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Abstract

‘We propose a new point process model that combines, in the spatio-
temporal setting, both multi-scaling by hybridization and hardcore dis-
tances. Our so-called hybrid Strauss hardcore point process model allows
different types of interaction, at different spatial and/or temporal scales,
that might be of interest in environmental, biological. .. applications. The
inference and simulation of the model are implemented using the logistic
likelihood approach and the birth-death Metropolis-Hastings algorithm.
Finally, we apply our model to forest fire occurrences in Spain.

1 Introduction

In point patterns, most types of interaction structure between points can be
described by existing models. These models yield point patterns with mainly
single-structure, but a few with multi-structure. Interactions with single-structure
are often classified into three classes: randomness, clustering and inhibition.
Among inhibition processes is the hardcore process. It has some hardcore dis-
tance h in which distinct points are not allowed to come closer than a distance h
apart. This type of interaction can be modelled by Gibbs point processes as the
hardcore or Strauss hardcore point processes and also by Cox point processes as
Matérn’s hardcore (Matérn, 1960; 1986) or Matérn thinned Cox point processes
(Andersen and Hahn, 2016).

In reality, there exist hardcore distances in point patterns that have to be
modelled. Spatial point patterns with hardcore property can be found in capil-
laries studies (Mattfeldt et al., 2006; 2007; 2009), in texture synthesis (Hurtut
et al., 2009), in forest fires (Turner, 2009), in cellular networks (Taylor et al.,
2012 and Ying et al., 2014), in landslides (Das and Stein, 2016), in modern and
contemporary architecture and art (Stoyan, 2016) and in location clustering
econometrics (Sweeney and Gomez-Antonio, 2016).

There also exist point patterns with either clustering and inhibition like
hardcore interactions at different scales simultaneously (Badreldin et al., 2015;
Andersen and Hahn, 2016 and Wang et al., 2020). Wang et al. (2020, sect.



2.4) investigated effect of the hardcore distance on spatial patterns of trees by
comparing the pair correlation function curves for different values of hardcore
distances in the fitted hybrid Geyer hardcore model. Indeed, the hardcore dis-
tance between the points determines the level of clustering in point patterns
(Isham, 1984). In other words, hardcore parameter only rules the support of
density (Dereudre and Lavancier, 2017).

Raeisi et al. (2019) review spatial and spatio-temporal point processes that
model both inhibition and clustering at different scales. Such mutli-structure
interactions can be modelled by the spatial hybrid Gibbs point process (Bad-
deley et al, 2013). In this paper, we aim to extend the spatial Strauss hardcore
point process to the spatio-temporal framework and introduce a multi-scale ver-
sion of it using hybridization approach. As the first work in the scope of the
manuscript, Ripley (1988) initiated an application of the Strauss hardcore point
process model in a subsequent analysis for the Spanish towns dataset (Glass and
Tobler, 1971). We here apply our model to forest fire occurrences.

This paper is organized as follows. In a spatio-temporal framework, we
give the background and notations, present examples of Gibbs point processes,
introduce the Strauss hardcore point process using cylindrical neighborhood
and its multi-scale version (which is the core model of the paper). In Section
3 and 4, we investigate the inference and simulation of our model by extended
algorithms to the spatio-temporal context. Finally, we apply our model to a
monthly forest fire data in the center of Spain in Section 5.

2 Towards multi-scale Strauss hardcore point pro-
cesses

Gibbs models are flexible point processes that allow the specification of point in-
teractions via a probability density defined with respect to the unit rate Poisson
point process. These models allow to characterize a form of local or Markovian
dependence amongst events. Gibbs point processes contain a large class of flex-
ible and natural models that can be applied for:

e Postulating the interaction mechanisms between pairs of points,
e Taking into account clustering, randomness or inhibition structures,

e Combining several structures at different scales with the hybridization
approach.

Let x = {(&,t1),, s (§n,tn)} be a spatio-temporal point pattern where
(&,t;) € W = ST C R?2xR. We consider (W, d(-,-)) where d((u,v), (u/,v")) :=
max{||lu — ||, |v — v'|} for (u,v), (v/,v") € W is a complete, separable metric
space. The cylindrical neighbourhood C4(u,v) centred at (u,v) € W is defined
by

Ca(u,0) = {(a,b) € W : [[u— al|< 7, o — bI< g}, 1)



where r,¢q > 0 are spatial and temporal radius and ||-|| denotes the Euclidean
distance in R? and |-| denotes the usual distance in R. Note that C%(u,v) is a
cylinder with centre (u,v), radius r, and height 2g.

