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Tangency property and prior-saturation points in

minimal time problems in the plane

T. Bayen∗, O. Cots†

September 16, 2019

Abstract

In this paper, we consider minimal time problems governed by control-affine-systems in the plane, and
we focus on the synthesis problem in presence of a singular locus that involves a saturation point for the
singular control. After giving sufficient conditions on the data ensuring occurence of a prior-saturation
point and a switching curve, we show that the bridge (i.e., the optimal bang arc issued from the singular
locus at this point) is tangent to the switching curve at the prior-saturation point. This property is proved
using the Pontryagin Maximum Principle that also provides a set of non-linear equations that can be used
to compute the prior-saturation point. These issues are illustrated on a fed-batch model in bioprocesses and
on a Magnetic Resonance Imaging (MRI) model for which minimal time syntheses for the point-to-point
problem are discussed.

Keywords: Geometric optimal control, Minimum time problems, Singular arcs.

1 Introduction

In this paper, we consider minimal time problems governed by single-input control-affine-systems in the plane

ẋ(t) = f(x(t)) + u(t) g(x(t)), |u(t)| ≤ 1,

where f, g : R2 → R2 are smooth vector fields. Syntheses for such problems have been investigated a lot in the
literature (see, e.g., [6, 12, 18, 23, 25, 24]). In particular, an exhaustive description of the various encountered
singularities can be found in [12], as well as an algorithm leading to the determination of optimal paths. It
is worth mentioning that even though many techniques exist in this setting, the computation of an optimal
feedback synthesis (global) remains in general difficult because of the occurence of geometric loci such as
singular arcs, switching curves, cut-loci...

Our aim in this work is to focus on the notion of singular arc which appears in the synthesis when the
switching function (the scalar product between the adjoint vector and the controlled vector field g) vanishes
over a time interval. In that case, the corresponding singular control us (which allows the associated trajectory
to stay on the singular locus) can be expressed in feedback form x 7→ us[x]. However, it may happen that
us becomes non admissible, i.e., x 7→ us[x] takes values above the maximal value for the control (namely 1
here). Such a situation naturally appears in several application models, see, e.g., [2, 3, 15, 20]. In that case,
we say that a saturation phenomenon occurs. The occurence of such a phenomenon implies the following
(non-intuitive) property that, if a singular arc is optimal, then it should leave the singular locus at a so-called
prior-saturation point before reaching the saturation point. This property has been studied in the literature
in various situations such as for control-affine systems in dimension 2 and 4 (see, e.g., [21, 22, 10, 3] and
references herein).

Our main goal in this paper is to provide new qualitative properties on the minimum time synthesis in
presence of a saturation point. More precisely, our objective is twofold:
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• We first give a set of conditions on the system that ensure occurence of prior-saturation showing that,
under certain assumptions, the system leaves the singular arc at this point (before reaching the saturation
point) with the maximal value for the control, see Proposition 3.1. This last arc is usually called bridge
following the terminology as in [9, 7] (see also [11, 6]).

• Second, we introduce a shooting function that allows an effective computation of the prior-saturation
point. This mapping is used to show our main result (Theorem 4.1) which can be stated as follows:
when the system exhibits a switching curve emanating from the prior-saturation point, then this curve
is tangent to the bridge (in the cotangent bundle) at this point.

The tangency property (in the state space) has been pointed out in several application models (see, e.g.,
[3, 9]). To the best of our knowledge, this property has not been addressed previously in this general setting in
the literature. It allows to better understand the construction of optimal paths locally at the prior-saturation
point.

The paper is structured as follows: in Section 2, we recall classical expressions and properties of singular
controls for control-affine-systems in the plane introducing the saturation phenomenon. In Section 3, we
provide a set of conditions involving the target set and the system ensuring the occurence of the prior-
saturation phenomenon. In Section 4, we show the tangency property between the switching curve emanating
from a prior-saturation point and the bridge, and we describe how to compute the prior-saturation point thanks
to a shooting function constructed via the Hamiltonian lifts of f and g. Finally, we depict this geometrical
property in Section 5 for a fed-batch model [17, 3] and MRI model [9, 7]. This allows us to illustrate the
notion of bridge in various contexts: first, when it connects a component of the singular locus to another one
(see the MRI-model in Section 5 and [9, 7]), and then when it connects a component of a singular locus to an
extended target set (see the fed-batch model in Section 5 and [17, 3]).

