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Abstract

We propose a new point process model that combines, in the spatio-
temporal setting, both multi-scaling by hybridization and hardcore dis-
tances. Our so-called hybrid Strauss hardcore point process model allows
different types of interaction, at different spatial and/or temporal scales,
that might be of interest in environmental and biological applications. The
inference and simulation of the model are implemented using the logistic
likelihood approach and the birth-death Metropolis-Hastings algorithm.
Finally, we apply our model to forest fire occurrences in Spain.

1 Introduction

In point patterns, most types of interaction structure between points can be
described by existing models. These models yield point patterns with mainly
single-structure, but only a few with multi-structure. Interactions with single-
structure are often classified into three classes: randomness, clustering and in-
hibition. Among inhibition processes is the hardcore process. It has some
hardcore distance h in which distinct points are not allowed to come closer than
a distance h apart. This type of interaction can be modelled by Gibbs point
processes as the hardcore or Strauss hardcore point processes and also by Cox
point processes as Matérn’s hardcore (Matérn, 1960; 1986) or Matérn thinned
Cox point processes (Andersen and Hahn, 2016). Here, we focus on the former,
i.e. Gibbs models implemented by a hardcore component as in the Strauss hard-
core model. The form of Strauss hardcore density indicates that the hardcore
parameter only rules at least distance between points, and has no effect on the
interaction terms of the density (Dereudre and Lavancier, 2017, sect. 2.3).

In several domains, there exist point patterns with hardcore distances that
have to be modelled. Spatial point patterns with hardcore property can be found
in capillaries studies (Mattfeldt et al., 2006; 2007; 2009), in texture synthesis
(Hurtut et al., 2009), in forest fires (Turner, 2009), in cellular networks (Taylor
et al., 2012 and Ying et al., 2014), in landslides (Das and Stein, 2016), in modern

1



and contemporary architecture and art (Stoyan, 2016) and in location clustering
econometrics (Sweeney and Gomez-Antonio, 2016).

There also exist point patterns with either clustering and inhibition like
hardcore interactions at different scales simultaneously (Badreldin et al., 2015;
Andersen and Hahn, 2016 and Wang et al., 2020). Wang et al. (2020, sect.
2.4) investigated effect of the hardcore distance on spatial patterns of trees by
comparing the pair correlation function curves for different values of hardcore
distances in the fitted hybrid Geyer hardcore model. Raeisi et al. (2019) re-
view spatial and spatio-temporal point processes that model both inhibition and
clustering at different scales. Such multi-structure interactions can be modelled
by the spatial hybrid Gibbs point process (Baddeley et al, 2013). In this paper,
we aim to extend the spatial Strauss hardcore point process (Ripley, 1988) to
the spatio-temporal framework and introduce a multi-scale version of it using
hybridization approach. We use this model to describe one of the most com-
plex phenomena from the spatio-temporal modeling point of view: forest fire
occurrences.

The complexity of forest fire occurrences is due in particular to the existence
of multi-scale structures and hardcore distances in space and time. For instance,
changes in vegetation due to forest fires burnt areas affect the probability of fire
occurrences during the regeneration period leading to the existence of hardcore
distances in space-time. It can be also observed the multi-scale structure of
clustering and inhibition in the spatio-temporal pattern of the forest fires as
discussed in Gabriel et al. (2017). Wildfires have mainly been modelled by Cox
processes and inferred by Bayesian hierarchical approaches, as the integrated
nested Laplace approximation (INLA) approach (Rue et al., 2009). See Møller
and Diaz-Avalos (2010), Pereira et al. (2013), Serra et al. (2012, 2014a,b),
Najafabadi et al. (2015), Juan (2020) and Pimont et al. (2021) for single-
structure models and Gabriel et al. (2017), Opitz et al. (2020) for multi-
structure models. Recently, Raeisi et al. (2021) modelled the multi-structure of
forest fire occurrences by a spatio-temporal Gibbs process and use a composite
likelihood approach for its inference.

This paper is organized as follows. In Section 2 we introduce in the spatio-
temporal framework the notations and definitions of Gibbs point processes in
order to introduce our multi-scale version of the Strauss hardcore model. Section
3 is devoted to the inference of our model. It describes techniques to determine
the irregular parameters (hardcore and interaction distances) and the logistic-
likelihood approach generalized to the spatio-temporal setting to estimate the
regular parameters. Section 4 illustrates the goodness-of-fit of the logistic like-
lihood approach on simulated patterns of our model obtained by an extended
Metropolis-Hastings algorithm. Finally, we apply our model to a monthly forest
fire data in the center of Spain in Section 5.
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2 Towards multi-scale Strauss hardcore point pro-
cesses

Gibbs models are flexible point processes that allow the specification of point in-
teractions via a probability density defined with respect to the unit rate Poisson
point process. These models allow to characterize a form of local or Markovian
dependence amongst events. Gibbs point processes contain a large class of flex-
ible and natural models that can be applied for:

• Postulating the interaction mechanisms between pairs of points,

• Taking into account clustering, randomness or inhibition structures,

• Combining several structures at different scales with the hybridization
approach.

