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Introduction

In the whole paper, we fix an integer n ≥ 2. Let O(2, n) be the orthogonal group of a non-degenerate symmetric bilinear form < ., . > of signature (2, n) on R n+2 and let O 0 (2, n) be its identity component. We study the link between Anosov representations of hyperbolic groups into O 0 (2, n) and conformally flat spacetimes. Roughly speaking, we show how to construct a spatially compact globally hyperbolic maximal conformally flat spacetime starting from an Anosov representation. Except in a particular case, we prove that this spacetime contains a region which can be interpreted as a black hole.

1.1. Conformally flat spacetimes. A Lorentzian manifold is conformally flat if each point has a neighborhood that can be mapped into the flat Minkowski space R 1,n by a conformal isometry. In a Lorentzian manifold M , since the signature of the metric is (1, n), we distinguish three type of vectors : spacelike, lightlike and timelike, which correspond to vectors of positive, null and negative norm respectively. A curve in M is spacelike, lightlike or timelike according to the type of the tangent vectors. Non-spacelike curves are said to be causal. A Lorentzian manifold is called spacetime if it is oriented an admits a time orientation, i.e., an orientation of every causal curve. In a spacetime, the lightlike cone of a point p is the union of all the lightlike curves going through p. We denote it by L(p). A spacetime is strongly causal if every point admits a neighborhood U such that any causal curve with extremities in U is contained in U . The causality of spacetimes is developed in Section 2.1. In this paper, we deal with two conformally flat spacetimes models : anti-de Sitter space and Einstein universe. Detailed descriptions of these spaces are given in Section 2.2 and Section 2.3 respectively.

The anti-de Sitter space AdS 1,n is the Lorentzian analogue of the hyperbolic space H n+1 . It is a spacetime, of constant sectional curvature -1. The group O 0 (2, n) is precisely the group of orientation and time-orientation preserving isometries of AdS 1,n (see Section 2.4).

The anti-de Sitter space AdS 1,n admits a conformal boundary called the Einstein universe and denoted by Ein 1,n-1 , which is the Lorentzian analogue of the conformal boundary S n of the hyperbolic space H n . The Einstein universe is a conformal Lorentzian spacetime; it means that Ein 1,n is an oriented manifold equipped with a conformal class of Lorentzian metrics. Since the type of vectors is invariant under conformal changes of metrics, we also have a causality notion in Ein 1,n . A subset Λ of the Einstein space Ein 1,n-1 is called acausal if any pair of distinct points in Λ are the extremities of a spacelike geodesic in AdS 1,n . The group O (2, n) acts by conformal isometries on Ein 1,n-1 . In particular, the isometries of O 0 (2, n) are orientation and time-orientation preserving. Since Ein 1,n-1 is conformally flat, it follows that (O 0 (2, n), Ein 1,n-1 )-spacetimes are conformally flat. By a Lorentzian version of Liouville's theorem (see Theorem 2.3), when n ≥ 3, the group O(2, n) coincides with the group of conformal isometries of Ein 1,n-1 . Besides, the elements of O 0 (2, n) are exactly those which are orientation and time-orientation preserving (see Section 2.4). Therefore, conformally flat spacetimes of dimension n ≥ 3 are exactly those which are locally modeled on the Einstein spacetime, i.e. equipped with a (O 0 (2, n), Ein 1,n-1 )-structure (see Section 2.5). Similarly to the Riemannian case where H n embeds conformally in the conformal sphere S n , the anti-de Sitter space AdS 1,n embeds conformally in Ein 1,n . Actually, we can say more: Ein 1,n is the union of two conformal copies of AdS 1,n glued along their conformal boundary Ein 1,n-1 .

(1.1.1). Spatially compact globally hyperbolic spacetimes. In a spacetime M , a causal curve γ is said to be inextensible if there is no curve in M that extend γ. A spacetime M is globally hyperbolic (abbrev. GH) if there is a Riemannian hypersurface S in M such that every inextensible causal curve intersects S in a unique point. In this case, S is called a Cauchy-hypersurface of M . Besides, if S is compact, the spacetime M is said to be spatially compact (abbrev. CGH). The CGH spacetimes are studied in Section 2.1.

(1.1.2). Maximality. Let M and N two globally hyperbolic conformally flat spacetimes. A Cauchy-embedding of M into N is a conformal embedding which send every Cauchy hypersurface of M on a Cauchy hypersurface of N . A globally hyperbolic conformally flat spacetime M is said to be maximal if every Cauchy embedding into any other spacetime is onto (see Section 2.5).

1.2. Anosov representations. Anosov representations were introduced by F. Labourie [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF] for fundamental groups of closed negatively curved surfaces and extended by O. Guichard and A. Wienhard to arbitrary Gromov hyperbolic groups [START_REF] Weinhard | Anosov representations : domain of discontinuity and applications[END_REF]. In fact, it turns out that any finitely generated group admitting an Anosov representation is Gromov hyperbolic. This is a consequence of a general result obtained by M. Kapovitch, B. Leeb and J. Porti on quasi-isometric embeddings of metric spaces satisfying a certain condition (see [START_REF] Kapovich | A morse lemma for quasigeodesics in symmetric spaces and euclidean buildings[END_REF], Theorem 1.4). Later, it has been proved again in a more elementary way, by J. Bochi, R. Potri and A. Sambarino (see [START_REF] Bochi | Anosov representations and dominated splittings[END_REF], sections 3 and 4). Throughout this paper, we adopt the definition used in [START_REF] Guichard | Tameness of riemannian locally symmetric spaces arising from anosov representations[END_REF] (taken from [START_REF] Guéritaud | Anosov representations and proper actions[END_REF]) which assume that the represented group is Gromov hyperbolic (from now on, we simply say hyperbolic). Besides, we focus only on Anosov representations into O 0 (2, n). Lastly, let us point out that Anosov representations can be thought, in many respects, as a generalization to a higher rank setting, of convex cocompact representations into rank one simple groups (see [START_REF] Weinhard | Anosov representations : domain of discontinuity and applications[END_REF], [START_REF] Danciger | Convex cocompactness in pseudoriemannian hyperbolic spaces[END_REF]).

Roughly speaking, P 1 -Anosov representations of hyperbolic groups into O 0 (2, n) are group representations preserving some dynamical properties. The definition involves, on one hand, the dynamic under the action of a hyperbolic group on its Gromov boundary; and on the other hand, the dynamic under the action of O 0 (2, n) on the Einstein universe Ein 1,n-1 . A hyperbolic group Γ is a convergence group for its action on its Gromov boundary ∂Γ i.e. for any infinite sequence of distinct elements γ n in Γ, there exist a subsequence {γ n k } k , an attracting point ξ + and a repelling one ξ -in ∂Γ such that the maps {γ n k } k converge uniformly on compact subsets of ∂Γ\{ξ -} to the constant map sending ∂Γ\{ξ -} to ξ + . This dynamical property of hyperbolic groups is well studied in [START_REF] Kapovich | Boundaries of hyperbolic groups[END_REF]. In the Einstein universe, we observe an almost similar dynamic for the action of sequences of O 0 (2, n) satisfying the property of being P 1 -divergent (see Section 3.1 for the definition). For every P 1 -divergent sequence of elements g n in O 0 (2, n), there exist a subsequence {g n k } k , an attracting point x + and a repelling one x -in Ein 1,n-1 such that the maps {g n k } k converge uniformly on compact subsets of the complementary in Ein 1,n-1 of the lightlike cone L(x -) of x -to the constant map sending Ein 1,n-1 \L(x -) to x + . The limit set of a subgroup G of O 0 (2, n) is the set of all attracting and repelling points of P 1 -divergent sequences of G. This dynamic is described in details in Section 3.1. Now, we can give a precise definition of P 1 -Anosov representations. Let Γ be a hyperbolic group. We denote by ∂Γ the Gromov boundary of Γ.

A representation

ρ : Γ -→ O 0 (2, n) is P 1 -Anosov if
(1) every sequence of pairwise distinct elements in ρ(Γ) is P 1 -divergent;

(2) there exist a continuous, ρ-equivariant boundary map ξ :

∂Γ -→ Ein 1,n-1 which is (a) transverse, meaning that every pair of distinct points (η, η ′ ) in ∂Γ is sent to the pair (ξ(η), ξ(η ′ )) in Ein 1,n-1 × Ein 1,n-1 such that ξ(η) is not contained in the lightlike cone of ξ(η ′ ); (b) dynamics-preserving, meaning that if η is the attracting fixed point of some element γ ∈ Γ in ∂Γ, then ξ(η) is an attracting fixed point of ρ(γ) in Ein 1,n-1 .
In this case, the limit set of ρ(Γ) coincides with ξ(∂Γ) (see Section 3.2).

A subset Λ of Ein Given a P 1 -Anosov representation with negative limit set, we construct an invariant open domain Ω of Ein 1,n on which the image of the representation acts properly discontinuously. We prove that the quotient manifold M is a conformally flat CGHM spacetime. Since Ein 1,n is the union of two copies of AdS 1,n glued along their conformal boundary Ein 1,n-1 , the open domain Ω ⊂ Ein 1,n meets each of these copies in an AdSregular domain E i (i = 1, 2). The quotient manifolds M i = ρ(Γ)\E i are strongly causal spacetimes which embed in M . When the limit set is not a topological (n -1)-sphere, we observe in M i a phenomenon which can be interpreted as a black hole (see [START_REF] Bañados | Geometry of the 2+1 black hole[END_REF], [START_REF] Bañados | Black hole in three-dimensional spacetime[END_REF], [START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi black-holes[END_REF]) and that we describe in Section 5.3.

Lastly, we introduce in Section 5.1 the space of causal geodesics which is a central element in the proof of spatial compactness in Theorem 1.1.

1.3. The space of causal geodesics. In Section 2.2 and in Section 2.3, we describe geodesics of anti-de Sitter space and Einstein universe respectively. Both are obtained by intersection with 2-planes of R n+2 . Timelike geodesics of AdS 1,n correspond to 2-planes where the restriction of < ., . > is negative definite. Therefore, the space T 2n of timelike geodesics of AdS 1,n admits a realization as the open subset

X = {P ∈ Gr 2 (R n+2 ) : < x, x > < 0, ∀x ∈ P } in the Grassmannian space Gr 2 (R n+2 ). Its closure X = {P ∈ Gr 2 (R n+2 ) : < x, x > ≤ 0, ∀x ∈ P } contains besides negative-definite 2-planes,
• isotropic 2-planes, i.e. 2-planes such that the restriction of < ., . > is degenerate, corresponding to lightlike geodesics of AdS 1,n ; • totally isotropic 2-planes corresponding to lightlike geodesics of Ein 1,n-1 .

The space X is identified with the space containing timelike geodesics of AdS 1,n , lightlike geodesics of AdS 1,n and lightlike geodesics of Ein 1,n-1 , called the space of causal geodesics. We denote it by C. In section 4, we prove the following fact.

Proposition 1.1. The topological boundary of X in Gr 2 (R 2,n ) is a topological manifold homeomorphic to the space P(Ein 1,n ) of lightlike geodesics of Ein 1,n .
The group O 0 (2, n) acts transitively on X. The isotropy group of an element P in X is equal to SO(2)×SO(n) which is a maximal compact subgroup of O 0 (2, n). Therefore, the manifold X is diffeomorphic to the Riemannian symmetric space O 0 (2, n)/SO(2)×SO(n) and thus, so do T 2n . Any discrete subgroup G of O(2, n) acts properly discontinuously by isometries on the Riemannian symmetric space T 2n of O 0 (2, n). The quotient space G\T 2n is a locally symmetric space which is non-compact except if G is a uniform lattice in O (2, n). In [START_REF] Guichard | Tameness of riemannian locally symmetric spaces arising from anosov representations[END_REF], Section 4, O. Guichard, F. Kassel and A. Wienhard give a compactification of G\T 2n when G is the image of an Anosov representation and prove the following result. Theorem 1.2. Let Γ be a hyperbolic group and ρ : Γ -→ O 0 (2, n) a P 1 -Anosov representation with boundary map ξ :

∂Γ -→ Ein 1,n-1 . Let U = {ϕ ∈ C : ϕ ∩ ξ(∂Γ) = ∅}
be the subspace of causal geodesics that avoid the limit set ξ(∂Γ) of ρ(Γ). Then, the action of ρ(Γ) on U is properly discontinuous and cocompact. The set U contains the Riemannian symmetric space T 2n and ρ(Γ)\U is a compactification of ρ(Γ)\T 2n .

