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Optimal control separating two microalgae species competing in a
chemostat

Walid Djema∗ Olivier Bernard∗,∗∗ Térence Bayen∗∗∗

Abstract— In this work, we study the question of selecting in
minimal-time a microalgae species of interest using the Droop
model to describe the dynamics of two distinct populations
competing for a limiting nutrient. This amounts to consider
an optimal control problem governed by a five-dimensional
affine control system in which the control is the dilution rate.
Throughout this paper, the optimal control strategies allowing
the strain of interest to dominate the population in minimal-
time is discussed. These results are illustrated using a numerical
direct optimization method (implemented in Bocop).

Index Terms— Optimal control, Pontryagin Maximum Prin-
ciple, Singular arc, Droop’s model, Chemostat system.

I. INTRODUCTION

Microbial ecology relies on the concept of ecosystem,
which is defined as a complex association of microorganisms
in a specific environment and their non-microbial surround-
ings [1]. There is a strong mutual relationship between
microorganisms and their environment. In particular, the
influence of the habitat on microorganism-residents can
be manipulated and exploited to guide their future. This
concept applies well to microalgae, which are unicellular
photosynthetic microorganisms of major importance, due to
their applications in various fields [2]. Microalgae can be
used for producing compounds of interests like proteins,
pigments, antioxidants or essential fatty acids ([3]). At
longer term, their use for CO2 mitigation and bioenergy
production has been also considered, even if one faces many
challenges to decrease cost and environmental impact [4].
The biotechnological use of microalgae is still very young,
and in practice, only a few wild species are used among the
large microalgal biodiversity. Compared to agriculture where
domesticated species resulted from centuries of selection and
hybridization, there is still a long way to go in order to select
more productive microalgae. Selecting and improving these
microorganisms is however challenging due to their complex
interaction with their environmental conditions. Selection by
Darwinian pressure, while imposing conditions that favor
the species of interests has given spectacular results (see,
e.g., [5]). These continuous-selection approaches are however
time consuming, with experiments that can last several
months to several years. We can expect to improve these

∗Côte d’Azur University (UCA), Inria Sophia-Antipolis Méditerranée,
Biocore project-team, France.
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experiments by optimal control, especially playing on the
dilution rate of the photobioreactor. One main issue is then
to identify strategies minimizing the operating time when
the species of interest dominates the population. There are
several works based of optimal control theory to study the
selection of a species of interest in minimal-time. For the
chemostat system under Monod’s kinetics, this problem has
been addressed in [6], [7] by studying a two-dimensional
system. It appears that microalgae are better represented
by Droop’s model (leading to a five-dimensional controlled
system) which accounts for the internal accumulation of
the limiting nutrient ([9], [10]). The minimal-time problem
with Droop’s model has been tackled by [11], [12] in a
simplified case in which the model dimension has been
partially reduced. In this paper, we focus on the problem
of selecting the species of interest in minimal-time with
two Droop-species. Optimal strategies to let the species of
interest dominate are derived using the Pontryagin maximum
principle (PMP, see [13]).

The paper is structured as follows : the optimal control
problem (OCP) is stated in Section II, in which Droop’s
model, the control system, and the target are introduced.
Pontryagin’s principle is used in Section III in order to give
properties of an optimal control of the studied OCP1. Sin-
gular arcs and Legendre-Clebsch’s conditions are discussed
in Section IV. Finally, in Section V, we depict numerically
optimal strategies using a direct method in optimal control.

II. STATEMENT OF THE OPTIMAL CONTROL PROBLEM

A. Droop’s model

We consider the so-called Droop’s model for two species,
x1 and x2 competing on a limiting substrate s. Their growth
depends on an intracellular quota of the limiting nutrient ([9])
denoted q1 and q2, respectively:

ṡ = (sin− s)D(t)−ρ1(s)x1−ρ2(s)x2,

q̇1 = ρ1(s)−µ1(q1)q1,

ẋ1 = [µ1(q1)−D(t)]x1,

q̇2 = ρ2(s)−µ2(q2)q2,

ẋ2 = [µ2(q2)−D(t)]x2,

(1)

where sin is the constant input concentration of the substrate.
The chemostat dilution rate D(·) is a bounded nonnegative
control function such that D(t) ∈ [0,Dmax], where Dmax >
0 is the maximum capacity of the feeding pump, above
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the maximum effective growth rate of the two species as
illustrated in Figure 1 (see also [12]). In addition, for i= 1,2,
ρi is a real-valued function quantifying the rate of substrate
absorption, i.e. the uptake rate of the free nutrient s ([14]),
and µi is a real-valued function quantifying the growth rate
of the i-th species. In the rest of the paper, we suppose that
the uptake rates ρi(s) are expressed in terms of Michaelis-
Menten’s kinetics (see, e.g., [14]),

