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Abstract

Our aim in this paper is to derive optimality conditions for the time of crisis problem under a weaker
hypothesis than the usual one encountered in the hybrid setting, and which asserts that any optimal solution
should cross the boundary of the constraint set transversally. Doing so, we apply the Pontryagin Maximum
Principle to a sequence of regular optimal control problems whose integral cost approximates the time of crisis.
Optimality conditions are derived by passing to the limit in the Hamiltonian system. This convergence result
essentially relies on the boundedness of the sequence of adjoint vectors in L∞. Our main contribution is to
relate this property to the boundedness in L1 of a suitable sequence which allows to bypass the use of the
transverse hypothesis on optimal paths.

1 Introduction

This paper proposes a new approach to derive optimality conditions for the so-called time of crisis problem [5] as
well as (new) sufficient conditions ensuring the well-posedness of this approach. Such conditions will slightly differ
of those available in the literature that involve the behavior of an (a priori unknown) optimal path.

Originally, the time of crisis problem was introduced in [15], and it consists in minimizing the total time spent
by a solution of a control system outside a given constraint set. It is of particular interest whenever it is not
possible to maintain the system in such a set. In that case, alternative strategies consist in finding a control policy
such that the associated solution spends the minimum of time outside the constraint set. The time of crisis arises
in the context of viability theory [2, 3], see, e.g., a case study in ecology in [7], and more generally whenever one
is unable to maintain a controlled dynamics within a prescribed constraint set over a time windows.

From a theoretical point of view, the formulation of the time of crisis involves a discontinuous function w.r.t. the
state, namely the indicator function of the constraint set. The integrand is then equal to 0 or 1 depending on the
position of the system in the state space. Therefore, the Pontryagin Maximum Principle (PMP), see [19], cannot
be applied straightforwardly to derive necessary conditions. Nevertheless, various approaches have been proposed
in the literature to study this issue and we now wish to give an overview of the available methods in order to
highlight the differences with our approach.

In the first paper about the time of crisis (see [15]), the optimal control problem was tackled via a dynamic
programming approach. The question of necessary optimality conditions has been investigated more recently in [5]
using the so-called hybrid maximum principle (HMP) which is an extension of the PMP adapted to hybrid systems
(see [16, 17, 10]). In [5], the authors provide necessary conditions by a direct application of this principle that
requires a so-called transverse hypothesis on optimal trajectories which is as follows: any optimal solution crosses
the boundary of the constraint set transversally. As in [17], this hypothesis is crucial for the obtention of necessary
conditions (in particular, for the jump of the covector). Thanks to this hypothesis, it is also shown in [5, 6] that
extremals of a regularized1 optimal control problem converge, up to a sub-sequence, to an extremal of the time
of crisis problem. The methodology is in line with [17]. Note that first and second order conditions have also
been derived in [8] using the PMP on a reformulation of the time of crisis problem obtained via an augmentation
technique (in the spirit of [12, 13, 14]). Let us also point out the paper [1] in which an approximation technique
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is introduced in order to obtain necessary conditions. The study of convergence of regularized extremals relies
on a similar transverse hypothesis on an optimal solution as in the application of the HMP. In addition, the
approximated optimal control problem involves the (desired) optimal solution. Let us point out that this approach
is of interest for obtaining optimality conditions via the use of the PMP on a smooth problem, however, it is not
usable from a numerical point of view since the sequence of approximated problems itself involves the optimal
solution.

Let us now describe more into details the content of this paper. As we have seen, the time of crisis can be
viewed as an application of the HMP on a discontinuous problem w.r.t. the state. The HMP available in the
literature is a powerful tool but its application requires an optimal solution to satisfy a transverse assumption
related to the boundary of the constraint set (see [17]). In practice, this condition is hardly possible to check if
one does not know in advance the optimal solution or estimates it with enough accuracy. That is why, we ask
whether or not it is possible to derive optimality conditions for discontinuous integrands w.r.t the state without
the use of this hypothesis. Doing so, we introduce a sequence of regular optimal control problems whose integral
cost approximates the time of crisis (this is made possible using mollifiers). Our contribution is twofold:

• We propose in the context of the time of crisis problem a sufficient condition for the obtention of necessary
optimality conditions. This condition relies on the data of the problem and on a sequence of approximated
solutions, and it can be easily checked.

• Necessary conditions for the time of crisis are derived under this condition which also covers the transverse
case.

As a byproduct of our approach (and in contrast with [1, 20] for instance), the sequence of approximated optimal
control problems allows to approach an optimal solution of the original problem with a solution associated with a
regular optimal control problem, that can be solved numerically with existing efficient methods.

The paper is organized as follows. In Section 2, we introduce the time of crisis and the regularization scheme,
and we also apply the PMP on the regularized optimal control problem. In section 3, we study properties of
a sequence of approximated solutions (namely, the integral of the approximated solution computed along the
mollifier). This sequence will be crucial to introduce an auxiliary hypothesis in Section 5 allowing then the
derivation of optimality conditions for the time of crisis. Section 4 provides optimality conditions for the time of
crisis under the hypothesis that the suitable sequence is bounded (and so, without a transverse hypothesis which
is the novelty here). Finally, a sufficient condition involving this sequence is presented in Section 5 and the last
section provides some examples that highlight the convergence of the sequence of adjoint vectors to a discontinuous
covector having a jump at each crossing time. The paper ends up with a conclusion.

2 Definitions and regularization of the time crisis problem

2.1 Notations and main hypotheses
Throughout the paper, m,n ≥ 1 are integers and T > 0. Let us introduce the following notations:

• For x, y ∈ Rn, |x| and x · y, denote the euclidean norm of x and the scalar product between x and y. If A is
a square matrix of dimension n, ‖A‖ stands for the norm of a A and its transpose is written A>.

• Given a mapping f : Rn × Rm → Rn, we denote respectively by Dxf(x, u), Duf(x, u) the Jacobian matrix
of f w.r.t. variables x and u at some point (x, u) ∈ Rn × Rm. The notations ∇ϕ(x), Dxxϕ(x) denote the
gradient and the Hessian of a function ϕ : Rn → R at some point x ∈ Rn.

• Given two integers k, p ≥ 1 and a function w : [0, T ] → Rk, the notation ‖w‖Lp(I ;Rk) will stand for the
Lp-norm of w over some time interval I ⊂ [0, T ].

• If g ∈ L∞([0, T ] ; Rs), s ∈ N∗, we denote by g(t±) the right and left limits (when it exists) of g at point t. In
the same way, we shall denote by ġ(t±) the right and left derivative of a scalar function g (when it exists).

In the sequel, we consider two non-empty subsets U and K of Rm and Rn respectively, as well as two mappings
ϕ : Rn → R and f : Rn × Rm → Rn (the dynamics). Throughout the paper, we suppose that the following
hypotheses are satisfied:

(H1) The set U is compact and f is of class C1 with linear growth, i.e., there is c ≥ 0 such that for every
(x, u) ∈ Rn × U , one has |f(x, u)| ≤ c(|x|+ 1).
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(H2) For every (x, p) ∈ R2n, the set ⋃
u∈U

[
f(x, u)

−Dxf(x, u)>p

]
is a non-empty compact2 convex subset of R2n.

(H3) We suppose that ϕ is of class C2, that the set K is with non-empty interior and is the 0-sub-level set of ϕ:

K = {x ∈ Rn ; ϕ(x) ≤ 0}.

(H4) For every x ∈ ∂K (the boundary of K), one has ϕ(x) = 0 and ∇ϕ(x) 6= 0.

Note that (H2) is fulfilled whenever the dynamics f is affine w.r.t. to the control u.

2.2 The time of crisis
Throughout the paper, we consider the admissible control set

U := {u : [0, T ]→ U ; u ∈ L∞([0, T ] ; U)}.

Given an initial condition x0 ∈ Rn, the minimal time crisis (over [0, T ]) is defined as

inf
u∈U

∫ T

0

1Kc(xu(t)) dt, (2.1)

where 1Kc denotes the characteristic function of the complement of K, i.e., 1Kc(x) = 1 if x /∈ K, 1Kc(x) = 0 if
x ∈ K, and xu(·) is the unique (global) solution to the Cauchy problem{

ẋ(t) = f(x(t), u(t)) a.e. t ∈ [0, T ],
x(0) = x0.

