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Abstract: Given their key roles in almost all ecosystems and in several industries, under-
standing and predicting microorganism growth is of utmost importance. In compliance with
evolutionary principles, coarse-grained or genome-scale models of microbial growth can be
used to determine optimal resource allocation scheme under dynamic environmental conditions.
Resource allocation approaches have given important qualitative results, but it still remains a
gap towards quantitiative predictions. The first step in this direction is parameter calibration
with experimental data. But fitting these models results in a bi-level optimization problem,
whose numerical resolution involves complex optimization issues. As a case study, we present
here a coarse-grained model describing how microalgae acclimate to a change in light intensity.
We first determine using the Pontryagin maximum principle and numerical simulations the
optimal strategy, corresponding to a turnpike with a chattering arc. Then, a bi-level optimization
problem is proposed to calibrate the model with experimental data. To solve it, a classical
parameter identification routine is used, calling at each iteration the bocop solver to solve the
optimal control problem (by a direct method). The calibrated model is able to represent the
photoacclimation dynamics of the microalga Dunaliella tertiolecta facing a down-shift of light
intensity.

Keywords: Bi-level optimization, Optimal control, Pontryagin’s principle, Chattering,
Microbial growth, Microalgae

1. INTRODUCTION

Predicting microorganism growth is a key challenge, with
huge implications for the comprehension of ecosystem dy-
namics and the development of bioprocesses. Optimization
can be used to decipher microbial growth, assuming that
microorganisms have acquired through evolution optimal
strategies. This principle has allowed the development of
very useful methods: Flux Balance Analysis (Orth et al.,
2010), Resource Balance Analysis (Goelzer et al., 2011),
etc. Under dynamic environmental conditions, the key idea
is to represent microorganism growth as an optimal control
problem of resource allocation, as proposed in Pavlov and
Ehrenberg (2013). This can be done with coarse-grained
models of microbial growth (Molenaar et al., 2009; Weiße
et al., 2015). For example, in a previous work, we have
determined using the Pontryagin maximum principle and
numerical simulations the optimal strategy (involving a
chattering arc (Borisov, 2000)) for a bacterial population
facing a nutrient up-shift (Giordano et al., 2016; Yegorov
et al., 2018), showing similarities with the mode of action
of the alarmone ppGpp. Dynamic optimization of resource
allocation can also be done with (genome-scale) metabolic
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networks (Waldherr et al., 2015; Reimers et al., 2017; Yang
et al., 2019).

These approaches involve a number of (unknown) pa-
rameters, ranging from a few for coarse-grained models
to hundreds, even thousands for genome-scale models.
Literature or database can provide a first guess of pa-
rameter values, but model calibration with experimental
data is a necessary step to go from qualitative results to
quantitative predictions. To this end, model parameters
can be determined numerically as the solution of a bi-
level optimization problem, leading nonetheless to complex
optimization issues.

As a proof of concept, our objective here is to calibrate a
coarse-grained model which describes how microalgae ac-
climate to a change in light intensity. Actually, microalgae
are known to reduce their chlorophyll content (and the
associated proteins) under high light, when photons are in
excess (MacIntyre et al., 2002). This mechanism - the so-
called photoacclimation - plays an important and complex
role in microalgal bioprocesses given the interplay be-
tween chlorophyll and light attenuation in dense cultures
(Bernard et al., 2015; de Mooij et al., 2017). Addition-
ally, considering photoacclimation is of utmost importance
to better estimate carbon fixation by the phytoplankton
in the ocean from remote measurements of chlorophyll



(Graff et al., 2016). Optimality principles have already
been used to tackle photoacclimation in static conditions
(Armstrong, 2006; Zavřel et al., 2019) or for instantaneous
growth rate maximization (Wirtz and Pahlow, 2010), but
never to our knowledge over a time horizon.

After the presentation of the model (Section 2), we first
determine the optimal allocation at steady-states (Sec-
tion 3). Then, the optimal control problem is investigated
using the Pontryagin maximum principle and numerical
solutions obtained by the direct method using the bocop
solver (Team Commands, Inria Saclay, 2017; Bonnans
et al., 2017) (Section 4). We show that the optimal tra-
jectory corresponds to a turnpike with a chattering arc.
Finally, parameter estimation with experimental data is
formulated as a bi-level optimization problem (Section 5).
Parameters are estimated using a classical identification
routine, calling at each iteration the bocop solver (Team
Commands, Inria Saclay, 2017) to solve the optimal con-
trol problem. The calibrated optimal trajectory properly
represents the dynamics of photoacclimation after a down-
shift of light intensity.