Let x = {(ξ1, t1), , ..., (ξn, tn)} be a spatio-temporal point pattern where
(ξi, ti) ∈W = S×T ⊂ R2×R. We consider (W,d(·, ·)) where d((u, v), (u′, v′)) :=
max{||u − u′||, |v − v′|} for (u, v), (u′, v′) ∈ W is a complete, separable metric
space. The cylindrical neighbourhood Cqr (u, v) centred at (u, v) ∈W is defined
by

Cqr (u, v) = {(a, b) ∈W : ||u− a||≤ r, |v − b|≤ q}, (1)

where r, q > 0 are spatial and temporal radius and ||·|| denotes the Euclidean
distance in R2 and |·| denotes the usual distance in R. Note that Cqr (u, v) is a
cylinder with centre (u, v), radius r, and height 2q.

A finite Gibbs point process is a finite simple point process defined with a
density f(x) that satisfies the hereditary condition, i.e. f(x) > 0 ⇒ f(y) > 0
for all y ⊂ x.

A closely related concept to density functions is Papangelou conditional in-
tensity function (Papangelou, 1974) which is a tool for simulating Gibbs models
and inferring its parameters. The Papangelou conditional intensity of a spatio-
temporal point process on W with density f is defined, for (u, v) ∈W , by

λ((u, v)|x) =
f(x

⋃
(u, v))

f(x\(u, v))
, (2)

with a/0 := 0 for all a ≥ 0 (Cronie and van Lieshout, 2015).
The Papangelou conditional intensity is also very useful to describe the local

interactions in a point pattern, and leads to the notion of a Markov point process
which is the basis for theimplementation of MCMC algorithms for simulations
of Gibbs models. We say that the point process has ”interactions of range R
at (ξ, t)” if points further than R away from (ξ, t) do not contribute to the
conditional intensity at (ξ, t). A spatio-temporal Gibbs point process X has a
finite interaction range R if the Papangelou conditional intensity satisfies

λ((u, v)|x) = λ((u, v)|x ∩ CRR (u, v)) (3)
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for all configurations x ofX and all (u, v) ∈W, where CRR (u, v) denotes the cylin-
der of radius R > 0 and height 2R > 0 centred at (u, v). Spatio-temporal Gibbs
models usually have finite interaction range property (spatio-temporal Markov
property) and are called in this case Markov point processes (van Lieshout
2000). The finite range property of a spatio-temporal Gibbs model implies that
the probability to insert a point (u, v) into x depends only on some cylindrical
neighborhood of (u, v).

Here, we first review spatio-temporal Gibbs models and then extend the
spatial Strauss hardcore model to the spatio-temporal and multi-scale context.
We further refer to Dereudre (2019) for more formal introduction of Gibbs point
processes.

2.1 Single-scale Gibbs point process models

In the literature, several spatio-temporal Gibbs point process models have been
proposed such as the hardcore (Cronie and van Lieshout, 2015), Strauss (Gon-
zalez et al., 2016), area-interaction (Iftimi et al., 2018), and Geyer (Raeisi et
al., 2021) point processes.

A Gibbs point process model explicitly postulates that interactions traduce
dependencies between the points of the pattern. The hardcore interaction is one
of the simplest type of interaction, which forbids points being too close to each
other. The homogeneous spatio-temporal hardcore point process is defined by
the density

f(x) = cλn(x)1{||ξ − ξ′||> hs or |t− t′|> ht;∀(ξ, t) 6= (ξ′, t′) ∈ x}, (4)

with respect to a unit rate Poisson point process on W , where c > 0 is a
normalizing constant, λ > 0 is an activity parameter, hs, ht > 0 are, respectively,
the spatial and the temporal hardcore distances and n(x) is the number of points
in x. The Papangelou conditional intensity of a homogeneous spatio-temporal
hardcore point process for (u, v) /∈ x is obtained

λ((u, v)|x) = λ1{||ξ − u||> hs or |t− v|> ht;∀(ξ, t) ∈ x}

= λ
∏

(ξ,t)∈x

1{||ξ − u||> hs or |t− v|> ht}

= λ
∏

(ξ,t)∈x

1{(ξ, t) /∈ Chths (u, v)}.