In [START_REF] Guichard | Tameness of riemannian locally symmetric spaces arising from anosov representations[END_REF], this theorem is stated in a general setting and in an algebraic way while we state it here in the setting of Lorentzian geometry. Moreover, we give a geometrical proof of it in section 4. Our theorem 1.1 is a consequence of this result.

1.4. Organization of the paper. In Section 2 we recall some basic definitions in Lorentzian geometry. In particular we give descriptions of anti-de Sitter and Einstein spaces. In Section 3 we recall the notions of limit set and Anosov representations of hyperbolic groups into O 0 (2, n). In Section 4 we introduce the space of causal geodesic and give a geometrical proof of Theorem 1.2. We devote Section 5 to prove our main theorem 1.1. In particular, we show that Theorem 1.1 gives us a family of examples of spacetimes with black holes.

Preliminaries

2.1. The causal structure of spacetimes. For the convenience of the reader, we recall some basic definitions in Lorentzian geometry. In the whole paper, we denote by (n, p, r) the signature of a quadratic form q where n, p, r are respectively the numbers of negative, positive and zero coefficients in the polar expression of the quadratic form q. When q is non-degenerate, we just write (n, p).

(2.1.1). Spacetimes. A Lorentzian (n + 1)-manifold is a smooth (n + 1)-manifold M equipped with a nondegenerate symmetric 2-form g of signature (1, n) called Lorentzian metric. A non-zero tangent vector v is timelike (resp. lightlike, spacelike) if g(v, v) is negative (resp. null, positive). We say that v is causal if it is non-spacelike. In each tangent bundle, the cone of causal vectors has two connected components. The Lorentzian manifold M is time-orientable if it is possible to make a continuous choice, in each tangent bundle, of one of them. A causal tangent vector is said to be future if it is in the chosen one and past otherwise. More precisely, a time orientation is given by a timelike vector field X. A tangent vector v in T p M is future-oriented if g p (v, X(p)) < 0 and past-oriented if g p (v, X(p)) > 0. Remark that up to a double cover, M is always time-orientable.

Definition 2.1.

A spacetime is a connected, oriented and time-oriented Lorentzian manifold.

The basic examples of spacetimes are Minkowski, de-Sitter and anti-de Sitter spaces which are the spacetimes of constant sectional curvature respectively equal to 0, 1, and -1. They are the Lorentzian analogues of the Riemannian manifolds of constant sectional curvature : the euclidean space, the sphere and the hyperbolic space respectively. In this paper, we will focus, in particular, on the anti-de Sitter space (see Section 2.2).

A differential causal curve (resp. timelike, lightlike, spacelike) of a spacetime M is a curve C 1 on M such that at every point, the tangent vector to the curve is causal (resp timelike, lightlike, spacelike). As for Riemannian manifold, it is possible to define the Levi-Civita connection on M which is the unique torsion-free connection on the tangent bundle of M preserving its Lorentzian metric. Also, a geodesic of M is a curve such that parallel transport along the curve preserves tangent vectors to the curve. However, geodesics are not considered as a minimizing curves anymore since a Lorentzian metric does not provide a distance on the spacetime. Since the type of tangent vectors to a geodesic is the same along the curve, the type of a geodesic of a spacetime is always well-defined. A lightlike geodesic is called a photon. A causal curve is said to be futureoriented (resp. past-oriented) if all tangent vectors to the curve are future-oriented (resp. past-oriented). It is possible to generalize the definition of future (resp.past) causal curve to piecewise differential curves. An important notion in the study of spacetimes is the causality. By causality we refer to the general question on which points in a spacetime can be joined by causal curves; on the relativity point of view, which events can influence a given event. This motivates the following definitions.

The causal future J + U (A) (resp. chronological future I + U (A)) of a subset A of spacetime M relatively to an open subset U containing A is the set of future-ends of piecewisesmooth causal curves (resp. timelike) starting from a point of A contained in U . Similarly, we define the causal past J - U (A) (resp. chronological past I - U (A)) of a subset A of spacetime M relatively to an open subset U containing A by remplacing future by past in the definition. If U = M , we just write J ± (A) (resp. I ± (A)) instead of J ± M (A) (resp. I ± M (A)). A spacetime M could contain subsets where no point is causally related to another. A subset A of M is achronal (resp. acausal) if no timelike (resp. causal) curve meets A more than once.

(2.1.2). Conformal spacetimes. A conformal Lorentzian manifold is a smooth manifold equipped, no longer with a single Lorentzian metric, but with a conformal class of Lorentzian metrics. Notice that conformal changes of metrics does not change the type of tangent vectors since in each tangent space, the metric is multiplied by a positive scalar. However, geodesics are not preserved by conformal changes of metrics except lightlike geodesics. Theorem 2.1. Let (M, g) a pseudo-Riemannian manifold. Then, lightlike geodesics are the same, up to parametrization, for all metrics conformally equivalent to g.

A proof of this theorem is given in [START_REF] Frances | Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique[END_REF]. A conformal spacetime is a connected, oriented, time-oriented conformal Lorentzian manifold. An important example of conformal spacetime is the Einstein universe which is the Lorentzian analogue of the conformal sphere in Riemannian geometry (see Section 2.3).

(2.1.3). Globally hyperbolic spacetimes. An important causal property of spacetimes is the global hyperbolicity.

Definition 2.2. A spacetime M is globally hyperbolic (abbrev. GH) if

(1) M is causal which means that it contains no causal loop;

(2) for every distinct points p and q in M , the intersection J + (p)∩ J + (q) is compact.

There is another equivalent definition of globally hyperbolic spacetimes which uses the notion of Cauchy hypersurface. Definition 2.3. Let M be a spacetime. A Cauchy hypersurface is an acausal hypersurface S in M that intersect every inextensible causal curve in M in exactly one point.

In [START_REF] Geroch | Global aspects of the cauchy problem in general relativity[END_REF], the following statement is proven.

Theorem 2.2. A spacetime is globally hyperbolic if and only if it contains a Cauchy hypersurface.

In a GH spacetime, the Cauchy hypersurfaces are homeomorphic one to the other. Consequently, if one of them is compact, all of them are compact. 

(p) = J + (p) ∩ U . Let q ∈ J + U (p). Since M is GH, the intersection J + (p) ∩ J -(p) is compact. Thus, J + U (p) ∩ J + U (p) = J + (p) ∩ J -(p) ∩ U is a compact subset of U .
(2.1.4). Maximality. We introduce here the notion of maximality for conformal spacetimes. Let M and N be two globally hyperbolic conformal spacetimes. Definition 2.6. A conformal embedding f : M -→ N is a Cauchy embedding if there exists a Cauchy hypersurface S of M such that f (S) is a Cauchy hypersurface of N . Definition 2.7. A globally hyperbolic conformal spacetime M is C-maximal if every Cauchy-embedding of M into another globally hyperbolic conformal (resp. conformally flat) spacetime is onto.

2.2. The anti-de Sitter space. Let R 2,n the vector space R n+2 , with coordinates (u, v, x 1 , . . . , x n ), endowed with the nondegenerate quadratic form of signature (2, n)

q 2,n (u, v, x 1 , . . . , x n ) := -u 2 -v 2 + x 2 1 + • • • + x 2 n .
We denote by < ., . > the associated symmetric bilinear form. For any subset A of R 2,n , we denote by A ⊥ the orthogonal of A for < ., . >. Definition 2.8. The anti-de Sitter space AdS 1,n is the hypersurface {x ∈ R 2,n : q 2,n (x) = -1} endowed with the Lorentzian metric obtained by restriction of q 2,n .

The tangent space on each point x of AdS 1,n coincides with x ⊥ . In the coordinates (r, θ, x 1 , . . . , x n ) with u = r cos θ v = r sin θ one can easily see that AdS 1,n is diffeomorphic to S 1 × R n and thus is oriented. Besides, a time-orientation is given by the vector field ∂ ∂θ . Anti-de Sitter space is a spacetime with constant sectional curvature equal to -1.

Observe the analogy with the definition of hyperbolic space. As for hyperbolic space, geodesics of AdS 1,n are intersections with 2-planes (see [START_REF] Rossi | Espace-temps globalement hyperboliques conformément plats[END_REF] for the proof). The signature of the quadratic form q 2,n restricted to a given 2-plane P determines the nature of the associated geodesic. If it is equal to

• (2, 0) then P gives a timelike geodesic;

• (1, 0, 1) then P gives a lightlike geodesic;

• (1, 1) then P gives a spacelike geodesic. As for the hyperbolic space, anti-de Sitter space has different models, namely, the Klein model and the conformal model.

(2.2.1). The Klein model of the anti de-Sitter space. Let S(R 2,n ) be the quotient of R 2,n by positive homotheties. Remark that S(R 2,n ) is a double covering of P(R 2,n ). We denote by π the projection of R 2,n onto S(R 2,n ).

The Klein model ADS 1,n of the anti-de Sitter space is the projection of AdS 1,n to S(R 2,n ). The restriction of the projection π to AdS 1,n is one-to-one. We equip ADS 1,n with the Lorentzian metric such that π is a one-to-one isometry between AdS 1,n and ADS 1,n .

The topological boundary ∂ADS 1,n of ADS 1,n is the projection of the lightlike cone onto S(R 2,n ). The continous extension of the isometry between AdS 1,n and ADS 1,n is a canonical homeomorphism betwen AdS 1,n ∪ ∂AdS 1,n and ADS 1,n ∪ ∂ADS 1,n .

In this model, geodesics are the projection of 2-planes. Moreover, the discussion above around the link between the type of the 2-plane and the type of the geodesic it determines, still holds.

The projection of AdS 1,n in the projective space P(R 2,n ) also gives a model of the anti-de Sitter space. We denote it by AdS 1,n . In this model, geodesics are still the projection of 2-planes in the projective space. The Klein model ADS 1,n is a double covering of AdS 1,n .

(2.2.2). The conformal model of the anti de-Sitter space. We denote by

• H n the upper hemisphere of the n-dimensional sphere S n ;

• dθ 2 the standard Riemannian metric on S 1 ;

• ds 2 0 the restriction to H n of the standard Riemannian metric on S n . Proposition 2.2. The anti-de Sitter space AdS 1,n is conformally isometric to H n × S 1 endowed with the Lorentzian metric (ds 2 0dθ 2 ).

A proof of this statement is given in [START_REF] Barbot | Deformations of Fuchsian AdS representations are quasi-Fuchsian[END_REF], Section 2, Proposition 2.4.

The Einstein universe.

We denote by π the projection of R 2,n into S(R 2,n ). Let C be the lightlike cone of R 2,n . Let us consider the projection of C in S(R n+2 ). Since the metric q 2,n is of signature (2, n), the lightlike cone C is connected and so do π(C). Given two sections ϕ, ϕ ′ : π(C) -→ C, an easy computation shows that the two Lorentzian metrics on π(C) obtained by the pull back of q 2,n by ϕ and ϕ ′ are conformally equivalent. Therefore, π(C) can be naturally endowed with a conformal class of Lorentzian metrics. The Einstein universe is the space π(C) endowed with this conformal class of Lorentzian metrics. We denote it by Ein 1,n-1 . This is the Klein model of the Einstein universe. Now, let S be the Riemannian sphere of radius √ 2 of R 2,n . The projection π defines a one-to-one conformal isometry between S ∩ C, endowed with the restriction of the quadratic form q 2,n , and the Einstein universe. Besides, it is easy to see that S ∩ C endowed with the restriction of the quadratic form q 2,n is isometric to S n-1 × S 1 endowed with the Lorentzian metric (ds 2dθ 2 ), where ds 2 and dθ 2 are the standard Riemannian metrics on S n-1 and S 1 respectively. Hence, the space S n-1 × S 1 endowed with the conformal class [ds 2dθ 2 ] is conformally isometric to the Einstein universe. It is the conformal model of the Einstein universe.

Remark that in the definition of the Einstein universe, we could consider the projection of the lightlike cone C in the projective space P(R 2,n ). It gives us another model of the Einstein universe we denote by Ein

1,n-1 . Notice that Ein 1,n-1 is a double covering of Ein 1,n-1 .
According to Proposition 2.2, the anti-de Sitter space AdS 1,n embeds conformally in the Einstein universe Ein 1,n . Moreover, its boundary ∂AdS 1,n is the Einstein universe Ein 1,n-1 . Actually, it follows from Proposition 2.2 that Ein 1,n is the union of two conformal copies of AdS 1,n and of their conformal boundary Ein 1,n-1 .