2. MODEL DEVELOPMENT

We consider a coarse-grained model to represent pho-
toacclimation in microalgae (see Fig. 1). Hereafter, c, p,
and r represent respectively the proportion of carbon
reserve (precursors), photosynthetic machinery (e.g., the
light-harvesting complex LHCII), and gene expression ma-
chinery (e.g., ribosomal proteins). Cellular metabolism is
represented by two macro-reactions: photosynthesis (pre-
cursor production) and protein synthesis, catalyzed re-
spectively by the photosynthetic machinery and by the
gene expression machinery. Using mass action kinetics,
the photosynthetic rate and the protein synthesis rate are
given respectively by:

vP = k̃P Ip, and vR = kRcr

where I is the light intensity. For sake of simplicity, we will
use in the following kP := k̃P I given that a constant light
intensity will be considered 1 .

In the model, the variable u ∈ [0; 1] will represent the
proportion of the protein synthesis flux allocated to the
photosynthetic machinery. From mass balance, we get the
following system:

dc

dt
= vP − vR − cvP = kP p− kRcr − kP pc,

dp

dt
= uvR − pvP = ukRcr − kP p2,

dr

dt
= (1− u)vR − rvP = (1− u)kRcr − kP pr.

(1)

Note that the last term in each equation corresponds to
the effect of dilution by growth (see e.g., Giordano et al.
(2016)). Finally, given that c + p + r = 1, we can reduce
the dimension of the system:

dc

dt
= kP p(1− c)− kRc(1− c− p),

dp

dt
= u(t)kRc(1− c− p)− kP p2.

(2)

1 The light intensity down-shift will occur at the initial time in the
simulations.
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Fig. 1. Scheme of the coarse-grained model to represent
photoacclimation in microalgae.

The system (2) satisfies the following invariance property.

Lemma 1. The set Ω := {(c, p) ∈ (0, 1)×(0, 1) ; c+p ≤ 1}
is invariant by (2).

Proof. Whenever c = 0 (resp. p = 0), it is easily seen that
ċ = kP p > 0 (resp. ṗ = u(t)kRc(1−c) > 0), so the positive
orthant is invariant. In addition, one has ċ + ṗ = 0 along
c+p = 1 so that the line segment L := {(c, 1−c) ; c ∈ [0, 1]}
is also invariant. This ends the proof.

Since trajectories of (2) starting in L remain in L, we
suppose next that initial conditions belong to the (open)
invariant domain:

D := {(c, p) ∈ (0, 1)× (0, 1) ; c+ p < 1}.

We assume that microalgae have acquired through evolu-
tion optimal strategy, i.e. they regulate their allocation of
resources in order to maximize their growth. To represent
this behavior, we are interested in maximizing the photo-
synthetic rate vP = kP p w.r.t. the allocation of protein
synthesis u (corresponding to our control) over a given
time period. Thus, we consider the admissible control set
defined as:

U = {u : [0, T ]→ [0, 1] ; meas.},
in which T > 0 is our given time period. The optimization
problem under consideration can be then gathered into:

max
u(·)∈U

J(u) :=

∫ T

0

kP p(t) dt, (P)

where (c(·), p(·)) is the unique solution of (2) starting at a
given point (c0, p0) ∈ D for a given control u ∈ U .

3. STATIC OPTIMIZATION PROBLEM

Before investigating further optimal controls, it is interest-
ing to study the static optimization problem:

max
u∈[0,1]

J̄(u) := kP pu, (3)

where (cu, pu) is a steady state of (2) associated with the
constant control u, i.e.,

0 = kP pu(1− cu)− kRcu(1− cu − pu),
0 = ukRcu(1− cu − pu)− kP p2u.

Indeed, we shall see that solutions of the dynamic opti-
mization problem (P) are related to solutions of the static
problem (3). In the sequel, we set ω := kP

kR
> 0.



