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Second order conditions for a control problem with discontinuous cost

Térence Bayen and Laurent Pfeiffer

Abstract— In this paper, we consider the problem of mini-
mizing the total time spent by a controlled dynamics outside a
constraint set K. Also known as time of crisis, one essential
feature of this problem is the discontinuity of the involved
integral cost with respect to the state. We first relate this optimal
control problem to a mixed initial-final problem with smooth
data. Applying the classical theory of optimality conditions to
the auxiliary (smooth) problem, we obtain as a main result
second order necessary optimality conditions for the time of
crisis. Considering the partition of the state space made out of
K and its complementary, we notice that the problem can be
seen as a particular case of a hybrid problem. Our analysis is
thus a first step toward a second order analysis for the more
general class of hybrid problems.

I. INTRODUCTION

In various control problems, solutions to a controlled
dynamics

ẋ = f(x, u), (1)

starting at time 0 in a subset K of the state space must obey
to state constraints

∀t ≥ 0, x(t) ∈ K, (2)

where K ⊂ Rn (n ≥ 1) is a non-empty closed subset and
f : Rn × Rm → Rn. Such a constraint set typically rep-
resents physical constraints to be satisfied along admissible
trajectories of (1). It is well known that given x0 ∈ K, there
is a solution of (1) satisfying (2) if and only if

∀x ∈ K, TK(x) ∩ F (x) 6= ∅, (3)

where TK(x) denotes the contingent cone to K at point x
(see [1], [2]) and F (x) := {f(x, u) ; u ∈ U} is the velocity
set. This result has been established in various contexts in the
literature (see [7], [17] among others and [1] for exhaustive
references on this subject).

It appears that in some application models, constraint (2)
may not be satisfied at every time, in particular if (3) fails to
hold. A simple example based on Lotka-Volterra’s system
highlights this phenomenon when the set K represents a
threshold for a population not to be exceeded (see [3]). One
may then wonder what is the “best” trajectory in terms of
preserving as much as possible the state of the system in the
set K. A possible approach to this question is to introduce the
time of crisis as in [15] and to look for controls u for which
the time spent by solutions of (1) outside K is minimal. This
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amounts to consider the following optimal control problem
called time of crisis1:

inf
u(·)∈U

∫ +∞

0

1Kc(xu(t, x0)) dt, (4)

where U is the set of admissible controls:

U := {u : [0,+∞)→ U ; u meas.},

xu(·, x0) is the unique solution of (1) satisfying x(0) =
x0 at time 0, 1Kc is the characteristic function of the
complementary in Rn of the set K, and U ⊂ Rm is non-
empty. The consideration of (4) is also of great interest when
the initial condition is not in the viability kernel of K under
the dynamics f defined as (see [2]):

ViabK(f) := {x0 ∈ K ; ∃u ∈ U , ∀t ≥ 0, xu(t, x0) ∈ K}.

Problem (4) presents two essential features, namely, the
infinite horizon and the discontinuity of 1Kc at the boundary
of K. To our best knowledge, reducing (4) to a finite horizon
when the infimum in (4) is finite is a complex question
(in particular, chattering phenomenon at the boundary of K
could occur for optimal trajectories). Nevertheless, whenever
the viability kernel is non-empty, reachable from every
state in Rn, and if there is a uniform bound between two
consecutive crossing times t1 and t2 (respectively from K
to Kc and from Kc to K), then it can be shown that (4) is
equivalent to the free terminal time problem

inf
u(·)∈U,T>0

∫ T

0

1Kc(xu(t, x0)) dt s.t. xu(T ) ∈ ViabK(f),

(5)
see [3]. Given this result, it seems relevant to consider,
as a first approach, a variant of Problem (4) with a fixed
and finite horizon T > 0, without terminal constraint. Over
[0, T ], first order optimality conditions can be obtained via
the hybrid maximum principle [11], [16] considering an
extended hybrid dynamics obtained from (1) that takes into
account if the state of the system is in K or in Kc. This
principle has been used in [4], [5] to study a regularization
scheme of the time of crisis.