A finite Gibbs point process is a finite simple point process defined with a
density f(x) that satisfies the hereditary condition, i.e. f(x) > 0= f(y) > 0
for all y C x.

A closely related concept to density functions is Papangelou conditional in-
tensity function (Papangelou, 1974) which is a tool for simulating Gibbs models
and infering its parameters. The Papangelou conditional intensity of a spatio-
temporal point process on W with density f for (u,v) € W is defined by

A o)) = ), 2

with a/0 := 0 for all ¢ > 0 (Cronie and van Lieshout, 2015).

The Papangelou conditional intensity is also very useful to describe the lo-
cal interactions in a point pattern, and leads to the notion of a Markov point
process which is base of implementation MCMC algorithms for simulation of
Gibbs models. We say that the point process has ”interactions of range R at
(&,t)” if points further than R away from (£,¢) do not contribute to the condi-
tional intensity at (£,¢). A spatio-temporal Gibbs point process X has a finite
interaction range R if the Papangelou conditional intensity satisfies

M(u,v)%) = A((u, v)x N CF (u,v)) (3)

for all configurations x of X and all (u,v) € W, where CE(u, v) denotes the cylin-
der of radius R > 0 and height 2R > 0 centred at (u,v). Spatio-temporal Gibbs
models usually have finite interaction range property (spatio-temporal Markov
property) and are called in this case Markov point processes (van Lieshout
2002). The finite range property of a spatio-temporal Gibbs model implies that
the probability to insert a point (u,v) into x depends only on some cylindrical
neighborhoods of (u,v).

Here, we first review spatio-temporal Gibbs models and then extend the spa-
tial Strauss hardcore model to the spatio-temporal single-(multi-)scales context.
We further refer to Dereudre (2019) for more formal introduction of Gibbs point
processes.

2.1 Single-scale Gibbs point process models

In the literature, several spatio-temporal Gibbs point process models have been
proposed such as the hardcore (Cronie and van Lieshout, 2015), Strauss (Gon-
zalez et al., 2016), area-interaction (Iftimi et al., 2018), and Geyer (Raeisi et
al., 2021) point processes.

A Gibbs point process model explicitly postulates that interactions traduce
dependencies between the points of the pattern. The hardcore interaction is one
of the simplest type of interactions, which forbids points being too close to each



other. The homogeneous spatio-temporal hardcore point process is defined by
the density

F(x) = eA"OU|€ = &||> hy or [t —'[> hi; V(1) # (€. F) ext, (4)

with respect to a unit rate Poisson point process on W = S x T, where ¢ > 0 is a
normalizing constant, A > 0 is an activity parameter, hs, hy > 0 are, respectively,
the spatial and the temporal hardcore distances and n(x) is the number of points
in x. The Papangelou conditional intensity of a homogeneous spatio-temporal
hardcore point process for (u,v) ¢ x is obtained

A(u, v)|x) = AL{||€ — ul||> hs or |t — v|> hs; V(E, t) € x}

=) H {||€ — ul||> hs or |t — v|> h:}
(eDex (5)

=2 [T et ¢ @)

(&,t)ex

The homogeneous spatio-temporal Strauss point process is defined by density
F) = A0S0, (6)

with respect to a unit rate Poisson point process on W = S x T, where
SHx) = P (enrenex HIE = €< |t — ¢'|< ¢} and the Papangelou con-
ditional intensity of the model for (u,v) ¢ x is

Al(u,v)[x) = Ay (CF ], ()

and for (£,t) € x
(&, 1) [x) = AyICFEDAEN] (8)

where n[Cl(y,2);x] = >0 yex Hlly — &< 7|2 — t{< ¢} is the number of
points in x which are in a cylinder C4(y, z). Although the Strauss point process
was originally intended as a model of clustering, it can only be used to model
inhibition, because the parameter v cannot be greater than 1. If we take v > 1,
the density function of Strauss model is not integrable, so it does not define a
valid probability density.

Iftimi et al. (2018) defined the homogeneous spatio-temporal area interaction
point process by density

f(x) =A™ H 7~ nexCRED) (9)
(&t)ex

with respect to a unit rate Poisson point process on W = S x T, where £ is the
Lebesgue measure restricted to W = 5 x T.