(2.2)

Under the previous assumptions, the existence of an optimal control for (2.1) follows easily from the upper semi-
continuity of 1Kc (see, e.g., [5, Proposition 2.1] for more details). An important feature for studying optimality
conditions of (2.1) is the notion of crossing time that we recall below.

Definition 2.1. Given a solution x(·) of (2.2), let us define the absolutely function ρ as:

ρ(t) := ϕ(x(t)), t ∈ [0, T ]. (2.3)

(i) A crossing time from K to Kc, resp. from Kc to K, is a time τ ∈ (0, T ) for which there is η > 0 with
[τ − η, τ + η] ⊂ [0, T ] such that x(t) ∈ K, resp. x(t) ∈ Kc, for t ∈ [τ − η, τ ] and x(t) /∈ K, resp. x(t) ∈ K, for
t ∈ (τ, τ + η]. We shall say that a crossing time is "outward" if x crosses ∂K from K to Kc, and "inward" if it
crosses from Kc to K.
(ii) A crossing time τ is transverse if moreover the function ρ admits non-null left and right limits, i.e.,

ρ̇(τ±) = lim
t→τ±

∇ϕ(x(t)) · ẋ(t) 6= 0 (2.4)

(negative for an outward crossing time, positive for an inward crossing time.)

Remark 2.1. Definition 2.1 (i) is equivalent to say that τ is an isolated root of ρ such that the map t 7→ ρ(t)(t−τ)
is locally of constant sign (positive from from K to Kc, negative from from Kc to K).

Throughout the paper, we suppose that an optimal solution x∗ of (2.1) has a finite number r ≥ 1 of (alternated)
crossing times (τi)1≤i≤r such that

0 < τ1 < τ2 < · · · < τr < T.

In particular, we will not consider trajectories that may cross the boundary of K an infinite number of times over
[0, T ] (such as chattering [22]).

2The compactness property actually follows from the continuity of f and Dxf and the compactness of U .
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2.3 Regularization scheme
The approach developed in the present paper is an approximation procedure of Problem 2.1 with a sequence of
regular problems that can be solved with standard optimality conditions (such as the PMP) or existing numerical
tools. It will allow us to recover the conditions obtained for instance in [5] using the HMP [17]. As mentioned
in the introduction, other authors considered regularization of problems similar to (2.1), but requiring an a priori
knowledge of an optimal control [1], which therefore cannot be used as a practical approximation, in contrast with
our approach. In addition, we shall see that the sufficient condition for the derivation of optimality conditions
that we obtain in Section 5 does not involve the assumption that each crossing time of an optimal solution is
transverse, as it is required in the HMP. Instead, this condition relies only on the boundedness in L1 of a suitable
sequence related to the regularized problem, that can be tested numerically.

Let us now introduce a regularized scheme associated with (2.1). Doing so, we consider a sequence Gn : R→ R
approximating the Heaviside step function3 G as follows:

• Gn is of class C1 and converges pointwise to G: for every σ ∈ R, Gn(σ)→ G(σ) when n→ +∞.

• there are two sequences of real numbers (an)n, (bn)n such that for every n ∈ N, one has an ≤ 0, bn ≥ 0, and
Gn(σ) = 0, resp. Gn(σ) = 1 for every σ ≤ an, resp. σ ≥ bn. In addition, an ↑ 0 and bn ↓ 0 when n→ +∞.

In view of its definition, the function Gn is Lipschitz continuous, and its Lipschitz constant Ln is such that
Ln → +∞ whenever n→ +∞. Note also that

hn := G′n,

is a mollifier, i.e., for every n ∈ N, its support is contained in [an, bn] and
∫
R hn(σ)dσ = 1. In addition, one has

supσ∈R |h′n(σ)| → +∞ whenever n→ +∞.
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Figure 1: Plot of Gn (Fig. left) and of its derivative hn (Fig. right) for n = 1.

In the sequel, we consider the following sequence of optimal control problems

inf
u∈U

∫ T

0

Gn(ϕ(xu(t))) dt, (2.5)

where xu(·) is the unique solution to (2.2). The existence of an optimal control of (2.5) is straightforward using
Fillipov’s existence Theorem [21] under our assumptions. Hereafter, we denote by (xn, un) an optimal pair of
(2.5). Following [9], we can show that, up to a subsequence, the sequence xn converges strongly-weakly4 to an
optimal pair (x∗, u∗) of (2.1). Let us stress that (un) may not converge pointwise to u∗.

2.4 Optimality conditions for the regularized problem
We are now in a position to apply the Pontryagin Maximum Principle on Problem (2.5). LetHn : Rn×Rn×Rm → R
be the Hamiltonian5 associated with (2.5) defined as:

Hn(x, p, u) = p · f(x, u)−Gn(ϕ(x)).

3We define G as the function such that G(σ) = 0, resp. G(σ) = 1 whenever σ ≤ 0, resp. σ > 0.
4This means that (xn)n uniformly converges to x∗ over [0, T ] and that (ẋn)n weakly converges to ẋ∗ in L2([0, T ] ; Rn).
5Since no terminal constraint appear in (2.5), one can directly take p0 = −1 for the multiplier associated to the objective function

Gn, i.e., only normal extremals occur.
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Since (xn, un) is optimal for (2.5), there is an absolutely continuous map pn : [0, T ] → Rn satisfying the adjoint
equation ṗn = −∂H∂x almost everywhere, that is,∣∣∣∣∣ ṗn(t) = −Dxf(xn(t), un(t))>pn(t) + hn(ϕ(xn(t)))∇ϕ(xn(t)) a.e. t ∈ [0, T ],

pn(T ) = 0,
(2.6)

as well as the Hamiltonian condition which can be written

∀u ∈ U, pn(t) · f(xn(t), u) ≤ pn(t) · f(xn(t), un(t)) a.e. t ∈ [0, T ]. (2.7)

A triple (xn, pn, un) satisfying (2.2)-(2.6)-(2.7) is called an extremal (recall that only normal extremals occur here
as there is no terminal condition). Let us observe that the problem is autonomous, therefore, the Hamiltonian is
conserved along any extremal. For every n ∈ N, there is H̃n ∈ R such that:

H̃n = Hn(xn(t), pn(t), un(t)) = pn(t) · f(xn(t), un(t))−Gn(ϕ(xn(t))) a.e. t ∈ [0, T ].

Remark 2.2. Since (xn)n strongly-weakly converges to x∗ which satisfies (H′), it can be observed that t 7→
hn(ϕ(xn(t))) takes arbitrarily large values in (2.6). Hence, we can expect the sequence (ṗn)n to be unbounded in
L∞([0, T ] ; Rn). We shall see, that under (H′) (that is whenever every crossing time of x∗ is transverse), (pn)n is
indeed bounded in L∞([0, T ] ; Rn) even though this is not the case for (ṗn)n. This is actually the main difficulty
for studying the behavior of (2.6) and for passing to the limit when n→ +∞.

The boundedness of the sequence (pn)n is related to the behavior of the sequence (In)n defined as

In :=

∫ T

0

hn(ϕ(xn(t))) dt. (2.8)

As this integral will play a crucial role in the establishment of optimality conditions, passing to the limit into (2.6)
when n→ +∞, we devote the next session to analysis of its properties.

3 Properties of the sequence of integrals (In)n

We start by proving that (In)n is bounded if and only if (pn)n is bounded in L∞([0, T ] ; Rn). Recall that the
limiting path x∗ has a finite number of crossing times (τi)1≤i≤r. Set

δ := min
0≤i≤r

(τi+1 − τi),

with the convention τ0 := 0, τr+1 := T , and define the sub-sets

Iη :=
⋃

1≤i≤r

[τi − η, τi + η]; Jη := [0, T ] \ Iη.

The following property will be used at several places.

Property 3.1. For all η ∈ (0, δ), there is N ∈ N such that for all n ≥ N and t ∈ Jη, one has hn(ϕ(xn(t))) = 0.

Proof. Take η ∈ (0, δ). Since (xn)n uniformly converges to x∗ and as ϕ(x∗(t)) = 0 if and only if t ∈ {τ1, ..., τr},
there are N1 ∈ N and γ > 0 such that

∀n ≥ N1, ∀t ∈ Jη, |ϕ(xn(t))| ≥ γ.

Now, recall that both sequences (an)n, (bn)n defining the the support of hn converge to zero, whence the result.