(5)

The homogeneous spatio-temporal Strauss point process is defined by density

f(x) = cλn(x)γS
q
r (x), (6)

with respect to a unit rate Poisson point process on W , where

Sqr (x) =
∑

(ξ,t)6=(ξ′,t′)∈x

1{||ξ − ξ′||≤ r, |t− t′|≤ q}
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and the Papangelou conditional intensity of the model is

for (u, v) /∈ x, λ((u, v)|x) = λγn[C
q
r (u,v);x], (7)

and
for (ξ, t) ∈ x, λ((ξ, t)|x) = λγn[C

q
r (ξ,t);x\(ξ,t)], (8)

where n[Cqr (y, z); x] =
∑

(ξ,t)∈x 1{||y − ξ||≤ r, |z − t|≤ q} is the number of

points in x which are in a cylinder Cqr (y, z). Although the Strauss point process
was originally intended as a model of clustering, it can only be used to model
inhibition, because the parameter γ cannot be greater than 1. If we take γ > 1,
the density function of Strauss model is not integrable, so it does not define a
valid probability density.

As mentioned, Strauss point process model only achieves the inhibition struc-
ture. In spatial framework, two ways are introduced to overcome this problem
that we extend to spatio-temporal framework hence defining two new spatio-
temporal Gibbs point process models.

A first way is to consider an upper bound for the number of neighboring
points that interact. In this case, Raeisi et al. (2021) defined a homogeneous
spatio-temporal Geyer saturation point process by density

f(x) = cλn(x)
∏

(ξ,t)∈x

γmin{s,n
∗[Cqr (ξ,t);x]}, (9)

with respect to a unit rate Poisson point process on W , where s is a saturation
parameter and n∗[Cqr (ξ, t); x] = n[Cqr (ξ, t); x\(ξ, t)] =

∑
(u,v)∈x\(ξ,t) 1{||u−ξ||≤

r, |v − t|≤ q}.
A second way is to introduce a hardcore condition to the Strauss density

(6). Hence, we can define a Strauss hardcore model in spatio-temporal context.

Definition 1. We define the spatio-temporal Strauss hardcore point process as
the point process with density

f(x) = cλn(x)γS
q
r (x)1{||ξ − ξ′||> hs or |t− t′|> ht;∀(ξ, t) 6= (ξ′, t′) ∈ x}, (10)

where 0 < hs < r and 0 < ht < q.

The model could be used to model clustering patterns with a softer attraction
between the points like a pattern with a combination of interaction terms that
show repulsion between the points at a small scale and attraction between the
points at a larger scale. The Papangelou conditional intensity of a homogeneous
spatio-temporal Strauss hardcore point process for (u, v) /∈ x is obtained

λ((u, v)|x) = λγn[C
q
r (u,v);x]1{||ξ − u||> hs or |t− v|> ht;∀(ξ, t) ∈ x}

= λγn[C
q
r (u,v);x]

∏
(ξ,t)∈x

1{(ξ, t) /∈ Chths (u, v)}. (11)

We can define inhomogeneous versions of all above models by replacing the
constant λ by a function λ(ξ, t), inside the product operator over (ξ, t) ∈ x, that
expresses a spatio-temporal trend, which can be a function of the coordinates
of the points and depends on covariate information.
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2.2 Multi-scale Gibbs point process models

Since most natural phenomena exhibit dependence at multiple scales as earth-
quake (Siino et al., 2017;2018) and forest fire occurrences (Gabriel et al., 2017),
single-scale Gibbs point process models are unrealistic in many applications.
This motivates us and other statisticians to construct multi-scale generalizations
of the classical Gibbs models. Baddeley et al. (2013) proposed hybrid models
as a general way to generate multi-scale processes combining Gibbs processes.
Given m densities f1, f2, ..., fm of Gibbs point processes, the hybrid density
is defined as f(x) = cf1(x) × f2(x) × · · · × fm(x) where c is a normalization
constant.

Iftimi et al. (2018) extended the hybrid approach for an area-interaction
model in spatio-temporal framework where the density is given by

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)

m∏
j=1

γ
−`(∪(ξ,t)∈xC

qj
rj

(ξ,t))

j , (12)

with respect to a unit rate Poisson process on W , where (rj , qj) are pairs of irreg-
ular parameters of the model and γj are interaction parameters, j = 1, . . . ,m.

In the same way, Raeisi et al. (2021) defined a spatio-temporal multi-scale
Geyer saturation point process with density

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)

m∏
j=1

γ
min{sj ,n(C

qj
rj

(ξ,t);x)}
j (13)

with respect to a unit rate Poisson process on W , where c > 0 is a normalizing
constant, λ ≥ 0 is a measurable and bounded function, γj > 0 are the interaction
parameters.

Similarly, a hybrid version of spatio-temporal Strauss model can be defined
by hybridization.

Definition 2. We define the spatio-temporal hybrid Strauss point process with
density

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)

m∏
j=1

γ
S
qj
rj

(x)

j , (14)

with respect to a unit rate Poisson process on W = S × T .