As mentioned, Strauss point process model only achieves the inhibition struc-
ture. In spatial framework, two ways are introduced to overcome this problem
that we extend to spatio-temporal framework hence defining two new spatio-
temporal Gibbs point process models. A first way is to consider an upper bound



for the number of neighboring points that interact. In this case, Raeisi et al.
(2021) defined a homogeneous spatio-temporal Geyer saturation point process
by density
f(x) = eAn® H ymindsn[CR(E )]} (10)
(§t)ex

with respect to a unit rate Poisson point process on W = Sx T, where s is a satu-
ration parameter and n*[C¥ (&, 1); x] = n[CH(&, £); x\(§,1)] = 2_ (4 0yex (e,0) Llu—
El[<r v —tl< q}.

A second way is to introduce a hardcore condition to the Strauss density
(6). Hence, we can define a Strauss hardcore model in spatio-temporal context.

Definition 1. We define the spatio-temporal Strauss hardcore point process as
the point process with density

F(x) = XSO [|€ = &[> hy or [t = t|> his V(& t) # (&,1) €x}, (11)
where 0 < hy < rand 0 < hy < gq.

The model could be used to model clustering patterns with a softer attraction
between the points like a pattern with a combination of interaction terms that
show repulsion between the points at a small scale and attraction between the
points at a larger scale. The Papangelou conditional intensity of a homogeneous
spatio-temporal Strauss hardcore point process for (u,v) ¢ x is obtained

A((u, v)[x) = My X1 1¢ —u||> hy or [t — v|> hy; V(€ 1) € x}

= MlCrend TT O 1{(e,1) ¢ P (u,v) ). 12
(5,t)6x

We can define inhomogeneous versions of all above models by replacing the
constant A by a function A(,t) that expresses a spatio-temporal trend, which
can be a function of the coordinates of the points and depends on covariate
information.

2.2 Multi-scale Gibbs point process models

Since most natural phenomena exhibit dependence at multiple scales as earth-
quake (Siino et al., 2017;2018) and forest fire occurrences (Gabriel et al., 2017),
single-scale Gibbs point process models are unrealistic in many applications.
This motivates statisticians to construct multi-scale generalizations of the clas-
sical Gibbs models. Baddeley et al. (2013) proposed hybrid models as a general
way to generate multi-scale processes combining Gibbs processes. Given m
densities f1, fa, ..., fm of Gibbs point processes, the hybrid density is defined as
f(x) =cfi1(x) X fa(x) X -+ X fi,(x) where ¢ is a normalization constant.

Iftimi et al. (2018) extended the hybrid approach for an area-interaction
model in spatio-temporal framework where the density is given by

(U nexCi (€,8))
fx)=c¢ H A6 1) H'Yj s ) (13)

(&:t)ex J=1



with respect to a unit rate Poisson process on W = S x T, where (r;,q;) are
pairs of irregular parameters of the model and ~; are interaction parameters,
i=1..m

In the same way, Raeisi et al. (2021) defined a spatio-temporal multi-scale
Geyer saturation point process with density

y=e I A f[ min{s;n(C77 (€1)%)} (14)

(&t)ex

with respect to a unit rate Poisson process on W = S x T, where ¢ > 0 is a
normalizing constant, A > 0 is a measurable and bounded function, ; > 0 are
the interaction parameters.

As the same way, a hybrid version of spatio-temporal Strauss model can be
defined by hybridization.

Definition 2. We define the spatio-temporal hybrid Strauss point process with

density

m

y=c [] M&0) H (15)
(&,t)ex j=1

with respect to a unit rate Poisson process on W =S x T'.

Note that we called the model (15) hybrid rather than multi-scale. The
model (15) can cover inhibition structure because 0 < v; < 1,5 € {1,...,m}.
However, it can take into account clustering if one of densities in hybrid be a
hardcore process (Baddeley et al., 2015, sect. 14.8.6.2).

2.3 Hybrid Strauss hardcore point process

The hybrid Gibbs point process models do not necessarily include m same Gibbs
point process models (see Baddeley et al., 2015 sect. 13.8). Badreldin et al.
(2015) applied a spatial hybrid model including hardcore process for hardcore
structure at very short distances, Geyer process for cluster structure in short to
medium distances and a Strauss process for a randomness structure in larger
distances to the spatial pattern of the halophytic species distribution in an arid
coastal environment. Wang et al. (2020) fitted a spatial hybrid Geyer hardcore
point process on the tree spatial distribution patterns. In this section, we extend
this type of hybrids to the spatio-temporal context.