Next, we have the following equivalence between the boundedness of (pn)n and (In)n.

Proposition 3.1. The sequence (pn)n is bounded in L∞([0, T ] ; Rn) if and only if (In)n is bounded in R+.
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Proof. Since pn(T ) = 0 for every n ∈ N, the boundedness of (pn)n easily follows from the boundedness of (In)n
using Gronwall’s Lemma and the fact that (xn)n and (un)n are bounded in L∞([0, T ] ; Rn) and L∞([0, T ] ; Rm)
respectively.

Let us now assume that (pn)n is bounded in L∞([0, T ] ; Rn). By (2.6) one has∫ T

0

hn(ϕ(xn(t)))|∇ϕ(xn(t))|2dt =
∫ T

0

ṗn(t) · ∇ϕ(xn(t)) dt+

∫ T

0

Dxf(xn(t), un(t))
>pn(t) · ∇ϕ(xn(t)) dt. (3.9)

From (H4) and using the uniform convergence of (xn)n to x∗, there are η ∈ (0, δ), N1 ∈ N, and γ′ > 0 such that

∀t ∈ Iη, ∀n ≥ N1, |∇ϕ(xn(t))|2 ≥ γ′.

From property 3.1, there is N ∈ N such that for every n ≥ N and every t ∈ Jη, one has hn(ϕ(xn(t))) = 0. It
follows that for every n ≥ N2 := max(N,N1), one has:∫ T

0

hn(ϕ(xn(t)))|∇ϕ(xn(t))|2 dt ≥ γ′
∫
Iη
hn(ϕ(xn(t))) dt. (3.10)

Now, from the hypotheses on f and ϕ, there is C ≥ 0 such that:

∀n ∈ N, ∀t ∈ [0, T ], |Dxf(xn(t), un(t))>pn(t) · ∇ϕ(xn(t))| ≤ C.

By an integration by parts, we obtain using the terminal condition pn(T ) = 0 for every n ∈ N:∫ T

0

ṗn(t) · ∇ϕ(xn(t)) dt = −pn(0)∇ϕ(x0)−
∫ T

0

Dxxϕ(xn(t))pn(t) · ẋn(t) dt.

As the sequence (xn)n is uniformly bounded, we deduce that there is C ′ ≥ 0 such that for every n ∈ N, one has∣∣∣∣∣
∫ T

0

ṗn(t) · ∇ϕ(xn(t)) dt

∣∣∣∣∣ ≤ |pn(0)||∇ϕ(x0)|+
∫ T

0

‖Dxxϕ(xn(t))‖ |pn(t)| |ẋn(t)|dt ≤ C ′ (3.11)

Combining (3.9)-(3.10)-(3.11) then implies

∀n ≥ N2, γ′
∫
Iη
hn(ϕ(xn(t))) dt ≤ CT + C ′.

We have thus proved that the sequence
(∫
Iη hn(ϕ(xn(t))) dt

)
n
is bounded. Since hn(ϕ(xn(t))) = 0 for every

t ∈ Jη and every n ≥ N , the result then follows.

This proposition will be used later on to obtain optimality conditions for (2.1) by letting n → +∞ in (2.6)
and by reasoning by contradiction supposing that (pn)n is unbounded in L∞([0, T ] ; Rn). We now aim at studying
convergence properties of the sequence (In)n. We show that the sequence (In)n enjoys a kernel-type property. For
any 1 ≤ i ≤ r, define the partial integrals

Ĩi,n(η) :=

∫ τi+η

τi−η
hn(ϕ(xn(t))) dt, η ∈ (0, δ).

Lemma 3.1. Suppose that (In)n is bounded. Then, for any i ∈ {1, ..., r}, there exists `i ∈ R+ such that for every
η ∈ (0, δ], Ĩi,n(η)→ `i whenever n→ +∞.

Proof. Since (In)n is bounded so is (Ĩi,n(η))n for η ∈ (0, δ], hence, we may assume that there exists `i ∈ R+ such
that (up to a sub-sequence), Ĩi,n(δ)→ `i when n→ +∞. We can then write

Ĩi,n(δ)− Ĩi,n(η) =

∫ τi−η

τi−δ
hn(ϕ(xn(t))) dt+

∫ τi+δ

τi+η

hn(ϕ(xn(t))) dt.

Let then
γη := min

t∈[τi−δ,τi−η]∪[τi+η,τi+δ]
|ϕ(x∗(t))| > 0.
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Recall that (xn)n uniformly converges to x∗ when n→ +∞. Thus, there exists N ∈ N such that:

∀n ≥ N, ∀t ∈ [τi − δ, τi − η] ∪ [τi + η, τi + δ], |ϕ(xn(t))| ≥ γη
2
.

Now, both sequence (an)n and (bn)n converge to zero, hence there exists N ′ ≥ N such that

∀n ≥ N ′, [an, bn] ⊂
[
−γη

2
,
γη
2

]
.

Because the support of hn is contained in [an, bn], we conclude that

∀n ≥ N ′, Ĩi,n(δ) = Ĩi,n(η).

This proves that Ĩi,n(η)→ `i when n→ +∞. Since η ∈ (0, δ] is arbitrary, the result follows.

Thanks to this lemma, we can now show the following result which provides a kernel-type property6 of (In)
and that will be crucial hereafter to study the convergence of (pn)n.

Proposition 3.2. If g : Rn → Rn is a function of class C1 and (In)n is bounded, then:

∀ε > 0,∃ηi ∈ (0, δ],∃N ∈ N, ∀n ≥ N,
∣∣∣∣∫ τi+ηi

τi−ηi
hn(ϕ(xn(t)))g(xn(t)) dt− `ig(x∗(τi))

∣∣∣∣ ≤ ε. (3.12)

In addition, ηi goes to zero as ε ↓ 0.

Proof. For η ∈ (0, δ], one can write:∫ τi+η

τi−η
hn(ϕ(xn(t)))g(xn(t)) dt− `ig(x∗(τi)) =

∫ τi+η

τi−η
hn(ϕ(xn(t)))[g(xn(t))− g(x∗(t))] dt︸ ︷︷ ︸

Λ1
n(η)

+

∫ τi+η

τi−η
hn(ϕ(xn(t)))[g(x∗(t))− g(x∗(τi))] dt︸ ︷︷ ︸

Λ2
n(η)

+(Ĩi,n(η)− `i)g(x∗(τi)).

Let then ε > 0 be fixed and set M := supn In. By continuity of x∗ at t = τi, there exists ηi > 0 such that

|g(x∗(t))− g(x∗(τi))| ≤
ε

3M
, t ∈ [τi − ηi, τi + ηi]. (3.13)

Without any loss of generality, one can choose ηi such that it goes to zero as ε tends to 0 because t 7→ (g◦x∗)(t)
is Lipschitz continuous over [0, T ] (since g is of class C1 and ẋ∗ is bounded in L∞([0, T ] ;Rn)).

Since for every η ∈ (0, ηi] one has

∀n ∈ N, |Λ2
n(η)| ≤

∫ τi+η

τi−η
hn(ϕ(xn(t)))|g(x∗(t))− g(x∗(τi))|dt ≤

∫ τi+ηi

τi−ηi
hn(ϕ(xn(t)))|g(x∗(t))− g(x∗(τi))|dt,

we obtain the following property:

∃ηi > 0, ∀n ∈ N, ∀η ∈ (0, ηi], |Λ2
n(η)| ≤ ε

3
. (3.14)

Now, the sequence (xn)n uniformly converges to x∗ over [0, T ]. Hence, there exists N ′ ∈ N such that for all n ≥ N ′,
one has |g(xn(t))− g(x∗(t))| ≤ ε

3M for every t ∈ [0, T ]. This gives us the following property:

∃N ′ ∈ N, ∀n ≥ N ′, ∀η ∈ (0, δ], |Λ1
n(η)| ≤ ε

3
. (3.15)

The last step is to apply Lemma 3.1 for η = ηi which provides the inequality:

∃N ′′ ∈ N, ∀n ≥ N ′′, |(Ĩi,n(ηi)− `i)g(x∗(τi))| ≤
ε

3
. (3.16)

Let us set N := max(N ′, N ′′). Combining (3.14)-(3.15)-(3.16) then gives (3.12).
6We refer to a classical property which asserts that given a sequence of mollifier (fn)n defined over [0, 1] and a continuous function

g : [0, 1]→ R, then
∫ 1
0 fn(t)g(t) dt→ g(0) when n goes to infinity.
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Let us underline that for an arbitrary sequence (xn)n satisfying (2.2), which converges (up to a sub-sequence)
to a solution x̄ of (2.2), the sequence of integrals (In)n is not necessarily bounded even if the limiting trajectory
x̄ has a transverse crossing time (see example below).