Note that we called the model (14) hybrid rather than multi-scale. The
model (14) can cover inhibition structure because 0 < γj < 1,∀j ∈ {1, . . . ,m}.
However, it can take into account clustering if one of densities in hybrid is the
one of a hardcore process.

2.3 Hybrid Strauss hardcore point process

The hybrid Gibbs point process models do not necessarily include m same Gibbs
point process models (see Baddeley et al., 2015 sect. 13.8). Badreldin et al.
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(2015) applied a spatial hybrid model including a hardcore density to model
strong inhibition at very short distances, Geyer density for cluster structure in
short to medium distances and a Strauss density for a randomness structure in
larger distances to the spatial pattern of the halophytic species distribution in
an arid coastal environment. Wang et al. (2020) fitted a spatial hybrid Geyer
hardcore point process on the tree spatial distribution patterns. In this section,
we extend this type of hybrids to the spatio-temporal context.

Definition 3. We define the spatio-temporal hybrid Strauss hardcore point pro-
cess with density

f(x) = c
∏

(ξ,t)∈x

λ(ξ, t)

m∏
j=1

γ
S
qj
rj

(x)

j

× 1{||ξ′ − ξ′′||> hs or |t′ − t′′|> ht;∀(ξ′, t′) 6= (ξ′′, t′′) ∈ x},

(15)

where 0 < hs < r1 < · · · < rm and 0 < ht < q1 < · · · < qm.

In the same way, Papangelou conditional intensity of an inhomogeneous
spatio-temporal hybrid Strauss hardcore process for (u, v) /∈ x is obtained

λ((u, v)|x) = λ(u, v)

m∏
j=1

γ
n[C

qj
rj

(u,v);x]

j 1{||ξ − u||> hs or |t− v|> ht;∀(ξ, t) ∈ x}

= λ(u, v)

m∏
j=1

γ
n[C

qj
rj

(u,v);x]

j

∏
(ξ,t)∈x

1{(ξ, t) /∈ Chths (u, v)}.

(16)

The conditional intensity of the Gibbs point process models including a hardcore
interaction term takes the value zero at some locations. We can thus write that
for all parameters of the model

λ((u, v)|x) = m((u, v)|x)λ+((u, v)|x), (17)

where m((u, v)|x) takes only the values 0 and 1, and λ+((u, v)|x) > 0 every-
where.

In the same way as Iftimi et al. (2018) and Raeisi et al. (2021), the spatio-
temporal hybrid Strauss hardcore point process (15) is a Markov point process
in Ripley-Kelly’s (1977) sense at interaction range max{rm, qm}.

3 Inference

Gibbs point process models involve two types of parameters: regular parameters
and irregular parameters. A parameter is called regular if the log likelihood of
density is a linear function of that parameter otherwise it is called irregular.
Typically, regular parameters determine the ‘strength’ of the interaction, while
irregular parameters determine the ‘range’ of the interaction. As an example,
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in the Strauss hardcore point process (10), the trend parameter λ and the inter-
action γ are regular parameters and the interaction distances r and q and the
hardcore distances hs and ht are irregular parameters.

To determine the interaction distances r and q, there are several practical
techniques, but no general statistical theory available. A useful technique is the
maximum profile pseudo-likelihood approach (Baddeley and Turner, 2000). In
the spatio-temporal framework, Iftimi et al. (2018) and Raeisi et al. (2021)
selected feasible range of irregular parameters by analyzing the behavior of
some summary statistics and the goodness-of-fit of several models with different
combinations of parameters.

The hardcore interaction term m(·|x) in the conditional intensity (17) does
not depend on the other parameters of the densities of Gibbs point processes.
This implies that it can first be estimated and kept fixed for the sequel (Bad-
deley et al., 2019, p. 26). In the spatial framework, the maximum likelihood
estimate of the hardcore distance in m(·|x) corresponds to the minimum in-
terpoint distance (Baddeley et al., 2013, Lemma 7). The generalization to the
spatio-temporal context with a cylindrical hardcore structure implies to consider
a multi-objective minimization problem over the spatial and temporal hardcore
distances hs and ht. The choice of our hardcore parameters needs to analyze
the Pareto front of feasible solutions on the graph of spatial and temporal in-
terpoint distances. We refer the reader to Ehrgott (2005) for a description of
multi-criteria optimization and the definition of Pareto optimality. To estimate
the hardcore distance hs and ht, we consider a feasible solution on the Pareto
front as large as possible and with a ratio consistent with our knowledge of
interaction mechanisms in practice.

