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Stability of the chemostat system with a mutation factor

T. Bayen∗, H. Cazenave-Lacroutz†, J. Coville‡

October 13, 2021

Abstract

In this paper, we consider a resource-consumer model taking into account a mutation effect between
species (with constant mutation rate). The corresponding mutation operator is a discretization of the
Laplacian in such a way that the resulting dynamical system can be viewed as a regular perturbation
of the classical chemostat system. We prove the existence of a unique locally stable steady-state for
every value of the mutation rate and every value of the dilution rate not exceeding a critical value. In
addition, we give an expansion of the steady-state in terms of the mutation rate and we prove a uniform
persistence property of the dynamics related to each species. Finally, we show that this equilibrium is
globally asymptotically stable for every value of the mutation rate provided that the dilution rate is with
small enough values.

Keywords : chemostat system, population dynamics, dynamical system, regular perturbation, global stability.

1 Introduction

The chemostat system was introduced in the fifties to model the behavior of bacteria competing for a same
substrate (see [33, 34, 35]). It has now become a reference model for the modeling of ecosystems (lakes,
rivers, microalgae,...), see, e.g., [23], and it is widely used in biotechnology, for instance, for the control of the
production of microalgae of interest or in waste water treatment (see, e.g., [3, 18, 7, 4] and references herein).
The chemostat system with n species competing for one same resource writes∣∣∣∣∣∣∣

ẋi = (µi(s)−D)xi, 1 ≤ i ≤ n,

ṡ = −
n∑
j=1

µj(s)

Yi
xj +D(sin − s),

(1.1)

where xi is the concentration of species i (the consumers) and s denotes the substrate concentration (the
resource). The numbers Yi are the yield coefficients, the parameter sin is the input substrate coefficient,
the functions µi are the kinetics, and D is the dilution rate. Properties of (1.1) has been studied a lot
[18, 41, 19, 22, 25, 27, 28, 29, 39, 46], and one essential feature is the famous competitive exclusion principle
(CEP) which asserts that, asymptotically, only one species survives [27, 46, 41, 25]. Many extensions of the
CEP have been studied in presence of delay, external inhibitors, or variable yields (see, e.g., [22, 28, 39] among
others). It is also worth mentioning that the CEP predicts exclusion of the less competitive species and not
coexistence in contrast with observations in several ecosystems. That is why, extensions of the chemostat
system were also developed (such as in [19]) to cope with this reality. In this paper, we consider another
extension of the chemostat system related to the possibility for a species to produce mutants or to appear
through mutation (see, e.g., [35, 13, 14]). It turns out that mutation will modify the behavior of the system
leading to coexistence. There exist various approaches to model this phenomenon: each species may convert
into other species with a mutation rate depending on various parameters such as the kinetics (see, e.g., [29]
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or [21]). Throughout this paper, we shall assume that the dispersion is such that each species i converts
into neighbor species i + 1 and i − 1 with a constant mutation rate. This amounts to add a linear term
Tx in the sub-system satisfied by the concentration vector x in (1.1), where T is the mutation matrix. Our
objective in this paper is to provide a thorough study of asymptotic stability properties of the resulting system.
Surprisingly, to our best knowledge, few papers addressed this question apart [1, 13] and [5, 6] which study a
minimal time control problem to select optimally species of interest (see also [31]).

Let us give a quick overview of [13] that introduced the chemostat system with a mutation. The main
result is a global stability property of the coexistence steady-state provided that the kinetics are sufficiently
close to a nominal one µ0 as well as yield coefficients which also should be close to a nominal value Y0. This
means that the quantities ‖µi − µ0‖L∞ and |Yi − Y0| should be small enough for every 1 ≤ i ≤ n to ensure
the global stability property. This result (in the spirit of [1]) is interesting in itself but it does not predict the
behavior of the system whenever kinetics are not necessarily close to a common one. In this paper, we consider
the more general situation where kinetics are of Monod type, but not necessary close to a nominal one. Our
aim is to address stability properties of the corresponding system. Based on experimental studies (see, e.g.,
[35], we shall assume that the yield coefficients are equal to one. As in [13], we shall see that mutation implies
coexistence in contrast with the CEP for the chemostat model.

The paper is structured as follows. In Section 2, we introduce the chemostat system with mutation and
we recall the CEP. In Section 3, we show in Proposition 3.1 that there is exactly one locally asymptotically
stable (LAS) steady-state provided that the dilution rate does not exceed a certain value (for which extinction
of species would occur). This result extends the analysis of [13] and relies on eigenvalue properties of a rank
one perturbation of a symmetric non-positive matrix (see [9]). In Section 4, we compute an expansion of
the steady-state in terms of the mutation factor. We obtain that way an interesting result asserting that, at
steady-state, few species dominate, namely the one that wins the selection in absence of mutation, and its
neighbors (see, Proposition 4.1). We also study the converse case, i.e., when the mutation factor becomes
large (w.r.t. the kinetics of the system). In Section 5, we show a uniform persistence property (see [40]). This
property asserts that, asymptotically, each species is present in the system (and not only the total biomass
[13]). This uniform persistence property highlights the difference of the chemostat system with mutation
w.r.t. the classical chemostat system (leading to exclusion of every less competitive species). In Section 6,
we give our main result (Theorem 6.2) about global stability of the steady-state for small enough dilution
rates. To show that the equilibrium is GAS, we proceed in three steps. First, we study stability properties
of the system without dilution rate (with mutation). Next, we show that the GAS property is valid on an
invariant attractive manifold associated with the system for small enough values of the dilution rate. This
requires to prove a robust persistence property (in line with [13]) and to use perturbation results of [42] (see
also [38, 42, 44]). We conclude by using the theory of asymptotically autonomous systems (see, e.g., [43]).

2 Recap on the chemostat model and preliminary properties

Throughout this paper, we consider a chemostat system with n ≥ 1 species including a mutation effect between
species. We suppose that each species i is able to convert into species i+ 1 and i−1 with a constant mutation
rate. This yields the following dynamical system∣∣∣∣∣∣∣

ẋi = (µi(s)− u)xi + ε(Tx)i, 1 ≤ i ≤ n,

ṡ = −
n∑
j=1

µj(s)xj + u(1− s), (2.1)

where:

• For every 1 ≤ i ≤ n, xi denotes the concentration of species i and s the substrate concentration.

• For every 1 ≤ i ≤ n, the kinetics µi of species i is supposed to be of Monod type, i.e., µi(s) = mis
ai+s

(ai,
mi are positive numbers such that i 6= j ⇒ (mi, ai) 6= (mj , aj)).

• The input substrate concentration has been renormalized to 1 and the dilution rate is u ∈ R+.
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• The mutation parameter is ε ≥ 0, x := (x1, ..., xn)> denotes the column vector of the species concentra-
tions (the symbol > is the transpose operator), and the mutation matrix1 T ∈ Rn×n is:

T :=


−1 1 0 · · · 0
1 −2 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · 1 −2 1
0 · · · 0 1 −1

 . (2.2)

Note that the symmetric matrix T corresponds to the discretization of the one-dimensional Laplace equation
(Poisson problem) with Neumann boundary conditions. We recall that it is quasi-positive (i.e., for i 6= j,
ti,j ≥ 0) and irreducible (since (T + rIn)k is with positive entries for r = 3 and k large enough). From
Perron-Frobenius’s Theorem (see, e.g., [8]), the largest eigenvalue of T (called the Perron root) is simple and
the Perron vector (i.e., the corresponding unitary eigenvector) is positive. Finally, the sum of the coefficients
of T on a row is always zero2, so, 0 is necessarily the Perron root of T and a/

√
n is the Perron vector where

a := (1, ..., 1). Note also that T is non-positive.

Remark 2.1. More complex mutation terms between species can be also considered in the chemostat model
as for instance in [1, 29] where the mutation factor involves the kinetics of the species. Mutation could also
involve a pool of species close to some index i (not only the two closest indexes of i), but, in this paper, we
restrict our attention to a mutation term εTx where T is given by (2.2) (see [13]) and ε ≥ 0 is eventually a
small parameter. System (2.1) can be viewed as an approximation of a population dynamics model involving
a phenotypic trait, see, e.g., [16, 17, 32, 36] (among others).