ρi(s) =
ρmis

Ksi + s
, (2)

where Ksi is a strictly positive constant standing for the i-
th species. We also suppose that for each species, there is a
minimum threshold kqi > 0, under which cell division cannot
occur. For Droop’s model, the kinetics µi are given by,∣∣∣∣∣ µi(qi) = 0 0≤ qi ≤ kqi ,

µi(qi) = µi∞

(
1− kqi

qi

)
qi ≥ kqi .

(3)

We now wish to state an invariance property for (1). Doing
so, let us introduce the following notation. Set,

Mi := sup
s∈[0,sin]

ρi(s)< ρmi , i = 1,2,

and let us uniquely define q̄1 and q̄2 such that µi(q̄i)q̄i = Mi,
i = 1,2. Thus, we get the following invariance property.

Proposition 1: For every qmi ≥ q̄i, i = 1,2, the set

S := (0,sin)× [kq1 ,qm1 ]×R∗+× [kq2 ,qm2 ]×R∗+, (4)

is forward invariant by (1).

The quantity q̄i is the so-called maximum internal storage
quota. In the sequel, we consider as invariant set the set S
with qm1 = q̄1 and qm2 = q̄2. We also suppose that ρ1 and ρ2
satisfy the following assumption:

Assumption 1: One has ρ ′′2 ρ ′1−ρ ′′1 ρ ′2 > 0.

In view of (2), one has,

ρ
′′
2 (s)ρ

′
1(s)−ρ

′′
1 (s)ρ

′
2(s) =

2Ks1Ks2ρm1ρm2(Ks2 −Ks1)

(Ks1 + s)3(Ks2 + s)3 ,

and therefore, Assumption 1 implies Ks2 −Ks1 > 0.

B. Mathematical problem formulation

Throughout the paper, we consider that the first species
(with concentration x1) is the one of interest, and the objec-
tive is to find a feeding strategy, that is a control function
D(·), such that x1 becomes predominant in the bioreactor.
This can be formulated in terms of the ratio between the
concentrations, namely, we seek a control strategy D(·) for
which at the end of the process, one has x1

x2
� 1.

The set of admissible controls D(·) is defined as,

D := {D : [0,+∞)→ [0,Dmax] ; D(·) ∈ L∞
loc(R+)},

In order to formalize the selection process between the two
species, we consider a target set T ⊂S as,

T = {X := (s,q1,x1,q2,x2) ∈S ; x2 ≤ εx1}.

Here, 0 < ε � 1 is a small parameter quantifying the
contamination rate of the interesting strain x1. Reaching T
means that the biomass of the first species is significantly
larger than the second one after a certain culture time. The
optimal control problem can be then stated as follows. The
objective is to determine a dilution-based control strategy
D∈D that allows trajectories of (1) starting from any initial
condition in S to reach the target T in minimal-time, i.e.

inf
D∈D

tD
f s.t. X(tD

f ) ∈T and X0 ∈S, (OCP)

where X(·) is the unique solution of (1) associated with
D ∈ D such that X(0) = X0 ∈ S. To ease the notation, we
shall use in the following t f instead of tD

f (when there is no
ambiguity on the control).

C. Effective growth rates

In this section, we introduce the effective growth rates
that play a key role in the selection process. Let us start by
introducing some notations. Firstly, observe that the choice
of q̄i, i = 1,2 implies that,

0≤ qiµi(qi)≤ q̄iµi(q̄i)< ρmi

for every qi ≥ 0, thus, the mapping,

qi 7→ δi(qi) := ρ
−1
i (qiµi(qi)) =

Ksiqiµi(qi)

ρmi −qiµi(qi)
(5)

is well defined over [0,ρmi) with values in [0,sin), for i= 1,2.
Then, it follows that the mapping,

s 7→ δ
−1
i (s) :=

kqiKsi µi∞ +(ρmi +µi∞kqi)s
µi∞(Ksi + s)

, (6)

is well-defined over [0,sin) with values in [0,ρmi).
Property 1: For i = 1,2, one can readily check that the

mappings δi and δ
−1
i are increasing over their definition sets.