2 Saturation phenomenon

The purpose of this section is to recall some facts about minimum time control problems in the plane that
will allow us to introduce the saturation phenomenon. Throughout the paper, the standard inner product in
R2 is written a · b for a, b ∈ R2, and a⊥ denotes the vector a⊥ := (−a2, a1) orthogonal to a. The interior of a
subset S ⊂ Rn, n ≥ 2, is denoted by Int(S).

2.1 Pontryagin’s Principle

We start by applying the classical optimality conditions provided by the Pontryagin Maximum Principle
(PMP), see [19]. Let f, g : R2 → R2 be two vector fields of class C∞, and consider the controlled dynamics:

ẋ(t) = f(x(t)) + u(t) g(x(t)), (2.1)

with admissible controls in the set

U := {u : [0,+∞)→ [−1, 1] ; u meas.}.

Given an initial point x0 ∈ R2 and a non-empty closed subset T ⊂ R2, we focus on the problem of driving
(2.1) in minimal time from x0 to the target set T :

inf
u∈U

Tu s.t. xu(Tu) ∈ T , (2.2)

where xu(·) denotes the unique solution of (2.1) associated with the control u such that xu(0) = x0, and
Tu ∈ [0,+∞] is the first entry time of xu(·) into the target set T . We suppose hereafter that optimal
trajectories exist1 and we wish to apply the PMP on (2.2). The Hamiltonian associated with (2.2) is the
function H : R2 × R2 × R× R→ R defined as

H(x, p, p0, u) := p · f(x) + u p · g(x) + p0.

If u is an optimal control and xu is the associated trajectory steering x0 to the target set T in time Tu ≥ 0,
the following conditions are fulfilled:

1If the target can be reached from x0 and if f, g have linear growth, then (2.2) admits an optimal solution, thanks to Filippov’s
Existence Theorem, see, e.g., [26].

2



• There exist p0 ≤ 0 and an absolutely continuous function p : [0, Tu]→ R2 satisfying the adjoint equation

ṗ(t) = −∇xH(xu(t), p(t), p0, u(t)) a.e. t ∈ [0, Tu]. (2.3)

• The pair (p0, p(·)) is non-zero.

• The optimal control u satisfies the Hamiltonian condition

u(t) ∈ argmaxω∈[−1,1]H(xu(t), p(t), p0, ω) a.e. t ∈ [0, Tu]. (2.4)

• At the terminal time, the transversality condition2 p(Tu) ∈ −NT (xu(Tu)) is fulfilled.

Recall that an extremal (xu(·), p(·), p0, u(·)) satisfying (2.1) and (2.3)-(2.4) is abnormal whenever p0 = 0 and
normal whenever p0 6= 0. In the latter case, we take p0 = −1 and the corresponding extremal is denoted
by (xu(·), p(·), u(·)) and we shall then write H(x, p, u) in place of H(x, p, p0, u). Since Tu is free and (2.1) is
autonomous, the Hamiltonian H is zero along any extremal: for a.e. t ∈ [0, Tu],

H = p(t) · f(xu(t)) + u(t)p(t) · g(xu(t)) + p0 = 0. (2.5)

The switching function φ is defined as

φ(t) := p(t) · g(xu(t)), t ∈ [0, Tu], (2.6)

and it gives us (thanks to (2.4)) the following control law:{
φ(t) > 0 ⇒ u(t) = +1,
φ(t) < 0 ⇒ u(t) = −1.

(2.7)

A switching time is an instant tc ∈ (0, Tu) such that the control u is discontinuous at time tc. We say that
the corresponding extremal trajectory has a switching point at time tc. Of particular interest is the case when
there is a time interval [t1, t2] such that the switching function vanishes over this interval, i.e.,

φ(t) = p(t) · g(xu(t)) = 0, t ∈ I.