When ε = 0, we retrieve the classical chemostat model with n ≥ 1 species described by the system∣∣∣∣∣∣∣
ẋi = (µi(s)− u)xi, 1 ≤ i ≤ n,

ṡ = −
n∑
j=1

µj(s)xj + u(1− s), (2.3)

in such a way that (2.1) can be viewed as a regular perturbation3 of (2.3) for small values of ε. When dealing
with the chemostat system, it is usual to introduce the so-called break-even concentrations λi(u) ∈ [0,+∞)
that play a key role in the chemostat system:

λi(u) :=

{
µ−1
i (u) if µi(1) > u,

+∞ otherwise,
1 ≤ i ≤ n. (2.4)

In order to study asymptotic stability properties of (2.1), it will be helpful to recall the global stability
properties of (2.3). Doing so, set,

Ei = (0, ..., 0, 1− λi(u), 0, ..., 0, λi(u)) ∈ Rn+1,

for 1 ≤ i ≤ n and observe that Ei is a steady-state of (2.3) provided that λi(u) < +∞. In addition, the point

Ewo := (0, ..., 0, 1) ∈ Rn+1,

is also an equilibrium of (2.3) (called washout steady-state). Thus, (2.3) has at most n+ 1 steady-states. The
well-known competitive exclusion principle (CEP) can be now stated as follows.

Theorem 2.1. (i). Let u > 0. If there is a unique 1 ≤ i0 ≤ n such that λi0(u) = min1≤i≤n λi(u) < +∞,
then, for every initial condition (x0, s0) ∈ [0,+∞)n × [0, 1] such that x0

i0
> 0, the unique solution of (2.3)

starting at (x0, s0) at time 0 converges to Ei0 .
(ii). Let u > 0. If min1≤i≤n λi(u) = +∞, then, for every initial condition (x0, s0) ∈ [0,+∞)n × [0, 1], the
unique solution of (2.3) starting at (x0, s0) at time 0 converges to Ewo.

1As usual, matrices are named using capital letters and coefficients are represented by lower case letters.
2This property is also essential for proving the invariance of the set ∆ (Lemma 2.1).
3For the concept of regular perturbation of a dynamical system, we refer to [2, 42, 30] (see also references herein).
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Remark 2.2. In case (i) of the previous theorem, if the minimum is non-unique, then, coexistence may occur
[41, 25], but, we do not develop this point here because it is non-generic. Throughout the paper, we shall
assume (if necessary) that u is such that the minimum is unique.

The competitive exclusion principle asserts a global stability property of one species for (2.1) initially
present in the vessel, i.e., only one species survives generically (namely the one with the least break-even
concentration).

Remark 2.3. There are various proofs of this result (see, e.g., [25, 41, 37] among others). When kinetics are
of Monod type, a direct way is to use a Lyapunov function. Doing so, write Ei0 = (x∗1, ..., x

∗
n, s
∗) and (2.3) as∣∣∣∣∣ ˙̃xi = (µi(s

∗)− u)x̃i + (µi(s)− µi(s∗))xi, 1 ≤ i ≤ n,
˙̃s = −us̃−

∑n
j=1 µj(s)x̃j −

∑n
j=1(µj(s)− µj(s∗))x∗j ,

(2.5)

where x̃i := xi − x∗i and s̃ := s− s∗. Next, it can be verified that the function

V (x̃, s̃) := φs∗(s̃) +

n∑
j=1

aj + s∗

aj
φx∗j (x̃j) +

1

2

[
s̃+

n∑
j=1

x̃j

]2
, (2.6)

is a strict Lyapunov function for (2.5) where φa(σ) := σ − a ln(1 + σ/a), a > 0, see, e.g., [22, 27] and
references herein. However, even if (2.1) is a regular perturbation of (2.3), it is an open question how to
construct a Lyapunov function for (2.1) based on (2.6) (see [22, 27]) or on relative entropy identities (see
[11, 12]). Besides, global stability property may fail to hold under small perturbations of a dynamical system4.

Going back to (2.1), observe that solutions to (2.1) are defined globally over R+ and that the dynamics of
x can be rewritten

ẋ = B(s, u, ε)x, (2.7)

where
B(s, u, ε) := M(s)− uIn + εT ∈ Rn×n, (2.8)

In ∈ Rn×n denotes the identity matrix, andM(s) stands for the diagonal matrixM(s) := diag(µ1(s), ..., µn(s)).
Note that the matrix B(s, u, ε) is quasi-positive for every s ∈ R, so Rn+ is forward invariant by (2.7) (see, e.g.,
[13]). In contrast with (2.3), it is enough to suppose that only one species is present at time 0 to ensure that
for every time t > 0, one has xi(t) > 0 for every 1 ≤ i ≤ n, as we now show.

Property 2.1. Let (ε, u) ∈ R∗+ × R+ and let x(·) be a solution to (2.1). If there is 1 ≤ i ≤ n such that
xi(0) > 0, then, for every time t > 0, one has xj(t) > 0 for every 1 ≤ j ≤ n.

Proof. Recall that Rn+ is forward invariant by (2.7). We claim that for every time t ≥ 0, one has xi(t) > 0.
Indeed, let t0 := inf{t > 0 ; xi(t) = 0} and suppose that t0 < +∞. Since xi(t) > 0 for t ∈ [0, t0), one has

xi(t0) = 0 and ẋi(t0) = ε(xi+1(t0) + xi−1(t0)) ≤ 0,

which implies xi+1(t0) = xi−1(t0) = 0 Observe now that ẋi+1(t0) = εxi+2(t0) and since xi+1(·) vanishes at
t = t0, we deduce that

ẋi+1(t0) = εxi+2(t0) ≤ 0.

Thus, one must have xi+2(t0) = 0. In the same way, we get that xi−2(t0) = 0. By induction over j, we deduce
that for every 1 ≤ j ≤ n, one has xj(t0) = 0. By Cauchy-Lipschitz’s Theorem, one must have x ≡ 0 over R+

which is a contradiction since xi(0) > 0. This proves our claim.
Let us now show that xi+1 never vanishes over (0,+∞). If there is t1 > 0 such that xi+1(t1) = 0, then, we

would have ẋi+1(t1) ≤ 0, thus
ẋi+1(t1) = ε(xi(t1) + xi+2(t1)) > 0,

since xi is positive over R+. This is a contradiction, therefore, one must have xi+1(t) > 0 for every time t > 0.
We can repeat this argument step by step for every species, which proves the desired property.

4As an example, consider the system ẋ = −x/(1 + x2) + εx for which 0 is GAS for ε = 0 and LAS for every ε ∈ [0, 1). But 0
is never GAS for every ε > 0. We thank F. Mazenc for indicating to us such an example.
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Note also that if s(0) ∈ [0, 1], then one has s(t) ∈ [0, 1] for every t ≥ 0. Hence, we shall consider initial
conditions in the set

D := (Rn+\{0})× [0, 1],

when dealing with (2.1). The next property is related to the quantity

b := s+

n∑
j=1

xj ,

and it is crucial in the rest of the paper.

Lemma 2.1. For every (ε, u) ∈ R+ × R∗+, the set

∆ :=
{

(x, s) ∈ D ;

n∑
j=1

xj + s = 1
}
, (2.9)

is an invariant and attractive manifold for (2.1).

Proof. From (2.1), b satisfies ḃ = u(1− b), hence b(t) = 1 + (b(0)− 1)e−tu for t ≥ 0, whence the result.

This lemma makes possible (if necessary) to reduce the stability properties of (2.1) to the system

ẋ = B
(

1−
n∑
j=1

xj , u, ε
)
x,

obtained from (2.1) by considering conditions in ∆. Note that if (x0, s0) ∈ ∆, then
∑n
j=1 x

0
j ≤ 1, that is why,

it is also useful to introduce the set

D′ :=
{
x ∈ [0,+∞)n ;

n∑
j=1

xj ≤ 1
}
, (2.10)

when dealing with initial conditions in ∆. The next property is well-known for (2.3) (see, e.g., [25, 41]) and
it remains unchanged for (2.1).

Property 2.2. For every u > 0, there is cu > 0 such that for every ε ≥ 0 and for every initial condition in
D, the unique corresponding solution to (2.1) satisfies:

lim inf
t→+∞

s(t) ≥ cu. (2.11)

Proof. Let δu := sup{s ∈ [0, 1] ; max1≤j≤n µj(s) ≤ u
8 }, Since µi(0) = 0 for every 1 ≤ i ≤ n, δu is well-defined.

and we can set cu := min(δu, 1/2). From Lemma 2.1, there is t0 ≥ 0 such that
∑n
j=1 xj(t) ≤ 2 for every t ≥ t0.

If now there is t ≥ t0 such that s(t) ≤ cu, one has

ṡ(t) = −
n∑
j=1

µj(s(t))xj(t) + u(1− s(t)) ≥ −u
8

n∑
j=1

xj(t) +
u

2
≥ −u

4
+
u

2
=
u

4
.