It follows that for every s ∈ [0,sin], one has δi(s) > kqi ,
i = 1,2. It is straightforward to check that for i = 1,2 the
effective growth rate is given by,

µi(δ
−1
i (s)) =

ρmi µi∞s
kqiKsi µi∞ +(ρmi +µi∞kqi)s

.

Now, we introduce the function,

∆(s) := µ1(δ
−1
1 (s))−µ2(δ

−1
2 (s)), s ∈ [0,sin], (7)

and we suppose that ∆ satisfies the following characteristic:
Assumption 2: There exists a unique ŝ ∈ (0,sin) such that

∆(s)> 0 over (0, ŝ) and ∆(s)< 0 over (ŝ,sin). In addition, ∆

has a unique maximum sc ∈ [0, ŝ].
We also suppose that the maximum dilution rate is large
enough to drive competition between species. This amounts
to suppose that Dmax satisfies the following assumption.

Assumption 3: The parameter Dmax satisfies,

Dmax > max(µ1(δ
−1
1 (s)),µ2(δ

−1
2 (s))), s ∈ [0,sin].

These assumptions ensure reachability of the target and
well-posedness of the studied optimization problem, since
both species may win the competition (considering for in-
stance a constant control parameter D). The resulting generic
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Fig. 1. The functions ρi and µi satisfy Assumption 2. The choice of Dmax
above the maximum of the effective growth rates µi(δ

−1
i (s)), for i = 1,2,

verifies the statement in Assumption 3.

functions are illustrated in Fig. 1. Considering an adequate
constant control then allows indeed the system to select the
first species of interest (by adapting the competitive exclusion
principle [20]), but, this process is costly in time. Therefore,
our objective in this paper is to introduce a dynamic strategy
to reach the target set T faster, playing on the control D(·).

III. NECESSARY OPTIMALITY CONDITIONS

In this section, we apply the Pontryagin Maximum Princi-
ple (PMP) to derive necessary optimality conditions on op-
timal controls of (OCP). We denote by X = (s,q1,x1,q2,x2)
and λ = (λs,λq1 ,λx1 ,λq2 ,λx2) respectively the state and ad-
joint variables. The Hamiltonian,

H = H(s,q1,x1,q2,x2,λs,λq1 ,λx1 ,λq2 ,λx2 ,λ
0,D)

associated with (OCP), is defined as,

H =−(ρ1(s)x1 +ρ2(s)x2)λs +(ρ1(s)−µ1(q1)q1)λq1

+µ1(q1)x1λx1 +(ρ2(s)−µ2(q2)q2)λq2 +µ2(q2)x2λx2

+λ
0 +D[(sin− s)λs− x1λx1 − x2λx2 ].

Consider X0 ∈ S\T and let D be an optimal control of
(OCP) and X(·) the associated trajectory reaching the target
set T in a time t f ≥ 0. Then, there exists an absolutely-
continuous map λ : [0, t f ]→ R5 and λ 0 ≤ 0 satisfying:

• the pair (λ (·),λ 0) is non-zero,
• the adjoint equation a.e. over [0, t f ],

λ̇ (t) =−∂H
∂X

(X(t),λ (t),λ 0,D(t)), (8)

• the Hamiltonian condition a.e.:

D(t) ∈ argmaxω∈[0,Dmax] H(X(t),λ (t),λ 0,ω), (9)

• the transversality condition at t = t f :

λ (t f ) ∈ −NT (X(t f )), (10)

where given a non-empty convex subset K ⊂ R5, NK(x)
stands for the (convex) normal cone to K at some point x∈K
(see, e.g., [21]). The adjoint equation (8) is equivalent to:

λ̇s =
(
ρ
′
1(s)x1 +ρ

′
2(s)x2

)
λs−ρ

′
1(s)λq1

−ρ
′
2(s)λq2 +Dλs,

λ̇q1 =µ1∞λq1 −µ
′
1(q1)x1λx1 ,

λ̇x1 =ρ1(s)λs−µ1(q1)λx1 +Dλx1 ,

λ̇q2 =µ2∞λq2 −µ
′
2(q2)x2λx2 ,

λ̇x2 =ρ2(s)λs−µ2(q2)λx2 +Dλx2 .