Lemma 2. Problem (3) admits a unique optimal solution
(u?, c?, p?) given by

(u?, c?, p?) =

(
1

1 +
√
ω
,

√
ω

1 +
√
ω
,

1

(1 +
√
ω)2

)
. (4)

Proof. Combining the two equations at steady state
implies that pu = u(1 − cu). Replacing pu by its value
into the first equation then gives

cu =
ωu

ωu+ 1− u
.

Since we want to maximize the function u 7→ u(1−cu) over
[0, 1], we thus obtain that u is a solution to the equation
(1− ω)x2 − 2x+ 1 = 0 which gives us the unique solution
(in [0, 1]) u? := 1

1+
√
ω
∈ [0, 1]. The value of (c?, p?) follows.

Recalling that ω = kP /kR = Ik̃P /kR, we obtain that the
optimal photosynthetic machinery sector at equilibrium
p? is a decreasing function of light intensity I, in line
with experimental data of steady-state photoacclimation
(MacIntyre et al., 2002), see Fig. 2. Actually, this pattern
has already been predicted by steady-state optimization
with similar models (e.g. in Armstrong (2006)).
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Fig. 2. Optimal steady-state allocation for the photo-
synthetic sector p? as a function of light intensity
(top), see Lemma 2. This pattern corresponds to
the photoacclimation phenomena (MacIntyre et al.,
2002), as shown for example by the chlorophyll con-
tent measured experimentally for Dunaliella terti-
olecta (Havelková-Doušová et al., 2004) (bottom).

We have the following stability property near the optimal
steady-state.

Proposition 3. The steady-state (c?, p?) of (2) associated
with the (constant) control u = u? is locally stable with
two negative eigenvalues.

Proof. The Jacobian matrix of (2) for u = u? at (c?, p?)
is given by [

a b
c d

]

with a := 0, b := ω+
√
ω

1+
√
ω

, c := − ω
(1+
√
ω)3

, d :=

−ω(1+4
√
ω+2ω)

(1+
√
ω)4

. A computation of trace and determinant

of A then gives Tr(A) = d < 0 and det(A) = ω(ω+
√
ω)

(1+
√
ω)4

> 0

which ends the proof.

4. COMPUTATION OF AN OPTIMAL CONTROL

4.1 Pontryagin’s Principle

The optimization problem (P) is an optimal control prob-
lem. Optimal controls can be derived using the Pontryagin
Maximum Principle (see Pontryagin et al. (1964)). Note
that the existence of an optimal control is straightfor-
ward (due to the linearity of (2) w.r.t. the control), this
follows from Fillipov’s Theorem (Cesari, 2012). Let us
now turn to Pontryagin’s Principle. Doing so, let H =
H(c, p, λc, λp, λ

0, u) be the Hamiltonian associated with
(P):

H := kRc(1−c−p) [uλp − λc]+kP p
[
λc(1− c)− λpp− λ0

]
.

Let u be an optimal control and let x(·) = (c(·), p(·)) be
the associated trajectory. Then, there exists λ0 ≤ 0 and
an absolutely continuous map λ = (λc, λp) : [0, T ] → R2

such that (λ, λ0) 6= 0 and λ̇ = −∂H∂x , that is:

λ̇c = −kR(1− 2c− p)(uλp − λc) + kP pλc, (5)

λ̇p = kRc(uλp − λc)− kP
[
λc(1− c)− 2λpp− λ0

]
. (6)

In addition, transversality conditions imply λc(T ) =
λp(T ) = 0 since the terminal state is free. It follows that
λ0 < 0, i.e., no abnormal trajectories occur (otherwise, we
would have λc ≡ 0 and λp ≡ 0 implying that the pair
(λ, λ0) would be zero and a contradiction). By homogene-
ity of the Hamiltonian, we may assume that λ0 = −1. The
Hamiltonian condition in Pontryagin’s Principle then gives

u(t) ∈ argmaxv∈[0,1]H(x(t), λ(t),−1, v) a.e. t ∈ [0, T ].

(7)

An extremal is a triplet (x(·), λ(·), u(·)) satisfying (2)-(5)-
(7) (since λ0 < 0, we thus only consider normal extremals
in the sequel). From (7), the control law is given by the
sign of the switching function

φ := λpkRc(1− c− p),
which gives {

φ(t) > 0 ⇒ u(t) = 1,

φ(t) < 0 ⇒ u(t) = 0.