Each model of the Einstein universe gives simple descriptions of causal curves and lightlike geodesics (see [START_REF] Rossi | Maximal extension of conformally flat globally hyperbolic spacetimes[END_REF], Section 2.2). In the Klein model, lightlike geodesics are the projections of isotropic 2-planes. Besides, the lightlike cone of a point p is the intersection of Ein 1,n-1 with p ⊥ . In the conformal model S n-1 × S 1 , lightlike geodesics are, up to parametrization, the curves (x(t), e 2iπt ) where x is a geodesic of the Riemannian sphere S n-1 parametrized by its arc length. Causal (timelike) curves are, up to parametrization, the curves (x(t), e 2iπt ) where x is a (stricly) 1-Lipchitz map from R to the Riemannian sphere S n-1 .

Since the Einstein universe is compact, each point is causally related to any other point (see [START_REF] Rossi | Maximal extension of conformally flat globally hyperbolic spacetimes[END_REF], Section 2.2, Corollary 2). Hence, the causal structure of Einstein space gives no information. However, the universal covering Ein 1,n-1 has a rich causal structure, in particular, it is globally hyperbolic. The universal covering of Ein 1,n-1 is identified to S n-1 × R endowed with the conformal class [ds 2dt 2 ] where dt 2 is the canonical metric over R. Let p : Ein 1,n-1 -→ Ein 1,n-1 the universal covering map. Since it is a conformal map, the projection of any causal curve of Ein 1,n-1 is a causal curve of Ein 1,n-1 . Conversely, any causal curve of Ein 1,n-1 lifts to a causal curve of Ein 1,n-1 . It follows that causal (timelike) curves of Ein 1,n-1 are, up to parametrization, the curves (x(t), t) where x is a (stricly) 1-Lipchitz map from R to the Riemannian sphere S n-1 .

Moreover, lightlike geodesics are, up to parametrization, the curves (x(t), t) where x is a geodesic of the Riemannian sphere S n-1 parametrized by its arc length. Therefore, the future and the past of a point (x 0 , t 0 ) in Ein 1,n-1 are given by

I + (x 0 , t 0 ) = {(x, t) ∈ S n-1 × S 1 : d 0 (x, x 0 ) < t -t 0 } I -(x 0 , t 0 ) = {(x, t) ∈ S n-1 × S 1 : d 0 (x, x 0 ) < t 0 -t}
where d 0 is the distance on the sphere. If we replace the strict inequalities by large inequalities in the sets above, we obtain the causal future and the causal past of (x 0 , t 0 ). Remark that for any point (x 0 , t 0 ) in Ein 1,n-1 , the subsets J + (x 0 , t 0 ) and J -(x 0 , t 0 ) are closed in Ein 1,n-1 . This doesn't hold if we replace the point (x 0 , t 0 ) by any subset of Ein 1,n-1 . However, it holds for compact subsets.

Proposition 2.3. Let K be a compact of Ein 1,n-1 . Then, there are two continuous maps f, g : S n-1 -→ R such that

J + (K) = {(x, t) ∈ Ein 1,n-1 : f (x) ≤ t} and J -(K) = {(x, t) ∈ Ein 1,n-1 : t ≤ g(x)}. Proof. Take f (x) = inf (x 0 ,t 0 )∈K {d 0 (x, x 0 ) + t 0 } et g(x) = sup (x 0 ,t 0 )∈K {t 0 -d 0 (x, x 0 )}. Remark 2.1. Two points (x, t), (x ′ , t ′ ) in Ein 1,n-1 are necessarily causally related if |t -t ′ | ≥ π.
Let consider the map σ : Ein 1,n-1 -→ Ein 1,n-1 defined as the product of the two antipodal maps of S n-1 and S 1 . It lifts to a map σ : Ein 1,n-1 -→ Ein 1,n-1 which associates to (x, t) the point (-x, t + π). This is clearly a conformal map. Definition 2.9. Two points of the universal Eintein universe are conjugate if one is the image by σ of the other.

Remark 2.2. The inextensible lightlike geodesics of Ein 1,n-1 starting from a point p of Ein 1,n-1 have common intersections at all the points σ k (p) for k in Z. Outside these points, they are pairwise disjoint.

Remark 2.3. The fundamental group of Ein 1,n-1 is isomorphic to Z and is identified with the cyclic group generated by the map δ = σ 2 . The fundamental group of Ein 1,n-1 is also isomorphic to Z and is identified with the cyclic group generated by the map σ.

It easily follows from the description of causal curves that Ein 1,n-1 is globally hyperbolic with Cauchy hypersurfaces isomorphic to S n-1 . Definition 2.10. For every p 0 ∈ AdS 1,n , we define the affine domain U (p 0 ) associated to p 0 as the intersection of Ein 1,n-1 with the projection in S(R 2,n ) of the half space {p ∈ R 2,n : < p, p 0 > < 0}.

Remark 2.4. If we take p 0 = (1, 0, . . . , 0), we observe that the affine domain U (p 0 ) identifies with the open subset {(x, e 2iπt ) ∈ S n-1 × S 1 : 0 < t < π} of the conformal model of the Einstein universe. Definition 2.11. For every t ∈ R, the subset

S n-1 ×]t, t + π[ of Ein 1,n-1 is an affine domain of Ein 1,n-1 .
Remark 2.5. The universal covering p of the Einstein universe is one-to-one on every affine domain and the image is an affine domain of Ein 1,n-1 .

Proposition 2.4. Any acausal subset

Λ of Ein 1,n-1 is contained in an affine domain of Ein 1,n-1 . Proof. Let us consider the projection p 2 : S n-1 × R -→ R. According to Remark 2.1, for every distinct points (x, t), (x ′ , t ′ ) in Λ, we have |t -t ′ | < π. Therefore, p 2 (Λ) is bounded; besides, m = inf p 2 (Λ) and M = sup p 2 (Λ) satisfy M -m ≤ π. Thus, there exists t 0 ∈ [m, m + π] such that Λ ⊂ S n-1 ×]t 0 , t 0 + π[. In Ein 1,n-1 ≃ (S n-1 × R, [ds 2 -dt 2 ]
), every achronal (resp. acausal) subset A is precisely the graph of a 1-Lipschitz (resp. 1-contracting) function f : Λ 0 → R where Λ 0 is a subset of S n-1 endowed with its canonical metric d 0 . The subset A is closed if and only if Λ 0 is closed. In particular, the achronal (resp. acausal) embedded topological hypersurfaces are exactly the graphs of 1-Lipschtiz (resp. 1-contracting) functions f : S n-1 → R: they are topological (n -1)-spheres.

Although there is no acausal and achronal subsets of Ein 1,n-1 , we can ask the following question:

Can two distinct points of Ein 1,n be lifted to points of Ein 1,n-1 which are not extremities of a causal curve? The following proposition gives an answer to this question. Proposition 2.5. Two distinct points p and q of Ein 1,n-1 can be lifted to points p and q of Ein 1,n-1 respectively which are not extremities of a causal (resp. timelike) curve if and only if the sign of < p, q > is negative (resp. non-positive). This is a consequence of Lemma 10.13 in [START_REF] Andersson | Cosmological time versus CMC time in spacetimes of constant curvature[END_REF]. From Proposition 2.5, one can define acausal (resp. achronal) subsets of Ein 1,n-1 as the subsets which can be lifted to acausal (achronal) subsets of Ein 1,n-1 . Definition 2.12. A subset Λ of Ein 1,n-1 is achronal (resp. acausal) if for every distinct points x, y in Λ, the scalar product < x, y > is non-positive (resp. negative).

Remark 2.6. A subset Λ of Ein 1,n-1 = ∂AdS 1,n is acausal if and only if every distinct points x, y in Ein 1,n-1 can be related with a spacelike geodesic of anti-de Sitter space. 

(2, n).
The proof of this proposition uses the following lemma. Lemma 2.1 (Proposition 2.1, Section 2, Chap. 1 in [START_REF] Rossi | Espace-temps globalement hyperboliques conformément plats[END_REF]). Let M be a Lorentzian manifold.

If f : M → M is an isometry which fixes a point x ∈ M such that d x f is the identity on T x M , then f is the identity on M . Proof of Proposition 2.6. It is clear that O(2, n) acts transitively on the frame bundle F(M ) of M . Since O(2, n) ⊂ Isom(AdS 1,n ), the action of Isom(AdS 1,n ) on F(M ) is also transitive. Moreover, by Lemma 2.1, this action is free; therefore so is the action of O(2, n). It follows that Isom(AdS 1,n ) = O(2, n). The identity component O 0 (2, n)
is made of isometries which preserves the orientation of R 2,n and the orientation of its timelike plans. It follows that O 0 (2, n) is the group of orientation and time-orientation preserving isometries of AdS 1,n .

(2.4.2). Conformal isometries of Einstein space. In Riemannian geometry , Liouville's theorem states that a conformal mapping between two open subsets of the sphere S n (for n ≥ 3) is the restriction of a Möbius transformation. A consequence of this theorem is that the conformal isometry group of the sphere S n is isomorphic to O(1, n). Similarly, in Lorentzian geometry, there is an analogue of Liouville's theorem.

Theorem 2.3 (Liouville). A conformal mapping between two open subsets of the Einstein universe Ein 1,n-1 (for n ≥ 3) is the restriction of an element of O(2, n).

A proof of a general version of this theorem stated in the setting of pseudo-Riemannian metrics is given by C. Frances in [START_REF] Frances | Une preuve du théorème de Liouville en géométrie conforme dans le cas analytique[END_REF] Chap. 2. The orthogonal group O(2, n) acts by conformal isometries on Ein 1,n-1 (see Lemma 2.6, Section 2.3, Chap. 2 of [START_REF] Rossi | Espace-temps globalement hyperboliques conformément plats[END_REF]). An immediate consequence of this fact and Liouville's theorem is the following proposition.

Proposition 2.7. The conformal isometry group of Ein

1,n-1 (for n ≥ 3) is isomorphic to O(2,

n). Moreover, the group of orientation and time-orientation preserving conformal isometries of Ein

1,n-1 is isomorphic to O 0 (2, n).
(2.4.3). Conformal isometries of universal Einstein space. Let us denote by Õ(2, n) the group of conformal transformations of Ein 1,n-1 and let Õ0 (2, n) be the group of orientation and time-orientation preserving conformal transformations of Ein 1,n-1 .

Every conformal transformation f of Ein

1,n-1 lifts to a conformal transformation f of Ein 1,n-1 such that p • f = f • p. Conversely, every conformal transformation of Ein 1,n-1 defines a conformal transformation of the quotient space Ein 1,n-1 = Ein 1,n-1 / < δ >. Thus, there is a surjective morphism j : Õ(2, n) -→ O(2, n) and its kernel is generated by < δ >. Notice that the image of Õ0 (2, n) by this morphism is O 0 (2, n). It must be clear to the reader that Õ(2, n) (resp. Õ0 (2, n)) is not the universal covering of Õ(2, n) (resp. Õ0 (2, n)).
Throughout this paper, we will only consider isometries and conformal isometries which preserves orientation and time-orientation, i.e. elements of O 0 (2, n) or Õ0 (2, n).

Conformally flat spacetimes.

A spacetime M is conformally flat if it is locally conformally isometric to the Minkowski space. It turns out that the Einstein universe is conformally flat. This comes from the fact that the flat Minkowski spacetime conformally embeds in the Einstein universe (see [START_REF] Rossi | Espace-temps globalement hyperboliques conformément plats[END_REF], Chap. 2, Section 2.7). Since the action of the group O(2, n) on Ein 1,n-1 is transitive, every point of the spacetime Ein 1,n-1 has a neighborhood conformally equivalent to R 1,n-1 . It follows that any spacetime locally modeled on Ein 1,n-1 , i.e. equipped with a (O 0 (2, n), Ein 1,n-1 )-structure, is conformally flat. By the Lorentzian version of Liouville theorem (see Theorem 2.3), the inverse is true in dimension at least 3. More precisely, any conformally flat spacetime of dimension equal or greater than 3 is locally modeled on the Einstein universe. Remark that since the anti-de Sitter space conformally embeds in the Einstein spacetime, it is conformally flat.

(2.5.1). Maximality. We defined in Section 2.1 a notion of maximality for globally hyperbolic conformal spacetimes. In fact, we can extend this definition to any category of spacetimes (see [START_REF] Rossi | Maximal extension of conformally flat globally hyperbolic spacetimes[END_REF], Section 1, Definition 2), in particular for the category C 0 of conformally flat spacetimes. Definition 2.13. A globally hyperbolic conformally flat spacetime M is C 0 -maximal if every Cauchy-embedding of M into another globally hyperbolic conformally flat spacetime is onto.