Definition 3. We define the spatio-temporal hybrid Strauss hardcore point pro-
cess with density

fe)=c ] A st_H 0

(&t)ex
< L{[[€" = "> hs or [t' = t"|> he; V(€ 1) # (£7,1) € x},

(16)

where 0 < hy <ri1 <---<rpand 0< hy <q <+ < @pm.



In the same way, Papangelou conditional intensity of an inhomogeneous
spatio-temporal hybrid Strauss hardcore process for (u,v) ¢ x is obtained

i n[C:Z].. (u,v);%]
A(u, v)|x) = A(u, v) H’yj I L{||€ — ul|> hs or [t —v|> h; V(E,t) € x}
j=1
il n[CﬁJJ (u,v);%] h,
j=1 (&,t)ex

(17)

The conditional intensity of the Gibbs point process models including a hardcore
interaction term takes the value zero at some locations. We can thus write that
for all parameters of the model

A(u, v)[x) = m((u, v)[X)AT((u, v)[x), (18)

where m((u,v)|x) takes only the values 0 and 1, and A\ ((u,v)[x) > 0 every-
where.

In the same way as Iftimi et al. (2018) and Raeisi et al. (2021), the spatio-
temporal hybrid Strauss hardcore point process (16) is a Markov point process
in Ripley-Kelly’s (1977) sense at interaction range max{r,, ¢m }.

3 Inference

Gibbs point process models involve two types of parameters: regular parameters
and irregular parameters. A parameter is called regular if the log likelihood of
density is a linear function of that parameter otherwise it is called irregular.
Typically, regular parameters determine the ‘strength’ of the interaction, while
irregular parameters determine the ‘range’ of the interaction. As an example,
in the Strauss hardcore point process (11), the trend parameter A and the inter-
action ~ are regular parameters and the interaction distances r and ¢ and the
hardcore distances hs and h; are irregular parameters.

To determine the irregular parameters, there are several practical techniques,
but no general statistical theory available. Useful technique is maximum profile
pseudo-likelihood (Baddeley and Turner, 2000). In the spatio-temporal frame-
work, Iftimi et al. (2018) and Raeisi et al. (2021) selected feasible range of
irregular parameters by analyzing the behavior of some summary statistics and
the goodness-of-fit of several models with different combinations of parameters.
In the spatial framework, the hardcore distance in hybrid Gibbs hardcore point
process models can be estimated by the minimum interpoint distance (Badde-
ley et al., 2013, Lemma 7). Indeed, property (18) states that the hardcore term
does not depend on the other parameters in Gibbs point process models. The
practical implication is that any parameters governing the hardcore interaction
are held fixed (Baddeley et al., 2019, p. 26). However, the lack of uniqueness
of the solution in a spatio-temporal framework in most application implies to
consider an other methodology. In the spatio-temporal framework, an optimal
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Figure 1: The red line is an example of a Pareto front where the frontier and the area below
it are a continuous set of choices. The points on the red line are examples of Pareto-optimal
choices of hardcore parameter estimates.

solution (hZ, iﬁ) such that it does not exist hy > h{ or hy > hi where the con-
dition {[|€ — & ||< hs and |t —t |< hy; V(E, ) # (€ ,t )} is verified, does not exist
in practice. Unlike in the spatial case, the choice of our hardcore parameters
needs to analyze the Pareto front of feasible solutions on the graph of spatial
and temporal interpoint distances. We compute all pairs of spatial and tempo-
ral distances between points and consider these pairs of distances as points in
a set S. Let x (resp. y) be the vector of spatial (resp. temporal) distances.
To construct the Pareto front, we consider the strict dominance as an ordering
operator: we say that x strictly dominates y if x; < y; Vi and at least one
inequality is strict. We then discard any points which are strictly dominated by
another element of S to get a reduced set S’, so-called the Pareto front. This
name is inspired by the way that the remaining points are the “outer shell” of
S with the discarded points on the interior (Figure 1). Finally, to estimate the
hardcore distance hg and h;, we consider the coordinates of a feasible solution
on the Pareto front that are as large as possible and with a ratio consistent with
our knowledge on interaction mechanisms in practice.