The aim of the paper is to derive second order necessary
optimality conditions for the time of crisis (formulated with
a finite horizon) and for an optimal path which has a
finite number of transverse crossing times. Our methodology
is the following: we introduce a time transformation and
an augmented dynamics, in the spirit of [12], [13], [14].
This enables us to define an auxiliary (smooth) optimal

1In this context, when the state of the system is not in K, we say that
the system is in “crisis”.



control problem (P) of Mayer type with mixed initial-final
conditions. Applying classical results to problem (P) and
going back to the original one, we obtain that way optimality
conditions for the time of crisis.

As already mentioned, the problem under study can be
seen as a particular case of a hybrid problem (see [18]). To
our best knowledge, second order optimality conditions have
not been much addressed neither in the context of the time
of crisis, nor in the context of hybrid problems (except [19]).

The paper is structured as follows. In section II, we give
our main assumptions on the data for the second order
analysis of the time crisis problem. In Section III, we state
our main result (Theorem 3.1) about first and second order
optimality conditions: it provides a first order optimality
condition in Pontryagin’s form as well as the positivity of
the quadratic form associated to the time crisis in the critical
cone in the case of a single crossing time for the optimal
path. Next, we address the case of finite number of transverse
crossing times (see Theorems 3.2-3.3). We summarize and
explain in Section IV-C the main tools that are used to derive
these optimality conditions in the case of a single crossing
time (the methodology for obtaining the results in the case of
multiple crossing times being the same, see Section IV-D).
Because of brevity, we do not provide all the proofs of the
results (which can be found in [6]).

II. MAIN ASSUMPTIONS

Throughout the rest of the paper T > 0 is fixed, I :=
[0, T ], n, m, and l are positive integers, and | · | stands
for the euclidean norm in Rs associated with the standard
inner product written a · b for a, b ∈ Rs (s being a positive
integer). We are given a closed subset K of Rn with non-
empty interior, and we denote by Int(K), ∂K, and Kc the
interior, the boundary, and the complementary of the set
K. We suppose that the dynamics f fulfills the following
(standard) assumptions:
• The mapping f is of class C2 w.r.t. (x, u), and satisfies

the linear growth condition: there exist c1 > 0 and c2 >
0 such that for all x ∈ Rn and all u ∈ U , one has:

|f(x, u)| ≤ c1|x|+ c2. (6)

• For any x ∈ Rn, the velocity set F (x) :=
{f(x, u) ; u ∈ U} is a non-empty compact convex
subset of Rn where U ⊂ Rm is closed and non-empty.

Under these assumptions, for any x0 ∈ Rn, there is a unique
solution xu(·) of the Cauchy problem{

ẋ = f(x, u),
x(0) = x0,

(7)

defined over [0, T ]. In the sequel, we focus on the following
optimal control problem:

inf
u∈U

JT (u) :=

∫ T

0

1Kc(xu(t)) dt. (8)

By an optimal solution of (8), we mean a (global) optimal
control u ∈ U of (8). Existence of an optimal solution for
(8) is standard (we refer to [5], [15]).

To express optimality conditions, it is convenient to write
U and K as sub-level sets of given functions satisfying
qualification conditions. We fix for the rest of the article
a solution ū ∈ U to (8), with associated trajectory x̄ := xū,
satisfying Assumption (H1).
(H1) There is a function c : Rm → Rl of class C2 such that

U = {u ∈ Rm ; ci(u) ≤ 0, 1 ≤ i ≤ l}. (9)

For δ > 0 and i ∈ {1, ..., l}, we define ∆δ
c,i := {t ∈

(0, T ) ; ci(ū(t)) ≤ −δ} and for t ∈ (0, T ), let

Iδc (t) := {i ∈ {1, ..., l} ; t ∈ ∆δ
c,i}.