(11)

Recall that an extremal is a quadruplet (X(·),λ (·),λ 0,D(·))
such that (λ (·),λ 0) 6= 0 and satisfying (1)-(8)-(9)-(10). In the
case where λ 0 = 0, the extremal is said abnormal whereas if
λ 0 6= 0, then the extremal is normal. Finally, since (OCP)
is autonomous, the Hamiltonian is conserved along any
extremal, and because the terminal time is free, we obtain
that H = 0 along any extremal of the problem.

The transversality condition (10) can be explicited as
follows. Recall that the target set is a half-space of R5 and
because X0 ∈ S\T , we necessarily have X(t f ) ∈ E where
E := {X ∈ R5 ; x2− εx1 = 0} is the boundary of T (recall
that X = (s,q1,x1,q2,x2)). At X(t f ), the normal cone to T
writes,

NT (X(t f )) = R+(0,0,−ε,0,1)

The inclusion (10) is then equivalent to,

λs(t f ) = λq1(t f ) = λq2(t f ) = 0, (12)

together with,

λx1(t f )+ ελx2(t f ) = 0. (13)

Actually, we can also prove that,

λx1(t f )> 0 and λx2(t f )< 0. (14)

As a consequence, the transversality condition (10) is equiv-
alent to (12)-(13)-(14).

In order to exploit the Hamiltonian condition (9), it is
useful to introduce the switching function which allows us
to give the value of the control in terms of its sign. Doing so,
let Φ̃ be the switching function associated with the control
D(·):

Φ̃ = (sin− s)λs− (x1λx1 + x2λx2).

Since the Hamiltonian is linear w.r.t. the control, we get,

Φ̃(t)> 0 ⇒ D(t) = Dmax,
Φ̃(t)< 0 ⇒ D(t) = 0, (15)

for a.e. t ∈ [0, t f ]. When the control D(·) is non-constant in
every neighborhood of a time tc ∈ (0, t f ), we say that tc is
a switching time, and one must have Φ̃(tc) = 0. It may also
happen that Φ̃ vanishes over a sub-interval [t1, t2] of [0, t f ].
In that case, we say that a singular arc occurs over [t1, t2]
and that the corresponding trajectory is singular.

Before investigating further singular arcs, let us give some
properties of Φ̃.



Lemma 1: (i) The switching function Φ̃ is continuously
differentiable over [0, t f ], and one has,

˙̃
Φ = (sin− s)(ρ ′1(s)[x1λs−λq1 ]+ρ

′
2(s)[x2λs−λq2 ]). (16)

(ii) At the terminal time t = t f , one has,

Φ̃(t f ) =
˙̃
Φ(t f ) = 0. (17)

We now study singular arcs which are essential in the optimal
synthesis.

IV. SINGULAR ARCS

A. Second derivative of the switching function

We start by computing ¨̃
Φ (which exists almost every-

where). In particular, this will allow us to obtain the value of
the singular control, i.e., the expression of D along a singular
arc (recall that along a singular arc, (9) is non-informative).

Let us define θ1,θ2 : [0,T ]→ R as,

θ1 := ρ ′1(s)[x1λs−λq1 ]+ρ ′2(s)[x2λs−λq2 ],

θ2 := ρ ′′1 (s)[x1λs−λq1 ]+ρ ′′2 (s)[x2λs−λq2 ].

To shorten, we did not write the dependency of
θ1,θ2,s,x1,x2,λs,λq1 and λq2 w.r.t. t. As well, we shall
hereafter omit the dependency w.r.t. some variables when
there is no ambiguity. In view of (16) and (11), one can
write,

˙̃
Φ = (sin− s)θ1 and λ̇s = θ1 +Dλs. (18)

Next, observe that the derivative of θ1 satisfies,

θ̇1 = θ2ṡ+[ρ ′1x1 +ρ ′2x2]θ1 +λs[x1µ1ρ ′1 + x2µ2ρ ′2]
−ρ ′1[µ1∞λq1 −µ ′1(q1)x1λx1 ]
−ρ ′2[µ2∞λq2 −µ ′2(q2)x2λx2 ].