Example 3.1. Consider the scalar dynamics

ẋ(t) = u(t) a.e. t ∈ [0, 2],

where u(t) ∈ [0, 1], together with the set K := R− (associated with ϕ(x) := x). As nominal path, we consider
x̄(t) := t − 1, t ∈ [0, 2]. Observe that the function ρ̄(t) = ϕ(x̄(t)) is differentiable with ρ̄′(t) = 1 > 0 for every
t ∈ [0, 2], thus τ = 1 is a transverse crossing time. For this example, we suppose for convenience that the mollifier
(hn)n is such that an = 0 and bn > 0 for every n ∈ N. Let us denote by cn ∈ (an, bn) the unique point at which hn
achieves its maximum (one has hn(cn)→ +∞ whenever n→ +∞). Next, we consider the sequence of absolutely
continuous function (xn)n defined as xn(t) = t− 1 + ζn, t ∈ [0, 1− ξn],

xn(t) = cn, t ∈ [1− ξn, 1 + ξ′n],
xn(t) = t− 1− ζ ′n, t ∈ [1 + ξ′n, 2],

(3.17)

where (ζn)n, (ζ ′n)n converge to 0 when n→ +∞, (ξn)n and (ξ′n)n are with values in (0, 1), and:

∀n ∈ N, ζn − ξn = cn, ξ′n − ζ ′n = σn. (3.18)

In addition, (σn)n is a sequence converging to 0 as n → +∞. Equality (3.18) guarantees the continuity of xn at
t = 1− ξn and at t = 1 + ξ′n for every n ∈ N. Sequences (ξn)n and (ξ′n)n will be made more precise hereafter and,
so, (3.18) allows to uniquely define the sequences (ζn)n and (ζ ′n)n.

Suppose now that (ξn)n and (ξ′n)n are chosen such that (ξn + ξ′n)hn(cn)→ +∞ whenever n→ +∞. Then, we
we can easily see that In → +∞. Indeed, In can be written In = I1

n + I2
n + I3

n with

I1
n :=

∫ 1−ξn

0

hn(ϕ(xn(t))) dt ; I2
n :=

∫ 1+ξ′n

1−ξn
hn(ϕ(xn(t))) dt ; I3

n :=

∫ 2

1+ξ′n

hn(ϕ(xn(t))) dt.

Recall that ϕ(x) = x, thus by changing the integration variable t into s := t− 1 + ζn, resp. s := t− 1− ζ ′n in I1
n,

resp. in I3
n, we obtain that for every n ∈ N, one has I1

n ≤ 1 and I3
n ≤ 1. Now, by construction, for every n ∈ N,

we have
I2
n = hn(cn)(ξn + ξ′n),

which shows that In → +∞. In addition, we easily check that the sequence (xn)n strongly-weakly converges to x̄.
First, one has

sup
t∈[0,T ]

|xn(t)− x̄(t)| ≤ max(ζn, ζ
′
n, σn)→ 0,

whenever n→ +∞. Second, one can verify that (ẋn) converges a.e. to ˙̄x (actually for every t ∈ [0, 2]\{1}) which
is enough to ensure the weak convergence of (x̄n)n to ˙̄x in L2([0, 2] ; R).

Nevertheless, we shall see later on that this phenomenon does not occur whenever (xn)n is a minimizing
sequence obtained from (2.5). This is due to the application of Pontryagin’s Principle that provides additional
properties on the extremal (xn, pn, un) preventing (In)n to blow up under (H′).

4 Optimality conditions for the time crisis problem

In this section, we give optimality conditions without the HMP, i.e., by passing to the limit into the state-adjoint
system satisfies by the extremal (xn, pn, un). Let us start by giving a definition of a covector associated with
Problem (2.1). Doing so, we define the Hamiltonian H : Rn × Rn × Rm → R associated with (2.1) as

H(x, p, u) = p · f(x, u)− 1Kc(x).

Definition 4.1. Given a solution (x∗, u∗) of (2.1) with r crossing times, we say that a piecewise absolutely
continuous function p : [0, T ]→ Rn is a covector associated to x∗ if p is absolutely continuous on [0, T ]\{τ1, ..., τr}
and satisfies the following conditions.
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• The function p fulfills the backward adjoint equation:∣∣∣∣ ṗ(t) = −Dxf(x∗(t), u∗(t))>p(t) a.e. t ∈ [0, T ],
p(T ) = 0.

(4.19)

• The Hamiltonian condition is fulfilled almost everywhere:

∀u ∈ U, p(t) · f(x∗(t), u) ≤ p(t) · f(x∗(t), u∗(t)) a.e. t ∈ [0, T ]. (4.20)

• At every crossing time, p admits left and right limits, i.e.,

∀i ∈ {1, ..., r}, ∃p(τ±i ) := lim
t→τ±i

p(t). (4.21)

• There exists (`1, ..., `r) ∈ (0,+∞)r such that:

∀i ∈ {1, ..., r}, p(τ+
i )− p(τ−i ) = `i∇ϕ(x∗(τi)). (4.22)

• The Hamiltonian is constant almost everywhere over [0, T ], i.e., there is H̃ ∈ R such that

H̃ = H(x(t), p(t), u(t)) = max
u∈U

H(x(t), p(t), u) = −1Kc(x∗(T )) a.e. t ∈ [0, T ]. (4.23)

We call extremal of (2.1) any triple (x∗, p, u∗) satisfying (2.2),(4.19)-(4.20), (4.22) and (4.23).

Remark 4.1. Equality (4.22) amounts to say that p has a jump at t = τi in the normal cone to the set K (meaning
here that the jump is in the direction of ∇ϕ(x(τi)), being assumed that K has a smooth boundary).

To establish optimality conditions for (2.1), we start by proving the convergence of (pn)n. Doing so, we proceed
step by step.

Lemma 4.1. Suppose that (pn)n is uniformly bounded in L∞([0, T ] ; Rn) and let 1 ≤ i ≤ r, η ∈ (0, δ]. Then, up
to a sub-sequence, the pair (xn, un)n strongly-weakly converges over [τi + η, τi+1 − η] to a solution of∣∣∣∣∣ ẋ∗(t) = f(x∗(t), u∗(t))

ṗ(t) = −Dxf(x∗(t), u∗(t))>p(t)
a.e. t ∈ [τi + η, τi+1 − η].

Proof. In view of Property 3.1, for n large enough, the triple (xn, un) satisfies the system∣∣∣∣∣ ẋn(t) = f(xn(t), un(t))

ṗn(t) = −Dxf(xn(t), un(t))>pn(t)
a.e. t ∈ [τi + η, τi+1 − η].

Let t0 ∈ [τi + η, τi+1 − η]. Since (pn)n is bounded, we may assume that (pn(t0))n converges (up to a sub-
sequence). Because (xn)n uniformly converges to x∗, we deduce that xn(t0)→ x∗(t0). Using (H1)-(H2), the result
of compactness of solutions of a control system (see, e.g., [11, Theorem 1.11]) yields the result.

Next, we show that (pn)n strongly-weakly converges on [0, T ] \ {τ1, ..., τr}.

Lemma 4.2. Suppose that (pn)n is uniformly bounded in L∞([0, T ] ; Rn). Then, there exists a function p : [0, T ]→
Rn absolutely continuous on [0, T ]\{τ1, ..., τr} satisfying

ṗ(t) = −Dxf(x∗(t), u∗(t))>p(t) a.e. t ∈ [0, T ], (4.24)

such that for every η ∈ (0, δ), (pn)n strongly-weakly converges to p over Jη.

Proof. Let η ∈ (0, δ). By using the previous lemma, for every 1 ≤ i ≤ r, we obtain the existence of an absolutely
continuous function pη defined over Jη and satisfying (4.24) over Jη. We now argue that pη does not depend on η
by considering a sequence of positive numbers (ηk)k such that ηk ↓ 0 which allows us to define pηk for every k ∈ N,
as previously (over Jηk). We then obtain pηk+1

(t) = pηk(t) for every t ∈ Jηk because Jηk ⊂ Jηk+1
for every k ∈ N.