Given a subset J = {i1, ..., i|J|} ⊆ {1, ..., l} of
cardinality |J |, we set cJ(u) := (ci1(u), ..., ci|J|(u)) ∈
R|J|. We assume that there exist ε > 0 and δ > 0 such
that for a.e. t ∈ [0, T ]:

ε|ξ| ≤ ∇cIδc (t)(ū(t))ξ, ∀ξ ∈ R|I
δ
c (t)|. (10)

Remark 2.1: Inequality (10), referred to as linear indepen-
dence of gradients of active constraints condition is classical.
It implies the following properties (see, e.g., [9]):
• Inward pointing condition: there exist ε > 0 and v ∈
L∞(0, T ;Rm) such that

c(ū(t)) +Dc(ū(t))v(t) ≤ −ε a.e. t ∈ (0, T ). (11)

• There exists δ > 0 such that the following mapping
from ∈ L2(0, T ;Rm) into L2(∆δ

c,i) is onto:

v 7→
(

(Dci(ū(·))v(·))|∆δ
c,i

)
i=1,...,l

. (12)

Note that the inward pointing condition ensures the existence
of a Lagrange multiplier in L∞(0, T ;Rl) for (8) under the
control constraint c(u) ≤ 0 (see also [8], [9], [10]).

Throughout the article, we also assume that K satisfies
the following hypothesis.
(H2) There is a function g : Rn → R of class C1 such that

K = {x ∈ Rn ; g(x) ≤ 0}. (13)

The analysis of optimal controls of (8) and associated
trajectories relies on the notion of crossing time.

Definition 2.1: (i) A crossing time from K to Kc is a
time tc ∈ (0, T ) for which there is ε > 0 such that for any
time t ∈ (tc− ε, tc] (resp. t ∈ (tc, tc + ε)) one has x̄(t) ∈ K
(resp. x̄(t) ∈ Kc).
(ii) A crossing time tc from K to Kc is transverse if the
control ū is right- and left- continuous at time tc, and if

˙̄x(t±c ) · ∇g(x̄(tc)) 6= 0. (14)

Note that there are similar definitions for crossing times
from Kc to K and transverse crossing times from Kc to K.
The analysis that we carry out in this paper relies on the
following assumption on x̄:
(H3) The optimal trajectory x̄ possesses exactly r ∈ N∗

transverse crossing times τ̄1 < · · · < τ̄r in (0, T ) such



that τ̄2i+1 (resp. τ̄2i) is a crossing time from K to Kc

(resp. from Kc to K). For all t ∈ [0, T ]\{τ̄1, · · · , τ̄r},
g(x̄(t)) 6= 0.

Remark 2.2: Assumption (H3) implicitly supposes that
the initial condition satisfies x0 ∈ Int(K), but we could
consider as well x0 in Kc with slight modifications. It also
excludes the chattering phenomenon at the boundary of K.

III. OPTIMALITY CONDITIONS

In this section, we provide first and second order optimal-
ity conditions for (8).

A. The case of a single crossing time

We recall that ū is a fixed solution to Problem (8) with
associated trajectory x̄ = xū, satisfying (H1). We assume in
this subsection that (H3) is satisfied with r = 1; the unique
crossing time is denoted by τ̄ .

Let H : Rn × Rn × Rm → R be the Hamiltonian:

H(x, p, u) := p · f(x, u),

and Ha : Rn × Rn × Rm × Rl → R the augmented
Hamiltonian defined as

Ha(x, p, u, ν) := p · f(x, u) + ν · c(u). (15)

We start by introducing Lagrange and Pontryagin multi-
pliers.