Since conformally flat spacetimes are conformal spacetimes, every C-maximal spacetime is C 0 -maximal. Conversely, C. Rossi proves in [START_REF] Rossi | Espace-temps globalement hyperboliques conformément plats[END_REF] that every C 0 -maximal spacetime is C-maximal.

Anosov representations

In this section, we recall the notions of limit set and Anosov representations. Let B = {e 1 , . . . , e n+2 } be a basis of R 2,n such that for every x ∈ R 2,n with coordinates (x 1 , . . . , x n+2 ) in the basis B, we have

q 2,n (x) = x 1 x n+2 + x 2 x n+1 + x 2 3 + . . . + x 2 n+2 .
3.1. Dynamic on the projective space.

(3.1.1). Cartan decomposition.

Let K = O(n + 2) ∩ O 0 (2, n) be a maximal compact subgroup of O 0 (2, n) which is isomorphic to SO(2) × SO(n). Let A + be the Weyl chamber of O 0 (2, n) defined as follow A + := {             e λ e µ 1 . . . 1 e -µ e -λ             ; λ ≥ µ ≥ 0}
The group O 0 (2, n) admits the Cartan decomposition O 0 (2, n) = KA + K: any g in O 0 (2, n) may be written g = k g a g l g for some k, l in K and a unique a in A + called Cartan projection of g (see [START_REF] Helgason | Differential geometry, Lie groups, and symmetric spaces[END_REF], Chap. IX, Thm 1.1).

(3.1.2). P 1 -divergence. Let {g i } i be a sequence of O 0 (2, n). For every i ∈ N, we denote by λ i and µ i the exponents appearing on the diagonal of the Cartan projection of g i .

Definition 3.1. The sequence {g i } i is P 1 -divergent if lim(λ i -µ i ) = +∞.
Let us describe the dynamic on the projective space P(R 2,n ) under the action of P 1divergent sequences of O 0 (2, n) . We denote by [x] the equivalence class of a vector x ∈ R 2,n in P(R 2,n ). For every i ∈ N, let a i be the Cartan projection of g i . Proof. We denote by ||.|| the euclidean norm on R n+2 . We consider on the projective space the distance defined for every lines p, p ′ with respective direction vectors x and x ′ by d(p, p ′ ) = min{||xx ′ ||, ||x + x ′ ||}. We have [e n+2 ] ⊥ = {[x 1 : . . . : x n+2 ], x 1 = 0}. Let C be a compact of P(R 2,n ) disjoint from [e n+2 ] ⊥ . There exist η > 0 such that for every [1 : x 2 : . . . :

x n+2 ] ∈ C, we have |x i | ≤ 1
η for i = 2, . . . , n + 2. It follows that for every p = [1 : x 2 : . . . :

x n+2 ] ∈ C d(a i .p, [e 1 ]) = d(e -λ i a i .p, [e 1 ]) ≤ 1 η 2 (e 2(µ i -λ i ) + ne -2λ i + e -2(µ i +λ i ) + e -4λ i ). Thus, lim sup p∈C d(a i .p, [e 1 ]) = 0.

Corollary 3.1.

There is a subsequence {g i j } j such that

• for every j ∈ N, g i j = k i j a i j l i j where {k i j } and {l i j } are sequences of K converging on the projective space towards maps k, l in K; • the sequence {g i j } j converge uniformly on compact subset of the complementary of the q 2,n -orthogonal of p -= l -1 [e n+2 ] towards the constant map

p + = k[e 1 ].
The points p + and p -are respectively called the attracting and the repelling points of {g i } i .

Since e 1 and e n+2 are isotropic vectors of R 2,n , the points [e 1 ] and [e n+2 ] belong to Ein 1,n-1 . Moreover, since the elements k, l lies in K = O 0 (2, n) ∩ O(n + 2), the points p + = k[e 1 ] and p -= l -1 [e n+2 ] still belong to Ein 1,n-1 . Recall that in the Einstein space, p ⊥ -is the lightlike cone of p -. Hence, Corollary 3.1 can be rephrased in the Einstein universe as follow.

Corollary 3.2.

There is a subsequence {g i j } j and there are points p + and p -in Ein 1,n-1 such that {g i j } j converge uniformly on compact subsets outside the lightlike cone of p - towards the constant map p + .

(3.1.3). Limit set. Let H be a discrete subgroup of O 0 (2, n). Definition 3.2. The limit set Λ H of H is the set of the attracting and repelling points of P 1 -divergent sequences H.

The limit set is well-studied in [START_REF] Guivarch | Produits de matrices aléatoires et applications aux propriétés géometriques des sous-groupes du groupe linéaire[END_REF]. In particular, the following proposition is proven.

Proposition 3.2. The limit set Λ H of H is a closed, H-invariant subset of Ein 1,n-1 .

Anosov-representations.

Let Γ be a hyperbolic group and ∂Γ its Gromov boundary. We do not recall here the definition of hyperbolic group; we direct the reader to [START_REF] Guéritaud | Anosov representations and proper actions[END_REF], Section 2.1 for the basics of Gromov hyperbolic groups' theory. Recall that Γ is a convergence group for its action on ∂Γ: for any divergent sequence {γ n } n of Γ, there exist a subsequence {γ n k } k and points ξ + and ξ -in ∂Γ such that {γ n k } k converge uniformly on compact subsets of ∂Γ\{ξ -} towards the constant map ξ + (see [START_REF] Kapovich | Boundaries of hyperbolic groups[END_REF]). The following definition of Anosov representation is not the original one from [START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF] but an equivalent one taken from [START_REF] Guichard | Tameness of riemannian locally symmetric spaces arising from anosov representations[END_REF] and rephrased in the setting of the Lorentzian geometry.

Definition 3.3. A representation

ρ : Γ -→ O 0 (2, n) is P 1 -Anosov if
(1) every sequence of pairwise distinct elements in ρ(Γ) is P 1 -divergent;

(2) there exist a continuous, ρ-equivariant boundary map ξ : ∂Γ -→ Ein 1,n-1 that is (a) transverse, meaning that every pair of distinct points (η, η ′ ) in ∂Γ is sent to the pair (ξ(η), ξ(η ′ )) in Ein 1,n-1 × Ein 1,n-1 such that ξ(η) is not contained in the lightlike cone of ξ(η ′ ); (b) dynamics-preserving, meaning that if η is the attracting fixed point of some element γ ∈ Γ in ∂Γ, then ξ(η) is an attracting fixed point of ρ(γ) in Ein 1,n-1 .

Proposition 3.3 ([13]). If a representation

ρ : Γ -→ O 0 (2, n) is P 1 -Anosov with bound- ary map ξ : ∂Γ -→ Ein 1,n-1 , then Λ ρ(Γ) = ξ(∂Γ).

Causal geodesic space and Anosov representations

In this section, we introduce the causal geodesic space and study the dynamic on this space under actions of Anosov representations. In particular, we give a geometrical proof of Theorem 1.2. 4.1. Causal geodesic space. We define here the causal geodesic space.

Let M be a spacetime (oriented and time-oriented). Definition 4.1. A curve ϕ in M is a limit curve of a sequence {ϕ i } i of curves in M if for every point p in ϕ, every neighborhood of p meets all the curves ϕ i except a finite number.

Let us consider the set G(M ) consisting of geodesics of M . We equip it with the topology for which every convergent sequence is convergent in the sense of Definition 4.1. In this Section, we denote by P(M ) the subspace of lightlike geodesics of M . Proof. Recall that Ein 1,n is the double covering of Ein 1,n (see Section 2.3). Remark that P(Ein 1,n ) is homeomorphic to P(Ein 1,n ). We prove that P(Ein 1,n ) is homeomorphic to T 1 S n . Let ϕ ∈ P(Ein 1,n ). Up to parametrization, ϕ is the curve (x(t), e it ). Let f be the map which associates to every ϕ(t) = (x(t), e it ) the point (x(0), x ′ (0)) ∈ T 1 S n . For every (x, e it ) ∈ Ein 1,n , the tangent space T (x,e it ) Ein 1,n is isomorphic to T x S n ⊕ T e it S 1 . Let u(t) be a unit vector field on S 1 . We define the map g which associates to every (x, v) ∈ T 1 S n the unique lightlike geodesic going through (x, 1) and tangent to (u(0)+v). Clearly, the maps f and g are continuous and g = f -1 . We equip P(Ein 1,n ) with the differential structure for which f is a diffeomorphism. Let us consider the closed subspace X = {P ∈ Gr 2 (R n+2 ) : < x, x > ≤ 0, ∀x ∈ P } in the Grassmannian space Gr 2 (R n+2 ). Remark 4.2. In this section, we consider on Gr 2 (R n+2 ) the distance δ defined as follow. Let d be the distance on the projective space P(R 2,n ) defined for every lines ℓ, ℓ ′ with respective direction vectors x, x ′ as the angle between x and x ′ in R n+2 . We denote by Hd the Hausdorff distance. For every P, P ′ ∈ Gr 2 (R n+2 ), we set δ(P, P ′ ) := Hd(P(P ), P(P ′ )).

where P : R 2,n \{0} -→ P(R 2,n ) is the canonical projection. Proposition 4.2. The space X and the causal geodesic space are homeomorphic. In particular, the topological boundary of X in Gr 2 (R n+2 ) is a manifold homeomorphic to the space P(Ein 1,n ) of lightlike geodesics of Ein 1,n .

Proof. Let f : X -→ C be the mapping which associates to every 2-plane P in X the geodesic ϕ defined as the intersection of P(P ) with AdS 1,n . By definition of geodesics of AdS 1,n and Ein 1,n , the map f is one-to-one. Let {P i } i be a sequence of X converging to some P ∈ X. We denote by {ϕ i } i and ϕ the images of {P i } i and P respectively. Let p ∈ ϕ and U an open neighborhood of p. There exists x ∈ P such that p = P(x). Since lim δ(P i , P ) = 0, we have lim d(P(P i ), P(x)) = 0. But P(P i ) is compact in Gr 2 (R n+2 ), thus there exists x i ∈ P i such that d(P(P i ), P(x)) = d(P(x i ), P(x)). Therefore, P(x i ) = p i ∈ ϕ i converges to p. It follows that U meets all the curves ϕ i except a finite number. We deduce that the map f is continous. Since X is compact, it follows that f is a homeomorphism.

The topological boundary of X in Gr 2 (R n+2 ) consists of:

(1) isotropic 2-planes, corresponding to lightlike geodesics of AdS 1,n ;

(2) totally isotropic 2-planes, corresponding to lightlike geodesics of Ein 1,n-1 . Thus, ∂ X is homeomorphic to P(AdS 1,n ). Let us consider the continuous map p : Ein 1,n -→ AdS 1,n defined by p([u : v : x 1 : . . . :

x n : x n+1 ]) = [u : v : x 1 : . . . : x n ]. Notice that a point [u : v : x 1 : . . . : x n ] in AdS 1,n (assume -u 2 -v 2 + x 2 1 + . . . + x 2 n = -1
) has two preimages [u : v : x 1 : . . . : x n : 1] and [u : v : x 1 : . . . : x n : -1]. Moreover, a point [u : v : x 1 : . . . : x n ] in ∂AdS 1,n has one preimage [u : v : x 1 : . . . : x n : 0]. In fact, p is a ramified covering of degree 2. It induces a continous map p from P(Ein 1,n ) to P(AdS 1,n ). The map p is clearly one-to-one and since P(Ein 1,n ) is compact, p is a homeomorphism.

Dynamic on the causal geodesic space.

In this section, we study actions of P 1 -Anosov representations on the causal geodesic space C. In the previous section, we proved that C is homeomorphic to the closed subset X of Gr 2 (R n+2 ). In [START_REF] Guichard | Tameness of riemannian locally symmetric spaces arising from anosov representations[END_REF], it is proved that images of P 1 -Anosov representations act properly discontinously and cocompactly on X from which we removed a "bad set" (see [START_REF] Guichard | Tameness of riemannian locally symmetric spaces arising from anosov representations[END_REF], Theorem 4.1). We rephrase here this result in terms of causal geodesics and give a geometrical proof of it. 

U = {ϕ ∈ C : ϕ ∩ ξ(∂Γ) = ∅}
be the subspace consisting of causal geodesics avoiding the limit set ξ(∂Γ). Then, the action of ρ(Γ) on U is properly discontinuous and cocompact.

Properness is proved in Section 4.2.1 and cocompactness in Section 4.2.2. In what follows, we denote by Λ the limit set of ρ(Γ).

Proper discontinuity.