From the preceding inequality, [0, cu] is a repelling set for the dynamics of s which then implies (2.11).

3 Local asymptotic stability

3.1 Existence of a locally stable equilibrium

Throughout the paper, given a symmetric matrix A ∈ Rn×n, we denote by λ(A) its largest eigenvalue.

Lemma 3.1. Let (ε, u) ∈ R+ × R∗+. Then, one has λ(B(0, u, ε)) < 0 and the mapping s 7→ λ(B(s, u, ε)) is
increasing over [0, 1].
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Proof. Observe that B(0, u, ε) = −uIn + εT which implies λ(B(0, u, ε)) = −u < 0. Now, thanks to the
Perron-Frobenius Theorem [8], for every s ∈ [0, 1], λ(B(s, u, ε)) exists and is of multiplicity one. It is also the
unique eigenvalue associated with a positive eigenvector. Recall now that given two quasi-positive irreducible
and symmetric matrices C,D ∈ Rn×n such that ci,j ≤ di,j for every 1 ≤ i, j ≤ n (with a strict inequality
for at least one coefficient), one has λ(C) < λ(D), see [8]. Since for every 1 ≤ i ≤ n, µi is increasing, so is
s 7→ λ(B(s, u, ε)).

Next, we study the existence of a locally stable equilibrium point for (2.1). Doing so, we shall use a result
of [9] about rank one perturbations of a singular M -matrix A = ρ(H)In −H ∈ Rn×n where ρ(H) denotes the
spectral radius of a given matrix H ∈ Rn×n. Let us recall the concept of M -matrix.

Definition 3.1. Given A = (ai,j) ∈ Rn×n, we say that A is an M -matrix if there exists a matrix H ∈ Rn×n
and s > ρ(H) such that

A = sIn −H and s > ρ(H).

Notice that if A is an M -matrix, then its eigenvalues are with nonnegative real parts and ai,j ≤ 0 for i 6= j.
Theorem 2.7 of [9] provides sufficient conditions for a matrix A+ vw> (where v, w ∈ Rn) to be positive stable
if 0 is a geometrically simple eigenvalue of A. We refer to [9] for the precise statement of those conditions.
The next Proposition (point (ii) only) extends the analysis of [13] showing that, depending on the values of
(ε, u), (2.1) has a unique locally stable equilibrium. The notation ‖ · ‖ stands for the euclidean norm in Rn.

Proposition 3.1. (i) If (ε, u) ∈ R∗+ × R∗+ is such that λ(B(1, u, ε)) ≤ 0, then, the washout steady-state Ewo
is the only equilibrium of (2.1) and it is stable. If λ(B(1, u, ε)) < 0, it is globally asymptotically stable.

(ii) If (ε, u) ∈ R∗+ × R∗+ is such that λ(B(1, u, ε)) > 0, then, (2.1) admits a unique locally stable equilibrium
Eε,u := (xε,u, sε,u) ∈ (0,+∞)n × (0, 1) called coexistence steady-state and Ewo is unstable.

Proof. For sake of completeness, we give the proof of (i) which can also be found in [13]. If (x, s) is a
steady-state of (2.1), then {

B(s, u, ε)x = 0,∑n
j=1 µj(s)xj = u(1− s).

(3.1)

The equation B(s, u, ε)x = 0 with x 6= 0 implies that 0 is an eigenvalue, hence λ(B(s, u, ε)) ≥ 0. It is possible
only if s = 1. Indeed, otherwise, since s < 1 ⇒ λ(B(s, u, ε)) < λ(B(1, u, ε)), we would have λ(B(s, u, ε)) < 0
and a contradiction. It follows from (3.1) that any equilibrium verifies x = 0, so, the only equilibrium point
is the washout. The Jacobian of (2.1) at Ewo is the block matrix[

B(1, u, ε) 0
−µ1(1) · · · − µn(1) −u

]
∈ R(n+1)×(n+1).

If λ(B(1, u, ε)) ≤ 0, then, ẋ = B(s, u, ε)x ≤ B(1, u, ε)x, thus there is C1 > 0 such that ‖x(t)‖ ≤ C1‖x(0)‖
for every t ≥ 0. Using that ∆ is attractive for (2.1) (recall Lemma 2.1), we deduce that Ewo is stable. If, in
addition, λ(B(1, u, ε)) < 0, B(1, u, ε) is a Hurwitz matrix, and, thanks to the inequality ẋ ≤ B(1, u, ε)x, we
deduce that x(t)→ 0 as t→ +∞ which proves the desired property using Lemma 2.1.

In case (ii), we find two equilibria depending if s = 1 or s < 1. If s = 1, then x = 0 and the corre-
sponding steady-state is the washout that is unstable since λ(B(1, u, ε)) > 0. The other possible steady-
states satisfy (3.1) with s < 1, so, x ∈ Ker(B(s, u, ε))\{0}. But, the largest eigenvalue of B(s, u, ε) is the
only one with a positive eigenvector (thanks to the Perron-Frobenius Theorem). So, we necessarily have
λ(B(s, u, ε)) = 0 which has a unique solution sε,u (because of the monotonicity of λ(B(·, u, ε)) and the fact
that λ(B(0, u, ε))λ(B(1, u, ε)) < 0). Hence, zero is the Perron root of B(sε,u, u, ε) (it is a simple eigenvalue)
and we denote by aε,u ∈ Rn its Perron vector. We deduce that x necessarily satisfies

x = νaε,u and

n∑
j=1

xj + sε,u = 1,

where ν ∈ R∗+. These two equalities define a unique point xε,u ∈ Rn such that xε,ui > 0 for every 1 ≤ i ≤ n.
Let us now turn to the local asymptotic stability property. Observe that (2.1) is equivalent to∣∣∣∣∣ ẋ = B(b−

∑n
j=1 xj , u, ε)x,

ḃ = u(1− b),
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(recall that b = s+
∑n
j=1 xj). The Jacobian matrix of the preceding system at (xε,u, 1) is

Jε,u :=

[
Aε,u dε,u

0 −u

]
∈ R(n+1)×(n+1),

where dε,u := M ′(sε,u)xε,u ∈ Rn and Aε,u := B(sε,u, u, ε) − dε,ua> ∈ Rn×n is a rank-one perturbation of
B(sε,u, u, ε). For proving our claim, it is then enough to show that Aε,u is a Hurwitz matrix. Observe that one
has −B(sε,u, u, ε) = ρ(H)In − H where H := ρ(B(sε,u, u, ε))In + B(sε,u, u, ε). Hence, −B(sε,u, u, ε) can be
written as a singular M -matrix which is thus non-negative. We can now apply Theorem 2.7 (v) of [9] with the
matrix H (for this, note that dε,u and a have positive coefficients) and deduce that −Aε,u is strictly positive
stable (which means that all eigenvalues of −Aε,u are with positive real parts). We can thus conclude that
Jε,u is a Hurwitz matrix which ends the proof.

In the rest of the paper, we keep the notation aε,u for the Perron vector associated with the 0 eigenvalue
of the matrix B(sε,u, u, ε).

3.2 Occurrence of the washout and coexistence steady-states

In this part, we make more explicit the condition about λ(B(1, u, ε)) which separates washout and coexistence
equilibria in Proposition 3.1. It is convenient to introduce the functions

µ̄(s) :=
1

n

n∑
j=1

µj(s) ; µ̂(s) := max(µ1(s), ..., µn(s)),

which are increasing over R+. Also, we set m := µ̂(1).

Proposition 3.2. For every (ε, u) ∈ R∗+ × R∗+ such that λ(B(1, u, ε)) > 0, one has:

µ̄(sε,u) ≤ u ≤ µ̂(sε,u) ≤ u+ 2ε. (3.2)

In addition, for every (ε, u) ∈ R∗+ × R∗+, the quantity λ(B(1, u, ε)) satisfies the following inequalities:

max
(
µ̂(1)− u− 2ε, µ̄(1)− u

)
≤ λ(B(1, u, ε)) ≤ µ̂(1)− u. (3.3)

Proof. First, observe that B(s, u, ε) ≤ B̂(s) (componentwise) where B̂(s) := max1≤j≤n(µj(s) − u)In + εT ∈
Rn×n, and that both matrices are quasi-positive and irreducible. We can thus deduce that λ(B(s, u, ε)) ≤
λ(B̂(s)) = max1≤j≤n µj(s)− u. This gives the second inequality in (3.3).