Regular parameters can be estimated using the pseudo-likelihood method
(Baddeley and Turner, 2000) or logistic likelihood method (Baddeley et al.,
2014) rather than the maximum likelihood method (Ogata and Tanemura,
1981). Due to the advantage of the logistic likelihood over pseudo-likelihood
for spatio-temporal Gibbs point processes (Iftimi et al., 2018; Raeisi et al.,
2021), we implement the former approach in Raeisi et al. (2021, Algorithm 2)
for regular parameter estimation of the spatio-temporal hybrid Strauss hardcore
point process.

We assume that 8 = (logy1,log vz, ..., log ¥ ) is the logarithm of interaction
parameters in spatio-temporal hybrid Strauss hardcore point process (16). The
Papangelou conditional intensity of the spatio-temporal hybrid Strauss hardcore



process for (u,v) e W =S5 xT is

A(u, v)[x) = H (oA e ul|> hy or [t—v|> hesV(E ) € x\(u, v)}.

(19)

To estimate 0, due to (18), we just consider the points (u, v) where m((u, v)|x)

is equal to 1 in (19). By defining S;((u,v),x) := n[C (u,v);x \ (u,v)] in (19),

we can thus write Ag((u,v)|x) = Au,v) [T}Z; exp(6;5;((u,v),x)). Hence, the

logarithm of the Papangelou conditional intensity of the spatio-temporal hy-

brid Strauss hardcore point process for (u,v) € W which satisfies in hardcore
condition, i.e. m((u,v)|x) =11in (19) , is

log A((u,v)|x) = log A(u,v) Z:: log v;)S;((u,v),x) (20)

=log Mu,v) + 0" S((u,v),x)
corresponding to a linear model in 6 with offset log A(u,v) where S((u,v),x) =

[S1((u,v),%), So((u,v),%), ..., S ((u, v),x)] T is a sufficient statistics.
Hence, the log logistic likelihood

log LL(x,d;0) Z log 5 Dix)
& %) + plE 1) o
(5 t)
1
* 2 R e

where d is a realization of a dummy point process independent of point process
with known intensity function p, is a logistic regression and estimation can
be thus implemented by using standard software for GLMs. The logit for the

models is
)\9((5?1‘;)‘){) —
p(€;1)

log (22)

A1)
p(&:t) "
al. (2021) for quadrature points (data and dummy points) such that m(:|x) = 1.

which is a linear model in 8 with offset log We use Algorithm 2 in Raeisi et

4 Simulation

Due to the markovian property of the spatio-temporal hybrid Strauss hardcore
point process (16), its Papangelou conditional intensity at a point thus depends
only on that point and its neighbors in x. Hence, We can design simulation
approach by MCMC algorithms.



Table 1: Parameter combinations of three hybrid Strauss hardcore point process
models used in simulation study.

Values of parameter

Regular parameters Irregular parameters
Model A ¥ T, q hs, ht
Model 1 70 (0.8,.08) (0.05,0.1)  (0.01,0.01)
Model 2 50 (1.5,1.5) (0.05,0.1) (0.01,0.01)
Model 3 70 (0.5,1.5) (0.05,0.1)  (0.01,0.01)

4.1 Metropolis-Hastings algorithm

Gibbs point process models can be simulated by Markov chain Monte Carlo
algorithms, in particular with a birth-death Metropolis-Hastings algorithm that
typically requires only computation of the Papangelou conditional intensity
(Mgller and Waagepetersen, 2004). Raeisi et al. (2021) extended the birth-
death Metropolis-Hastings algorithm to the spatio-temporal context that we
adapt here for simulating the spatio-temporal hybrid Strauss hardcore point
process.

4.2 Simulation study

We implement the estimation and simulation algorithms in R (R Core Team,
2016) and generate simulations of three stationary spatio-temporal hybrid Strauss
hardcore point processes specified by a conditional intensity of the form (19) in
W =[0,1]3. The parameter values used for the simulations are reported in Ta-
ble 1. The spatial and temporal radii » and ¢, spatial and temporal hardcores
hs and h;, are treated as known parameters.

We generate 100 simulations of each specified model. Boxplots of parameter
estimates A, y1, and -2 obtained from the logistic likelihood estimation method
for each model are shown in Figure 2. The red horizontal lines represent the
true parameter values. Point and interval parameter estimates A, 71, and v, are
reported in Table 2. Most of the estimated parameter values are close to the
true values for three models. Due to visual and computational comparisons, we
conclude that the logistic likelihood approach performs well for spatio-temporal
hybrid Strauss hardcore point processes.