Regular parameters can be estimated using the pseudo-likelihood method
(Baddeley and Turner, 2000) or logistic likelihood method (Baddeley et al.,
2014) rather than the maximum likelihood method (Ogata and Tanemura,
1981). Due to the advantage of the logistic likelihood over pseudo-likelihood
for spatio-temporal Gibbs point processes (Iftimi et al., 2018; Raeisi et al.,
2021), we implement the former approach in Raeisi et al. (2021, Algorithm 2 )
for regular parameter estimation of the spatio-temporal hybrid Strauss hardcore
point process.

We assume that θ = (log γ1, log γ2, . . . , log γm) is the logarithm of interaction
parameters in spatio-temporal hybrid Strauss hardcore point process (15). The
Papangelou conditional intensity of the spatio-temporal hybrid Strauss hardcore
process is, for (u, v) ∈W and ∀(ξ, t) ∈ x \ (u, v),

λ((u, v)|x) = λ(u, v)

m∏
j=1

γ
n[C

qj
rj

(u,v);x\(u,v)]
j 1{||ξ − u||> hs or |t− v|> ht}. (18)

To estimate θ, due to (17), we just consider the points (u, v) wherem((u, v)|x)
is equal to 1 in (18). By defining Sj((u, v),x) := n[C

qj
rj (u, v); x \ (u, v)] in (18),

we can thus write λθ((u, v)|x) = λ(u, v)
∏m
j=1 exp(θjSj((u, v),x)). Hence, the

logarithm of the Papangelou conditional intensity of the spatio-temporal hy-
brid Strauss hardcore point process for (u, v) ∈ W which satisfies in hardcore
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condition, i.e. m((u, v)|x) = 1 in (18) , is

log λ((u, v)|x) = log λ(u, v) +

m∑
j=1

(log γj)Sj((u, v),x)

= log λ(u, v) + θ>S((u, v),x)

(19)

corresponding to a linear model in θ with offset log λ(u, v) where S((u, v),x) =
[S1((u, v),x), S2((u, v),x), ..., Sm((u, v),x)]> is a sufficient statistics.

By considering a set of dummy points d from an independent Poisson pro-
cess with intensity function ρ, we obtain by defining the Bernoulli variables
Y ((ξ, t)) = 1{(ξ,t)∈x} for (ξ, t) ∈ x∪d that the logit of P (Y ((ξ, t))) = 1 is equal

to log
λθ((ξ,t)|x\(ξ,t))

ρ(ξ,t) . Under regularity conditions, the log-logistic likelihood

logLL(x,d;θ) =
∑

(ξ,t)∈x

log
λθ((ξ, t)|x)

λθ((ξ, t)|x) + ρ(ξ, t)

+
∑

(ξ,t)∈d

log
ρ(ξ, t)

λθ((ξ, t)|x) + ρ(ξ, t)
,

(20)

admits a unique maximum. By consequence, the estimation of θ in the Papan-
gelou conditional intensity is equivalent to the estimation of logistic regression
parameters, already implemented by using standard software for GLMs. The
logistic regression

log
λθ((ξ, t)|x)

ρ(ξ, t)
= log

λ(ξ, t)

ρ(ξ, t)
+

m∑
j=1

θjSj((ξ, t),x), (21)

is a linear model in θ with offset log λ(ξ,t)
ρ(ξ,t) . We use the approach of Raeisi et al.

(2021) for data and dummy points such that m(·|x) = 1. We also consider that
λ(ξ, t) = βµ(ξ, t), where µ(ξ, t) is a trend preliminary estimated with spatio-
temporal covariates.

4 Simulation study

Due to the markovian property of the spatio-temporal hybrid Strauss hardcore
point process (15), its Papangelou conditional intensity at a point thus depends
only on that point and its neighbors in x. Hence, We can design simulation
approach by Markov chain Monte Carlo algorithms.

Gibbs point process models can be simulated a birth-death Metropolis-
Hastings algorithm that typically requires only computation of the Papangelou
conditional intensity (Møller and Waagepetersen, 2004). Raeisi et al. (2021)
extended the birth-death Metropolis-Hastings algorithm to the spatio-temporal
context that we adapt here for simulating the spatio-temporal hybrid Strauss
hardcore point process.
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Table 1: Parameter combinations of three hybrid Strauss hardcore point process
models used in simulation study.

Values of parameter
Regular parameters Irregular parameters

Model λ γ r, q hs, ht

Model 1 70 (0.8,.08) (0.05,0.1) (0.01,0.01)
Model 2 50 (1.5,1.5) (0.05,0.1) (0.01,0.01)
Model 3 70 (0.5,1.5) (0.05,0.1) (0.01,0.01)

Table 2: Mean and 95% interval regular parameter estimates of the three hybrid
Strauss hardcore point process models used in simulation study.