Therefore, we deduce that along any extremal, one has
almost everywhere:

¨̃
Φ =[−θ1 +(sin− s)θ2]ṡ+(sin− s)[ρ ′1x1 +ρ

′
2x2]θ1

+(sin− s)λs[x1µ1ρ
′
1 + x2µ2ρ

′
2]

− (sin− s)ρ ′1[µ1∞λq1 −µ
′
1(q1)x1λx1 ]

− (sin− s)ρ ′2[µ2∞λq2 −µ
′
2(q2)x2λx2 ]. (19)

Next, recall that along a singular arc defined over a time
interval I = [t1, t2], the (so-called Legendre-Clebsch’s) con-
dition,

¨̃
Φ|D ≥ 0, (20)

should be fulfilled over I = [t1, t2]. From the expression of ¨̃
Φ

given by (19), we obtain along a singular arc defined over a
time interval I = [t1, t2],

¨̃
Φ|D = (sin− s)2

θ2 = (x1λs−λq1)
(ρ ′′1 ρ ′2−ρ ′′2 ρ ′1)

ρ ′2
. (21)

When Legendre-Clebsch’s condition is fulfilled, we usually
say that the singular arc is of turnpike type (see, e.g., [8]).
In that case, the expression of the singular control follows
from (19). First, let us set:

a(X ,λ ) :=θ2[ρ1x1 +ρ2x2]−λs(x1µ1ρ
′
1 + x2µ2ρ

′
2)

−ρ
′
1[µ1∞λq1 −µ

′
1(q1)x1λx1 ]

−ρ
′
2[µ2∞λq2 −µ

′
2(q2)x2λx2 ].

Now, let us state the following result:
Proposition 2: Suppose that an extremal is singular over

[t1, t2] and that Legendre-Clebsch’s condition is fulfilled over
[t1, t2] with a strict inequality in (20). Then, the singular
control can be expressed as a feedback of state and adjoint
variables as,

Ds(X ,λ ) :=
a(X ,λ )

(sin− s)θ2
. (22)

Remark 1: Note that Legendre-Clebsch’s condition (with
a strict inequality) is equivalent to θ2 > 0 and that this
condition is always verified over [tc, t f ] with tc close to t f
(this follows from Assumption (1)).

B. Discussion about the minimal time synthesis

At t = t f , the switching function and its derivative vanish
(as a consequence of the transversality conditions (17)). In
addition, we can observe (adapting slightly Proposition 2)
that Legendre-Clebsch’s condition (20) with a strict inequal-
ity is always satisfied in some small time interval [t f −η , t f ).
Because of these elements, we suspect at first glance that
a singular arc occurs on some time interval [tc, t f ] where
0 ≤ tc < t f and that an optimal trajectory reaches T via
a singular arc. Nevertheless, it is worth noticing that the
conditions,

˙̃
Φ(tc) = Φ̃(tc) = 0, (23)

are not equivalent to the occurrence of a singular arc start-
ing at some time tc < t f (contrary to what was suggested
earlier in [12] and [6]). However, from extensive numerical
simulations using direct optimization approaches (see Sect.
V, but also [12], [11]), we note that Φ̃ and ˙̃

Φ vanish in
some significantly large time interval [tc, t f ] depending on the
initial condition. To summarize, combining the theoretical
analysis of (OCP) together with the numerical simulations of
Sect. V, we believe that the minimal-time synthesis presents
the following properties:
• For initial conditions in some subset S† ⊂ S, the

structure of an optimal control is bang-singular (BS) or
singular (S). Moreover, the singular path corresponding
to Ds exhibits a turnpike-type behavior in some neigh-
borhood of s = sc.

• For initial conditions outside S†, the structure of an
optimal control may be of bang-type (B), of bang-
singular-type (BS), or bang-bang-singular-type (BBS).

Remark 2: The BS or S behavior described previously
seems the most common one. It is also the most compelling
from a biological standpoint, since in practice, initial con-
ditions start commonly sufficiently “far” from the target T .
This is typically the case observed when the initial culture is
homogeneous, i.e., x1(0)/x2(0) ≈ 1, requiring consequently
a significant amount of time to achieve species separation.
On the other hand, the other cases stand for more marginal
situations, where for instance the optimization problem starts
very close to the target T . Typically, when x1(0)>> x2(0)
and µ1(q1(0)) > µ2(q2(0)), it is observed that sometimes a
bang arc (B) corresponding to D(t) = 0 over [0, t f ) steers the
model trajectories to the target T in minimal-time.