Now, for s ∈ [0, 1], we set ζ := λ(B(s, u, ε)) and let x be an eigenvector of B(s, u, ε) with eigenvalue ζ.
Recall from Perron-Frobenius’s Theorem that x > 0. The equality B(s, u, ε)x = ζx rewrites (µ1(s)− u− ε)x1 + εx2 = ζx1,

(µi(s)− u− 2ε)xi + ε(xi+1 + xi−1) = ζxi, 2 ≤ i ≤ n− 1,
(µn(s)− u− ε)xn + εxn−1 = ζxn,

(3.4)

Summing those n equalities with s = sε,u and x = xε,u gives

n∑
j=1

µj(s
ε,u)xε,uj = u

n∑
j=1

xε,uj ,

thus, one obtains u =
∑n
j=1 p

ε,u
j µj(s

ε,u) (where for 1 ≤ i ≤ n, pε,ui :=
xε,u
i∑n

j=1 x
ε,u
j

). Because pε,ui ≤ 1, we deduce

that u ≤ µ̂(sε,u), which gives the second inequality in (3.2). From (3.4) with s ∈ [0, 1], we also get

ζ = µi(s)− u− aiε+ ε
xi+1 + xi−1

xi
, (3.5)

with ai = 2 for 2 ≤ i ≤ n−1, a1 = an = 1, and the convention that x0 = xn+1 = 0. Since xi > 0 for 1 ≤ i ≤ n,
this equality entails

ζ ≥ max
1≤j≤n

µj(s)− u− 2ε.

7



From the preceding inequality, we can deduce the last inequality in (3.2) (taking s = sε,u) and also the
inequality λ(B(1, u, ε)) ≥ µ̂(1)− u− 2ε in (3.3) (taking s = 1).

To conclude, we need to prove the two inequalities in (3.2)-(3.3) involving the mean values of the kinetics.
Doing so, we sum equalities (3.5) which gives

ζ =
1

n

n∑
j=1

µj(s)− u−
2(n− 1)

n
ε+

ε

n

n−1∑
j=1

xj+1

xj
+

n∑
j=2

xj−1

xj

 .
Applying the arithmetic-geometric mean inequality yields

1

n− 1

n−1∑
j=1

xj+1

xj
≥

n−1∏
j=1

xj+1

xj

 1
n−1

=

(
xn
x1

) 1
n−1

;
1

n− 1

n−1∑
j=1

xj−1

xj
≥
(
x1

xn

) 1
n−1

,

which implies

ζ ≥ 1

n

n∑
j=1

µj(s)− u−
2(n− 1)

n
ε+

(n− 1)ε

n

[(
xn
x1

) 1
n−1

+

(
x1

xn

) 1
n−1

]
.

Using that y
1

n−1 +y−
1

n−1 ≥ 2 for every y > 0, we obtain the inequality ζ ≥ µ̄(s)−u. Specializing this inequality
with s = sε,u and s = 1 gives us the left inequalities in (3.2) and (3.3) which concludes the proof.

Thanks to this proposition, we can make the following observations:

• From (3.2)-(3.3), the steady-state Eε,u occurs whenever µ̄(1) > u and this condition does not depend on
the parameter ε.

• Observe also that, thanks to those inequalities, we recover the fact that if u ≥ m, then, only washout
occurs.

For every ε ≥ 0, we can also uniquely define a critical value for the dilution rate

uc(ε) := λ(M(1) + εT ),

which is such that only washout occurs if the dilution rate is such that u ≥ uc(ε) (according to Proposition
3.1 (i)). From (3.3) and the previous remarks, the value uc(ε) satisfies:

∀ε ≥ 0, uc(ε) ∈ [û(ε),m], (3.6)

where û(ε) := max(m − 2ε, µ̄(1)). Interestingly, the presence of mutation in the system implies occurrence
of the washout for values of the dilution rate in the interval [m − 2ε,m) for which the species with the least
break-even concentration would survive (without mutation). In addition, we can observe that the larger the
mutation rate is, the lower the dilution need to be to avoid washout.

We now recall a result related to the differentiability of λ(·) that will be applied several times in this paper.
Given a symmetric quasi-positive matrix A, the largest eigenvalue of A is simple and thus λ(·) is analytic as a
function of its n2 coefficients in some neighborhood of A in the symmetric matrices space (see, e.g., [47, 15]).
In addition, the first derivative of λ(·) (i.e., the matrix whose (i, j) entry is ∂λ

∂ai,j
(A)) is given by

D1λ(A) = ww>, (3.7)

where w denotes the Perron vector associated with λ(A) (see [15, 24]).

Proposition 3.3. The function ε 7→ uc(ε) is non-increasing over R+. In addition, one has uc(0) = m, and
uc(ε)→ µ̄(1) as ε→ +∞.
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Proof. Applying the previous property with the symmetric quasi-positive matrix B(1, 0, ε) = M(1) + εT gives

u′c(ε) =
∑

1≤i,j≤n

∂λ(B(1, 0, ε))

∂bi,j

∂bi,j(1, 0, ε)

∂ε
= (vε)>Tvε ≤ 0,

where vε is the Perron vector associated with B(1, 0, ε) and bi,j(1, 0, ε) denote the n2 entries of B(1, 0, ε). This
shows that uc(·) is non-increasing over R+. Now, from the CEP, we have immediately uc(0) = m. Finally,
using (3.7), we have the expansion

uc(ε) = ελ

(
T +

1

ε
M(1)

)
= ε

[
λ(T ) +

1

ε

a>M(1)a

a>a
+ o

(
1

ε

)]
= µ̄(1) + o(1), (3.8)

as ε→ +∞, which concludes the proof.

3.3 Global stability in the two species case

In this part, we prove that Eε,u is GAS for (2.1) when n = 2 and we also give explicit expressions for the
steady-state and the critical value of the dilution rate. We start by addressing the global stability property.

Proposition 3.4. For n = 2 and (ε, u) ∈ R∗+ × (0, uc(ε)), Eε,u is globally asymptotically stable in D.

Proof. For those initial conditions in the set ∆, (2.1) is equivalent to

ẋ = h(x), (3.9)

where h : D′ → R2 is given by (recall (2.10))

h(x) :=

(
(µ1(1− x1 − x2)− u)x1 + ε(x2 − x1)
(µ2(1− x1 − x2)− u)x2 + ε(x1 − x2)

)
.

If we set ϕ(x1, x2) := 1
x1x2

for x1, x2 > 0, a direct computation shows that the quantity

∂(ϕh1)

∂x1
+
∂(ϕh2)

∂x1
= −εx

2
1 + x2

2

x2
1x

2
2

− µ′1(1− x1 − x2)

x2
− µ′2(1− x1 − x2)

x2
,

is negative in the interior of D′. It follows from the Bendixson-Dulac Theorem that no periodic orbits occurs
in D′ for (3.9). Now, Proposition 3.1 implies that only two equilibria occur, namely the washout (0, 0) which
is unstable and the point xε,u in the interior of D′ which is locally asymptotically stable. Since there are no
periodic orbits, we deduce that xε,u is globally asymptotically stable for (2.1) restricted to ∆. Now, coming
back to (2.1) for n = 2, the sub-system satisfied by x reads

ẋ = h̃(t, x), (3.10)

where h̃ : R× R2 → R2 is defined as

h̃(t, x) :=

(
(µ1(b(t)− x1 − x2)− u)x1 + ε(x2 − x1)
(µ2(b(t)− x1 − x2)− u)x2 + ε(x1 − x2)

)
.

Clearly, h̃(t, x) → h(t, x) uniformly locally w.r.t. x, thus (3.10) is a non-autonomous perturbation of (3.9).
Since every solution to (3.9) converges to xε,u, we deduce from [43] that every solution to (3.10) also converges
to this point. To conclude, let us given a solution (x(·), s(·)) of (2.1). We have proved that x(t)→ xε,u when
t goes to infinity. Since s(t) + x1(t) + x2(t)→ 1 as t→ +∞, we deduce that s(t)→ sε,u as t goes to infinity
which ends the proof.

We now turn to explicit expressions involving the steady-state. The sub-system (x1, x2) of (2.1) rewrites

ẋ = B(s, u, ε)x with B(s, u, ε) =

[
µ1(s)− (u+ ε) ε

ε µ2(s)− (u+ ε)

]
.
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The largest eigenvalue of B(s, u, ε) can thus be explicitly computed:

λ(B(s, u, ε)) = −ε− u+
µ1(s) + µ2(s)

2
+

1

2

√
(µ1(s)− µ2(s))2 + 4ε2. (3.11)

Hence, the coexistence steady-state (xε,u, sε,u) exists provided that λ(B(1, u, ε)) > 0 (see Proposition 3.1)
which amounts to saying that the dilution rate fulfills the inequality

u < uc(1) = −ε+
µ1(1) + µ2(1)

2
+

1

2

√
(µ1(1)− µ2(1))2 + 4ε2.