We then say that the extremal trajectory has a singular arc over [t1, t2]. Note that we shall suppose such
an extremal to be normal, i.e., p0 6= 0. Indeed, recall from [12, Prop. 2 p.49] that under generic conditions,
abnormal extremals are bang-bang. By differentiating φ twice w.r.t. t, one gets

φ̇(t) = p(t) · [f, g](xu(t)), t ∈ [0, Tu],

where [f, g](x) is the Lie bracket of f and g at point x, and

φ̈(t) = p(t) · [f, [f, g]](xu(t)) + u(t) p(t) · [g, [f, g]](xu(t)) a.e. t ∈ [0, Tu].

The singular locus ∆SA (in the state space) is defined as the (possibly empty) subset of R2

∆SA := {x ∈ R2 ; det(g(x), [f, g](x)) = 0}. (2.8)

For future reference, we set δSA(x) := det(g(x), [f, g](x)) for x ∈ R2. Note that if an extremal is singular over a
time interval [t1, t2], then one has xu(t) ∈ ∆SA for any t ∈ [t1, t2] because p(·) must be non-zero and orthogonal
to the vector space span{g(xu(t)), [f, g](xu(t))} over [t1, t2]. The singular control us is then the value of the
control for which the trajectory stays on the singular locus ∆SA. Supposing then that φ(t) = φ̇(t) = 0 over
[t1, t2] gives:

us(t) := −p(t) · [f, [f, g]](xu(t))

p(t) · [g, [f, g]](xu(t))
, t ∈ [0, Tu], (2.9)

provided that p(t) · [g, [f, g]](xu(t)) is non zero for t ∈ [t1, t2]. This expression of the singular control does not
guarantee that us is admissible, that is, us(t) ∈ [−1, 1]:

2Here, NT (x) stands for the (Mordukovitch) limiting normal cone to T at point x ∈ T , see [26]. It coincides with the normal
cone in the sense of convex analysis when T is convex.

3



• When we have us(t) ∈ [−1, 1], the point xu(t) is said hyperbolic if p(t) · [g, [f, g]](xu(t)) > 0, and elliptic
if p(t) · [g, [f, g]](xu(t)) < 0 (see [11, 6]).

• When we have |us(t)| > 1 for some instant t, we say that a saturation phenomenon occurs and that the
corresponding points of the singular locus are parabolic (see [11, 6]).

Our purpose in what follows is precisely to investigate properties of the synthesis of optimal paths when
saturation occurs. To this end, we suppose in the rest of the paper that extremals are normal, i.e., p0 6= 0 (we
take hereafter p0 = −1).

2.2 Singular control and saturation phenomenon

In this part, we derive classical expressions of the singular control in terms of feedback that will allow us to
introduce saturation points (in terms of the data defining the system). The collinearity set associated with
(2.1) is the (possibly empty) subset of R2 defined as

∆0 := {x ∈ R2 ; det(f(x), g(x)) = 0}. (2.10)

Define two functions δ0, ψ : R2 → R as δ0(x) := det(f(x), g(x)), x ∈ R2, and

ψ(x) := −det(g(x), [f, [f, g]](x))

det(g(x), [g, [f, g]](x))
, x ∈ R2. (2.11)

Lemma 2.1. Suppose that ∆SA 6= ∅, that x 7→ det(g(x), [g, [f, g]](x)) is non-zero over ∆SA, and consider a
singular arc defined over an interval [t1, t2]. Then, one has:

us(t) = ψ(x(t)), t ∈ [t1, t2], (2.12)

where x(·) is the corresponding singular trajectory such that x(t) ∈ ∆SA for t ∈ [t1, t2].