5 Application

Forest fire is one of the most complex phenomena from the spatio-temporal
modeling point of view. The complexity of forest fire occurrences is due in
particular to the existence of multi-scale structures and hardcore distances in
space and time.

For instance, changes in vegetation due to forest fires burnt areas affect the
probability of fire occurrences during the regeneration period leading to the

10
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Figure 2: Boxplots of parameter estimates of the hybrid Strauss hardcore point process
obtained from the logistic likelihood estimation methods. Up to down: Model 1, Model 2, and
Model 3

Table 2: Point and interval parameter estimates of three hybrid Strauss hardcore
point process models used in simulation study.
True values Mean 95% CI
Model 1
A=70 7143 (69.16,73.70)
v1 =0.8 0.89 (0.78,1.00)
v =08 078  (0.74,0.82)
Model 2
A =50 50.84  (48.99,52.68)
y1 =15 1.41 (1.23,1.60)
v =15 146  (1.38,1.54)
Model 3
A=70 71.67 (69.18,74.15)
v =05 050  (0.43,0.57)
v2 = 1.5 1.49 (1.42,1.55)

11
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Figure 3: Map of region of Castilla-La Mancha (Spain)

existence of hardcore distances in space-time. It can be also observed the multi-
scale structure of clustering and inhibition in the spatio-temporal pattern of the
forest fires which discussed in Gabriel et al. (2017).

The main focus of our forest fire pattern analysis is to quantify the inter-
actions across a range of spatio-temporal scales which can be done by using
the spatio-temporal hybrid Strauss hardcore process. We apply our model on a
forest fire pattern of Castilla-La Mancha in Spain (see Figure 3).

5.1 Study region and dataset

Castilla La Mancha is located in the middle of the Iberian peninsula and the
third largest of Spain’s autonomous regions representing 15.7% of the Spanish
national territory.

5.1.1 Data description

The clmfires dataset available in spatstat package records the occurrence of
forest fires in the region of Castilla-La Mancha (Spain) from 1998 to 2007. This
region is approximately 400 by 400 km. The study area was partitioned in pixels
of 4 x 4 km, resulting in a total of 10000 pixels. The clmfires dataset have
already been used in some academic works devoted to the point process theory
(see for example Juan et al., 2010; Gomez-Rubio, 2020, sect. 7.4.2; Myllyméki
et al., 2020)

Because of the low precision of fire locations for the years 1998 to 2003
(Gomez-Rubio 2020, sect. 7.4.2), we focus on fires in the period 2004 to 2007.
In this period, we consider fires with a burnt area larger than 5 ha. Figure 4
(left) shows the projection of 432 wildfire locations onto the spatial region.

Due to memory constraints and availability of climate covariates in months,
we consider monthly fire occurrences. The temporal component of the process

12
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Figure 4: Location (left) and number per month (right) of forest fires recorded during
January 2004 to December 2007 with burnt area, space distance and time distance bigger
than 5 ha, 0.2 km and 100 days, respectively, in Castilla-La Mancha (Spain).

takes integer values from 1 to 48. We thus consider W = S x T where S
is the region of Castilla-la-Mancha and T = {1,2,...,48} corresponds to the
months since January the first of 2004. Figure 4 (right) shows the temporal fire
occurrences over the 48 months. We observe a seasonal period in spring and
summer with a large numbers of fires in summer that could be caused to the high
temperature and the low precipitation in these seasons and also human-caused
fires in summer break.

5.1.2 Environmental covariates

In point pattern analysis, the spatial (spatio-temporal) inhomogeneity of pat-
terns is driven by covariates. The clmfires dataset contains four environmental
covariates. We consider them in our analysis that include elevation, orientation,
slope and land use. The land use is a factor-valued covariate. Figure 5 is the
image plot of these covariates that are fixed during our temporal period.

5.1.3 Climate covariates

We consider weather data freely provided by WorldClim database' containing
monthly maximum temperature (°C) and total precipitation (mm) for all the
world in .tif format. We extract the values of climate covariate for our spatio-
temporal study region by raster package in R. Figure 6 is the image plot of
climate covariates on January 2007.