For a given u satisfying the previous inequality, we can compute sε,u numerically solving λ(B(s, u, ε)) = 0
w.r.t. s, thanks to (3.11) (see Fig. 1). It follows that the dilution rate u is related to sε,u via the equality

u = −ε+
µ1(sε,u) + µ2(sε,u)

2
+

1

2

√
(µ1(sε,u)− µ2(sε,u))2 + 4ε2.

Using that xε,u1 + xε,u2 + sε,u = 1, one also obtains

xε,u1 =
(1− sε,u)(u− µ2(sε,u))

µ1(sε,u)− µ2(sε,u)
; xε,u2 =

(1− sε,u)(u− µ1(sε,u))

µ2(sε,u)− µ1(sε,u)
.

Remark 3.1. The previous expressions of xε,ui are valid if the kinetics do not intersect. If there is a (unique)
s̄ ∈ (0, 1) such that µ1(s̄) = µ2(s̄), then, these expressions are valid only if u 6= µ1(s̄). If u = ū := µ1(s̄), then,
one has sε,ū = s̄ and xε,ū =

(
1−s̄

2 , 1−s̄
2

)
.

Fig. 1 depicts ε 7→ xε,u, ε 7→ sε,u, and ε 7→ uc(ε) for a fixed u > 0 such that species 2 survives when ε = 0
(see the plof of µ1 and µ2 below). We verify numerically that Eε,u → E2 as ε ↓ 0 (see Section 4) and that

uc(0) = max(µ1(1), µ2(1)) and uc(+∞) = µ1(1)+µ2(1)
2 (see (3.8)).

Figure 1: Plot of µ1(s) := s
s+1 (in red) and µ2(s) := 0.7s

0.5+s (in blue) on Fig. left. For u = 0.2 and ε = 0, species

2 survives and λ2(0.2) = 0.2 (recall (2.4)). Next, from left to right, plot of sε,u, xε,u1 , and xε,u2 as a function
of ε ∈ [0, 2]. Fig. right depics uc(ε) illustrating (3.8).

3.4 Illustration of the global stability property for n ≥ 3

In view of the local stability property of Eε,u and the global stability of this equilibrium for n = 2, one can
wonder if this property remains valid for n ≥ 3, ε > 0, and u ∈ (0, uc(ε)). Although we know the behavior of
(2.1) for ε = 0, it turns out that this question is delicate even if ε is arbitrarily small (see also Remark 2.3).
In Section 6, we address this question when ε > 0 is fixed and u is with small enough values.

We present below numerical simulations of solutions to (2.1) for n = 20, ε = 1, and u = 5, see Fig. 2. The
kinetics associated with the species are arbitrary functions of Monod type. Our observations are as follows:

• First, we observe convergence of the system to the coexistence equilibrium for a large set of initial
conditions.

• Interestingly, we also see that even though the system converges to the coexistence equilibrium, very few
species have a significant concentration asymptotically. We shall give an explanation of this phenomenon
in Section 4 for small values of the parameter ε > 0.
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Figure 2: Fig. left : plot of xi(·). Fig. middle: plot of the L∞-norm error ‖x(·)−xε,u‖L∞ between the solution
and the steady-state. Fig. right: plot of the value of species concentrations when t goes to infinity. Data are
such that n = 20, ε = 1, u = 5 and µi(s) = 20s

ai+s
with ai = 1 + 1

2 (10− i)2, 1 ≤ i ≤ 20.

4 Behavior of the coexistence steady state

In this part, we study the behavior of the coexistence equilibrium w.r.t. the parameter ε. Based on the implicit
function theorem, we give an expansion of Eε,u up to the first order as ε ↓ 0 (for a fixed dilution rate u) and
we also study its limit as ε→ +∞. Recall that m = µ̂(1).

Proposition 4.1. Suppose that u ∈ (0,m) and that there is a unique 1 ≤ i0 ≤ n such that λi0(u) =
min1≤i≤n λi(u) < +∞. Then, there exist ξ ∈ Rn and σ > 0 such that when ε ↓ 0, the following expansion is
fulfilled:

Eε,u = Ei0 + ε(ξ, σ) + o(ε). (4.1)

In addition, the vector ξ and σ are given by (with the convention that ξ0 = ξn+1 = 0):

ξj = 0 if j ∈ {1, ..., n}\{i0 − 1, i0, i0 + 1},

ξj =
1−λi0

(u)

u−µj(λi0 (u)) if j ∈ {i0 − 1, i0 + 1}\{0, n+ 1},

ξi0 = −ξi0−1 − ξi0+1 − σ,
σ = − ti0,i0

µ′i0
(λi0

(u)) .

(4.2)

Proof. Since 0 < u < m, one has m− 2ε > u for ε small enough, thus, (3.6) implies that u < û(ε) ≤ uc(ε) so
that the steady-state Eε,u exists for every ε > 0 small enough.

Now, for convenience, we write Ei0 as Ei0 = (x∗, s∗). We start by proving that the mapping ε 7→ sε,u

is of class C1 in some right neighborhood of ε = 0. Doing so, let θ > 0 and let us define the open set
Dθ := (−θ, 1)× (0, 1). Consider the C1 mapping B̃ : Dθ → Rn×n given by B̃(ε, s) := B(s, u, ε) for (ε, s) ∈ Dθ

(here u = µi0(s∗) > 0 is fixed). Note that for every (ε, s) ∈ Dθ, the matrix B̃(ε, s) is symmetric quasi-positive
and that for ε = 0, zero is the largest and simple eigenvalue of B̃(0, s∗) = M(s∗)− uIn (observe that B̃(0, s∗)
is diagonal with n distinct eigenvalues). It follows that λ(·) is analytic as a function of its n2 coefficients in
some neighborhood of B̃(0, s∗) in the space of symmetric matrices. Since B̃(·, ·) is of class C1 w.r.t. (ε, s),
there are θ′ > 0 and ν > 0 small enough such that the composition

(ε, s) 7→ ϕ(ε, s) := λ(B̃(ε, s))

is of class C1 over (−θ′, θ′)×(s∗−ν, s∗+ν). For ε = 0, the unitary eigenvector of B̃(0, s∗) for the zero eigenvalue
is the i0-th vector w = ei0 of the canonical basis of Rn. It follows from (3.7) that ∂ϕ

∂s (0, s∗) = µ′i0(s∗) > 0. So,
we can apply the implicit function theorem locally around (0, s∗). Hence, the mapping ε 7→ sε,u is of class C1

over (−ε0, ε0), and in particular in some right neighborhood of ε = 0. In addition, one has:

∀ε ∈ (−ε0, ε0), ϕ(ε, sε,u) = 0.

By differentiating the preceding equality w.r.t. ε and letting ε ↓ 0, we find

∑
1≤i,j≤n

∂λ(B̃(0, s∗))

∂b̃i,j

∂b̃i,j(0, s
∗)

∂ε
+ µ′i0(s∗)

dsε,u

dε |ε=0

= 0, (4.3)
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where b̃i,j(0, s
∗) denote the n2 entries of B̃(0, s∗). Combining (3.7) and (4.3), we obtain

ti0,i0 + µ′i0(s∗)
dsε,u

dε |ε=0

= 0,

which implies dsε,u

dε |ε=0
= σ and the desired expansion of sε,u up to the first order as in (4.1)-(4.2).

Let us now turn to the expansion of xε,u w.r.t. ε. Doing so, let us consider the C1 mapping ψ : (−θ, θ)×
Rn → Rn+1 defined as

ψ(ε, x) :=
(
B̃(ε, sε,u)x,

n∑
j=1

xj − 1
)
,

whose differential w.r.t. x at (0, x∗) satisfies

Dxψ(0, x∗)h =
(
B̃(0, s∗)h,

n∑
j=1

hj

)
.