Two points ϕ, ϕ ′ in C are said to be dynamically related if there exist a sequence {ϕ i } i in C converging to ϕ and a sequence {g i } i in ρ(Γ) going to infinity (i.e. leaving every finite subset of ρ(Γ)) such that the sequence {g i .ϕ i } i converges to ϕ ′ . Recall the following general dynamical criterion of properness (see [START_REF] Frances | Lorentzian kleinian groups[END_REF], Section 3.2, Proposition 1 for a proof). Using this criterion, the proper discontinuity in theorem 4.1 is a direct consequence of the following lemma. Recall that U denote the set of causal geodesics which avoid the limit set Λ. Lemma 4.1. Let {ϕ i } i be a sequence of U converging to some ϕ in U and let {g i } i be a P 1 -divergent sequence of ρ(Γ) such that {g i .ϕ i } i converges to some ϕ ′ in C. Then, ϕ ′ meets the limit set.

Proof. Since {g i } i is P 1 -divergent, there exist an attracting point p + and a repelling point p -in Λ ⊂ Ein 1,n-1 . The curve ϕ avoid the limit set, in particular p -∈ ϕ. It follows that there exists p ∈ ϕ such that p is not in the lightlike cone of p -. Since {ϕ i } i converges toward ϕ, there exists a sequence {p i } i converging to p such that every p i is a point of ϕ i . Let K be a compact neighborhood around p in AdS 1,n ∪ ∂AdS 1,n , disjoint from the lightlike cone of p -. The compact K contains all the points p i except a finite number. Therefore, the sequence {g i .p i } i converges to p + . By the convergence of {g i .ϕ i } i to ϕ ′ , the attracting point p + belongs to ϕ ′ and hence ϕ ′ ∈ C.

4.2.2.

Compactness. We use the following dynamical compactness criterion from [START_REF] Kapovich | Dynamics at infinity of regular discrete subgroups of isometries of higher rank symmetric spaces[END_REF], inspired by Sullivan's dynamical characterization of convex cocompactness. Criterion 2 ([16], Proposition 2.5). Let G be a group acting by homeomorphisms on a compact metric space (Z, d Z ) and on a compact set K. Let F be a closed G-invariant subset of Z fibering equivariantly over K, with fibers denoted by F p , p ∈ K. Suppose that for any p ∈ K, there exist g ∈ G which locally expand distances from a point to a fiber. More precisely, there exist an open set W p ⊂ Z containing F p and a constant c p > 1 such that

d Z (g.z, g.F q ) ≥ c p .d Z (z, F q ) (1)
for every z ∈ W p and q ∈ K with F q ⊂ W p . Then, the action of G on Z\F is cocompact. By this criterion, the compactness in theorem 4.1 is a consequence of the following proposition. Let us first introduce a notation. For every p ∈ P(R n+2 ), let F p := {P ∈ Gr 2 (R n+2 ); p ∈ P(P )} be the set consisting of projective lines going through p. Proposition 4.3. Let ρ : Γ -→ O 0 (2, n) a P 1 -Anosov representation with boundary map ξ : ∂Γ -→ Ein 1,n-1 . We denote by Λ the limit set ξ(∂Γ). Then, for every p ∈ Λ and every c > 1, there exist g ∈ ρ(Γ) and an open subset W p of Gr 2 (R n+2 ) containing F p such that δ(g.P, g.F q ) ≥ c.δ(P, F q ) for every P ∈ W p and every q ∈ P(R n+2 ) with F q ⊂ W p .

The proof of this proposition uses the two following facts. Let us first introduce some notations. Let {e 1 , . . . , e n+2 } be a basis of R 2,n such that e 1 and e n+2 are isotropic vectors of R 2,n . We set p 0 = P(e 1 ). We denote by B r and Br respectively the open and closed balls of radius r centered in p 0 of the projective space.

The following identity is easily established. Fact 4.1. For every q ∈ P(R n+2 ) and every P ∈ Gr 2 (R n+2 ), we have δ(P, F q ) = d(q, P(P )). Fact 4.2. For every ball B ε , there exist a ball Br containing stricly B ε and a real number M > 0 such that d(q, P(P ) ∩ Br ) ≤ M.d(q, P(P ))

for every q ∈ B ε and every P ∈ Gr 2 (R n+2 ) such that the projective line P(P ) meets Br .

Proof. Fix r > ε. Let L be the set of projective lines meeting Br . We prove that L is a compact subset of Gr 2 (R n+2 ). Let {P i } i be a sequence of L converging to some P in Gr 2 (R n+2 ). For every i, there exist q i ∈ P(P i ) ∩ Br . Up to extracting, {q i } i converges to some q in Br . We have d(q, P(P )) ≤ d(q, q i ) + d(q i , P(P )) ≤ d(q, q i ) + δ(P i , P ). By the convergence of {q i } i to q and the convergence of {P i } i to P , we deduce that q ∈ P(P ) ∩ Br , i.e. P ∈ L. Therefore, L is a close subset of Gr 2 (R n+2 ) and then compact. Now, we define the mapping f : P(R n+2 ) × L -→ R by f (q, P ) = d(q, P(P ) ∩ Br )/d(q, P(P )). Notice that if q ∈ B ε and q is "near" from P(P ) then d(q, P(P )) = d(q, P(P ) ∩ Br ). It follows that f is well-defined. Since f is continuous on a compact set, f is upper bounded, i.e. there exists M > 0 such that d(q, P(P ) ∩ Br ) ≤ M.d(q, P(P ))

for every q ∈ P(R n+2 ) and every P ∈ L.

Proof of Proposition 4.3. Let p ∈ Λ. By definition of the limit set, p is an attracting point of some P 1 -divergent sequence {g i } i of ρ(Γ). Every element g i admits a Cartan decomposition g i = k i .a i .ℓ i with k i , ℓ i ∈ SO(2) × SO(n) and a i the Cartan projection of g i (see Section 2.3). According to Corollary 3.1 (Section 2.3), up to extracting, we can assume that {k i } i and {ℓ i } i converge uniformly on the projective space to some k, ℓ ∈ SO(2) × SO(n) such that p = k.p 0 with p 0 = P(e 1 ). By [START_REF] Guéritaud | Anosov representations and proper actions[END_REF], there exist 0 < ε < 1 and i 0 ∈ N such that for every i ≥ i 0 lim sup

j→+∞ d(p 0 , (a -1 i k -1 i k i+j a i ).p 0 ) ≤ 1 -ε.
Since p 0 is a fixed point of a i and since the metric d is unvariant under ℓ -1 i ∈ O(n + 2), we deduce that for every i ≥ i 0

d(p i , g -1 i .p) ≤ 1 -ε (2) with p i = l -1 i .p 0 . Let i ≥ i 0 .
We consider the open subset W i of Gr 2 (R n+2 ) consisting of projective lines less than (1 -ε 2 ) apart from p i :

W i = {P ∈ Gr 2 (R n+2 ) : d(p i , P(P )) < 1 - ε 2 }.
Claim 1. For every q ∈ P(R n+2 ), every projective line P going through q belongs to W i if and only if q lies in the ball of radius (1

-ε 2 ) centered in p i ; i.e. F q ⊂ W i ⇔ d(p i , q) < 1 - ε 2 . (3)
Indeed, assume F q ⊂ W i . In particular, the projective line going through q such that q realizes the distance to p i belongs to W i , i.e. d(p i , q) < 1 -ε 2 . Conversely, for every P ∈ F q , we have d(p i , P(P )) ≤ d(p i , q) < 1 -ε 2 , i.e. P ∈ W i .

Claim 2. For every c > 1, there exists i c ∈ N such that for every i ≥ i c δ(P, F q ) ≥ c.δ(g i .P, g i .F q ) (4) for every P ∈ W i and every q ∈ P(R n+2 ) with F q ⊂ W i . Indeed, fix c > 1. For i ≥ i 0 , consider P ∈ W i and q ∈ P(R n+2 ) with F q ⊂ W i , i.e. d(p i , q) < 1 -ε 2 (see Claim 1). Let q i := ℓ i .q and P i := ℓ i .P . Since the metric d in invariant under ℓ i , q i belongs to B 1-ε 2 . According to Fact 4.2, there exist 0 < r < ε 2 and M > 0 such that d(q i , P(P i ) ∩ B1-r ) ≤ M.d(q i , P(P i )). [START_REF] Barbot | Deformations of Fuchsian AdS representations are quasi-Fuchsian[END_REF] Since {a i } i is P 1 -divergent, there exists an integer i r, 1 cM such that for every

j ≥ i r, 1 cM , the map a j | B1-r is 1 cM -contracting. Let i c := max(i 0 , i r, 1 cM ) and i ≥ i c . We have d(a i .q i , a i .P(P i )) ≤ d(a j .q i , a j .(P(P i ) ∩ B1-r )) ≤ 1 cM d(q i , P(P i ) ∩ B1-r )).
According to the inequality 5, we deduce d(a i .q i , a i .P(P i )) ≤ 1 c d(q i , P(P i )). [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF] Since d is invariant under ℓ i , we have d(q i , P(P i )) = d(q, P(P )) and according to Fact 4.1, d(q, P(P )) = δ(P, F q ). Thus d(q i , P(P i )) = δ(P, F q ). ( 7) Now, since d is invariant under k i , we have d(a i .q i , a i .P(P i )) = d(g i .q, g i .P(P )) and according to Fact 4.1, d(g i .q, g i .P(P )) = δ(g i .P, g i .F q ). Thus d(a i .q i , a i .P(P i )) = δ(g i .P, g i .F q ). ( 8) It follows from the inequality 6 and the equalities 7 and 8 δ(P, F q ) ≥ c.δ(g i .P, g i .F q ). This proves Claim 2.

To conclude, fix i ≥ i c . By Claim 1 and the inequality 2, we have F g -1 i .p ⊂ W i , hence F p ⊂ g i .W i . Then Proposition 4.3 follows from Claim 2 by setting g = g i and W = g i .W i .

Proof of the compactness in Theorem 4.1. Let F be the set of projective lines which meet the limit set Λ. Let us test Criterion 2 for G = ρ(Γ), Z = Gr 2 (R n+2 ), F and K = Λ. According to Proposition 4.3, the condition 1 of Criterion 2 is satisfied. It follows that the action of ρ(Γ) on the set Z\F of projective lines avoiding the limit set is cocompact.

Recall that U is the set of causal geodesics which avoid the limit set. Let {ϕ i } i be a sequence of U and { φi } i its image in ρ(Γ)\U by the canonical projection. Every ϕ i is defined by a 2-plane P i in X\F . By the compactness of ρ(Γ)\(Z\F ), there exist a subsequence {P i j } j and a sequence {g j } j of ρ(Γ) such that {g j .P i j } j converges to some P in Z\F . Since every {g i } i is an isometry, {g j .P i j } j is contained in X which is compact. Thus, P ∈ X. It follows that P define a causal geodesic ϕ in U . Therefore, { φi j } j converges in ρ(Γ)\U . This proves the compactness of ρ(Γ)\U .

Conformally flat spacetimes and Anosov representations

In this section, we prove our main theorem. Theorem 5.1. Any P 1 -Anosov representation ρ of a hyperbolic group Γ into O 0 (2, n) (n ≥ 2) with negative limit set Λ1 is the holonomy group of a CGHM conformally flat spacetime M ρ (Γ). Moreover, when Λ is not a topological (n-1)-sphere, ρ is the holonomy group of an AdS-spacetime with black hole2 which embeds conformally in M ρ (Γ).

Let Γ be a hyperbolic group and ρ : Γ -→ O 0 (2, n) be a P 1 -Anosov representation with negative limit set Λ ⊂ Ein 1,n-1 . The proof of Theorem 5.1 involves the invisible domain of Λ in Ein 1,n . In [START_REF] Andersson | Cosmological time versus CMC time in spacetimes of constant curvature[END_REF], [START_REF] Barbot | Deformations of Fuchsian AdS representations are quasi-Fuchsian[END_REF], [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF], the authors define the invisible domain of an achronal subset of Ein 1,n-1 in AdS 1,n also called AdS-regular domain. By analogy, we define in Section 5.1 the invisible domain of Λ in Ein 1,n and describe its geometric and dynamical properties.

5.1. The invisible domain of the limit set. Let Λ be the acausal subset of Ein 1,n-1 which projects on Λ. Since Ein 1,n-1 ⊂ Ein 1,n , we can see Λ as an acausal subset of Ein 1,n . Let π : Ein 1,n -→ Ein 1,n be the universal covering of Ein 1,n and π 2 : Ein 1,n -→ Ein 1,n the double covering of Ein 1,n . Since Λ is acausal in Ein 1,n , it is contained in an affine domain (see Proposition 2.4). According to Remark 2.3, it follows that π 2 • π restricted to Λ is one to one. Therefore, Λ, π( Λ) and Λ are conformally equivalent. In particular, Λ and π( Λ) are compact. From now on, we just write Λ to denote one of these three copies.