Definition 3.1: A triplet (α, γ, ν) ∈ R+ × R ×
L∞(0, T ;Rl) is called Lagrange multiplier (associated with
ū and problem (8)) if the following conditions are satisfied:
• The triplet (α, γ, ν) is non-zero and the Lagrange multi-

plier ν satisfies the following sign and complementarity
conditions:

ν(t) ≥ 0, ν(t) · c(ū(t)) = 0, a.e. t ∈ [0, T ]. (16)

• There exists a function p : [0, T ] → Rn, whose re-
strictions to [0, τ̄) and (τ̄ , T ] are absolutely continuous,
which satisfies the following adjoint equation

ṗ(t) = −∇xH(x̄(t), p(t), ū(t)) a.e. t ∈ [0, T ],
p(T ) = 0,

(17)
and the following jump condition at τ̄ :

p(τ̄+)− p(τ̄−) = γ∇g(x̄(τ̄)). (18)

• The augmented Hamiltonian is stationary w.r.t. u:

∇uHa(x̄(t), p(t), ū(t), ν(t)) = 0 a.e. t ∈ [0, T ]. (19)

• The following relation holds true∫ T

0

ρτ̄ (t)H(x̄(t), p(t), ū(t)) dt = α. (20)

where ρτ is the function defined as:

ρτ (t) :=
1

τ
if t ∈ (0, τ), ρτ (t) :=

−1

T − τ
if t ∈ (τ, T ).

Definition 3.2: We call Pontryagin multiplier a Lagrange
multiplier (α, γ, ν) satisfying Pontryagin’s Principle, i.e, for
the associated costate p, one has a.e. in I

H(x̄(t), p(t), ū(t)) ≤ H(x̄(t), p(t), u), ∀u ∈ U. (21)

We denote by ΛL(ū, τ̄) and ΛP (ū, τ̄) the sets of Lagrange
and Pontryagin multipliers associated with ū and Problem
(8).

Lemma 3.1: The set of Pontryagin multipliers ΛP (ū, τ̄)
is non-empty.

See Section IV-C for the proof. To state second order op-
timality conditions, let us introduce the linearized dynamics,
the critical cone C(ū, τ̄), and the quadratic form Ω(ū, τ̄)
associated with (8). Given (δu, δτ) ∈ L2(0, T ;Rm)×R, we
consider the following linearized system:
d
dtδx(t) = Df [t](δx(t), δu(t)) + ρτ̄ (t)δτf [t], a.e. t ∈ I,
δx(0) = 0.

(22)
We use the notation [t] as a shortening of (x̄(t), ū(t)).

Definition 3.3: For a solution δx to (22), let us introduce
the conditions

Dg(x̄(τ))δx(τ̄) = 0, (23)
ci(ū(t)) = 0⇒ Dci(ū(t))δu(t) = 0, i = 1, ..., l, (24)

where (24) holds a.e. over (0, T ). The critical cone C(ū, τ̄) is
then defined as the set of pairs (δu, δτ) ∈ L2(0, T ;R2l)×R
such that the solution to (22) satisfies (23)-(24).

Given (α, γ, ν) ∈ ΛL(ū, τ̄) and (δu, δτ) ∈
L2(0, T ;Rm) × R, we define the quadratic form
Ω[α, γ, ν](δu, δτ) as follows:

Ω[α, γ, ν](δu, δτ) := γD2g(x̄(τ̄))(δx(τ̄))2

+ 2δτ

∫ T

0

ρτ̄ (t)DH[t](δx(t), δu(t)) dt

+

∫ T

0

D2Ha[t](δx(t), δu(t))2 dt,

where δx denotes the solution to (22), p is the unique solution
of (17) (uniquely defined from γ thanks to (17)-(18)), and
[t] is a shortening of (x̄(t), p(t), ū(t), ν(t)). Like before, the
first- and second-order derivatives of the Hamiltonians must
be considered with respect to (x, u) only. The second-order
necessary optimality conditions in Pontryagin form for the
time crisis problem with one crossing time are given by the
following theorem.