1ht‘cps ://www.worldclim.org
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Figure 6: The image plot of covariates precipitation and temperature on January 2007.
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Table 3: Estimated coefficients, standard errors and p-values based on two-tailed
Student’s t-tests of significant differences from zero.

Coefficients Estimate Standard error p-value
Bo (intercept) -8.468 0.298 <2x 10716 =
B1 (elevation) 0.546 0.164 0.001 ***
B2 (orientation) 0.005 0.003 0.114
B3 (slope) -0.019 0.01 0.054
B4 (land use) -0.009 0.024 0.689
Bs (precipitation) -0.007 0.002 0.003 **
Be (temperature) 0.054 0.006 < 2x 10716 xxx

5.2 Estimation

To estimate the parameters of the model, first, we consider that the trend func-
tion is a GLM of covariates and use glm function in R. Then, by an exploratory
analysis using spatio-temporal summary statistics we approximate the hardcore
parameters and interaction ranges. Finally, we use the logistic likelihood ap-
proach described in Section 3 for the regular parameters estimation of the model
using the estimated trend function.

5.2.1 Trend estimate

As the same way as Raeisi et al. (2021), the trend term of our model could
be written in a loglinear function (the simplest and most popular form) of
covariates. Hence, we assume

6
lOg )‘(57 t) = BO + Z Bka (57 t)a (23)

k=1

where Zj(&,t) are the covariates at point (€,t) and By, Si are the coefficients
to estimate, with & = 1,...,6. We consider the same values for environmen-
tal covariates in months to express them in spatio-temporal context. Since the
covariates are available in center of 10000 grids in region study, we restrict
our attention on grid centers &;,¢ = 1,...,10000 and months ¢; = {1,...,48}
for j =1,...,48. We consider a Poisson response for our model N;;|A(&;,t;) ~
Poisson(A(&;,t;)), where &;,4 = 1,...,10000 are the grid centers, ¢; € {1,...,48}
are the months and N;; is the number of forest fires in i*" grid at month ¢,.

The systematic component of the GLM specifies a relationship between the
mean response and the covariates. In particular, the systematic component
consists of a link function (e.g. log function) that transforms the mean response
and then expresses this transformed mean in terms of a linear function of the
covariates. In our notation, this is given by (23). A straightforward way to fit a
GLM in R is to use the function glm. Table 3 reports the estimated coefficients
for the fitted GLM (23) on covariates.
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Figure 7: The red line is Pareto front corresponds to all pair spatial and temporal distances
of our data set.

5.2.2 Irregular parameter estimates

There is no common method for estimating irregular parameters in spatial or
spatio-temporal Gibbs point process models. Here we considered several com-
binations of ad-hoc values within a reasonable range and select the optimal
irregular parameters according to the Akaike’s Information Criterion (AIC) of
the fitted model (Raeisi et al., 2021).

By using Pareto front approach discussed in Section 3, we consider hy = 0.35
km and hy = 1 month. See Figure 7. We chose configurations of feasible values
for the nuisance parameters m, r; and ¢;, j = 1,...,m using a preliminary
spatio-temporal exploratory analysis of the interaction ranges done with the in-
homogeneous pair correlation function, the maximum nearest neighbor distance
and the temporal auto-correlation function.

5.2.3 Regular parameter estimates

We consider the logistic likelihood method investigared in Section 3 to estimate
the regular parameters. We simulate dummy points from an inhomogeneous
Poisson point process with intensity p(&,t) = CA(&,t)/v where C = 4 by a
classical rule of thumb in the logistic likelihood approach and v = 4 x 4 x 1
(area of a grid cell multiplied by 1 month).

We fitted the spatio-temporal hybrid Strauss point process model for a range
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Table 4: Parameter estimates for m = 6.

Irregular parameters
r 0.5 1 1.5 6 15 20
q 2 4 6 8 12 15
Estimated regular parameters
Y1 =256 H2 =224 A3 =4.65 44 =088 45 =1.17 45 =0.81

of ad-hoc values r; € [0,20], g; in {2, ..., 15} because possible correlation for time
lags is as big as 15 months. The minimum AIC is obtained for the combination
given in Table 4.

5.3 Goodness-of-fit

The goodness-of-fit for a model is accomplished by simulating new point pat-
terns from the fitted model. The first diagnostic can be formulate by the sum-
mary statistics of point processes. For each simulated realization of points,
we compute a spatio-temporal second-order summary statistic such as the (in-
homogeneous) pair correlation function (g-function) or K-function. We then
compare the distribution of summary statistics for the simulated points and
original points.