Proof. Since we supposed extremals to be normal, for every t ∈ [t1, t2], the family {f(x(t)), g(x(t))} is a basis
of R2 (using that H = 0). Using that H = 0 and p0 = −1, we obtain that p(t) · f(x(t)) = 1 for t ∈ [t1, t2]

which gives p(t) = − g
⊥(x(t))
δ0(x(t))

, t ∈ [t1, t2]. We also deduce (decomposing [f, [f, g]](x(t)) and [g, [f, g]](x(t)) on

{f(x(t)), g(x(t))}) that

p(t) · [f, [f, g]](x(t)) = det(g(x(t)), [f, [f, g]](x(t)))Λ(x(t)),

p(t) · [g, [f, g]](x(t)) = det(g(x(t)), [g, [f, g]](x(t)))Λ(x(t)),

where Λ(x) := g⊥(x)·f(x)
δ0(x)2

, x /∈ ∆0. Moreover, g⊥(x(t)) · f(x(t)) = −δ0(x(t)) and thus, this scalar product is

non-zero because extremals are normal (p0 6= 0). This ends the proof using (2.9).

Remark 2.1. Steady-state singular points are defined as the points x? ∈ ∆SA ∩∆0 such that g(x?) 6= 0, see
[12, 4] (if ∆SA ∩∆0 6= ∅). Such points are equilibria of (2.1) with u = ψ(x). A singular arc defined over a
time interval [t1, t2] does not contain such a point because f(x(t)) and g(x(t)) must be linearly independent
over [t1, t2]. But, it can contain points x? ∈ ∆SA ∩∆0 such that g(x?) = 0.

To introduce the notion of saturation point, it is convenient to consider a parametrization of ∆SA as follows.
When ∆SA ∩ ∆0 is non-empty, ∆SA\∆0 can be divided into several subsets (called components hereafter).
Hence, we write this set as

∆SA\∆0 =
⋃
k∈K

γk,

where K is an index set.

Lemma 2.2. Suppose that ∆SA is non-empty and that x 7→ det(g(x), [g, [f, g]](x)) is non-zero over ∆SA.
Then, each component γk of ∆SA\∆0 can be parametrized by a one-to-one parametrization ζ : J → γk,
τ 7→ ζ(τ) of class C1, where J is an interval of R.
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Proof. For x /∈ ∆0, one has span{f(x), g(x)} = R2, hence, there exist α(x), β(x) ∈ R such that

[f, g](x) = α(x)f(x) + β(x)g(x). (2.13)

By taking the determinant, we find that for x /∈ ∆0,

α(x) = −det(g(x), [f, g](x))

δ0(x)
and β(x) =

det(f(x), [f, g](x))

δ0(x)
.

Consider now a component γk of ∆SA\∆0 and x ∈ γk. By computing [f, [f, g]](x) thanks to (2.13), we get

det(g(x), [g, [f, g]](x)) = −δ0(x)∇α(x) · g(x), x ∈ γk.

Since x 7→ det(g(x), [g, [f, g]](x)) is non-zero over ∆SA, the preceding equality implies that the scalar product
∇α(x) · g(x) is non-zero. On the other hand, γk is defined by the implicit equation δSA(x) = 0. Observe that
for x /∈ ∆0, δSA(x) = −α(x)δ0(x). By taking the derivative, we find that for x /∈ ∆0, one has ∇δSA(x) =
−δ0(x)∇α(x)−α(x)∇δ0(x). Therefore, for x ∈ γk, we obtain ∇δSA(x) = −δ0(x)∇α(x). We can conclude that
for any point x ∈ γk, the partial derivative ∂1α(x) (w.r.t. x1) or ∂2α(x) (w.r.t. x2) is non-zero. We are then
in a position to apply the implicit function theorem to δSA locally at each point x ∈ γk, which then implies
the desired property.

Under the assumptions of Lemma 2.2, given a component γk of ∆SA, there is a parametrization ζ such
that

γk := {ζ(τ) ; τ ∈ J},

where ζ : J → R2 is C1-mapping (injective) and J is an interval.

