , we have lim l→0 N L hyp,l (T + τ ( , l) ; z) = m 1,0 , we deduce that lim l→0 t 1,l = t 1 and the same for all others t j,l , 1 ≤ j ≤ n.

Then for l < l n we can write,

T0+τ ( ,l) 0 1 cosh x (s-1) w Y0 (x) dN L hyp,l (x; z) = n k=1 cosh (t k,l + τ ( , l)) -s m k d (t k,l + τ ( , l)) .

Now we use the preceding change of variables lζ

= -log (-z) to see that lim t→0 ||d (t k,l + τ ( , l)) - dt k || = 0.
The hyperbolic metric on the collar is given in polar coordinates by ds 2 = dr 2 + r 2 dθ 2 r 2 sin 2 θ . Then, with the substitution ln r = -la, θ = π -lb where ζ = a + ib, ds 2 = l 2 da 2 + db 2 sin 2 lb , which tends to da 2 + db 2 b 2 as l tends to zero. The convergence is uniform for y bounded, and for instance is not uniform for ly ≤ π/2.

In Fermi coordinates sin θ = 1 ch x2 and dx 2 = -l sin lb db tends to -db b as l tends to zero. Now, remember that, with simplified notations:

t k,l + τ ( , l) = x 2 (Z) = d l (Z), t k = -d X0 (Z) for some Z = a + ib and ||d (t k,l + τ ( , l)) -dt k || = (lb/ sin(lb) -1). It follows that ||d (t k,l + τ ( , l)) -dt k ||
tends to zero as l tends to zero. Moreover for fixed x > 0 and s ∈ C with Re(s) > 0, we have lim r→∞ 2 -s e rs ((cosh(x + r)) -s = e -sx and the limit is uniform for all x > 0 and Re(s) ≥ 1+δ. Then lim l→0 2 -s e τ ( ,l)s cosh (t k,l + τ ( , l)) -s = e -st k and lim l→0 ||d

(t k,l ) -d (t k ) || = 0 give lim l→0 2 -s e τ ( ,l)s n k=1 cosh (t k,l + τ ( , l)) -s d (t k,l + τ ( , l)) m k = n k=1 e -st k dt k m k .
In other words we have lim l→0 2 -s e τ ( ,l)s T0+τ ( ,l) 1) w Xq (-x) dN par,M0,q (x; z)

0 1 cosh x (s-1) w Y0 (x) dN L hyp,l (x; z) = - T0 0 e -x (s-
and the convergence is uniform on compact subsets of the complement of C l, and in half-planes of the form Re (s) ≥ 1 + δ for any δ > 0.

Then we write 1

l s ĉl s L (z) = 1 l s
2 s e sτ ( ,l) 2 -s e sτ ( ,l) ĉl s L (z) . We have

τ ( , l) = π/2 cot -1 ( /2l) dθ sin θ = log 2l + 2l 2 + 1 , such that 1 l s 2 s e sτ ( ,l) = 2 s s (1 -sO(l 2 ))
converges uniformly on compact subsets of Re(s) > 1 to 2 -s . Now qs = |ξ q, | -s ξs q, = 2

-s T0 0 e -x (s-1) w X0 (-x) dN par,M0,q (x; z) + ∞ T0 e -x (s-1) w X0 (-x) dN par,M0,q (x; z) .

We now use ( 5), (6), the preceding limit and the triangle inequality in order to prove that

lim l→0 1 l s ĉl s L = -q s ,
uniformly on compact subsets of the complement of C l, and on compact subsets of Re(s) > 1.

To In the case c l is the boundary of the funnel F l , for z away from the developing cusps, we have only to consider the right side of the σ l -collar, N hyp,l (T ; z) = N R hyp,l (T ; z), and from the preceding study lim l→0 1 l s ĉl s = ps .

3.3. Final remarks. For geometrically infinite surfaces, that is to say a surface of infinite genus or homeomorphic to a compact surface with infinitely many points removed, the notion of geometry 'at infinity' is ill-defined, and there is virtually nothing we can say about the spectral theory of the Laplacian. However we can make the following remarks. First note that it has already been pointed out (see [START_REF] Jorgenson | Convergence of the Normalized Spectral Counting Function on Degenerating Hyperbolic Riemann Surfaces of Finite Volume[END_REF]) that one can find results for spectral counting functions on degenerating hyperbolic surfaces of infinite volume analogues to those obtained for finite volume surfaces and with the same techniques.

The parabolic and hyperbolic Eisenstein series ps and ĉs , we work with are well defined. For Re s > 1, il follows from the fundamental lemma (see [START_REF]Kernel functions, Poincaré series, and LVA[END_REF], p. 178, [START_REF] Hejhal | The Selberg Trace Formula for P SL (2, R)[END_REF], p. 27): Proposition 3.1. For any Fuchsian group Γ, there exists a C(q, Γ) such that for all z ∈ H, γ∈Γ y(γz) q [1 + |γz|] 2q ≤ C(q, Γ).

The constant C(q, Γ) depends only on q and Γ.

In fact these series converge for Re s > δ where δ is the exponent of convergence of the (relative) Poincaré series δ = inf{s > 0,

T ∈Γ e -sd(z,T w) < ∞} for some z, w ∈ H, where d(z, w) again denotes the hyperbolic distance from z ∈ H to w ∈ H. We have 0 < δ < 1 for a geometrically infinite surface.