Occasionally, apart from the second-order distribution characteristic de-
scribed by the g- and K-functions, higher-order interactions are also likely to ex-
ist in a spatio-temporal point patterns (Gonzalez et al., 2016). In this case, other
high-order summary statistics such as spatio-temporal nearest-neighbor distance
distribution function and empty-space function (Cronie and van Lieshout, 2015)
can also be fitted simultaneously to achieve a better approximation. According
to the general empirical experience in spatial point process statistics (Stoyan,
1992), the second-order distribution characteristic carries most of the informa-
tion on a spatial structure. Thus, only the g-function is considered here for
simplicity.

To do this, we generate ng;,, simulations from a fitted hybrid Strauss hard-
core model. We then compute the corresponding second-order summary statis-
tics for each simulated point pattern denoted by g;(u,v),i € {1,...,ngim}. For
each value of the spatio-temporal distance (u,v), upper and lower critical en-
velopes of the observed summary statistics are computed pointwise by sorting
the values of

U(u,v) = 15?%%zfim gi(u,v), L(u,v)= 1§£rglinnsm gi(u,v). (24)

If the observed curve of gops(u, v) lies outside the envelope, it means that the

fitted model does not describe properly the characteristics of the data. Indeed,

simulated envelopes generate significance bands of the second-order summary
statistics rather than confidence intervals.

We generated ng;,, = 99 simulations from our fitted model. Figure 8 shows

the spatio-temporal inhomogeneous g-function computed on our dataset (green)
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and the envelopes obtained from our hybrid Strauss hardcore model (light grey);
Jobs (1, v) lies inside the envelopes, meaning that the fitted model seems to de-
scribe properly the spatio-temporal structure of the data.

\ .

Figure 8: Envelopes of the spatio-temporal inhomogeneous pair correlation function for the
simulated spatio-temporal hybrid Strauss hardcore point process according to the estimated
parameters. Temporal separations are in month and spatial distances are in kilometer.

In addition, we compute global envelopes and p-value of the spatio-temporal
g-functions based on the Extreme Rank Length (ERL) measure defined in Myl-
lyméki et al. (2017) and implemented in the R package GET (Myllyméki
and Mrkvicka, 2020). For each point pattern, we consider the long vector Tj;,
i=1,...,ngm (resp. Tops) merging the g;(-,v) (resp. gops(:,v)) estimates for
all considered values h;. The ERL measure of vector T; (resp. T,ps) of length

ng 1s defined as
1 Nst

Z ]].{R] =< Rl},

s 521

E; =

n

where R; is the vector of pointwise ordered ranks and < is an ordering operator
(Myllymaéki et al., 2017; Myllyméki and Mrkvicka, 2020). The final p-value is
obtained by

143772 1{Ei > Eobs}

Due to the global p-value pe,; = 0.11 and the absence of significant regions, that
corresponds here to pairs of spatial and temporal distances where the statistics
is significantly above or below the envelopes (see Figure 9 and GET package),
we conclude that our hybrid Strauss hardcore model can not be rejected.

Pert =
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Global envelope test: p = 0.11
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Figure 9: Graphical functional ERL envelope: the observed difference, the lower and upper
bounds of the 95% global rank (ERL) envelope, and the significant regions (in red if any)
where the observed coefficient goes below or above the envelope.

Conclusion

In this paper, we introduced the spatio-temporal Strauss hardcore point process.
Strauss hardcore model is a Gibbs model for which points are pushed to be
at a hardcore distance apart and repel up to a interaction distance which is
larger than the hardcore distance. As in Raeisi et al. (2021), inference and
simulation of the model were performed with logistic likelihood and birth-death
Metropolis-Hasting algorithm, respectively. A multi-scale version of the model
was introduced and applied to forest fires pattern to take into account structural
complexity of forest fires in space and time. The model fitted very well the forest
fire occurrences due to a model validation procedure using global envelopes and
p-value of the spatio-temporal inhomogeneous pair correlation function based
on the Extreme Rank Length (ERL) measure.

Because this model is suitable in an environmental and ecological framework,
due to the complexity of mechanisms governing attraction and repulsion of
entities (particles, cells, plants...), we can expect a wide use of it in many
studies.
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