The group O(2, n) is embedded in O(2, n + 1) as follow:

A ∈ O(2, n) → A 0 0 1 ∈ O(2, n + 1).
We still denote by ρ(Γ) its image by this embedding in O(2, n + 1). According to Section 2.4, there exists an onto morphism j : Õ(2, n + 1) -→ O(2, n + 1) with kernel generated by δ (see Section 2.3). Let us consider the subgroup G of elements of j -1 (ρ(Γ)) that preserves Λ. The restriction of j to G is one-to-one. Indeed, any element in the kernel of j that preserves Λ is necessarily equal to the identity since Λ is contained in an affine domain. Therefore, the groups G and ρ(Γ) are isomorphic.

Definition 5.1. The invisible domain of Λ in Ein 1,n is the region Ω(Λ) in Ein 1,n consisting on points which are not causally related to any point in Λ :

Ω(Λ) := Ein 1,n \(J + (Λ) ∪ J -(Λ)). According to Proposition 2.3, Ω(Λ) is an open subset of Ein 1,n . Besides, since Λ is ρ(Γ)-invariant, Ω(Λ) is also ρ(Γ)-invariant.
(5.1.1). Description in the conformal model. Recall that Λ ⊂ Ein 1,n is the graph of a 1-contracting function f : Λ 0 → R where Λ 0 is a closed subset of the sphere S n equipped with the distance d 0 induced by the round metric. It follows from the description of the future and the past of a point in Ein 1,n that each point (x, t) ∈ Ω(Λ) satisfies the inequality

d 0 (x, x 0 ) > |t -f (x 0 )| for every x 0 ∈ Λ 0 . Hence sup x 0 ∈Λ 0 {f (x 0 ) -d 0 (x, x 0 )} ≤ t ≤ inf x 0 ∈Λ 0 {f (x 0 ) + d 0 (x, x 0 ).} Since Λ 0 is compact, these two last inequalities are strict. Let f + , f -: S n → R be the functions defined by f + (x) = inf x 0 ∈Λ 0 {f (x 0 ) + d 0 (x, x 0 )} f -(x) = sup x 0 ∈Λ 0 {f (x 0 ) -d 0 (x, x 0 )}. It is clear that any point (x, t) ∈ Ein 1,n such that f -(x) < t < f + (x) lies in Ω(Λ). Therefore, Ω(Λ) = {(x, t) ∈ S n × R : f -(x) < t < f + (x)}.
It is easy to check that f + and f -are 1-Lipschitz extensions of f . Recall that Λ ⊂ Ein 1,n-1 ⊂ Ein 1,n . It follows that Λ 0 is contained in an equator S n-1 ⊂ S n which split the sphere S n into two hemispheres H 1 and H 2 . The restrictions [START_REF] Andersson | Cosmological time versus CMC time in spacetimes of constant curvature[END_REF], [START_REF] Barbot | Deformations of Fuchsian AdS representations are quasi-Fuchsian[END_REF] and [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]. The restrictions g ± of f ± to S n-1 define the invisible domain of Λ in Ein 1,n-1 . This last one can be thought as the conformal boundary of E i (Λ) 3 , so we denote it by ∂E(Λ). Finally, Ω(Λ) is the disjoint union of the conformally equivalent AdS-regular domains E i (Λ) and of their conformal boundary ∂E(Λ). Remark 5.1. Since Λ is acausal, the regular domains E i (Λ) are non-empty (see Lemma 3.6 in [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]). Thus, Ω(Λ) is non-empty.

f ± i of f ± to H i define two conformally isometric AdS-regular domains E i (Λ) = {(x, t) ∈ H i × R : f - i (x) < t < f + i (x)} as described in
Remark 5.2. The invisible domain Ω(Λ) is causally convex. Indeed, let p and q be two points in Ω(Λ) related by a future causal curve c. If there exist a point r in c and a point λ in Λ such that r ∈ J + (Λ), then q ∈ J + (λ). Contradiction. By Proposition 2.1, it follows that Ω(Λ) is globally hyperbolic; in particular, E i (Λ) are strongly causal. Similarly, when ∂E(Λ) is non-empty, it is globally hyperbolic.

(5.1.2). Description in the Klein model. Let us denote by Ω(Λ) the projection of Ω(Λ) in Ein 1,n . Let π : R 2,n+1 \{0} -→ S(R 2,n+1 ) be the radial projection. In this paragraph, we see Λ as a subset of Ein 1,n . Let Λ 0 be the preimage of Λ by π. The convex hull Conv(Λ 0 ) of Λ 0 is a convex cone of R 2,n+1 . Let us consider its dual

Conv(Λ 0 ) * := {u ∈ R 2,n+1 : ∀v ∈ Conv(Λ 0 ) : < u, v >< 0}. Lemma 5.1. The domain Ω(Λ) is the intersection of π(Conv(Λ 0 ) * ) with Ein 1,n . Proof. Remark that Ω(Λ) = π({u ∈ R 2,n+1 : ∀λ ∈ Λ 0 < u, λ > < 0}) ∩ Ein 1,n .
Remark 5.3. The regular domains E i (Λ) are the intersection of π(Conv(Λ 0 ) * ) with a copy of ADS 1,n . A nice corollary of this is that E i (Λ) are geodesically convex, i.e. any geodesic joining two points in E i (Λ) is contained is E i (Λ). In particular, the regular domains are connected.

Remark 5.4. It follows from Lemma 5.1 that Ω(Λ) is contained in an affine domain of Ein 1,n . Indeed, any two distinct points λ, λ ′ in Λ 0 define the affine domain U ( 1 2 (λ + λ ′ )) (see Definition 2.10) which contains Ω(Λ).

Lemma 5.2. The universal covering π restricted to Ω(Λ) is one-to-one. Proof. Let p and q be two points in Ω(Λ) such that π(p) = π(q). There exists k ∈ Z such that q = δ k (p). Without loss of generality, assume q ∈ J + (p). If k is nonzero, there is a future lightlike geodesic joining p and q and containing σ(p). Since Ω(Λ) is causally convex, σ(p) belongs to Ω(Λ) and thus Ω(Λ) contains the two opposite points π(p) and π(σ(p)). This contradicts the fact that Ω(Λ) is contained in an affine domain. According to Remark 5.4 and Lemma 5.2, the domains Ω(Λ), Ω(Λ) and π 2 (Ω(Λ)) are conformally equivalent. In what follows, we denote by Ω(Λ) the invisible domain of the limit set Λ whether it is seen in Ein 1,n , Ein 1,n or Ein 1,n .

(5.1.3). Dynamical properties. In this section, we study the action of ρ(Γ) on Ω(Λ). Proof. First, let us prove that the action is free. Assume there exist p in Ω(Λ) and a nontrivial element g in ρ(Γ) such that g.p = p. Up to extracting, we can assume that {g i } i is a sequence of pairwise distinct elements of ρ(Γ). Since the representation ρ is P 1 -divergent, it follows that {g i } i is P 1 -divergent. Let p + and p -be respectively the attracting and the repelling points in Ein 1,n of {g i } i (see Proposition 3.2). Since p does not belong to the lightlike cone of p -, we have lim g i .p = p + . But, for every n ∈ N, we have g i .p = p. Therefore, p = p + ∈ Λ, contradiction. Now, we prove that the action is proper by proving that there is no points dynamically related in Ω(Λ). Let {p i } i be a sequence of elements of Ω(Λ) converging to a point p ∈ Ω(Λ) and let {g i } i be a sequence of ρ(Γ) going to infinity (i.e. leaving every compact subset of ρ(Γ)) such that {g i .p i } i converges to a point q in Ein 1,n . Up to extracting, we can assume that {g i } i is a sequence of pairwise distinct elements and thus P 1 -divergent. Let p + and p -be respectively the attracting and the repelling points in Ein 1,n of {g i } i . Since p does not belong to the lightlike cone L(p -), the complementary of L(p -) in Ein 1,n contains {p i } i except maybe a finite number of elements. It follows that {g i .p i } converge to p + . Thus, q = p + ∈ Ω(Λ).

Corollary 5.1. The quotient space M ρ (Γ) = ρ(Γ)\Ω(Λ) is a conformally flat spacetime.

CGHM conformally flat spacetime.

In this section, we prove that the spacetime M ρ (Γ) = ρ(Γ)\Ω(Λ) is CGHM.

(5.2.1). Global hyperbolicity. The following lemma states that M ρ (Γ) is causal.

Lemma 5.3. The orbit under the action of ρ(Γ) of any point in the invisible domain Ω(Λ) in Ein 1,n is an acausal subset of Ω(Λ).

Proof. Assume that there exist p in Ω(Λ) and a non-trivial element g in ρ(Γ) such that p and g.p are causally related; for instance g.p ∈ J + (p). Up to extracting, the sequence {g i } i is P 1 -divergent. Let p + and p -be respectively the attracting and the repelling points of {g i } i . Since p does not belong to the lightlike cone of p -, we have lim g i .p = p + . But, for every i ∈ N, the point g i .p lies in the future of p which is a close subset of Ein 1,n . Thus, p + ∈ J + (p), contradiction.

Proposition 5.2. The spacetime M ρ (Γ) = ρ(Γ)\Ω(Λ) is globally hyperbolic.

Proof. It immediately follows from Lemma 5.3 that there is no causal loop in M (Γ).

Let p, q be two points in M ρ (Γ) such that the intersection D := J + (p) ∩ J -(q) is non-empty. For every g ∈ ρ(Γ), we denote by D g the subset J + (p) ∩ J -(g.q) of Ω(Λ) where p and q are representatives of p and q. It is easy to see that D is the projection in M ρ (Γ) of g∈ρ(Γ) D g ⊂ Ω(Λ). It turns out that there is only a finite number of g in ρ(Γ) for which D g is non-empty. Indeed, assume that there is an infinite sequence {g i } i of pairwise distinct elements of ρ(Γ) such that for every i ∈ N, the subset D g i in non-empty. Since the representation ρ is P 1 -divergent, the sequence {g i } i is P 1 -divergent. Let p + and p -be respectively the attracting and the repelling points of {g i } i in Λ. Since q does not belong to the lightlike cone of p -, we have lim g i .q = p + . But, for every i, the point g i lies in the future of p which is a close subset of Ein 1,n . Thus, p + ∈ J + (p), contradiction.

(5.2.2). Spatial cocompactness. Recall that the space of causal geodesics C is the space containing timelike and lightlike geodesics of AdS 1,n and lightlike geodesics of Ein 1,n-1 . Let U be the subspace of C consisting of causal geodesics which avoid the limit set. We denote by P(Ω(Λ)) the space of lightlike geodesics of Ω(Λ). Lemma 5.4. Each causal geodesic ϕ which avoid the limit set meets the invisible domain Ω(Λ). Besides, the intersection ϕ ∩ Ω(Λ) is connected.

Proof. Assume ϕ is contained in J + (Λ)∪J -(Λ). One can write ϕ as the union of the two closed subsets (ϕ∩J + (Λ)) and (ϕ∩J -(Λ)). Since Λ is acausal, J + (Λ)∩J -(Λ) = Λ. Thus, the intersection (ϕ ∩ J + (Λ)) ∩ (ϕ ∩ J -(Λ)) is empty. Since ϕ is connected, it follows that either ϕ ∩ J + (Λ) or ϕ ∩ J -(Λ) is empty. Assume, for instance that ϕ ∩ J -(Λ) is empty, i.e. ϕ is contained in J + (Λ). According to Proposition 2.3, the projection of J + (Λ) ⊂ S n ×R onto R is bounded below and then J + (Λ) cannot contain the inextendible curve ϕ, contradiction. The fact that ϕ ∩ Ω(Λ) is connected comes immediately from the causal convexity of Ω(Λ).

Corollary 5.2.

There exists a canonical homeomorphism between P(Ω(Λ)) and ∂C ∩ U . Proof. By definition, a lightlike geodesic of Ω(Λ) is a connected component of the intersection of a lightlike geodesic of Ein 1,n with Ω(Λ). Let i : P(Ω(Λ)) -→ P( Ein 1,n ) be the map which associates to a lightlike geodesic of Ω(Λ) the lightlike geodesic of Ein 1,n that it comes from. The map i is clearly continous and open. The image of i is the space of lightlike geodesics of Ein 1,n that meet Ω(Λ); according to Lemma 5.4, it is equal to ∂C ∩ U . Moreover, the pre-images by i of a lightlike geodesic ϕ in ∂C ∩ U is the set consisting of connected components of ϕ ∩ Ω(Λ). Since Ω(Λ) is causally convexe, the intersection ϕ ∩ Ω(Λ) is connected and thus i -1 (ϕ) is reduced to one element. Therefore, i is a homeomophism between P(Ω(Λ)) and ∂C ∩ U .