We can check that the kernel of Dxψ(0, x∗) is reduced to {0}, so, Dxψ(0, x∗) is invertible. Hence, by the
implicit function theorem, we can conclude that ε 7→ xε,u is of class C1 in some neighborhood of ε = 0. To
obtain the desired expansion of xε,u, let us write xε,u = x∗ + εd+ o(ε). Since

∑n
j=1 x

ε,u
j + sε,u = 1, one has

σ +

n∑
j=1

dj = 0. (4.4)

Expanding B(sε,u, u, ε) w.r.t. ε up to the first order, we get:

0 = B(sε,u, u, ε)xε,u = B(s∗ + σε+ o(ε), u, ε)xε,u

= (M(s∗ + σε+ o(ε))− uIn + εT )xε,u

= (M(s∗)− uIn + εT + σM ′(s∗)ε+ o(ε))(x∗ + εd+ o(ε))

=
(
Tx∗ + σM ′(s∗)x∗ + (M(s∗)− uIn)d

)
ε+ o(ε),

using the relation (M(s∗)− uIn)x∗ = 0 in the last equality. Hence, we deduce that

Tx∗ + σM ′(s∗)x∗ + (M(s∗)− uIn)d = 0,

which gives
(Tx∗)j + σµ′j(s

∗)x∗ + (µj(s
∗)− u)dj , 1 ≤ j ≤ n.

In the case where 1 < i0 < n, we obtain (4.2) for j ∈ {1, ..., n}\{i0} from the preceding equation. For j = i0,
(4.4) gives (4.2). A similar computation gives (4.2) whenever i0 = 1 or i0 = n, which concludes the proof.

From Proposition 4.1, species of index i0 is the only one with a positive value at the zero order. Observe
that it satisfies the inequality ξi0 < λi0(u). In addition, only neighbors of i0 (i.e., species with index i0 − 1 or
i0 + 1) are significant up to the first order. Species with index j /∈ {i0 − 1, i0, i0 + 1} are (asymptotically) not
significant w.r.t. species with index i0 − 1 and i0 + 1. We now turn to the case where ε tends to +∞.

Proposition 4.2. For every u ∈ (0, µ̄(1)), the point Eε,u has a limit when ε→ +∞ and

lim
ε→+∞

Eε,u =
(1− µ̄−1(u)

n
a, µ̄−1(u)

)
. (4.5)

Proof. Using the implicit function theorem locally around each ε > 0, we deduce that the derivative of ε 7→ sε,u

w.r.t. ε exists and is non-negative (see the proof of Proposition 3.3). Hence, sε,u is non-increasing, and thus
it admits a limit su as ε goes to infinity because sε,u ∈ [0, 1], for every ε > 0. By definition of sε,u we have:

0 = λ (B(sε,u, u, ε)) = ελ

(
T +

M(sε,u)

ε

)
− u

= ε

[
λ

(
T +

M(sε,u)

ε

)
− λ

(
T +

M(su)

ε

)]
+ ελ

(
T +

M(su)

ε

)
− u

= ε

[
λ

(
T +

M(sε,u)

ε

)
− λ

(
T +

M(su)

ε

)]
+

1

n

n∑
j=1

µj(s
u)− u+ o(1),
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using the same expansion as in (3.8). As λ(·) is of class C1 in some neighborhood of T , it is in particular
locally Lipschitz, so, the first term goes to 0 as ε goes to infinity (using that M(·) is also of class C1 and that
sε,u → su as ε → +∞). Hence, one must have µ̄(su) = u, that is su = µ̄−1(u). Let us now turn to the limit
of xε,u as ε→ +∞. From the proof of Proposition 3.1, the vector xε,u satisfies the system

M(sε,u)xε,u − uxε,u + εTxε,u = 0, (4.6)

and it is proportional to aε,u:

xε,u =
1− sε,u∑n
j=1 a

ε,u
j

aε,u. (4.7)

Since for every ε > 0, ‖aε,u‖ = 1, there is ãu ∈ Rn with ‖ãu‖ = 1 such that, up to a sub-sequence, one has
aε,u → ãu. By passing to the limit in (4.6), we find that T ãu = 0, thus ãu = a√

n
. Now, ãu is also the limit of

every converging sub-sequence of (aε,u)ε, hence ãu is the limit of (aε,u)ε. Letting ε→ +∞ in (4.7) then gives
(4.5), which ends the proof.

Even if the case ε→ +∞ may have no meaning from an application point of view, this result shows that
species are asymptotically uniformly distributed.

5 Persistence of all the species

In this section, we give an extension of [13, Theorem 3] showing that each species (individually) is persistent.
We refer to [40, 44, 45] for the mathematical theory of persistence. The persistence result in [13] is related
to the total biomass (i.e., the sum of the concentrations of the species). In our setting, it can be stated as
follows.

Theorem 5.1 ([13]). There is c > 0 such that for every (ε, u) ∈ R∗+× (0, uc(ε)) and every initial condition in
the set D, the unique solution of (2.1) associated with this initial condition satisfies

lim inf
t→+∞

n∑
j=1

xj(t) ≥ βε,u := c
min1≤j≤n v

ε,u
j

max1≤j≤n v
ε,u
j

, (5.1)

where vε,u is the Perron vector associated with the matrix B(1, u, ε).

Remark 5.1. It follows that for every (ε, u) ∈ R∗+ × (0, uc(ε)), one has (recall (2.11)):

cu ≤ lim inf
t→+∞

s(t) ≤ lim sup
t→+∞

s(t) ≤ 1− βε,u < 1, (5.2)

for every solution to (2.1) starting in D. Section 6.1 investigates the particular case where ε > 0 and u = 0.

Before proving that each species is uniformly persistent, let us recall some definitions of [10, 20] about
the notion of persistence. Hereafter, the interior, resp. the boundary of a set A ⊂ Rn is denoted by Int(A),
resp. ∂A, B(x, r) denotes the open ball of center x ∈ Rn and radius r > 0. Finally, for every r > 0, we define
S(A, r) := {x ∈ Rn ; d(x,A) ≤ r} where d is a distance over Rn and d(x,A) := infa∈A d(x, a). Consider now
a differential equation ẋ = f(x) where f : Rn → Rn is smooth and such that every solution to this equation
is global. Let us denote by F the associated flow.

Definition 5.1. Given two non-empty subsets Y,Z ⊂ Rn, the sets W±(Y) stand respectively for

W+(Y) := {x ∈ Z ; ω(x) ⊂ Y} ; W−(Y) := {x ∈ Z ; α(x) ⊂ Y},

where ω(x) and α(x) denote respectively the ω-limit and α-limit sets of some point x ∈ Rn for the flow F .

Definition 5.2. Let E be a non-empty closed subset of Rn that is forward invariant by F . We say that
F is uniformly persistent related to E if there is κ > 0 such that for every initial condition in Int(E), the
corresponding solution x(·) satisfies

lim inf
t→+∞

d(x(t), ∂E) > κ, (5.3)

where d is a distance over Rn
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In the next theorem, we show that each species is uniformly persistent. The proof is based on (5.1).

Theorem 5.2. For every (ε, u) ∈ R∗+ × (0, uc(ε)), there exists γε,u > 0 such that for every initial condition
in the set D, the unique solution of (2.1) associated with this initial condition satisfies

lim inf
t→+∞

xi(t) ≥ γε,u, (5.4)

for every 1 ≤ i ≤ n.

Proof. Fix ε > 0, u ∈ (0, uc(ε)), and consider the sets Eη given by

Eη :=
{

(x, s) ∈ Rn+ × [0, 1] ; s+

n∑
j=1

xj ≤ 1 + η
}
,

where η > 0. Obviously, Eη is a closed subset of Rn+ × [0, 1] that is positively invariant by (2.1). In addition,
it is easily seen that its boundary satisfies

∂Eη =
{

(x, s) ∈ Rn+ × [0, 1] ; ∃ i ∈ {1, ..., n}, xi = 0 or s = 0 or

n∑
j=1

xj + s = 1 + η
}
.

Let (x0, s0) ∈ D be an initial condition and let us denote by (x(·), s(·)) the corresponding solution of (2.1).
From Property 2.1, one has xi(t) > 0 for every t > 0 and 1 ≤ i ≤ n. In addition, b(t) → 1 as t → +∞ and
s(·) cannot approach 0 because of (5.2). We deduce in particular that S(∂Eη, 1)∩ Int(Eη) is point dissipative
(see [10, 20]), which means the following:

∀(x0, s0) ∈ S(∂Eη, 1) ∩ Int(Eη), ∀t > 0, (x(t), s(t)) ∈ Int(Eη).

We now show that the maximal invariant subset N of ∂Eη by (2.1) is acyclic5 and isolated. First, observe
that N = {0Rn} × [0, 1 + η] using Property 2.1. Considering now the distance d over R+ × [0, 1] defined as

d((x, s), (x′, s′)) :=

n∑
j=1

|xj − x′j |+ |s− s′|,

for (x, s), (x′, s′) ∈ R+ × [0, 1], one has using (5.1)

lim inf
t→+∞

d((x(t), s(t)), N) = lim inf
t→+∞

n∑
j=1

xj(t) ≥ βε,u > 0,

for every solution of (2.1) starting in D. If now N and ∂Eη stand respectively for Y and Z in Definition 5.1,
the previous inequality implies that W+(N) = N . Hence N is necessarily acyclic.