True values Mean 95% CI

Model 1
λ = 70 71.43 (69.16,73.70)
γ1 = 0.8 0.89 (0.78,1.00)
γ2 = 0.8 0.78 (0.74,0.82)

Model 2
λ = 50 50.84 (48.99,52.68)
γ1 = 1.5 1.41 (1.23,1.60)
γ2 = 1.5 1.46 (1.38,1.54)

Model 3
λ = 70 71.67 (69.18,74.15)
γ1 = 0.5 0.50 (0.43,0.57)
γ2 = 1.5 1.49 (1.42,1.55)

We implement the estimation and simulation algorithms in R (R Core Team,
2016) and generate simulations of three stationary spatio-temporal hybrid Strauss
hardcore point processes specified by a conditional intensity of the form (18) in
W = [0, 1]3. The parameter values used for the simulations are reported in Ta-
ble 1. The spatial and temporal radii r and q, spatial and temporal hardcores
hs and ht, are treated as known parameters.

We generate 100 simulations of each specified model. Boxplots of parameter
estimates λ, γ1, and γ2 obtained from the logistic likelihood estimation method
for each model are shown in Figure 1. The red horizontal lines represent the
true parameter values. Point and interval parameter estimates λ, γ1, and γ2 are
reported in Table 2. Most of the estimated parameter values are close to the
true values for three models. Due to visual and computational comparisons, we
conclude that the logistic likelihood approach performs well for spatio-temporal
hybrid Strauss hardcore point processes.

5 Application

In this section we aim to model the interactions of forest fire occurrences across
a range of spatio-temporal scales.
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Figure 1: Boxplots of regular parameter estimates of the hybrid Strauss hardcore point
process obtained from the logistic likelihood estimation methods. Up to down: Model 1,
Model 2, and Model 3
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Figure 2: Left: Map of region of Castilla-La Mancha (Spain). Middle: Forest fire locations.
Right: monthly numbers of fires recorded between January 2004 and December 2007 with
burnt areas, spatial distances and time distances respectively bigger than 5 ha, 0.2 km and
100 days.

5.1 Data description

The clmfires dataset available in spatstat package records the occurrence
of forest fires in the region of Castilla-La Mancha, Spain (Figure 2, left) from
1998 to 2007. The study area is approximately 400 by 400 km. The clmfires

dataset has already been used in some academic works devoted to the point
process theory (see e.g. Juan et al., 2010; Gomez-Rubio, 2020, sect. 7.4.2;
Myllymäki et al., 2020). The dataset has two levels of precision: from 1998
to 2003 locations were recorded as the centroids of the corresponding “district
units”, while since 2004 locations correspond to the exact UTM coordinates of
the fire occurrences.

Due to the low precision of fire locations for the years 1998 to 2003 (Gomez-
Rubio 2020, sect. 7.4.2), we focus on fires between 2004 and 2007. In this
period, we consider large forest fires with burnt areas larger than 5 ha. Figure
2 (middle) shows the point pattern of 432 wildfire locations onto the spatial
region.

Due to memory constraints and availability of climate covariates in months,
we consider monthly fire occurrences. The temporal component of the process
takes integer values from 1 to 48. We thus consider W = S × T where S
is the region of Castilla-la-Mancha and T = {1, 2, . . . , 48} corresponds to the
months since January 2004. Figure 2 (right) shows the monthly number of fires
occurring during our time period. We observe seasonal effects with notably large
numbers of fires in summer that could be caused by high temperatures and low
precipitations in this period and also by human activities.

In point pattern analysis, the spatial (spatio-temporal) inhomogeneity of
patterns is notably driven by covariates. The clmfires dataset contains four
environmental covariates that we include in our analysis: elevation, orientation,
slope and land use. The covariates are known on a spatial grid with pixels of
4×4 km, resulting in a total of 10000 pixels. The land use is a factor-valued co-
variate whereas the others are real-valued covariates. We also consider weather
data freely provided by the WorldClim database1 and containing monthly max-

1https://www.worldclim.org
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Figure 3: Image plot of environmental covariates (elevation, orientation, slope and land use)
and climate covariates (precipitation and temperature) in January 2007.

imum temperatures (◦C) and total precipitations (mm). Figure 3 illustrates
the environmental covariates, which are considered fixed during our temporal
period, and the climate covariates in January 2007.

5.2 Estimation

First, we estimate the trend function by considering a generalized linear model
(GLM) on covariates. Then, by an exploratory analysis using spatio-temporal
summary statistics we approximate the hardcore parameters and the interaction
ranges. Finally, we use the logistic likelihood approach described in Section 3
for the estimation of regular parameters of our model with the trend function
estimated in the preliminary step.

5.2.1 Trend estimate

Since covariates are available on a spatial grid, we restrict our attention on
the related grid centers ξi, i = 1, . . . , 10000 and months {tj}j=1,...,48 ∈ T and
consider Nij |λ(ξi, tj) ∼ Poisson(λ(ξi, tj)) where Nij is the number of forest
fires in the ith grid center at month tj .