It follows from Theorem 4.1 that the action of ρ(Γ) on ∂C∩U is properly discontinuous. One can easily see that the homeomorphism i defined in the proof of Corollary 5.2 above induces a homeomorphism between ρ(Γ)\P(Ω(Λ)) and ρ(Γ)\(∂C ∩ U ).

Proposition 5.3. The quotient space ρ(Γ)\P(Ω(Λ)) is compact.

Proof. Let {x i } i be a sequence of ρ(Γ)\(∂C ∩ U ) ⊂ ρ(Γ)\U . According to Theorem 4.1, the space ρ(Γ)\U is compact. Therefore, we can assume, up to extracting, that {x i } i converge to x ∈ ρ(Γ)\U . Let {x i } i be a sequence in ∂C ∩ U and x a point in U such that for every i ∈ N, the point x i is representative of x i and x is representative of x. There exists a sequence {g i } i in ρ(Γ) such that {g i .x i } i converges to x. Since ρ(Γ) acts on U by isometries, {g i .x i } n is a sequence of ∂C ∩ U . But ∂C is a close subset of C. Hence, x ∈ ∂C ∩ U .

Lemma 5.5. There exists a canonical homeomorphism between the spaces ρ(Γ)\P(Ω(Λ)) and P(ρ(Γ)\Ω(Λ)).

Proof. The canonical projection of Ω(Λ) onto ρ(Γ)\Ω(Λ) induces a continuous surjective map from P(Ω(Λ)) to P(ρ(Γ)\Ω(Λ)). This map descends to the quotient into a oneto-one continuous map f from ρ(Γ)\P(Ω(Λ)) to P(ρ(Γ)\Ω(Λ)). Since ρ(Γ)\P(Ω(Λ)) is compact (see Proposition 5.3), f is a homeomorphism. Proposition 5.4. Let M be a GH spacetime and S a Cauchy hypersurface of M . Let P(M ) be the space of lightlike geodesics of M . There exists a canonical homeomorphism between P(M ) and the unit tangent bundle T 1 S of S.

Proof. Recall that M is homeomorphic to S × R (see [START_REF] Geroch | Global aspects of the cauchy problem in general relativity[END_REF]). We fix a copy S × {0} of S in M . Notice that for every p = (x, t) ∈ M , T p M = T x S ⊕ R. Let u be a unit vector field on R. Let ϕ ∈ P(M ). The lightlike geodesic ϕ of M meets S × {0} in a unique point p = (x, 0). Let w ϕ be the tangent vector to ϕ at (x, 0) such that w ϕ = v ϕ + u(0) with v ϕ ∈ T x S. We define the map f from P(M ) to T 1 S which associates to ϕ the point (x, v ϕ ) ∈ T 1 S. Conversely, we define the map g from T 1 S to P(M ) which associates to (x, v) the unique lightlike geodesic starting at p = (x, 0) with tangent vector w = v+u(0). Clearly, f and g are continuous and g is the inverse of f . Proof. Let S be a Cauchy hypersurface of M ρ (Γ). According to Proposition 5.4, the spaces P(M (Γ)) and T 1 S are homeomorphic. It follows from Proposition 5.3 and Lemma 5.5 that T 1 S is compact and thus S is compact.

(5.2.3). Maximality. Let Mρ (Γ) be a universal covering of M ρ (Γ) and D : Mρ (Γ) -→ Ω(Λ) be a developing map. Clearly, the holonomy group of M ρ (Γ) is ρ(Γ).

Proposition 5.6. The CGH conformally flat spacetime M ρ (Γ) = ρ(Γ)\Ω(Λ) is maximal.

Proof. A globally hyperbolic spacetime is maximal if and only if its universal covering is maximal (see [START_REF] Rossi | Espace-temps globalement hyperboliques conformément plats[END_REF], Chap.7, Corollary 2.7). We prove that Mρ (Γ) is maximal. Let N be a CGH conformally flat spacetime and f : Mρ (Γ) -→ N a Cauchy embedding. Let D ′ : N -→ Ein 1,n be a developing map such that D ′ • f = D. Assume f is not onto. Let y ∈ ∂f (Ω(Λ)) and let U be an open neighborhood of y in N such that the restriction of D ′ to U is one-to-one. Let S be a Cauchy hypersurface of Ω(Λ). The union Ω ′ := Ω(Λ) ∪ D ′ (U ) is a globally hyperbolic spacetime and S is a Cauchy hypersurface of Ω ′ . Let x ∈ ∂Ω(Λ) ∩ D ′ (U ). Thus, there exists λ in Λ and a lightlike geodesic ϕ joining x and λ. It follows that ϕ does not meet S ⊂ Ω(Λ), contradiction. 5.3. AdS-spacetimes and black holes. In this section, we prove that the spacetime M ρ (Γ) = ρ(Γ)\Ω(Λ) is the union of two conformally equivalent AdS-spacetimes with black hole (see §(5.3.2)) except when the acausal limit set Λ is a topological (n -1)sphere. Recall that the invisible domain Ω(Λ) is the disjoint union of two AdS-regular domains E i (Λ) and of their conformal boundary ∂E(Λ) (see § (5.1.1)). The proof is based on the description of the regular domains E i (Λ). The case where Λ is a topological (n -1)-sphere is already studied in [START_REF] Andersson | Cosmological time versus CMC time in spacetimes of constant curvature[END_REF], [START_REF] Barbot | Deformations of Fuchsian AdS representations are quasi-Fuchsian[END_REF] and [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]. In paragraph (5.3.1), we recall briefly the description in this particular case before dealing with the case where Λ is not a topological (n -1)-sphere in paragraph (5.3.2).

(5.3.1). Globally hyperbolic AdS-spacetimes. Assume Λ is a topological (n -1)-sphere. Proposition 5.7 (Proposition 4.5 and Theorem 4.3 in [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]). The AdS-regular domains E i (Λ) are globally hyperbolic. Proposition 5.8 (Corollary 3.7 in [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]). The conformal boundary ∂E(Λ) of E i (Λ) is empty. Besides, the intersection of Ein 1,n-1 and the closure of E i (Λ) in Ein 1,n is reduced to Λ. It follows from propositions 5.7 and 5.8 that Ω(Λ) is the disjoint union of the two conformally equivalent globally hyperbolic regular AdS-domains E 1 (Λ) and E 2 (Λ). Proposition 5.9 (Theorem 4.3 and Proposition 4.4 in [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF] ). The quotients M i ρ (Γ) = ρ(Γ)\E i (Λ) are globally hyperbolic AdS-spacetimes.

The spacetimes M i ρ (Γ) embeds conformally in M ρ (Γ). Therefore, M ρ (Γ) is the disjoint union of conformal copies of two conformally equivalent globally hyperbolic AdSspacetimes.

Let us give an exemple. Consider a cocompact torsion-free lattice Γ in O 0 (1, n) and ρ : Γ → O 0 (2, n) a Fuchsian representation i.e. the composition of the natural embedding O 0 (1, n) ⊂ O 0 (2, n) and a faithful and dicrete representation of Γ into O 0 (1, n). The limit set Λ is a conformal (n -1)-sphere in Ein 1,n-1 . Up to conformal isometry, we can assume that Λ = S n-1 × {0}. Let x i ∈ H n i be the poles of S n . Proposition 5.10. The invisible domain Ω(Λ) is the disjoint union of two diamonds

∆ i = I -(p + i ) ∩ I + (p - i ) (i = 1, 2) with p ± i = (x i , ± π 
2 ). Proof. The limit set is the graph of the null function f on S n-1 . Then,

F ± = d 0 (., S n-1 ) and Ω(Λ) = {(x, t) ∈ S n × R : |t| < d 0 (x, S n-1 )}. It is clear that Ω(Λ) does not meet Ein 1,n-1 . It follows that Ω(Λ) is the disjoint union of Ω(Λ) ∩ (H n i × R) (i = 1, 2). The distance from a point x ∈ H n i to S n-1 is equal to d 0 (x i , S n-1 )-d 0 (x, x i ) = π/2-d 0 (x, x i ). Therefore, Ω(Λ) ∩ (H n i × R) is the set of points which satisfy d(x, x i ) < t + π/2 and d(x, x i ) < π/2 -t. Hence Ω(Λ) ∩ (H n i × R) = (I + (p - i ) ∩ I -(p + i )) with p ± i = (x i , ± π 
2 ). Remark 5.6. The diamonds ∆ i are diffeomorphic to R 1,n .

(5.3.2). AdS-spacetimes with black holes. Assume Λ is not a topological (n -1)-sphere. We prove that the AdS-spacetimes M i ρ (Γ) = ρ(Γ)\E i (Λ) contain a region which can be interpreted as a black hole. Before that, let us briefly recall some elements on black holes.

In 1992, the theoretical physicists M. Bañados, C. Teitelboim and J. Zanelli discovered that the standard Einstein-Maxwell equations in 2+1 spacetime dimension, with negative cosmological constant admit a black hole solution (see [START_REF] Bañados | Black hole in three-dimensional spacetime[END_REF]). This solution is named, after the authors, BTZ-black hole. This came as a surprise since when the cosmological constant is zero, a vacuum solution of the Einstein-Maxwell equations in 2 + 1 spacetime dimension is necessarily flat 4 and it has been shown that no black hole solutions with event horizons exist (see [START_REF] Bañados | Black hole in three-dimensional spacetime[END_REF]). But, thanks to the negative cosmological constant, BTZblack holes presents similar properties with the 3 + 1 dimensional Schwarzschild and Kerr black hole solutions, which model real world black holes. For a quick insight into Schwarzschild and Kerr black holes, we direct the reader to the introduction of [START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi black-holes[END_REF]. A discussion around what could be a relevant mathematical definition of BTZ-black holes is also presented. Since the cosmological constant is negative, BTZ-black holes are 2 + 1 dimensional AdS-spacetimes. Moreover, according to [START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi black-holes[END_REF], the relevant category of spacetimes likely to be BTZ-black holes is the category of strongly causal spacetimes. The following definition given in [START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi black-holes[END_REF], involves the notion of conformal boundary of AdSspacetimes which is developed in Section 9 of [START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi black-holes[END_REF].

Definition 5.2. A BTZ-black hole is a 2+ 1 dimensional strongly causal AdS-spacetime M such that

• M admits a non-empty strongly causal conformal boundary O;

• the past of O, i.e. the region of M made of initial points of future-oriented causal curves ending in O, is not the entire M .

The region O is interpreted as the region where the observers take place. Every connected component B i of the interior of the complement in M of the past of O is a region invisible from O: no future causal curve, in particular no photon, can escape from it. In a more physical langage, no light and no information can escape from it. Hence, B i is interpreted as a black hole. In what follows, we observe a similar phenomenon in the regular domains E i (Λ) and in the AdS spacetimes M i ρ (Γ) = ρ(Γ)\E i (Λ), that we interpret by analogy as a black hole. In dimension 2 + 1, the AdS-spacetimes M i ρ (Γ) correspond exactly to BTZ-black holes.

In all what follows, Λ is not a topological (n -1)-sphere. We describe the regular domains E i (Λ). Recall that there are two maps g ± : S n-1 ⊂ S n → R such that ∂E(Λ) = {(x, t); g -(x) < t < g + (x)} (see §(5.1.1)) and that we denote by H 1 , H 2 the hemispheres of S n bounded by S n-1 . Let Λ ± be the graphs of g ± . They are achronal (n -1)-spheres of Ein 1,n-1 which contain Λ. It follows that the AdS-regular domains E i (Λ ± ) in H n i × R are maximal globally hyperbolic open domains of E i (Λ) (see [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]). This fact justifies the following definition used in [START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi black-holes[END_REF]. Definition 5.3. The regular domain E i (Λ + ) (resp. E i (Λ -)) is the future (resp. past) globally hyperbolic convex core of E i (Λ).

Here is another definition, introduced in [START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi black-holes[END_REF], useful in the description of the AdSregular domains E i (Λ).

Definition 5.4. The boundary of E i (Λ + ) (resp. E i (Λ -)) in E i (Λ) is called the future (resp. past) horizon. Now, we can state our description of E i (Λ) which generalizes, to the higher dimension, the description in dimension 2 + 1 given in [START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi black-holes[END_REF], Section 3.1.