Of particular interest is the case where φ vanishes over a
sub-interval [t1, t2] ⊂ [0, T ]. In that case, we say that the
extremal is singular over [t1, t2] and that a singular arc
occurs. We will now study whether or not this phenomenon
takes place.

4.2 Study of singular arcs

In this section, we suppose that an extremal trajectory
is singular over a time interval [t1, t2], and we compute
singular controls. In particular, it gives us a relationship
between the solution to the static optimization problem
and singular arcs.



Proposition 4. Along a singular arc, one has :
u(t) = u?,

c(t) = c?,

p(t) = p?.

(8)

Proof. Let then I := [t1, t2] ⊂ [0, T ] be such that φ(t) =

φ̇(t) = 0, for every t ∈ [t1, t2]. Because initial conditions

are in D, this amounts to have λp(t) = 0 and λ̇p(t) = 0 for

every t ∈ I. From λ̇P (t) = 0, we thus find

λC = − ω

c+ ω(1− c)
.

We then have λ̈P (t) = 0 for every t ∈ I, hence, using that

λp(t) = λ̇p(t) = 0 for t ∈ [t1, t2], we find that

λcċ(ω − 1)− λ̇c(c+ ω(1− c)) = 0,

that is,

(ωp(1− c)− c(1− c− p))(ω − 1)

− (c+ ω(1− c))(pω + 1− 2c− p) = 0.

Solving this equation w.r.t. c gives

c = c? or c = c̃ :=
−
√
ω

1−
√
ω
< 0,

hence we conclude that c = c? is constant over [t1, t2].

It follows that λC is constant. Hence λ̇C = 0, but, since
λ̇c = λc(pkP +kR(1−2c−p)), it follows that pkP +kR(1−
2c−p) = 0. Hence, p = 1

(
√
ω+1)2

= p?. We have thus shown

that the singular arc corresponds to the optimal steady-
state. The value of the singular control immediately follows
from the state equation, and we find that u(t) = u? for
t ∈ [t1, t2].

Using the previous computations, it can be observed that
the control u does not appear in the second derivative of
the switching function φ̈, hence, we can conclude that the
singular arc is at least of order q ≥ 2. We conjecture that
the singular arc is of second order, so an optimal trajectory
can enter into the singular arc only by a chattering arc
(which contains an infinite number of switching points)
(Marchal, 1973; Borisov, 2000), as in the well-known
Fuller’s Problem. Rigorously, one should check that the
Kelley necessary optimality condition

(−1)q
∂

∂u

d2q

dt2q
φ(t) < 0, t ∈ [t1, t2],

is fulfilled along the singular arc (note that if such a
condition is violated, then no singular arc occurs). Even
with small models, this computation becomes laborious.
Therefore, our conjecture will be confirmed in the next sec-
tion thanks to numerical simulations by a direct method.

4.3 Optimal trajectories

In line with the Maximum Principle and the Kelley con-
dition, we conjecture that optimal solutions consist in a
transient towards the optimal steady-state, and then to
stay on this point (turnpike). The transient should be a
chattering arc (i.e. with an infinite number of switching
between u = 0 and u = 1).

Finally, we solve numerically the optimal control problem
by the direct method using the software bocop (Team
Commands, Inria Saclay, 2017; Bonnans et al., 2017). A

time discretization allows to transform the optimal control
problem into a nonlinear optimization problem, solved
here by interior point techniques. A discretization by a
Lobatto IIIC formula (6th order) was used with 400 time
steps, and the relative tolerance for NLP solver was set
at 10−10. The optimal trajectories obtained numerically
are composed of a chattering arc followed by a constant
singular arc (which corresponds to the optimal steady
state), see Fig. 3. Then, a second chattering arc escaping
from the singular arc appears at the end of the simulation.
For our biological problem, this arc corresponds to an
artifact due to a fixed final time, and only the transition
from the initial condition to the optimal steady-state is
relevant.
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Fig. 3. Optimal trajectory (solution of (P)), obtained
numerically by the direct method using the bocop
solver (Team Commands, Inria Saclay, 2017). It is
composed of a chattering arc (from t=0 to 2 d), a
constant singular arc corresponding to the optimal
steady state (from t=2 to 11 d), and finally a second
chattering arc escaping from the singular arc.