Following Raeisi et al. (2021), by considering a GLM with Poisson response,
we obtain:

log λ(ξi, ti) = β0 +

6∑
k=1

βkZk(ξi, ti), (22)

where Zk(ξi, ti), k = 1, . . . , 6, are the environmental and climatic covariates at
point (ξi, ti) and β0, βk, k = 1, . . . , 6 are the coefficients to estimate. As said
before, we consider the same values for environmental covariates over time. A
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Table 3: Estimated coefficients, standard errors and p-values based on two-tailed
Student’s t-tests of significant differences from zero.

Coefficients Estimate Standard error p-value
β0 (intercept) -8.468 0.298 < 2× 10−16 ∗∗∗

β1 (elevation) 0.546 0.164 0.001 ∗∗∗

β2 (orientation) 0.005 0.003 0.114
β3 (slope) -0.019 0.01 0.054
β4 (land use) -0.009 0.024 0.689
β5 (precipitation) -0.007 0.002 0.003 ∗∗

β6 (temperature) 0.054 0.006 < 2× 10−16 ∗∗∗

straightforward way to fit a GLM in R is to use the function glm. Table 3 reports
the estimated coefficients in (22) and their significance level by a two-tailed Stu-
dent’s t-test. Coefficients higher (respectively lower) than zero imply an increase
(resp. decrease) of the expected mean number of forest fires when the covariate
value increase (resp. decrease). Those related to elevation and temperature are
positively significant, showing that these two covariates favors the ignition of
wildfires. At the opposite, the covariate precipitation has a negative significant
coefficient indicating that an increase of the amount of precipitation induces a
decrease in the mean number of forest fires. The land use appears not signifi-
cantly different from zero, it can be explained by the low spatial resolution of
the covariates.

5.2.2 Irregular parameter estimates

We have two types of irregular parameters in our spatio-temporal Gibbs point
process. On the one hand, the hardcore distances that we can choose among
the feasible solutions on the Pareto front of spatial and temporal interpoint
distances. According to Figure 4, we choose on the Pareto front the unique
feasible solution in our case that gives non-zero values for the two hardcore
distances, i.e. hs = 0.35 km and ht = 1 month. On the other hand, for the
nuisance parameters m, rj and qj , j = 1, . . . ,m, there is no common method
for estimating them. Here we considered several combinations of ad-hoc values
within a reasonable range and select the optimal irregular parameters accord-
ing to the Akaike’s Information Criterion (AIC) of the fitted model after the
regular parameter estimation step (Raeisi et al., 2021). We chose 25 config-
urations of reasonable range for the nuisance parameters using a preliminary
spatio-temporal exploratory analysis of the interaction ranges done with the in-
homogeneous pair correlation function, the maximum nearest neighbor distance
and the temporal auto-correlation function. We fitted the spatio-temporal hy-
brid Strauss point process model for a range of ad-hoc values rj ∈ (0.35, 20],
qj ∈ {2, ..., 15}, j = 1, . . . ,m and m ∈ {1, . . . , 6}. The minimum AIC is obtained
for the combination given in Table 4.

14



Figure 4: Spatial and temporal interpoint distances respectively lower than 5 kms and 12
months (black circles). The red line corresponds to the Pareto front and the red rectangle to
the hardcore domain.

Table 4: Parameter estimates for m = 6.

Irregular parameters
r 0.5 1 1.5 6 15 20
q 2 4 6 8 12 15

Estimated regular parameters
γ̂1 = 2.56 γ̂2 = 2.24 γ̂3 = 4.65 γ̂4 = 0.88 γ̂5 = 1.17 γ̂5 = 0.81

5.2.3 Regular parameter estimates

We consider the logistic likelihood method investigated in Section 3 to estimate
the regular parameters. We simulate dummy points from an inhomogeneous
Poisson point process with intensity ρ(ξ, t) = Cλ̂(ξ, t)/ν where C = 4 by a

classical rule of thumb in the logistic likelihood approach, λ̂ is the estimated
trend and ν = 4 × 4 × 1 is the volume of a grid cell on one month. In order
to satisfy the hardcore condition in (17), we remove dummy points at spatial
and temporal distances respectively less than hs and ht. Estimated regular
parameters are provided in Table 4.

5.3 Goodness-of-fit

The goodness-of-fit is accomplished by simulating point patterns from the fitted
model. The first diagnostic can be formulated by summary statistics of point
processes. As the second-order characteristics carry most of the information on
the spatio-temporal structure (Stoyan, 1992 ; Gonzalez et al., 2016), we only
consider the pair correlation function (g-function).