This shows that we can then define a function p : [0, T ]\{τ1, ..., τr} → Rn without any ambiguity by the equality
p = pη on every set Jη, η ∈ (0, δ]. By construction, p does not depend on η, which is as wanted.
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Let us now address the question of the constancy of the Hamiltonian along (x∗, p, u∗) and the Hamiltonian
condition (4.20).

Lemma 4.3. Suppose that (pn)n is uniformly bounded in L∞([0, T ] ; Rn). Then, the function p satisfies the
Hamiltonian condition (4.20) and (4.23).

Proof. Recall that x∗ has r crossing times τi, i = 1, ..., r. Let 0 ≤ i ≤ r and t0 ∈ (τi, τi+1) be a Lebesgue point of
the measurable function t 7→ p(t) · ẋ∗(t). From (2.7), we obtain for any u ∈ U and ν > 0 (small enough):

1

ν

∫ t0+ν

t0

pn(t) · f(xn(t), u) dt ≤ 1

ν

∫ t0+ν

t0

pn(t) · ẋn(t) dt.

Now, (pn)n and (xn)n uniformly converge over [t0, t0 + ν] to p and x∗ respectively. In addition, (ẋn)n weakly
converges to ẋ∗ over [t0, t0 + ν]. It follows that

1

ν

∫ t0+ν

t0

p(t) · f(x∗(t), u) dt ≤ 1

ν

∫ t0+ν

t0

p(t) · ẋ∗(t) dt.

Letting ν ↓ 0 then gives
p(t0) · f(x(t0), u) ≤ p(t0) · ẋ∗(t0).

Since u ∈ U is arbitrary and almost every point of [0, T ] is a Lebesgue point of t 7→ p(t) · ẋ∗(t), we obtain (4.20).
We proceed similarly to show the constancy of H over time, i.e., for showing (4.23). Since the Hamiltonian

Hn is autonomous for any n ∈ N, one has

H̃n := max
u∈U

Hn(xn(t), pn(t), u) = −Gn(ϕ(xn(T )), ∀t ∈ [0, T ]

and as Gn(ϕ(xn(T )) ∈ [0, 1], (H̃n)n converges, up to a sub-sequence, to a constant H̃ ∈ [−1, 0]. Let i ∈ {0, ..., r}
and again, let t0 ∈ (τi, τi+1) be a Lebesgue point of t 7→ p(t) · ẋ∗(t). For ν > 0 small enough, one has:

H̃n =
1

ν

∫ t0+ν

t0

pn(t) · ẋn(t) dt− 1

ν

∫ t0+ν

t0

Gn(ϕ(xn(t))) dt.

By letting n→ +∞, we deduce that

1

ν

∫ t0+ν

t0

pn(t) · ẋn(t) dt→ 1

ν

∫ t0+ν

t0

p(t) · ẋ∗(t) dt.

By the uniform convergence of (xn)n over [t0, t0 + ν] ⊂ (τi, τi+1), we also have

1

ν

∫ t0+ν

t0

Gn(ϕ(xn(t))) dt→ 1

ν

∫ t0+ν

t0

1Kc(x∗(t)) dt,

when n→ +∞ (this follows using the dominated convergence Theorem). We can then conclude that

H̃ =
1

ν

∫ t0+ν

t0

p(t) · ẋ∗(t) dt− 1

ν

∫ t0+ν

t0

1Kc(x∗(t)) dt.

Now, letting ν ↓ 0 (recall that t0 ∈ (τi, τi+1) for i = 1, ..., r) gives

H̃ = p(t0) · ẋ(t0)− 1Kc(x(t0)).

Since almost every point t0 ∈ [0, T ] is a Lebesgue point of the map t 7→ p(t) · ẋ∗(t), one has then

H(x∗(t), p(t), u∗(t)) = H̃ a.e. t ∈ [0, T ].

By the Hamiltonian condition (4.20) and the continuity of the map t 7→ maxu∈U H(x∗(t), p(t), u) on [0, T ] \
{τ1, ..., τr}, (4.23) is thus fullfilled (recall that p(T ) = 0 and thus H̃ = −1Kc(x(T ))).

Thanks to the previous lemma, we can now give the main result of this section, namely that (x∗, p, u∗) is an
extremal of Problem (2.1).
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Theorem 4.1. Suppose that the sequence of integrals (In)n is bounded. Then, there exists a non-null covector
p : [0, T ]→ Rn associated to x∗ in the sense of Definition 4.1.

Proof. Accordingly to Proposition 3.1, the sequence (pn)n is uniformly bounded in L∞([0, T ] ; Rn). The existence
of a function p : [0, T ]\{τ1, ..., τr} → Rn satisfying (4.19)-(4.20)-(4.23) follows from the previous lemma. Note that
the condition p(T ) = 0 because pn(T ) = 0 for all n ∈ N and p(T ) = limn→+∞ pn(T ) (note also that x∗(T ) /∈ ∂K
since τr < T is the last crossing time).

Let us now show (4.21). Since (pn)n is uniformly bounded in L∞([0, T ] ; Rn), there is R ≥ 0 such that for
every n ∈ N one has ‖pn‖L∞([0,T ] ;Rn) ≤ R. Since for every t ∈ [0, T ]\{τ1, ..., τr}, one has p(t) = limn→+∞ pn(t),
we deduce that ‖p‖L∞([0,T ] ;Rn) ≤ R. Now, fix 1 ≤ i ≤ r and observe that

ṗ(t) = −Dxf(x∗(t), u∗(t))>p(t) a.e. t ∈ (τi, τi+1).

Given t1, t2 ∈ (τi, τi+1), we can thus write:

|p(t2)− p(t1)| =
∣∣∣∣∫ t2

t1

−Dxf(x∗(t), u∗(t))>p(t) dt

∣∣∣∣ ≤ A|t1 − t2|,
where A := R supt∈[0,T ] |Dxf(x∗(t), u∗(t))>p(t)|. This inequality shows that p(·) satisfies the Cauchy criterion at
t = τ+

i which proves that the right limit p(τ+
i ) exists. Similarly, one obtains the existence of a left limit p(τ−i ).

We can repeat this argumentation at every crossing time τi which gives (4.21).
Let us now prove the jump formula (4.22). Doing so, consider a sequence (εk)k such that εk ↓ 0 and let us

apply Proposition 3.2 with ∇ϕ in place of g. For every k ∈ N, there exist ηk ∈ (0, δ] and Nk ∈ N such that for
every n ≥ Nk, one has ∣∣∣∣∫ τi+ηk

τi−ηk
hn(ϕ(xn(t)))∇ϕ(xn(t)) dt− `i∇ϕ(x∗(τi))

∣∣∣∣ ≤ εk.
Notice that from Proposition 3.2, one has ηk → 0 when k → +∞. Integrating (2.6) over [τi − ηk, τi + ηk] yields

∀n ∈ N, pn(τi + ηk)− pn(τi − ηk) =

∫ τi+ηk

τi−ηk
−Dxf(xn(t), un(t))>pn(t) dt+

∫ τi+ηk

τi−ηk
hn(ϕ(xn(t)))∇ϕ(xn(t)) dt.

Now, t 7→ Dxf(xn(t), un(t))pn(t) is uniformly bounded over [0, T ] (say by a constant B ≥ 0). It follows that

∀n ≥ Nk, |pn(τi + ηk)− pn(τi − ηk)− `i∇ϕ(x∗(τi))| ≤ 2Bηk + εk.

First, we let n goes to infinity (k being fixed) which gives:

∀k ∈ N, |p(τi + ηk)− p(τi − ηk)− `i∇ϕ(x∗(τi))| ≤ 2Bηk + εk.

Now, we let k → +∞ observing that p(τi ± ηk)→ p(τ±i ) and we obtain

p(τ+
i )− p(τ−i ) = `i∇ϕ(x∗(τi)),

which is the desired property.
The last step is to show that for every 1 ≤ i ≤ r, one has `i 6= 0. Consider the map

h(t) := max
u∈U

H(x∗(t), p(t), u), t ∈ [0, T ] \ {τ1, ..., τr}

which is continuous on each time interval (τi−1, τi). As p admits left and right limits at each τi, so is h. Consider
i ∈ {1, ..., r} such that x∗ crosses ∂K from K to Kc at t = τi. One has then

h(τ−i ) = max
u∈U

p(τ−i ) · f(x∗(t), u), h(τ+
i ) = max

u∈U
p(τ+

i ) · f(x∗(t), u)− 1.