Theorem 3.1: For all (δu, δτ) ∈ C(ū, τ̄), there exists
(α, γ, ν) ∈ ΛP (ū, τ̄) such that

Ω[α, γ, ν](δu, δτ) ≥ 0.

We finally have the following result, dealing with the non-
singularity of Pontryagin multipliers.

Lemma 3.2: For all (α, γ, ν) ∈ ΛP (ū, τ̄), α > 0. More-
over, there is a unique Pontryagin multiplier such that α = 1.

We refer to [6] for a proof.



B. The case of multiple crossing times
We suppose in this subsection that (H3) is satisfied with

crossing points τ̄1 < ... < τ̄r. We denote by τ̄ ∈ (0, T )r the
vector (τ̄1, ..., τ̄r) and make use of the conventions τ̄0 = 0
and τ̄r+1 = T .

For the generalization of the first- and second-order opti-
mality conditions, we re-define the mapping ρτ as a mapping
in L∞(0, T ;Rr) as follows:

(ρτ (t))j = 1
τj−τj−1

if t ∈ (j − 1, j),

(ρτ (t))j = −1
τj+1−τj if t ∈ (j, j + 1),

(ρτ (t))j = 0 otherwise.

We begin with first order optimality conditions and let
H0 : Rn × Rn × Rm → R be defined by

H0(x, p, u) := p · f(x, u) + 1Kc(x).

We also note that Lemma 3.2 is still valid in the situation with
several crossing times, thus the optimality conditions can be
formulated for the unique Pontryagin multiplier satisfying
α = 1.

Theorem 3.2: There exists a unique pair (γ, ν) ∈ Rr ×
L∞(0, T ;Rl) satisfying the following properties:
• The Lagrange multiplier ν satisfies (16).
• There exists a function p : [0, T ] → Rn, whose restric-

tions to [0, τ̄1), (τ̄1, τ̄2),...,(τ̄r, T ] are absolutely contin-
uous, which satisfies the following adjoint equation

ṗ(t) = −∇xH(x̄(t), p(t), ū(t)) a.e. t ∈ [0, T ],
p(T ) = 0,

(25)
and the jump conditions at the crossing times τ̄j :

p(τ̄+
j )− p(τ̄−j ) = γj∇g(x̄(τ̄j)), 1 ≤ j ≤ r. (26)

• The augmented Hamiltonian Ha is stationary w.r.t. v,
i.e., it satisfies (19).

• The following relation holds true for j = 1, ..., r:∫ T

0

(ρτ̄ (t))jH(x̄(t), p(t), ū(t)) dt+ (−1)j = 0. (27)

Moreover, the mapping t ∈ (0, T ) 7→ H0(x̄(t), p(t), ū(t)) is
constant almost everywhere.

For writing second order optimality conditions, we need to
re-define the linearized dynamics, the critical cone associated
with the constraints, as well as the quadratic form Ω.

The linearized dynamics, for δu ∈ L∞(0, T ;Rm) and
δτ ∈ Rr reads:
d

dt
δx(t) = Df [t](δx(t), δu(t)) + (ρτ̄ (t) · δτ)f [t] a.e. t ∈ I,

δx(0) = 0. (28)

Definition 3.4: For a solution δx to (28), let us introduce
the conditions

r∑
j=1

(−1)jδτj ≤ 0, (29)

Dg(x̄(τ̄j))δx(τ̄j) = 0, j = 1, ..., r, (30)
ci(ū(t)) = 0 =⇒ Dci(ū(t))δu(t) = 0, i = 1, ..., l (31)

where (31) holds a.e. over (0, T ). The critical cone C(ū, τ̄) is
then defined as the set of pairs (δu, δτ) ∈ L2(0, 2;R2l)×Rr
such that the solution to (28) satisfies (29)-(30)-(31).