Finally, the set N is isolated because for every initial condition (x0, s0) ∈ D\N , (5.1) implies the existence
of t0 ≥ 0 such that

∀t ≥ t0, d((x(t), s(t)), N) =

n∑
j=1

xj(t) ≥
βε,u

2
> 0.

We are now in a position to use [20, Theorem 4.3] which asserts that the flow defined by (2.1) is uniformly
persistent related to the set Eη provided that there is δ > 0 such that

W+(N) ∩ S(∂Eη, δ) ∩ Int(Eη) = ∅. (5.5)

But, (5.5) is clearly verified with δ := 1 because W+(N) ∩ S(∂Eη, δ) ⊂ N ⊂ ∂Eη, so we have proved that for
every η > 0, the flow defined by (2.1) is uniformly persistent related to the set Eη. To conclude the proof,
fix η > 0 and apply (5.3) with Eη in place of E. Note that Property 2.1 and Lemma 2.1 imply that every
solution is necessarily with values in Int(Eη) over R∗+. Hence, we deduce that there exists κ > 0 such that

lim inf
t→+∞

d((x(t), s(t)), ∂Eη) ≥ κ,

5This property amounts to verify that Nc ∩W−(N) ∩W+(N) = ∅ where Nc is the complement of N in Eη , see [10, 20] or
[26, 45] for a more detailed definition.
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for every solution starting in D. In view of the definition of ∂Eη, we can write ∂Eη =
⋃n
i=1 Fi ∪ F̃ where

Fi := {(x, s) ∈ Rn+ × [0, 1] ; xi = 0} and F̃ is the complement of
⋃n
i=1 Fi in Eη. It follows that for every

1 ≤ i ≤ n and every initial condition in Int(Eη), one has

κ ≤ lim inf
t→+∞

d((x(t), s(t)), ∂Eη) ≤ lim inf
t→+∞

d((x(t), s(t)), Fi) = lim inf
t→+∞

xi(t). (5.6)

Finally, for every initial condition (x0, s0) ∈ D, there is a time t′0 ≥ 0 such that for every time t ≥ t′0, the
associated solution to (2.1) satisfies (x(t), s(t)) ∈ Int(Eη). Combining this property with (5.6) then yields the
desired property (5.4) with γε,u := κ.

6 Global stability property of (2.1)

6.1 Asymptotic behavior of (2.1) with u = 0

We start by studying (2.1) in batch mode, i.e., we take u = 0. This will be useful to prove Theorem 6.2. The
dynamics of x then becomes

ẋ = M(s(t))x+ εTx. (6.1)

If ε = 0, the solution (x(·), s(·)) of (2.3) converges to some point (x∞, 0) ∈ ∆ such that
∑n
j=1 x

∞
j = b(0). So,

we suppose in what follows that ε > 0.

Proposition 6.1. If u = 0 and ε > 0, every solution (x(·), s(·)) of (2.1) starting in D satisfies

lim
t→+∞

(x(t), s(t)) =
(b(0)

n
a, 0
)
.

Proof. Observe that the mapping t 7→ s(t) decreases over R+, and that s ≥ 0. Thus, s(·) necessarily converges
to some value s̄. By Barbalat’s Lemma, limt→+∞ ṡ(t) exists and is zero. Suppose now by contradiction that
s̄ > 0. It follows that

∑n
j=1 xj(t) → b(0) − s̄ and that b(0) − s̄ > 0 because x(0) ∈ D. Hence, there is t0 ≥ 0

such that for every t ≥ t0, one has

ṡ(t) = −
n∑
j=1

µj(s(t))xj(t) ≤ −υ
n∑
j=1

xj(t) ≤ −υ
b(0)− s̄

2
,

where υ := 1
2 min1≤j≤n(µj(s̄)). We have thus obtained a contradiction with the fact that ṡ(t)→ 0 as t→ +∞.

Let us now come back to (6.1) which is a non-autonomous perturbation of the linear system

ẋ = εTx. (6.2)

In order to apply the theory of asymptotically autonomous system [43], we need to rewrite (6.2) in the
orthogonal of Ra in such a way that the corresponding autonomous dynamics possesses a unique globally
asymptotically stable equilibrium (this is not the case with (6.2) since zero is an eigenvalue of T ). Doing so, we
know that there exists an invertible matrix P ∈ Rn×n such that P−1TP = D where D := diag(0, α2, ..., αn)
with αi < 0 for 2 ≤ i ≤ n. In addition, without any loss of generality, we may assume that the first
column of P is exactly equal to the vector a (that is collinear to the Perron vector of T ), and we also set
D̃ := diag(α2, ..., αn) ∈ R(n−1)×(n−1). Multiplying (6.1) on the left by P−1 then gives6∣∣∣∣ ẏ = (P−1M(s(t))x)1,

ż = (P−1M(s(t))x)−1 + εD̃z,
(6.3)

where x = P

(
y
z

)
. Next, the ODE satisfied by z can be rewritten

ż = F (t, z) + εD̃z,

6Given v ∈ Rn, the notation v−1 indicates that v = (v1, v−1) with v−1 ∈ Rn−1 (v−1 is the vector obtained from v by removing
the first component).
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where F : R+ × Rn−1 → Rn−1 is defined by

F (t, z) :=

(
P−1M(s(t))P

(
y(t)
z

))
−1

.

Since s(t)→ 0 when t→ +∞ and y(·) is bounded, the preceding system is a non-autonomous perturbation of
the linear system

ż = εD̃z. (6.4)

Now, one has F (t, z) → 0 when t → +∞ uniformly locally w.r.t. z and observe that every solution to (6.4)
converges to zero. We deduce from [43] that every solution (y(·), z(·)) to (6.3) is such that z(t) → 0 when
t→ +∞. Coming back to the original variable x, the solution x(·) can be written

x(t) = y(t)a+ o(1).

To conclude, observe that t 7→ b(t) is constant. Thus, for every t ≥ 0,

b(0) = b(t) =

n∑
j=1

xj(t) + s(t) = ny(t) + o(1).

Hence, y(t)→ b(0)/n as t→ +∞, which ends the proof.

Remark 6.1. This proposition shows that if ε > 0 and u = 0, then, every species concentration converges

to the same value b(0)
n as t → +∞. In that case, any solution to (2.1) converges to the point

(
b(0)
n a, 0

)
that

depends on the initial condition.

6.2 Global stability for ε > 0 and u small enough

Let us first recall Corollary 2.3 of [42] which is a fundamental result about global stability of a perturbed
steady-state. Let k ≥ 1, and G, U two closed subsets of Rn and Rk respectively. Consider a continuous
function g : G× U → Rn, (x, u) 7→ g(x, u) where u ∈ U is a parameter. Suppose that Dxg(x, u) exists and is
continuous over G× U and that solutions x(·, x0, u) to the Cauchy Problem∣∣∣∣∣ ẋ = g(x, u),

x(0) = x0,
(6.5)

are unique and remain in G for every time t ≥ 0 and every (x0, u) ∈ G× U .

Theorem 6.1 ([42]). Let (x?, u?) ∈ G × U be such that x? ∈ Int(G) and g(x?, u?) = 0. Suppose that the
matrix Dxg(x?, u?) is Hurwitz and that x? is globally attracting for solutions to (6.5) with u = u?. If there is
a non-empty compact set K ⊂ G such that for each (x0, u) ∈ G× U , x(t, x0, u) ∈ K for t large enough, then,
there are r > 0 and a unique point x?(u) ∈ G for every u ∈ B(u?, r) such that g(x?(u), u) = 0 and:

∀u ∈ B(u?, r), ∀x0 ∈ G, x(t, x0, u) −−−−→
t→+∞

x?(u). (6.6)

Remark 6.2. This result also applies if x? is on the boundary of G provided that the dynamics g can be
extended to a C1 mapping in some convex neighborhood of x? (see [42, Corollary 2.3]).

The next lemma is based on Proposition 5.1 (see [13]) and it will be useful to prove Theorem 6.2.

Lemma 6.1. For every (ε, u1) ∈ R∗+ × (0, uc(ε)), there is βε > 0 such that for every u ∈ [0, u1] and every
initial condition in D, the unique solution of (2.1) associated with this initial condition satisfies

lim inf
t→+∞

n∑
j=1

xj(t) ≥ βε.
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Proof. Let (ε, u1) ∈ R∗+ × (0, uc(ε)). Given u ∈ [0, u1], the Perron vector vε,u associated with the greatest
eigenvalue of the matrix B(1, u, ε) is the unique solution to the system{

B(1, u, ε)w − λ(B(1, u, ε))w = 0,
‖w‖ − 1 = 0.