If `i = 0, one has p(τ+
i ) = p(τ−i ) and thus h(τ+

i ) − h(τ−i ) = −1, which contradicts property (4.23). Similarly, if
x∗ crosses ∂K from Kc to K at τi with `i = 0, one gets h(τ+

i )− h(τ−i ) = 1 and again a contradiction with (4.23).

Let us stress that this result does not involve the transverse assumption (H’). Using the constancy of the
Hamiltonian along an extremal, the jump formula can be also written as follows (see also [17]).
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Corollary 4.1. Assume that the sequence of integrals (In)n is bounded. If ẋ∗ admits left and right derivative at
some transverse crossing time τi, i ∈ {1, ..., r}, then the jump of the covector p at τi can be written as:

p(τ+
i ) = p(τ−i ) +

δi + p(τ−i ) · (ẋ∗(τ−i )− ẋ∗(τ+
i ))

∇ϕ(x∗(τi)) · ẋ∗(τ+
i )

∇ϕ(x∗(τi)),

or

p(τ−i ) = p(τ+
i )− δi + p(τ+

i ) · (ẋ∗(τ−i )− ẋ∗(τ+
i ))

∇ϕ(x∗(τi)) · ẋ∗(τ−i )
∇ϕ(x∗(τi)),

where δi = +1 resp. δi = −1 if the crossing time τi is outward, resp. inward.

Proof. Let us write the conservation of the Hamiltonian in a right and left neighborhood of τi. If τi is an outward
crossing time, one has then:

p(τ−i ) · ẋ∗(τ−i )− 1 = p(τ+
i )ẋ∗(τ+

i ), (4.25)

and p(τ+
i ) = p(τ−i ) + `i∇ϕ(x∗(τi)). Replacing p(τ+

i ) by this last expression in equation (4.25) raises

`i =
1 + p(τ−i ).(ẋ∗(τ−i )− ẋ∗(τ+

i ))

∇ϕ(x∗(τi)).ẋ∗(τ
+
i )

.

Similarly, replacing p(τ−i ) by p(τ+
i )− `i∇ϕ(x∗(τi)) in equation (4.25) gives the equivalent expression

`i =
1 + p(τ+

i ).(ẋ∗(τ−i )− ẋ∗(τ−i ))

∇ϕ(x∗(τi)).ẋ∗(τ
+
i )

.

If τi is an inward crossing time, one can easily check that this amounts to replace 1 by −1 in (4.25).

5 Sufficient conditions for the boundedness of the sequence (In)n

The aim of this section is to give sufficient conditions on the system that ensure the boundedness of (In)n. In
that case, optimality conditions for an optimal path are guaranteed by Theorem 4.1. Given an optimal solution
(x∗, u∗) of Problem (2.1), let us introduce the following hypothesis (in the spirit of the Hybrid Maximum Principle
that requires also a transverse assumption [17]).

(H′) Every crossing time of x∗ is transverse.

This hypothesis excludes the cases where the optimal solution x∗ hits the boundary of K tangentially, i.e.,

lim
t→τ+

∇ϕ(x(t)) · ẋ(t) = 0 or lim
t→τ−

∇ϕ(x(t)) · ẋ(t) = 0, (5.26)

at a crossing time τ . Actually, several cases could appear depending if both scalar products are zero in (5.26) or
only one. As far as we know, the obtention of necessary conditions in this case has been few considered in the
literature (except in [4]) and remains a thorough open question.

5.1 The transverse case
We start by the following result which covers the case where every crossing times of x∗ are transverse.

Proposition 5.1. Under Hypothesis (H′), the sequence (In)n is bounded.

Proof. From Proposition 3.1, we only need to show that (In)n is bounded. Suppose by contradiction that this is
not the case. Extracting a sequence if necessary, we may assume that In → +∞ whenever n → +∞. Observe
that the function qn := pn

In
satisfies the differential system∣∣∣∣ q̇n(t) = −Dxf(xn(t), un(t))>qn(t) + h̃n(ϕ(xn(t)))∇ϕ(xn(t)) a.e. t ∈ [0, T ],

qn(T ) = 0,

where h̃n(σ) := hn(σ)
In

, σ ∈ R. By this change of variable, one has obviously

∀n ∈ N,
∫ T

0

h̃n(ϕ(xn(t))) dt = 1, (5.27)
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so, Proposition 3.1 implies that the sequence (qn)n is uniformly bounded in L∞([0, T ] ; Rn). One can then repeat
the same argumentation than in the proof of Theorem 4.1 on the sequence (qn)n, excepted the last point about
the value of the Hamiltonian. Indeed, as the covector pn has been renormalized, we have no longer the value of
the Hamiltonian equal to −Gn(ϕ(xn(T )). However, we obtain that there exists a piecewise absolutely continuous
function q : [0, T ]\{τ1, ..., τr} → Rn satisfying the following properties:

• Up to a sub-sequence, (qn)n converges to q on every compact set of [0, T ] excluding {τ1, ..., τr}.

• The function q satisfies ∣∣∣∣ q̇(t) = −Dxf(x∗(t), u∗(t))>q(t) a.e. t ∈ [0, T ],
q(T ) = 0.

• The Hamiltonian condition is fulfilled almost everywhere:

∀u ∈ U, q(t) · f(x∗(t), u) ≤ q(t) · f(x∗(t), u∗(t)) a.e. t ∈ [0, T ]. (5.28)

• For every 1 ≤ i ≤ r, q admits a limit at τ±i , i.e., there exists limt→τ±i
q(t).

• At every crossing time τi, 1 ≤ i ≤ r, there exist a scalar ˜̀
i such that

q(τ+
i )− q(τ−i ) = ˜̀

i∇ϕ(x∗(τi)). (5.29)

Here, we can no longer guarantee that each scalar ˜̀
i is non null. However, one has from Proposition 3.2, for every

1 ≤ i ≤ r and every η ∈ (0, δ]

˜̀
i = lim

n→+∞

∫ τi+η

τi−η
h̃n(ϕ(xn(t))) dt. (5.30)

Observe that

∀n ∈ N,
H̃n

In
= qn(t) · f(xn(t), un(t))− Gn(ϕ(xn(t)))

In
a.e. t ∈ [0, T ].

For every t ∈ [0, T ], one has H̃nIn → 0 and −Gn(ϕ(xn(t)))
In

→ 0 when n→∞ because H̃n ∈ [−1, 0] and Gn(ϕ(xn(t))) ∈
[0, 1] for every n ∈ N and every t ∈ [0, T ]. We then obtain that the covector q satisfies:

q(t) · f(x∗(t), u∗(t)) = 0 a.e. t ∈ [0, T ], (5.31)

by considering Lebesgue points of the map t 7→ q(t) ·f(x∗(t), u∗(t)) and repeating exactly the same argumentation
as in the proof of Lemma 4.3.

We claim now that q 6≡ 0, i.e., q(·) is non-null over [0, T ]. To show this property, it is enough to prove that
there exists 1 ≤ i ≤ r such that ˜̀

i 6= 0. Suppose then by contradiction that for every 1 ≤ i ≤ r, one has ˜̀
i = 0.

By using Lemma 3.1 with h̃n in place of hn, we obtain that

∀i ∈ {1, ..., r},∀η ∈ (0, δ], lim
n→+∞

∫ τi+η

τi−η
h̃n(ϕ(xn(t))) dt = 0, (5.32)

where η ∈ (0, δ] is fixed. From Property 3.1 one also has

lim
n→+∞

∫
Jη

hn(ϕ(xn(t))) dt = lim
n→+∞

∫
Jη

h̃n(ϕ(xn(t))) dt = 0. (5.33)

Combining (5.32) and (5.33) gives us a contradiction with (5.27), thus we have obtained that there is 1 ≤ i ≤ r
such that ˜̀

i 6= 0.
To conclude the proof of the proposition, we will finally exhibit a contradiction involving optimality conditions

(5.29) and (5.31) satisfied by the covector q. Fix 1 ≤ i ≤ r such that ˜̀
i 6= 0. First, using (5.28)-(5.31) at t = τ−i ,

one has
q(τ−i ) · ẋ∗(τ+

i ) ≤ q(τ−i ) · ẋ∗(τ−i ) = 0.