We generate nsim = 99 simulations from the fitted hybrid Strauss hardcore
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model and compute the corresponding second-order summary statistics gi(u, v),
i = 1, . . . , nsim, for fixed spatio-temporal distances (u, v). We then build upper
and lower envelopes:

U(u, v) = max
1≤i≤nsim

gi(u, v), L(u, v) = min
1≤i≤nsim

gi(u, v), (23)

and compare the summary statistics obtained from the data, gobs(u, v), to the
pointwise envelopes. If it lies outside the envelopes at some spatio-temporal
distances (u, v), then we reject at these distances the hypothesis that our data
come from our fitted model. Figure 5 shows the spatio-temporal inhomogeneous
g-function computed on our dataset (blue) and the envelopes obtained from the
fitted model (light grey); gobs(u, v) lies inside the envelopes for all (u, v), meaning
that the hybrid Strauss hardcore model is suitable for the data.

Figure 5: Envelopes of the spatio-temporal inhomogeneous g-function obtained from sim-
ulations of the fitted spatio-temporal hybrid Strauss hardcore point process (light grey). The
blue surface corresponds to gobs. Temporal separations are in month and spatial distances
are in kilometer.

In addition, we compute global envelopes and p-value of the spatio-temporal
g-functions based on the Extreme Rank Length (ERL) measure defined in Myl-
lymäki et al. (2017) and implemented in the R package GET (Myllymäki
and Mrkvička, 2020). For each point pattern, we consider the long vector Ti,
i = 1, . . . , nsim (resp. Tobs) merging the gi(·, v) (resp. gobs(·, v)) estimates for
all considered values ht. The ERL measure of vector Ti (resp. Tobs) of length
nst is defined as

Ei =
1

nns

nst∑
j=1

1{Rj ≺ Ri},

where Ri is the vector of pointwise ordered ranks and ≺ is an ordering operator
(Myllymäki et al., 2017; Myllymäki and Mrkvička, 2020). The final p-value is
obtained by

perl =
1 +

∑nsim
i=1 1{Ei ≥ Eobs}
nsim + 1

.

Due to the global p-value perl = 0.59 and the absence of significant regions, that
corresponds here to pairs of spatial and temporal distances where the statistics
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is significantly above or below the envelopes (see Figure 6 and GET package),
we conclude that our hybrid Strauss hardcore model can not be rejected a
significance level of 1%.

Figure 6: Top: estimated pair correlation function ĝobs, lower EL and upper EU bounds
of the 99% global rank envelope (ERL). Bottom: differences Eobs − EL and EU − Eobs.
Negative values (if any) are represented in red and lead to reject the fitted model. Values on
the horizontal axis are in kilometers and those on the vertical axis are in months.

Conclusion

In this paper, we introduced the spatio-temporal Strauss hardcore point pro-
cess. The Strauss hardcore model is a Gibbs model for which points are pushed
to be at a hardcore distance apart and repel up to an interaction distance which
is larger than the hardcore distance. As in Raeisi et al. (2021), inference and
simulation of the model were performed with logistic likelihood and birth-death
Metropolis-Hasting algorithm, respectively. A multi-scale version of the model
was introduced and applied to wildfires to take into account structural complex-
ity of forest fire occurrences in space and time. We based our model validation
on both pointwise and global envelopes and p-value based on the Extreme Rank
Length (ERL) measure of the spatio-temporal inhomogeneous pair correlation
function. Our model could be suitable in other environmental and ecological
frameworks, when we want to deal with the complexity of mechanisms governing
attraction and repulsion of entities (particles, cells, plants. . . ).

In spatio-temporal Gibbs point process models, the heterogeneity can be
captured by estimating a non-constant trend. This spatio-temporal trend is
typically considered as a function of covariates by estimating fixed effects in a
generalized linear model as we carried out it in this paper and also in Iftimi
et al. (2018) and Raeisi et al. (2021). A different approach consists in con-
sidering Gibbs models with both random and fixed effects (e.g. see Illian and
Hendrichsen, 2010) to take into account complex patterns of spatio-temporal
heterogeneity. Vihrs et al. (2020) proposed a new modeling approach for this
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case and embedded spatially structured Gaussian random effects in trend func-
tion of a pairwise interaction process. They introduced the spatial log-Gaussian
Cox Strauss point process to capture both structures; aggregation in small-scale
and repulsion in large-scale. Rather than spatial pairwise interaction processes
in single-scale, we now focus on models derived from the multi-scale classes
of combinations of Gibbs and log-Gaussian Cox point processes in space and
time, to which we refer to as Cox-Gibbs models. We propose to embed spatio-
temporally structured Gaussian random effects in the Gibbs trend function. Due
to the hierarchical structure of such models, we can formulate and estimate them
within a Bayesian hierarchical approach, using the INLA approach.
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