Remark 3: The turnpike behavior characterizing optimal
trajectories s(t), q1(t), q2(t), as well as their respective co-
states, when the optimal t f is sufficiently large (for suitable
initial conditions, see Remark 2), is highlighted in [12].

V. NUMERICAL OPTIMAL SYNTHESIS RESULTS

We consider the biological parameters and functions given
in Table I which verify the assumptions stated in Sect. II, as
illustrated in Fig. 2.

µi∞ kqi ρim Ksi
i (L/day) (µmol/µm3) (µmol/µm3/day) (µmol/L)
1 1.7 1.75 9 0.3
2 1.9 1.80 10 0.6

TABLE I
DROOP PARAMETER VALUES.
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Fig. 2. Uptake and growth functions corresponding to the parameters in
Table I. The value of s maximizing ∆(s) is sc = 0.08.

We consider sin = 5 µmol/L and define a contamination
threshold ε = 0.05 in the target T .
A direct optimization method is performed using the software
Bocop2 ([16]). In Bocop all the state and the control
variables are discretized. The dilution-rate D is discretized
over [0,Dmax] such that it is piecewise constant on the time-
interval subdivision. The state dynamics are also discretized,
through a scheme of ordinary differential equations (ODE)
decomposition (e.g., Euler method, Runge-Kutta, etc.). The
numerical direct method transforms (OCP) into a nonlinear
programming problem (NLP) in finite dimension. Here we
use in Bocop a predefined variant of Lobatto methods for
numerical integration of ODEs ([17], [18]). It is an interior
point approach, with a discontinuous collocation method of
Lobatto’s type of sixth order time-discretization (Labatto
III-C formula ([19])). The tolerance for NLP solver in
Bocop is tuned to 10−20 and the time-discretization is fixed
to 150 steps. The upper-bound on the control is Dmax = 1.5,

2Optimal control solver, https://www.bocop.org/

which is designed right above the maximum effective growth
rate ([12]) of microalgae (see, µi(δ

−1
i (s)), i = 1,2, Fig. 2).

In this example, we illustrate the common behavior de-
scribed in the previous section, i.e., starting from an ho-
mogeneous culture where x1(0)/x2(0) = 1. More precisely,
we consider in this example the initial conditions given
by, s0 = 2 µmol/L, q0

1 = 2 µmol/µm3, x0
1 = 0.1 µm3/L,

q0
2 = 2 µmol/µm3, x0

2 = 0.1 µm3/L. Using Bocop, we
get the minimal-time t f required to reach the target T :
t f = 18.8846 days, x1(t f ) = 1.78716 µm3/L, and, x2(t f ) =
0.08935 µm3/L. The corresponding optimal control D is
given in Fig. 3, which is bang(0)-singular (BS). The optimal
trajectories given by Bocop are given in Fig. 4, where we
clearly observe a turnpike-like behavior in the trajectories s,
q1 and q2, as well as in their respective co-states in Fig. 5
(see also [12] for further examples). We note that λs (Fig.
5) is zero on the singular arc, over [ts, t f ], where ts is the
switching instant of the control.
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Fig. 3. The optimal control bang(0)-singular over [0, t f ]
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Fig. 4. Optimal trajectories starting from s0 = 2 µmol/L, q0
i = 2

µmol/µm3, x0
i = 0.1 µm3/L, i = 1,2, steered by the control in Fig. 3.
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Fig. 5. The optimal co-state trajectories obtained using Bocop.

VI. CONCLUSION

The minimal-time OCP for two species in competition
described by the five-dimensional Droop’s model turns out to
be significantly more complicated than for the Monod model
with two species (see [6]) and its extension with n≥ 3 species
[7]. We revisited Problem (OCP) tackled in [12] in order to
provide new insights into the optimal synthesis, in particular
by checking Legendre-Clebsch’s condition. Finding an op-
timal feedback control in this high dimensional framework
appears to be a challenging issue. Future work will focus
on the determination of closed loop sub-optimal control
strategies which can be experimentally implemented. As
well, the occurrence of a singular arc in a left neighborhood
of the terminal time will deserve more attention.
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