Now, consider the C1-mapping

ψ̃ : (u,w) ∈ [0, u1]× Rn 7→ ψ̃(u,w) :=
(
B(1, u, ε)w − λ(B(1, u, ε))w,

‖w‖2 − 1

2

)
∈ Rn+1.

Its partial derivative w.r.t. w at the point (u, vε,u) ∈ [0, u1]× Rn is given by:

∂ψ̃

∂w
(u, vε,u) =

(
B(1, u, ε)− λ(B(1, u, ε))In, v

ε,u
)
.

Hence, if w is in the kernel of ∂ψ̃
∂w (u, vε,u), it satisfies B(1, u, ε)w = λ(B(1, u, ε))w and vε,u · w = 0 (here, ·

is the scalar product in Rn). The first equality implies that there is ν ∈ R such that w = νvε,u. Using the

second equality, we find that ν = 0, thus w = 0 and ∂ψ̃
∂w (u, vε,u) is invertible. Thanks to the implicit function

theorem, we obtain that way that u 7→ vε,u is locally continuous around every u ∈ [0, u1], thus it is continuous
over [0, u1]. Now, Proposition 5.1 of [13] implies that

lim inf
t→+∞

n∑
j=1

xj(t) ≥ c min
1≤j≤n

vu,εj .

Since the mapping u 7→ vε,u is continuous over [0, u1], so is u 7→ min1≤j≤n v
u,ε
j , hence,

lim inf
t→+∞

n∑
j=1

xj(t) ≥ βε := c min
u∈[0,u1]

min
1≤j≤n

vu,εj .

Because u 7→ min1≤j≤n v
u,ε
j is positive and continuous over [0, u1], we get that βε > 0 which ends the proof.

We now give our main result about the global stability of the steady-state Eε,u when ε > 0 is fixed and u
is with small enough values.

Theorem 6.2. For every ε > 0, there is us(ε) ∈ (0, uc(ε)] such that for every u ∈ (0, us(ε)), the steady-state
Eε,u is globally asymptotically stable.

Proof. First, Proposition 3.2 implies that for every u > 0 such that u < uc(ε), then one has λ(B(1, u, ε)) > 0.
Therefore, for every u ∈ (0, uc(ε)), the point Eε,u is the unique locally asymptotically stable point of (2.1) in
D. We start by proving the result for those initial conditions that are in the set ∆. Fix u1 ∈ (0, uc(ε)). The
dynamics of x can be then written ẋ = g(x, u) where g : G× U → Rn is defined as

g(x, u) := B
(

1−
n∑
j=1

xj , u, ε
)
x,

with G := D′ (recall (2.10)) and U := [0, u1]. We set x? := a
n , u? = 0. We are then in a position to verify the

hypotheses of Theorem 6.1:

• At (x?, u?), one has g(x?, u?) = 0 and x? ∈ ∂G since
∑n
j=1 x

?
j = 1 ;

• The Jacobian matrix of g w.r.t. x at (x?, u?) writes

Dxg(x?, u?) = B
(

1−
n∑
j=1

x?j , u
?, ε
)
− d0 a

> = εT − d0 a
>,

where d0 := M ′(0)x? (recall the proof of Proposition 3.1 (ii)). It is a rank one perturbation of εT . By
using a similar argumentation as in the proof of Proposition 3.1 (ii), we can check that it is Hurwitz ;
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• By extending µi as a C1 function over R, the dynamics g can be extended to a C1 function in (G ∩
B(x?, δ))× U for every δ > 0 ;

• The set K := {x ∈ G ; βε ≤
∑n
j=1 xj ≤ 1} is compact, and according to Lemma 6.1, for every u ∈ [0, u1]

and for t large enough, one has x(t) ∈ K for every solution to ẋ = g(x, u).

We can then apply Theorem 6.1 which implies the existence of u0 ∈ (0, u1] such that for every u ∈ [0, u0], the
point xε,u is GAS for the dynamics restricted to ∆.

We now consider initial conditions in D and let u ∈ (0, u0] be fixed. The first n equations in (2.1) write

ẋ = B
(
b(t)−

n∑
j=1

xj , u, ε
)
x.

This system is a non-autonomous perturbation of the autonomous system ẋ = g(x, u) since b(t) → 1 when
t → +∞. Using a similar argumentation as in the proof of Proposition 6.1 (see [43]), we deduce that for
every initial condition x0 ∈ [0,+∞)n\{0}, one has x(t)→ xε,u as t→ +∞. Now, given some initial condition
(x0, s0) ∈ D for system (2.1), one has b(t)→ 1 as t→ +∞. So, one has s(t)→ sε,u as t→ +∞ which shows
that for every u ∈ [0, u0], then Eε,u is GAS.

We now argue that the same reasoning can be employed starting from the point xε,u0 (which is GAS)
in place of x?. We obtain that way the existence of u′0 > u0 such that Eε,u is GAS for every u ∈ [u0, u

′
0].

Repeating this argumentation, one can define

us(ε) := sup{u0 ∈ (0, uc(ε)) ; ∀u ∈ [0, u0], Eε,u is GAS}.

This concludes the proof.

Showing that Eε,u is GAS for every (ε, u) ∈ R∗+ × (0, uc(ε)) seems a difficult question that could deserve
further investigations based on results of Section 5 (Theorem 5.2). We can make the following observations:

• If us(ε) = uc(ε), then we have the desired property. But, at this step, we only know that us(ε) ≤ uc(ε).
If us(ε) < uc(ε), note that Eε,u remains LAS for every u ∈ [us(ε), uc(ε)), i.e., no bifurcation occurs at
u = us(ε). So, one can wonder if in this setting, such a loss of global stability is possible or not.

• Another approach consists in showing that Eε,u is GAS for every u > 0 provided that ε > 0 is small
enough using a similar result as in Lemma 6.1, and proceeding as in the proof of Theorem 6.2. One
should prove that for every u ∈ (0, µ̄(1)), there is a constant γ′u > 0 (that does not depend on ε) such
that

lim inf
t→+∞

xi0(t) ≥ γ′u,

for every ε small enough and every solution of (2.1), where species i0 wins the competition in absence
of mutation.

In the next table, we summarize asymptotic properties about (2.1) that have been established in this paper
(including also the case without mutation, under the hypotheses of Theorem 2.17).

7 Conclusion and perspectives

In this paper, we could extend some results of [13] showing that the coexistence steady-state of (2.1) is always
LAS and in particular GAS provided that the dilution rate is small enough (assuming only that kinetics are
of Monod type). Let us emphasize that in contrast with the chemostat system, mutation implies coexistence,
i.e., each species is present asymptotically. Future works could investigate global stability via a Lyapunov
approach at least for ε > 0 small enough taking into account the knowledge of a Lyapunov function for ε = 0.
Asymptotic stability properties could be also addressed with more complicated mutation terms such as in
[1, 29]. As well, most properties proved in this paper are still valid if the kinetics are only increasing, hence,
one can wonder if such properties remain valid with more sophisticated growth functions such as Haldane’s
kinetics. Finally, it could be also interesting to study continuous models describing the growth of a population
structured by a phenotypical trait living in a limited substrate environment (see [36]).

7As in Theorem 2.1, we do not mention here the (non-generic) cases where the dilution rate u would be such that u = µi(s) =
µj(s) for some indexes i 6= j and s ∈ (0, 1).
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u
ε ε = 0 ε > 0

u = 0 Convergence into ∆̂ Convergence to
(
b(0)
n a, 0

)
0 < u < us(ε) Ei0 GAS in Di0 Eε,u GAS in D

us(ε) ≤ u < uc(ε) Ei0 GAS in Di0 Eε,u LAS
u = uc(ε) Ewo S in Rn+ × [0, 1] Ewo S in Rn+ × [0, 1]
u > uc(ε) Ewo GAS in Rn+ × [0, 1] Ewo GAS in Rn+ × [0, 1]

Table 1: Summary of asymptotic properties of (2.1). Here, ∆̂ := {(x, s) ∈ ∆ ; s = 0}, Di0 := Ei0 × [0, 1],
Ei0 := {x ∈ Rn+ ; xi0 6= 0} and D = (Rn+\{0})× [0, 1]. The abbreviations S, LAS, and GAS stand respectively
for stable, locally asymptotically stable, globally asymptotically stable.
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