These numerical results tend to confirm our conjecture:
the optimal strategy is a turnpike with chattering. Addi-
tionally, these results show the reliability of the numerical
method. Trajectories are actually computed by the direct
method, without any knowledge of the theoretical solution,
and the numerical solutions presents several characteristics
demonstrated previously (the singular arc corresponds to
the optimal steady states, and the trajectories join this arc
with a chattering arc).



5. PARAMETER ESTIMATION

We want to evaluate if this framework allows to repre-
sent quantitatively microorganism growth, so the model
parameters θ should be estimated with experimental data.
The model output is given by:

y(t) = g(x(t), θ).

We consider a set of measurements ȳk ∈ Rm, correspond-
ing to time instants t1, . . . , tnk

, k ≥ 1. Our objective is
to find the set of parameters θ = (kP , kR)T such that the
optimal solution x(·) of (P) fits the experimental data.
This leads to a so-called bi-level optimization problem:

min
θ∈C

∑
k

(g(x∗(tk), θ)− ȳk)
T
Q (g(x∗(tk), θ)− ȳk)

s.t.

∣∣∣∣∣∣∣∣
u∗ ∈ argmaxu∈U

∫ T

0

kP p(t) dt,

ẋ(t) = f(x(t), u(t), θ) a.e. t ∈ [0, T ],
x(0) = x0,

(9)

where Q is a weighting matrix, C is a non-empty compact
subset of R2, f(·, ·, ·) is the dynamics given by System
(2) (in which we incorporate the dependency w.r.t. the
two parameters), and x∗ is the solution to this system
associated with u∗. Problem (P) plays the role of lower
level program whereas the optimization w.r.t. θ in (9) is
the upper level program. Problem (9) is unusual because
it couples an optimal control problem to a non-linear
program.

Experimental data with the microalga Dunaliella terti-
olecta (Sukenik et al., 1990) have been considered. After
several days of acclimation at 700 µmol.m−2.s−1, light
intensity has been shifted down to 70 µmol.m−2.s−1 at
t = 0. The following measurements have been used for
parameter estimation:

• The relative content of LHCII, determined from
Western blots. We consider that the photosynthetic
sector p follows the same relative dynamics as this
protein, and we fix arbitrarily the initial condition
p(0) = 0.1.
• The photosynthetic rate (vP ), given in mole C.cell−1.s−1

and converted in d−1 assuming a carbon content of
3.5 pmole C.cell−1 (determined by equilibrium values
at low light).
• The specific growth rate, which we assume correspond

to vR/(p+ r), i.e. the protein synthesis rate per unit
of protein.

The solution of the bi-level optimization problem (9) is
determined using a classical direct search routine (by the
Nelder-Mead method in Python). At each iteration, the
bocop solver is called to solve the lower level problem
for a given θ. We take 400 time steps, with a time
horizon large enough such that the second chattering arc
occurs after the last measurement (this final arc is not
relevant in our biological problem). For each variable, the
square errors between the measurements and the optimal
trajectory are weighted by the inverse of the square of the
measurement mean. The computation time to solve the
bi-level optimization problem on a classical laptop was six
minutes. The estimated parameters kP and kR are given

Table 1. Parameters estimated as the solution
of the bi-level optimization problem (9)

Parameter Value Unit

Photosynthetic rate constant kP 1.01 d−1

Protein synthesis rate constant kR 2.03 d−1

in Table 1, and the associated optimal trajectory is shown
on Fig. 4, with also the experimental data used in (9).

Although our coarse-grained model involves many assump-
tions, the simulation properly represents the dynamics of
photoacclimation. This is the first hint that our approach
is effective, and it should now be validated with other
experiments. The optimal control - involving a chattering
arc - is biologically inconceivable. Nonetheless, the simu-
lated trajectory fits well the data. Actually, Giordano et al.
(2016) have shown that a simple (and biologically plausi-
ble) controller can give trajectories and performances very
similar to the optimal ones. We thus expect that the state
dynamics are coherent, even if the control is not realistic.
To obtain smoother trajectories, a cost on the control can
actually be considered (Cinquemani et al., 2019), or the
number of time steps can be decreased (which additionally
will also reduce computation time).
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Fig. 4. Trajectory corresponding to the solution of the
bi-level optimization problem (9). The model (blue
lines) fits the experimental data (red crosses) of
the microalga Dunaliella tertiolecta facing a light
intensity down-shift from 700 µmol.m−2.s−1 to 70
µmol.m−2.s−1 at t = 0 (Sukenik et al., 1990).