The quadratic form Ω(δu, δτ) is defined as

Ω(δu, δτ) :=

r∑
j=1

γjD
2g(x̄(τj))(δx(τ̄j))

2

+

∫ T

0

D2Ha[t](δx(t), δu(t))2 dt

+ 2

∫ T

0

(ρτ̄ (t) · δτ)DH[t](δx(t), δu(t)) dt. (32)

Second order optimality for the time of crisis is given by
the next theorem.

Theorem 3.3: For every (δu, δτ) ∈ C(ū, τ̄), one has
Ω(δu, δτ) ≥ 0.

IV. A RELATED MAYER CONTROL PROBLEM

In this section, we provide the main elements of proof of
Lemma 3.1 and Theorem 3.1. The main idea is to construct
a weak solution to a smooth optimal control problem (P),
for which available results can be applied. Problem (P) is
obtained with a time transformation and an augmentation of
the dynamics, described in the following two subsections in
the case of a single crossing time. We deal with the case of
multiple crossing times in subsection IV-D.

A. Time transformation

We assume that (H3) holds with r = 1; the unique crossing
time is denoted τ̄ . Let us first introduce a time transformation
as follows. For τ ∈ (0, T ), let πτ : [0, 2]→ [0, T ], s 7→ t :=
πτ (s) be the piecewise-affine function defined as

πτ (s) :=

{
τs, if s ∈ [0, 1],
(T − τ)s+ 2τ − T, if s ∈ [1, 2].

(33)

It is easily seen that the change of variable πτ is one-to-one
if and only if τ ∈ (0, T ). Given u ∈ U , we set∣∣∣∣ ũ(s) := u(πτ (s)),

x̃(s) := x(πτ (s)),
s ∈ [0, 2], (34)

where x denotes the unique solution of (7) associated with
u. The trajectory x̃ is the unique solution to the ODE

dx̃

ds
(s) =

dπτ
ds

(s)f(x̃(s), ũ(s)) a.e. s ∈ [0, 2].

x̃(0) = x0,
(35)

We can consider now the following set of admissible controls

Ũ := {ũ : [0, 2]→ U ; ũ meas.},

and the following optimal control problem:

inf
ũ∈Ũ, τ∈(0,T )

T − τ s.t. g(x̃ũ,τ (1)) = 0, (36)

where x̃ũ,τ is the unique solution of (35). Let us emphasize
the fact that τ is an optimization variable of the problem,
involved in the dynamics of the system. The crossing time of



the trajectory is fixed to 1. We adopt the following definition
of minimum.

Definition 4.1: A pair (ũ, τ) ∈ Ũ × (0, T ) is a weak
minimum of (36) if there exists ε > 0 such that for all
control ũ′ ∈ Ũ and all τ ′ ∈ (0, T ) one has:

‖ũ′ − ũ‖L∞(0,2;Rm) ≤ ε and |τ − τ ′| ≤ ε ⇒
T − τ ≤ T − τ ′. (37)

The next proposition is a key result to reformulate (8) as
a classical optimal control problem.

Proposition 4.1: (i) Let ũ := ū ◦ πτ̄ . Then, (ũ, τ̄) is a
weak minimum of (36).
(ii) For all ω ∈ (0, 1), there exists ε > 0 such that for all
(ũ′, τ ′) ∈ Ũ × (0, T ), one has:
‖ũ− ũ′‖L∞(1−ω,1+ω;Rm) ≤ ε
‖ũ− ũ′‖L1(0,1−ω;Rm) ≤ ε
‖ũ− ũ′‖L1(1+ω,2;Rm) ≤ ε
|τ̄ − τ ′| ≤ ε

⇒ T − τ ≤ T − τ ′,

Proof: The key idea in the proof of this proposition is
to show that for a control ũ′ satisfying the above inequalities,
then the associated trajectory x̃ũ′,τ also possesses a unique
crossing time, at time s = 1. This amounts to show that the
mapping

t 7→ g(x̃ũ′,τ (t))

is negative over [0, 1) and positive over (1, 2]. Because the
nominal trajectory has a unique transverse crossing time, and
since its associated control is left and right continuous at the
crossing time, the result follows using continuity arguments
and the continuity of the input-output mapping (see more
details in [6]).