There is no decomposition in a finite number of trousers and funnels as in the geometrically finite case, we have the following result though. First we recall the definition (see [START_REF] Hubbard | Teichmüller theory and applications to geometry, topology, and dynamics, Teichmüller theory[END_REF], p. 84) Definition 3.1. A family Y of simple closed curves on a surface S is called a multicurve if the elements of Y are disjoint, no two are homotopic to each other, and none is homotopic to a point.

And then give the theorem (see [START_REF] Hubbard | Teichmüller theory and applications to geometry, topology, and dynamics, Teichmüller theory[END_REF], p. 84) Theorem 3.1. Let X be a connected hyperbolic Riemann surface that is not simply connected, with its hyperbolic metric. Then there exists a multicurve Y on X such that if Z denotes the closure of Z = {x ∈ γ, γ ∈ Y }, then the closure of X -Z is isometric to either (1) a trouser, with anywhere from zero to three cusps, (2) a half-annulus |z| ≥ 1 in {1/R < |z| < R} for some 0 < R < ∞, with its hyperbolic metric, or (3) a half plane Rez ≤ 0 in H, with its hyperbolic metric.

Moreover, each component of Z -Z is a simple infinite geodesic bounding a half plane (i.e., case 3 above).

A geometrically infinite hyperbolic surface contains an infinite multicurve or case 3 is checked, or both. This decomposition allows us to construct a degenerating family of geometrically infinite surfaces (M l ) l>0 , M l = Γ l \H, by letting the lengths of a finite number of geodesics approaching zero as l tends to zero. These pinching geodesics can be taken as boundary components of a finite number of trousers appearing in Theorem 3.1. Denote by P l the union of such trousers, in the general case the injectivity radius of M l may not be always strictly positive outside the collars of the small geodesics and a thick-thin decomposition is no more possible, however, using the same methods, we obtain the previous results of degeneration on every compact of M l \P l .

In the following we give a more precise description of this claim. We may suppose without loss of generality that there is only one pinching geodesic, c l , of length l, which is the boundary of a trouser of the previous decomposition. The existence for any 0 < < 1/2, of the collar C l, (see Section 3 (2)) is found for example in [START_REF] Hubbard | Teichmüller theory and applications to geometry, topology, and dynamics, Teichmüller theory[END_REF], p. 90. With this collar, one can construct homeomorphisms f l (see end of Section 3.1) from M l -{c l } to M 0 , with f l quasi-isometries outside a tiny neighborhood of c l , tending to isometries C 2 -uniformly on compact subsets of the complement of C l, in analogous manner to the geometrically finite case (see for example [START_REF] Colbois | Les valeurs propres inférieures à 1/4 des surfaces de Riemann de petit rayon d'injectivité[END_REF], Proposition 3.1 p. 359, [START_REF] Fay | Theta Functions on Riemann Surfaces[END_REF], [START_REF]Regular b-groups, Degenerating Riemann surfaces and Spectral Theory[END_REF], Theorem 1.18 p. 50). The proof of Lemma 3.1 Section 3.1, in the case of geometrically infinite hyperbolic surfaces, follows. Proof of Lemma 3.2 Section 3.2, which essentially uses the universal covering H and the fact that Γ l is a discrete subgroup of P SL(2, R) is also adapted to this case. The following theorem ensues Theorem 3.2. Let (M l ) l>0 be a degenerating family of geometrically infinite hyperbolic surfaces with limit surface M 0 , as described above. Let ĉl s be the hyperbolic Eisenstein series on M l associated to a simple closed geodesic of length l, with C l, the associated collar. and the convergence is uniform on compact subsets of the complement of C l, and in half-planes of the form Re (s) ≥ 1 + δ for any δ > 0.

2 )

 2 ,M0,p (x; z, ξ p, ) with |ξ p, | = /2. (In the case the degenerating geodesic c l is the boundary of a funnel, N hyp,l (T ; z) is equal to card{δ ∈ Γ σ l \Γ l , -T < d l (δz) ≤ 0} and we have lim l→0 N hyp,l (x + τ ( , l) ; z) = N par,M0,p (x; z, ξ p, ) .

l dz z 2 = (dζ) 2 and |dz| Im z 2 = l|dζ| sin lb 2 for

 222 Let us illustrate this result by a change of variables. To study the left side of the collar use the change of variables lζ = -log (-z), with the principal branch: then 1 ζ = a + ib.

2 for1 l s ĉl s R

 2s study the right side of the collar, use the change of variables lω = log (z), with the principal branchω = u + iv. The hyperbolic metric on the collar is given in polar coordinates by ds 2 = dr 2 + r 2 dθ 2 r 2 sin 2 θ . Then, with the substitution ln r = lu, θ = lv and ds 2 = l 2 da 2 + db 2 sin 2 lb , which tends to da 2 + db 2 b 2 as l tends to zero. The convergence is uniform for y bounded. In the same way we show that lim l→0 = -p s .

( 1 ) 2 )

 12 If c l is non-separating, then lim l→0 1 l s ĉl s = ps -qs , where p and q are the cusps arising from the pinching geodesic c l . (If c l is the boundary of a funnel, then lim l→0 1 l s ĉl s = ps ;