Combining with (5.29) gives

q(τ+
i ) · ẋ∗(τ+

i )− q(τ−i ) · ẋ∗(τ+
i ) = ˜̀

i∇ϕ(x∗(τi)) · ẋ∗(τ+
i ).
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It follows that
˜̀
i∇ϕ(x∗(τi)) · ẋ∗(τ+

i ) = −q(τ−i ) · ẋ∗(τ+
i ) ≥ 0

Because ˜̀
i 6= 0 and ∇ϕ(x∗(τi)) · ẋ∗(τ+

i ) 6= 0, we deduce that

˜̀
i∇ϕ(x∗(τi)) · ẋ∗(τ+

i ) > 0. (5.34)

We now proceed with the same reasoning using (5.28)-(5.31) at t = τ+
i . We obtain

q(τ+
i ) · ẋ∗(τ−i ) ≤ q(τ+

i ) · ẋ∗(τ+
i ) = 0.

Combining with (5.29) gives

q(τ+
i ) · ẋ∗(τ−i )− q(τ−i ) · ẋ∗(τ−i ) = ˜̀

i∇ϕ(x∗(τi)) · ẋ∗(τ−i ).

It follows that
˜̀
i∇ϕ(x∗(τi)) · ẋ∗(τ−i ) = q(τ+

i ) · ẋ∗(τ−i ) ≤ 0.

Using again that ˜̀
i 6= 0 and ∇ϕ(x∗(τi)) · ẋ∗(τ+

i ) 6= 0, we deduce that

˜̀
i∇ϕ(x∗(τi)) · ẋ∗(τ−i ) < 0. (5.35)

We claim that (5.34)-(5.35) is a contradiction. Indeed, because ˜̀
i is non-zero, (5.34)-(5.35) imply that the scalar

products ∇ϕ(x∗(τi)) · ẋ∗(τ−i ) and ∇ϕ(x∗(τi)) · ẋ∗(τ+
i ) are of opposite sign. Because at t = τi, the trajectory crosses

the boundary of K, we necessarily have that

∇ϕ(x∗(τi)) · ẋ∗(τ−i ) > 0 and ∇ϕ(x∗(τi)) · ẋ∗(τ+
i ) > 0,

if τi is an outward crossing time, or

∇ϕ(x∗(τi)) · ẋ∗(τ−i ) < 0 and ∇ϕ(x∗(τi)) · ẋ∗(τ+
i ) < 0,

if it is inward. This contradiction completes the proof of the proposition and shows that (In)n is necessarily a
bounded sequence.

5.2 A weaker condition
We give now conditions on the subsequence (xn)n, and not on the limiting solution x∗, that ensures the boundedness
of the sequence of integrals (In)n. For n ∈ N, define an absolutely continuous function ρn as:

ρn(t) := ϕ(xn(t)) t ∈ [0, T ].

We known that for each n ∈ N, xn is almost everywhere differentiable on [0, T ] an thus ρn as well with

ρ̇n(t) = ∇ϕ(xn(t))ẋn(t) a.e. t ∈ [0, T ].

In addition, (ρn)n is uniformly bounded in L∞([0, T ] ; R) thanks to (H1) and (H3). Therefore, for i ∈ {1, ..., r}
and n ∈ N, we can define:

l+i,n := lim sup
h→0

ess sup
t∈[τi−h,τi+h]

ρ̇n(t) ; l−i,n := lim inf
h→0

ess inf
t∈[τi−h,τi+h]

ρ̇n(t).

Remark 5.1. In many optimal control problems, optimal solutions xn are piecewise C1, and thus the function
ρn admits left and right derivatives at any t ∈ (0, T ). Then, the definition of the numbers l±i,n simply involves the
maximum and minimum of ρ̇n(τ±i ).

Proposition 5.2. If for every 1 ≤ i ≤ r, one has

lim inf
n→+∞

l−i,n > 0 if τi is an outward crossing time, or

lim sup
n→+∞

l+i,n < 0 if τi is an inward crossing time, (5.36)

then the sequence (In)n is bounded.
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Proof. For i = 1, ..., r, set
li = lim inf

n→+∞
l−i,n, li = lim sup

n→+∞
l+i,n,

and define the numbers η−i , η
+
i (i = 1, ..., r) as

η+
i = η−i+1 :=

1

2
(τi+1 − τi) 1 ≤ i ≤ r − 1,

together with η−1 := τ1 and η+
r := T − τr. As well, let us define the integrals:

Ĩ−i,n(η) :=

∫ τi

τi−η
hn(ϕ(xn(t)) dt, Ĩ+

i,n(η) :=

∫ τi+η

τi

hn(ϕ(xn(t)) dt i = 1, ..., r.

One has clearly

In =

r∑
i=1

[
Ĩ−i,n(η−i ) + Ĩ+

i,n(η+
i )
]
.

We show now that for any i ∈ {1, ..., r} such that τi is an outward crossing time, the sequence (Ĩ−i,n(η−i ))n is
bounded. Observe first that one has:

liĨ
−
i,n(η−i ) =

∫ τi

τi−η−i
hn(ρn(t))(li − ρ̇n(t)) dt+

∫ τi

τi−η−i
hn(ρn(t))ρ̇n(t) dt

=

∫ τi

τi−η−i
hn(ρn(t))(li − ρ̇n(t)) dt+Gn(ϕ(xn(τi)))−Gn(ϕ(xn(τi − η−i ))).

(5.37)

Let ε ∈ (0, li). We claim that there exist ζi ∈ (0, η−i ) and N > 0 such that

∀n ≥ N, li < ρ̇n(t) + ε a.e. t ∈ [τi − ζi, τi]. (5.38)

Indeed, by definition of li, there exists N ∈ N such that for every n ≥ N one has

li ≤ l−i,n +
ε

2
.

We also have for every h > 0 sufficiently small:

∀n ∈ N, ess inf
s∈[τi−h,τi+h]

ρ̇n(s) ≤ ρ̇n(t) a.e. t ∈ [τi − h, τi + h].

By definition of l−i,n, we deduce that there exists ζi ∈ (0, η−i ) such that

l−i,n ≤ ess inf
s∈[τi−ζi,τi+ζi]

ρ̇n(s) +
ε

2
,

and thus, we obtain (5.38). One can then write∫ τi

τi−η−i
hn(ρn(t))(li − ρ̇n(t)) dt < ε

∫ τi

τi−ζi
hn(ρn(t)) dt+

∫ τi−ζi

τi−η−i
hn(ρn(t))(li − ρ̇n(t)) dt

< εĨ−i,n(η−i ) +

∫ τi−ζi

τi−η−i
hn(ρn(t))(li − ρ̇n(t)) dt.

(5.39)

Observe now that the scalar m defined as

m := min
t∈[τi−η−i ,τi−ζi]

ϕ(x∗(t)),

is such that m < 0 since x∗(t) belongs to K for t ∈ [τi−η−i , τi− ζi]. From the uniform convergence of the sequence
(xn)n to x∗ over [0, T ] and since ϕ is continuous, there exists N ′ ≥ N such that one has ρn(t) < −m/2 for any
n > N ′ and every t ∈ [τi − η−i , τi − ζi]. Then, from the convergence of the sequence of negative numbers (an)n to
0, there exists N̄ ≥ N ′ such that one has an > −m/2 for any n > N̄ . This implies that

∀n > N̄, ∀t ∈ [τi − η−i , τi − ζi], hn(ρn(t)) = 0. (5.40)
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Finally, from (5.37), (5.39) and (5.40), one obtains

∀n > N̄, liĨ
−
i,n(η−i ) < εĨ−i,n(η−i ) + 1.

This shows that the sequence (Ĩ−i,n(η−i ))n is bounded. For i ∈ {1, ..., r} such that τi is an inward crossing time, we
proceed in the same way to show that the sequence (Ĩ−i,n(η−i ))n is bounded, considering the number li < 0. The
proof of boundedness of the sequences (Ĩ+

i,n(η+
i ))n is analogous.

From a practical point of view, x∗ and its crossing times τi are known only approximately. Whenever ρn admits
left and right derivatives, condition (5.36) is merely guaranteed whenever (ρ̇n(t±))n is bounded below by a positive
number, or bounded above by a negative number, locally at each crossing time τi, 1 ≤ i ≤ r.