B. Augmentation of the dynamics and the new Problem (P)

The goal now is to formulate (36) over the fixed in-
terval [0, 1] to avoid the use of the intermediate condition
g(x̃ũ,τ (1)) = 0 (which will be replaced by an initial-final
time condition), and so that we can use classical results of
optimal control theory. Hereafter, we use the notation

y :=

 y(1)

y(2)

ξ

 , v :=

[
v(1)

v(2)

]
.

for vectors in R2n+1 and in R2m respectively. Consider
the mappings F : R2n+1 × R2m → R2n+1 (standing for
an augmented dynamics) and G : R2n+1 × R2n+1 →
R2n+2 (standing for a mixed initial-final constraint) defined
respectively as

F (y, v) :=

 ξf(y(1), v(1))
(T − ξ)f(y(2), v(2))

0

 ,
and

G(y0, y1) :=


y

(1)
0

ξ0

y
(2)
0 − y(1)

1

g(y
(1)
1 )

 ,

where y0 := (y
(1)
0 , y

(2)
0 , ξ0) and y1 := (y

(1)
1 , y

(2)
1 , ξ1). In this

setting, the set of admissible controls is

V :=
{
v := (v(1), v(2)) : [0, 1]→ U × U ; v meas.

}
,

and we also define the set

C := {x0} × (0, T )× {0Rn} × {0} ⊂ R2n+2.

Remark 4.1: The set C comprises the initial condition at
time 0, the fact that τ ∈ (0, T ) is free, the continuity of the
trajectory at time τ , and finally, the fact that the trajectory
lies on the boundary of K at time τ

The controlled dynamics then becomes

dy

ds
(s) = F (y(s), v(s)), (38)

with v ∈ V and s ∈ [0, 1]. We denote by T the set of
pairs (y, v) satisfying (38), with v ∈ V . Finally, we define a
terminal pay-off ψ : R2n+1 → R of class C2 as

ψ(y) = T − ξ.

The new optimal control problem reads as follows:

inf
(y,v)∈T

ψ(y(1)) s.t. G(y(0), y(1)) ∈ C. (P)

Note that we keep the variable y as an optimization variable,
since its initial condition is not prescribed anymore and thus
y cannot be expressed as a function of the control v. Problem
(P) is smooth : it falls into the class of Mayer problems with
mixed initial-terminal constraints.

Let us now recall the definition of a weak and Pontryagin
minima for (P).

Definition 4.2: A pair (ȳ, v̄) ∈ T is a weak minimum
(resp. a Pontryagin minimum) of (P) if G(ȳ(0), ȳ(1)) ∈ C
and if there exists ε > 0 such that for all (y, v) ∈ T
satisfying G(y(0), y(1)) ∈ C, one has:

|y(0)− ȳ(0)| ≤ ε and ‖v − v̄‖Lr(0,1;R2m) ≤ ε ⇒
ψ(ȳ(1)) ≤ ψ(y(1)), (39)

for r =∞ (resp. r = 1).

Since Problem (P) has a classical structure, we only need
now to relate a local solution to (P) to a solution of the time
crisis. This is done in the following proposition.

Proposition 4.2: The pair (ȳ, v̄) ∈ V , defined as follows,
is a weak minimum of (P):

ȳ(s) :=

∣∣∣∣∣∣
ȳ(1)(s) := x̃(s),
ȳ(2)(s) := x̃(s+ 1),
ξ̄(s) := τ̄ ,

(40)

v̄(s) :=

∣∣∣∣ v̄(1)(s) := ũ(s),
v̄(2)(s) := ũ(s+ 1),

(41)

where s ∈ [0, 1], τ̄ is the unique crossing time of x̄, ũ =
ū ◦ πτ̄ , and x̃ = x̄ ◦ πτ̄ .