Definition 2.1. A point x∗ := ζ(τ∗) with τ∗ ∈ Int(J) is called saturation point if ψ(x∗) = 1, ψ(ζ(τ)) ∈ (−1, 1)
for any τ ∈ J such that τ < τ∗, and ψ(ζ(τ)) > 1 for any τ ∈ J such that τ > τ∗.

As well, we can define saturation points x? such that ψ(x?) = −1, that is, when the lower bound of the
admissible control set is saturated. Our next aim is to study the optimality of singular arcs in presence of a
saturation point.

3 Existence of a prior-saturation point

In this section, we show that a prior-saturation phenomenon can occur whenever the system exhibits a satu-
ration point. We start by introducing our main assumptions.

Assumption 3.1. The system (2.1) satisfies the following hypotheses:

(i) One has ∆0 = ∅ and δ0(x) < 0 for all x ∈ R2.

(ii) The set ∆SA is non-empty, simply connected, and has exactly one saturation point x∗ with ψ(x∗) = 1.

(iii) Along the singular locus, the strict (generalized) Legendre-Clebsch optimality condition is satisfied, that
is, any singular extremal (xu(·), p(·), u(·)) defined over [t1, t2] satisfies:

∂

∂u

d2

dt2
∂H

∂u
(xu(t), p(t), u(t)) > 0, ∀t ∈ [t1, t2]. (3.1)

(iv) If Γ− is the forward semi-orbit of (2.1) with u = −1 with the initial condition x∗ at time 0, then

T ∩ Γ− = ∅. (3.2)

(v) The target T is reachable from every point x0 ∈ R2.
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Remark 3.1. (i) The hypothesis ∆0 = ∅ is not restrictive since we could restrict our analysis to a component
γ of ∆SA in place of ∆SA.
(ii) By the previous computations, we can observe that (3.1) is equivalent to

det(g(x), [g, [f, g]](x)) > 0, ∀x ∈ ∆SA.

Recall that, under the strict Legendre-Clebsch condition, the singular arc is a turnpike, i.e., it is time-
minimizing in every neighborhood of a hyperbolic point of ∆SA, [11]. This property can be retrieved by the
clock form argument [13].

Under Assumption 3.1, the singular locus ∆SA is written ∆SA := ζ(J) where J ⊂ R is an interval and
ζ : J → ∆SA is a C1-mapping. In addition, ∆SA partitions the state space into two simply connected (open)
subsets ∆±SA:

∆+
SA := {x ∈ R2 ; det(g(x), [f, g](x)) > 0},

∆−SA := {x ∈ R2 ; det(g(x), [f, g](x)) < 0}.

Given a normal extremal (xu(·), p(·), u(·)), the function

t 7→ γu(t) := β(xu(t))− α(xu(t))u(t), t ∈ [0, Tu],

is well-defined since ∆0 = ∅.

Lemma 3.1. Along a normal extremal (xu(·), p(·), u(·)), the switching function φ satisfies the ODE

φ̇(t) = γu(t)φ(t) + α(xu(t)) a.e. t ∈ [0, Tu]. (3.3)

Proof. The proof follows using the expression of φ̇ and the fact that the Hamiltonian H is constant equal to
zero.

The next proposition shows that an extremal trajectory containing a singular arc until the point x? is not
optimal.

Proposition 3.1. Suppose that Assumption 3.1 holds true, and consider an optimal trajectory steering x0 to
the target T in time Tu. Then, the corresponding extremal (xu(·), p(·), u(·)) does not contain a singular arc
defined over a time interval [t1, t2] such that xu(t2) = x∗.

Proof. Suppose by contradiction that there is a time interval [t1, t2] such that the trajectory is singular over
[t1, t2] with xu(t2) = x∗. We claim that, at time t2, the vector f(xu(t2))+g(xu(t2)) is tangent to ∆SA. Indeed,
it is enough to check that the vector f(x∗) + g(x∗) is orthogonal to ∇δSA(x∗) = −δ0(x∗)∇α(x∗). As we have
seen in the proof of Lemma 2.2, one has for x ∈ ∆SA:

det(g(x), [g, [f, g]](x)) = −δ0(x)∇α(x) · g(x),
det(g(x), [f, [f, g]](x)) = −δ0(x)∇α(x) · f(x).