Proposition 5.11. The AdS-regular domain E i (Λ) is the disjoint union of the future globally hyperbolic convex core E i (Λ + ), the past of ∂E(Λ) in E i (Λ) and the future horizon.

It is easy to see that the globally hyperbolic domain ∂E(Λ) is the conformal boundary of E i (Λ) in the sense of Definition 9.3 in [START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi black-holes[END_REF]. The globally hyperbolic convex core E i (Λ + ) is the region of E i (Λ) invisible from ∂E(Λ): no future causal curve starting from a point of E i (Λ + ) reach a point in ∂E(Λ). In a more "physical" language, photons can't escape from E i (Λ + ) which is consequently not visible to the obervers in ∂E(Λ). The past of ∂E(Λ) in E i (Λ) is the region visible from ∂E(Λ). In the convention of [START_REF] Bañados | Black hole in three-dimensional spacetime[END_REF] and [START_REF] Bañados | Geometry of the 2+1 black hole[END_REF], E i (Λ + ) and the past of ∂E(Λ) are respectively called the intermediate and the outer region. These two regions are separated by the future horizon.

To prove Proposition 5.11, we need the following lemmas. Proof. It is easy to see that a point (x, t) ∈ ∂E(Λ) belongs to I -(p + ) ∩ I + (p -) with p ± = (x, f ± (x)) ∈ Λ ± \Λ. Conversely, let (x, t) ∈ I -(p 0 )∩I + (p 1 ) with p 0 = (x 0 , f + (x 0 )) and p 1 = (x 1 , f -(x 1 )) where x 0 , x 1 ∈ S n-1 \Λ 0 . Thus, d 0 (x, x 0 ) < f + (x 0 )t and d 0 (x, x 1 ) < tf -(x 1 ). Since f + is 1-contracting, f + (x 0 )f + (x) < d 0 (x, x 0 ) < f + (x 0 )t. Hence t < f + (x). Similarly, using the fact that f -is 1-contracting, we obtain f -(x) < t. It follows that f -(x) < t < f + (x) i.e. (x, t) ∈ ∂E(Λ). Let x ∈ E(Λ). Either < x, y >< 0 for any y ∈ Λ + or < x, y >≥ 0 for some y ∈ Λ + . In other words, x belongs either to E(Λ + ) or to the closure of the past of Λ + \Λ. The proposition follows from Lemma 5.7.

Remark 5.7. Similarly, E i (Λ) is the disjoint union of the past globally hyperbolic convex core, the future of ∂E(Λ) in E i (Λ) and the past horizon. The past globally hyperbolic convex core E(Λ -) is the region of E i (Λ) which cannot be entered from the outside: no past causal curve can escape from it. Now, consider the quotient spacetimes

M i ρ (Γ) = ρ(Γ)\E i (Λ), B i ρ (Γ) = ρ(Γ)\E i (Λ + ), O ρ (Γ) = ρ(Γ)\∂E(Λ).
The conformal embeddings E i (Λ) ⊂ Ω(Λ) induces conformal embeddings from the AdS-spacetimes M i ρ (Γ) into M ρ (Γ). Since M ρ (Γ) is globally hyperbolic, M i ρ (Γ) are strongly causal. Proposition 5.12 (Theorem 4.3 and Proposition 4.4 in [START_REF] Barbot | Anosov AdS representations are quasi-Fuchsian[END_REF]). The AdS-spacetimes B i ρ (Γ) are globally hyperbolic. Remark 5.8. According to remark 5.3, the regular domains E i (Λ) and E i (Λ + ) are connected. Therefore, the AdS-spacetimes M i ρ (Γ) and B i ρ (Γ) are also connected. Proposition 5.13. The conformally flat spacetime O ρ (Γ) is CGHM.

Proof. The proof presented in Section 5.2 still holds for the non-empty invisible domain ∂E(Λ) of the limit set in Ein 1,n-1 .

The spacetimes M i ρ (Γ), B i ρ (Γ) and O ρ (Γ) embeds conformally in M ρ (Γ). We keep the same notation to denote their image in M ρ (Γ). Proof. This is an immediate consequence of Proposition 5.11.

Since ∂E(Λ) is the conformal boundary of E i (Λ), it easily follows that the GHCM spacetime O ρ (Λ) is the conformal boundary of M i ρ (Λ). According to Proposition 5.14 and Definition 5.2, in dimension 2 + 1, the strongly causal AdS-spacetimes M i ρ (Γ) are BTZ-black holes. More precisely, the globally hyperbolic region B i ρ (Λ) is interpreted as a black hole in M i ρ (Λ). In higher dimension, we still interpret the region B i ρ (Γ) as a black hole in M i ρ (Γ). In this sense, M ρ (Γ) is the union of two conformally equivalent AdS-spacetimes with black holes.

Let us give some examples. Let Γ be a uniform lattice in O 0 (1, p + 1) (0 ≤ p ≤ n -2) and ρ : Γ → O 0 (2, n) be the composition of the natural inclusions Γ ⊂ O 0 (1, p + 1) and O 0 (1, p + 1) ⊂ O 0 (2, n) where in the latter inclusion, O 0 (1, p + 1) is the stabilizer of a totally geodesic spacelike subspace H p+1 = R 1,p+1 ∩ AdS 1,n in AdS 1,n . The limit set is the conformal sphere S p = ∂H p+1 . The group ρ(Γ) preserves the orthogonal of R 1,p+1 in R 2,n which is isometric to R 1,q+1 with q = np -2. Let S q be the conformal sphere of R 1,q+1 . In what follows, we describe the intermediate region E i (Λ + ). This description has great analogies with that of split AdS spacetimes introduced in [START_REF] Barbot | Deformations of Fuchsian AdS representations are quasi-Fuchsian[END_REF].

Proposition 5.15. The topological (n -1)-sphere Λ + is the join of S p and S q i.e. the union of S p , S q and the lightlike geodesics joining a point of S p to a point of S q .

Proof. Up to a conformal isometry, we can assume that Λ ⊂ S n-1 × {0}. Then, the function f + is the distance to S p : f + (x) = d 0 (x, S p ) for x ∈ S n-1 . It is easy to see that any point in Λ + lies in the future lightcone of some point in Λ. Indeed, for any x ∈ S n-1 there exists x 0 ∈ S p such that d 0 (x, S p ) = d 0 (x, x 0 ). In other words, the point (x, d 0 (x, S p )) ∈ Λ + belongs to the future lightcone of (x 0 , 0) ∈ Λ. Notice that the lightcones of points in Λ intersect at S q . Indeed, in the Klein model, a point [v] of Ein 1,n-1 in this intersection satisfies < v, v 0 >= 0 for any lightlike vector v 0 ∈ R 1,p+1 . Since R 1,p+1 admits a basis composed of lightlike vectors, it follows that v is orthogonal to R 1,p+1 . Thus, [v] ∈ S q . In the conformal model, S q is contained in S n-1 × {π/2}. It is clear that S q is contained in Λ + . Besides, if (x, t) belongs to a lightlike geodesic joining a point (x 0 , 0) in Λ to a point (x 1 , π/2) in S q then x belongs to the geodesic of S n-1 , parametrized by its lenght arc, which realises the distance of x 1 to S p . Thus, t = d 0 (x, x 0 ) = d 0 (x, S p ). In other words, (x, t) ∈ Λ + . Proposition 5.16 (Lemma 4.27 in [START_REF] Barbot | Deformations of Fuchsian AdS representations are quasi-Fuchsian[END_REF]). The invisible domain E(Λ + ) is the interior of the convex hull in AdS 1,n of S p ∪ S q . Remark 5.9. Cauchy hypersurfaces of E(Λ + ) are homeomorphic to H p+1 × H q+1 .

Proposition 3 . 1 .

 31 The sequence {a i } i converge uniformly on compact subsets of the complementary of [e n+2 ] ⊥ towards the constant map [e 1 ].

Proposition 4 . 1 .

 41 The space P(Ein 1,n ) is a smooth manifold diffeomorphic to the unit tangent bundle T 1 S n .

Remark 4 . 1 .Definition 4 . 2 .

 4142 It follows from Proposition 4.1 that P(Ein 1,n ) is compact. Let AdS 1,n := AdS 1,n ∪ ∂AdS 1,n . The causal geodesic space of AdS 1,n , denoted by C, is the subspace of G( ĀdS 1,n ) consisting of timelike and lightlike geodesics of AdS 1,n and lightlike geodesics of Ein 1,n-1 = ∂AdS 1,n .

Theorem 4 . 1 .

 41 Let Γ be a hyperbolic group and ρ : Γ -→ O 0 (2, n) a P 1 -Anosov representation with boundary map ξ : ∂Γ -→ Ein 1,n-1 . Let

Criterion 1 .

 1 A group G acts properly discontinously on a Hausdorff topological space Y if and only if no pairs of points of Y are dynamically related.

Remark 5 . 5 .

 55 It follows from Remark 5.4 and Lemma 5.2 that the invisible domain Ω(Λ) is contained in an affine domain of Ein 1,n (see Definition 2.11).

Proposition 5 . 1 .

 51 The group ρ(Γ) acts freely and properly on the invisible domain Ω(Λ) in Ein 1,n .

Proposition 5 . 5 .

 55 The conformally flat GH spacetime M ρ (Γ) = ρ(Γ)\Ω(Λ) is Cauchy compact.

Lemma 5 . 6 .

 56 The conformal boundary ∂E(Λ) is the intersection of the past of Λ + \Λ and the future of Λ -\Λ in Ein 1,n-1 .

Lemma 5 . 7 .

 57 The past of ∂E(Λ) in E i (Λ) coincide with the past of Λ + \Λ in E i (Λ). Proof. By Lemma 5.6, the past of ∂E(Λ) is contained in the past of Λ + \Λ. Conversely, let p ∈ I -(p 0 ) with p 0 ∈ Λ + \Λ. Then, I + (p) is an open neighborhood of p 0 in Ein 1,n . Notice that p 0 belongs to the boundary of ∂E(Λ). Therefore, I + (p) meets ∂E(Λ). The lemma follows. Proof of Proposition 5.11. In the Klein model, we have the following description of E i (Λ) E(Λ) = {x ∈ ADS 1,n : < x, y >< 0 ∀y ∈ Λ}.

Proposition 5 . 14 .

 514 The globally hyperbolic AdS-spacetime B i ρ (Γ) is the region of M i ρ (Γ) invisible from O ρ (Γ), i.e. no future causal curve starting from a point of B i ρ (Γ) can reach O ρ (Γ).

  1,n-1 is negative if all inner products < ., . > 2,n of distinct points of Λ are negative. It turns out that negative subsets of Ein 1,n-1 are the acausal ones (see Section 2.3).

Now, we can state our main result : Theorem 1.1. Let n ≥ 2. A P 1 -Anosov representation of hyperbolic group into O 0 (2, n) with negative limit set is the holonomy group of a spatially compact globally hyperbolic maximal conformally flat spacetime.

Definition 2.4. A globally

  hyperbolic spacetime is spatially compact (abbrev. CGH) if it contains a compact Cauchy hypersurface.

	The next definition introduces a notion of convexity from the point of view of causal
	structure of a spacetime.

Definition 2.5. A

  subset U of a spacetime M is causally convex if every causal curve between two of its points is contained in U .

	Proposition 2.1. A causally convex subset U of a GH spacetime M is GH.
	Proof. The spacetime M is causal, so U contains no causal loop. Let p ∈ U . Since U is causally convex, J + U

  2.4. Isometry groups. Let us denote by O(2, n) the group of linear isometries of R 2,n for the quadratic form q 2,n = -u 2 + v 2 + x 2 1 + . . . + x 2 n and by O 0 (2, n) the identity component of O(2, n). (2.4.1). Isometries of anti-de Sitter space. It is clear that O(2, n) acts on the anti-de Sitter space AdS 1,n by isometries. It turns out that every isometry of AdS 1,n comes from an element of O(2, n). The isometry group of AdS 1,n is O(2, n). Moreover, the group of orientation and time-orientation preserving isometries of AdS 1,n is O 0

	Proposition 2.6.

It means that Λ lifts to an acausal subset of Ein1,n-1.

See Section 5.3, § (5.3.2).

It is actually in the sense of[START_REF] Barbot | Causal properties of AdS-isometry groups II: BTZ multi black-holes[END_REF] (see Section 9).

In dimension 2 + 1, the Einstein equation is remarkably simplified: the solutions have all constant sectional curvature with the same sign than the cosmological constant has.