5.3 A reciprocal property
We have seen previously that under (H’), the sequence (In)n is bounded (as well as under condition (5.36) which
is weaker than (H’)). Thanks to these conditions, we obtained optimality conditions for an optimal solution x∗

(under the assumption that it has a finite number of crossing times). We now would like to address the converse
question, namely, what can be said about x∗ whenever the sequence (In)n is bounded? In that case, we can prove
the following result.

Proposition 5.3. Suppose that the sequence (In)n is bounded and let τi be a crossing time of x∗ such that ẋ∗(τ±i )
exist. Then, if τi is an outward, resp. inward, crossing time, one has ẋ∗(τ+

i ) · ∇ϕ(x(ti)) 6= 0, resp. ẋ∗(t−i ) ·
∇ϕ(x(ti)) 6= 0.

Proof. Since (In)n is bounded, there exists a (non-null) covector p as in Definition 4.1 (see Theorem 4.1). Consider
now an outward crossing time τi. The conditions satisfied by the extremal (x∗, p, u∗) imply the jump of p at t = τi
and the constancy of the Hamiltonian as in Definition 4.1. These conditions can be written∣∣∣∣∣ p(τ+

i ) = p(τ−i ) + `i∇ϕ(x∗(ti)),

p(τ−i ) · ẋ∗(τ−i ) = p(τ+
i ) · ẋ∗(τ+

i )− 1.

The Hamiltonian condition at t = τi also gives us the following inequalities:∣∣∣∣ p(τ−i ) · f(x∗(τi), u) ≤ p(τ−i ) · ẋ∗(τ−i ),
p(τ+

i ) · f(x∗(τi), u) ≤ p(τ+
i ) · ẋ∗(τ+

i ),

for every u ∈ U . Suppose by contradiction that ẋ∗(τ+
i ) · ∇ϕ(x∗(τi)) = 0. It follows that:

p(τ+
i ) · ẋ∗(τ+

i ) = p(τ−i ) · ẋ∗(τ+
i )

Using the Hamiltonian condition, we obtain

p(τ+
i ) · ẋ∗(τ+

i ) = p(τ−i ) · ẋ∗(τ+
i ) ≤ p(τ−i ) · ẋ∗(τ−i ) = p(τ+

i ) · ẋ∗(τ+
i )− 1,

which is a contradiction. It follows that ẋ∗(t+i ) · ∇ϕ(x∗(ti)) 6= 0 as was to be proved.
In the case where τi is an inward crossing time, we proceed in the same way supposing by contradiction that

ẋ∗(τ−i ) · ∇ϕ(x∗(τi)) = 0. In that case, the constancy of the Hamiltonian gives us

p(τ−i ) · ẋ∗(τ−i )− 1 = p(τ+
i ) · ẋ∗(τ+

i ).

By a similar computation, we obtain using that ẋ∗(τ−i ) · ∇ϕ(x∗(τi)) = 0:

p(τ−i ) · ẋ∗(τ−i ) = p(τ+
i ) · ẋ∗(τ−i ) ≤ p(τ+

i ) · ẋ∗(τ+
i ) = p(τ−i ) · ẋ∗(τ−i )− 1.

This is a contradiction, which ends the proof.

This proposition shows that at every crossing time τi of x∗ for which ẋ(τ±i ) exists, the trajectory is always
transverse “at the exterior” of K, i.e.,

Case 1 : if τi is an outward crossing time, then ẋ∗(τ+
i ) · ∇ϕ(x∗(τi)) > 0 ;

Case 2 : if τi is an inward crossing time, then ẋ∗(τ−i ) · ∇ϕ(x∗(τi)) < 0 ;

In both cases, we can only say that ẋ∗(τ−i ) · ∇ϕ(x∗(τi)) ≥ 0 (in case 1) or ẋ∗(τ+
i ) · ∇ϕ(x∗(τi)) ≤ 0 (in case 2).
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6 Numerical examples

To illustrate convergence of the sequence of ovectors (pn)n to the covector p, we present next two examples based
on the one to be found in [5], namely, we consider the system{

ẋ1(t) = −x2(t)(2 + u(t)),

ẋ2(t) = x1(t)(2 + u(t)),
(6.41)

with initial condition (x1(0), x2(0)) = (0, 1) and u(t) ∈ [−1, 1]. In addition, define ϕ1, ϕ2 : R2 → R as

ϕ1(x1, x2) :=
1

2
x2

1 + 2x2
2 − 1 ; ϕ2(x1, x2) := ϕ(x1, x2) = x2

1 + 4 min(0, x2)2 − 1.

Next, we consider the two following situations. In the first one, optimal trajectories will hit the boundary of the
set

K1 := {(x1, x2) ∈ R2 ; ϕ1(x1, x2) ≤ 0},

transversely when entering and leaving this set. In the second one, optimal trajectories will hit the boundary of
the set

K2 := {(x1, x2) ∈ R2 ; ϕ2(x1, x2) ≤ 0},

tangentially. For the regularization scheme, we use a penalty method following arising from a reformulation of the
time of crisis problem ([9]). This amounts then to consider the optimal control problem

inf
(u,v)∈U×V

∫ T

0

(
1 + v(t)

2
+ n [v(t)ϕi(x1(t), x2(t))− |ϕi(x1(t), x2(t))|]

)
dt, (6.42)

where i = 1, 2, V := {v : [0, T ] → {±1} ; v meas.}, and n → +∞. We refer to [9] for more details about this
method. In particular, it is proved that this penalization approach is equivalent to a regularization of the time of
crisis problem with a particular sequence for (Gn)n. We next wish to examine the behavior of covectors for various
values of the penalized parameter n. Doins so, We use the numerical solver BocopHJB [18] to obtain informations
about an optimal solution, and we then integrate the Hamiltonian system backward in time to compute covectors.
Numerical results are depicted in Fig. 4 and Fig. 3 on which we distinguish the contrast between the two cases:

• In the transverse case, we observe a “good” convergence of covectors and also the boundedness of the sequence
(In)n.

• In the tangent case, we observe that the sequence of covectors becomes arbitrarily large when the parameter
n increases. Similarly, we also observe that the sequence (In)n is taken large values when n increases.

These observations highlight the differences between the transverse case and the non-transverse case.
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Figure 2: Optimal trajectories x = (x1, x2) entering and leaving the set K1 (fig. left) and the set K2 (fig. right).
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Figure 3: Convergence of covectors when crossing times are transverse (dotted: n = 10, dashed: n = 102, solid:
hybrid covector). On fig. right, behavior of (In)n (bounded in this case).
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Figure 4: Behavior of covectors when crossing times are non-transverse (dotted: n = 10, dashed: n = 102, solid: n = 105).
On fig. right, behavior of (In)n.

7 Conclusion

Our proof of boundedness of the sequence of covectors presents some analogy with materials of the work [17].
However, we have treated the question of boundedness of the sequence of covectors via a suitable sequence of
integrals (In)n, and we also did not use at all the Hybrid Maximum Principle in this paper (which is a byproduct
of this approach). As well, we also did not need to introduce needle-like perturbations and the variation vector
to derive necessary optimality conditions. Note that we also obtain these conditions for the time crisis problem
under a weaker condition than requiring transverse crossing times for the optimal trajectory.

Our methodology also presents several interest from a numerical point of view since we introduced a regularized
optimal control problem in place of a discontinuous problem (which is more delicate to handle numerically). In
addition, we introduced an auxiliary condition to guarantee necessary conditions for an optimal solution x∗. This
condition involves an approximated sequence which can be tested numerically and not a solution x∗ of the problem
(that is unknown a priori).

Some interesting issues that are out of the scope of this paper could be the matter of future works. In particular,
one would like to know more into details the link between the boundedness of the sequence (In)n and the behavior
of x∗ at a crossing time τ (i.e., if x∗ is transverse to the boundary of K at t = τ or not). The methodology that
has been developed in this paper could also be used to obtain an extension of optimality conditions in the hybrid
setting whenever an optimal path has a so-called semi-transverse crossing time, i.e., whenever one and only one
of the two scalar products in (5.26) is zero. As well, we believe that if x∗ is purely transverse at some isolated
crossing time (i.e., both scalar products are zero in (5.26)), then (In)n is unbounded (but we have no proof of this
result).
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