Proof: This follows from Proposition 4.1 and the above
transformations on the dynamics.



C. Proof of the optimality conditions (Theorem 3.1)

By Proposition 4.2, the pair (ȳ, v̄) ∈ V is a weak
minimum of (P), which is an optimal control problem with
smooth data. Therefore, first and second order necessary
optimality conditions can be applied. We refer the reader
to [8, Theorem 4.9]. The technical assumptions needed
for the application of this result follow here from (11)
and (12). By performing a backward transformation to the
one introduced in the first two subsections, we obtain the
following result: the set ΛL(ū, τ̄) is not empty, moreover,
for all (δu, δτ) ∈ C(ū, τ̄) there exists (α, γ, ν) ∈ ΛL(ū, τ̄)
such that Ω[α, γ, µ](δu, δτ) ≥ 0.

Let us mention that the jump condition (18) is deduced
from the transversality condition satisfied by (ȳ, v̄).

The statement of Theorem 3.1 is however stronger, since
it involves Pontryagin multipliers. For obtaining this re-
sult (that is, Lemma 3.1), one needs to prove that (ȳ, ū)
satisfies optimality conditions in Pontryagin form. This is
not obvious, since (ȳ, ū) is not known to be a Pontryagin
minimum for Problem (P). This difficulty can be overcome
by introducing a mixed notion of minima (between weak
and Pontryagin minima), corresponding to the perturbations
allowed in Proposition 4.1(ii) for a given value of ω ∈ (0, 1).
This mixed notion yields first and second order optimality
conditions with multipliers satisfying Pontryagin’s principle
a.e. in (0, 1), except on an interval of size 2ω. Roughly
speaking, our optimality conditions in Pontryagin form can
finally be obtained by passing to the limit when ω tends to
0; once again, we refer to [6] for the technical details. This
yields Lemma 3.1 and concludes the proof of Theorem 3.1.

D. Time transformation in the case of multiple crossing times

The change of variable and dynamics follow the same
scheme as in the case of one crossing time. One essentially
needs to apply the previous techniques at each crossing time
and to introduce a problem in dimension (r + 1)n + 1 in
place of 2n+ 1. We shall next only give the counter part of
(36) in this setting (for more details, see [6]).

We first need to define a new change of variables adapted
to the r crossing times. Given τ ∈ (0, T )r, we define the
mapping πτ : s ∈ [0, r + 1]→ [0, T ] as follows:

πτ (s) := τj + (s− j)(τj+1− τj), j = 0, ..., r, s ∈ [j, j+ 1].

Given a control ũ ∈ L∞(0, r + 1;U) and τ ∈ (0, T )r, there
is a unique solution x̃ũ,τ of the Cauchy problem

dx̃

ds
(s) =

dπτ
ds

(s)f(x̃(s), ũ(s)) a.e. s ∈ [0, r + 1],

x̃(0) = x0.

The optimal control problem to be considered, after change
of variable is now

inf
ũ∈Ũ, τ∈(0,T )r

r∑
j=1

(−1)jτj s.t. g(x̃ũ,τ (j)) = 0, j = 1, ..., r.

Again, we are in a position to apply first-and second-order
optimality conditions for the extension of this problem in

dimension (r + 1)n+ 1 as for Problem (P). Theorems 3.2-
3.3 are obtained going back to the original variables.

V. CONCLUSION

We have presented techniques (such as a time transfor-
mation and an augmentation of dynamics allowing to use
optimality conditions in a smooth framework) that provide
first and second order optimality conditions for the time of
crisis problem. As already mentioned, it is closely related to
a hybrid optimal control problem. Hence, future works could
investigate how to apply those techniques in the more general
hybrid framework. Our analysis of optimality conditions for
the time of crisis also relies on a transverse hypothesis on
optimal paths. It could be of interest to find classes of
systems for which solutions possess this structure, or to
provide optimality conditions without this assumption.
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