6. CONCLUSION

A coarse-grained model of microalgal photoacclimation
has been proposed as a case study for quantitative pre-
diction of microbial growth in dynamic conditions. The
optimal allocation strategy was first determined using the
Pontryagin maximum principle and numerical solutions
obtained by the direct method using the bocop solver. We
have shown that the optimal trajectory corresponds to a
turnpike with a chattering arc. Then, model parameters
have been computed as solutions to a bi-level optimiza-
tion problem. The calibrated optimal trajectory properly
represents the dynamics of photoacclimation after a down-
shift of light intensity. This shows that our framework can
be used for quantitative estimation of microbial growth
and resource allocation in dynamic conditions.

When dealing with genome-scale models (i.e., when in-
creasing the numbers of states, controls, and parameters),
the aforementioned fitting procedure will surely become
too heavy. As a future work, we aim to find optimality
conditions for such a bi-level problem and to develop more
efficient numerical tools to perform parameter uncertainty
analysis and to tackle more complex models.
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Havelková-Doušová, H., Prášil, O., and Behrenfeld, M.
(2004). Photoacclimation of Dunaliella tertiolecta
(chlorophyceae) under fluctuating irradiance. Photosyn-
thetica, 42(2), 273–281.

MacIntyre, H., Kana, T., Anning, T., and Geider, R.
(2002). Photoacclimation of photosynthesis irradiance
response curves and photosynthetic pigments in microal-
gae and cyanobacteria. J.Phycol., 38(1), 17–38.

Marchal, C. (1973). Chattering arcs and chattering con-
trols. J. Optimiz. Theory App., 11(5), 441–468.

Molenaar, D., Van Berlo, R., De Ridder, D., and Teusink,
B. (2009). Shifts in growth strategies reflect tradeoffs in
cellular economics. Mol. Syst. Biol., 5(1), 323.

Orth, J.D., Thiele, I., and Palsson, B.Ø. (2010). What is
flux balance analysis? Nature biotechnology, 28(3), 245.

Pavlov, M.Y. and Ehrenberg, M. (2013). Optimal control
of gene expression for fast proteome adaptation to
environmental change. Proceedings of the National
Academy of Sciences, 110(51), 20527–20532.

Pontryagin, L., Boltyanskiy, V., Gamkrelidze, R., and
Mishchenko, E. (1964). Mathematical theory of optimal
processes. New York.

Reimers, A.M., Knoop, H., Bockmayr, A., and Steuer,
R. (2017). Cellular trade-offs and optimal resource
allocation during cyanobacterial diurnal growth. PNAS,
114(31), E6457–E6465.

Sukenik, A., Bennett, J., Mortain-Bertrand, A., and
Falkowski, P.G. (1990). Adaptation of the photosyn-
thetic apparatus to irradiance in Dunaliella tertiolecta:
a kinetic study. Plant physiology, 92(4), 891–898.

Team Commands, Inria Saclay (2017). Bocop: an open
source toolbox for optimal control. http://bocop.org.

Waldherr, S., Oyarzún, D.A., and Bockmayr, A. (2015).
Dynamic optimization of metabolic networks coupled
with gene expression. Journal of theoretical biology, 365,
469–485.

Weiße, A.Y., Oyarzún, D.A., Danos, V., and Swain, P.S.
(2015). Mechanistic links between cellular trade-offs,
gene expression, and growth. Proceedings of the National
Academy of Sciences, 112(9), E1038–E1047.

Wirtz, K.W. and Pahlow, M. (2010). Dynamic chloro-
phyll and nitrogen: carbon regulation in algae optimizes
instantaneous growth rate. Marine Ecology Progress
Series, 402, 81–96.

Yang, L., Ebrahim, A., Lloyd, C.J., Saunders, M.A., and
Palsson, B.O. (2019). DynamicME: dynamic simulation
and refinement of integrated models of metabolism and
protein expression. BMC systems biology, 13(1), 2.

Yegorov, I., Mairet, F., and Gouzé, J.L. (2018). Optimal
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