(3.4)

These equalities imply that

−δ0(x∗)∇α(x∗) · (f(x∗) + g(x∗)) = det(g(x∗), [g, [f, g]](x∗)) + det(g(x∗), [f, [f, g]](x∗)).

Since ψ(x∗) = 1, the right member of the above equality is zero which shows the claim. In addition, for
x ∈ ∆SA, (3.4) implies the equalities

∇δSA(x) · (f(x) + g(x)) = det(g(x), [g, [f, g]](x))(1− ψ(x)),

∇δSA(x) · (f(x)− g(x)) = det(g(x), [g, [f, g]](x))(−1− ψ(x)).

Consider now the unique solution x− of (2.1) with u = −1 starting from x∗ at time t2. This trajectory enters
into the set ∆−SA for t > t2, t close to t2, because one has ∇δSA(x∗) · (f(x∗)− g(x∗)) < 0. Going back to the
optimal trajectory, there are now two possibilities for xu(·). In a right neighborhood of t = t2, either xu(·)
enters into ∆+

SA or into ∆−SA (because the singular control becomes non admissible).
Suppose first that xu(·) enters into ∆+

SA. Then, there is ε > 0 such that one has α(xu(t)) > 0 for
t ∈ (t2, t2 +ε]. It follows from (3.3) that one has u = +1 on this interval. But the velocity set being convex, we
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obtain a contradiction with the non-admissibility of the singular control at x∗ (because x− enters into ∆−SA).
It follows that the optimal trajectory necessarily enters into the set ∆−SA. But then, since α < 0 in ∆−SA, (3.3)
implies that u = −1 in some time interval (t2, t2 + ε].

From Assumption 3.1, the forward semi-orbit with u = −1 starting from x∗ does not reach the target set.
Hence, xu(·) must have a switching point to u = +1 in ∆−SA or it must reach ∆SA with the control u = −1.
We see from (3.3) that the first case is not possible because at a switching time tc such that xu(tc) ∈ ∆−SA,

we would have φ̇(tc) ≥ 0 in contradiction with α(xu(tc)) < 0.
Suppose now that xu(·) reaches ∆SA at some point x := ζ(τ) with τ < τ∗. Then, we obtain ∇δSA(x) ·

(f(x)− g(x)) < 0 since ψ(x) > −1. But, as xu(·) reaches ∆SA with u = −1 at point x, the trajectory enters
into the set ∆SA ∪∆+

SA and we must have ∇δSA(x) · (f(x)− g(x)) ≥ 0 (∇δSA(x) is collinear to the outward
normal vector to ∆SA at point x). This gives a contradiction. In the same way, the trajectory cannot reach
a point x ∈ ∆SA such that x = ζ(τ) with τ > τ∗.

We can conclude that for any time t ≥ t2, one has u(t) = −1, but then, the optimal trajectory cannot
reach the target set which is a contradiction (Assumption 3.1 (iv)). This concludes the proof.

As an example, if x0 := ζ(τ0) belongs to the singular locus with τ0 < τ∗, and if an optimal trajectory
starting from x0 contains a singular arc, then the trajectory should leave the singular locus before reaching
x∗. Let us insist on the fact that this property of leaving the singular locus before reaching x∗ relies on the
fact that the optimal trajectory should contain a singular arc. In the fed-batch model presented in Section
5.1, this property can be easily verified (see [3]).

We now introduce the following definition (in line with [15, 21, 22]). Hereafter, the notation S[τ ′0,τ0] denotes
a singular arc passing through the points ζ(τ ′0) and ζ(τ0) with τ ′0 ≤ τ0 < τ∗.

Definition 3.1. Let τ0 < τ∗. A point xe := ζ(τe) ∈ ∆SA with τ0 < τe < τ∗ is called a prior-saturation point
if the singular arc S[τ0,τ ] ceases to be optimal for τ ≥ τe.

This definition makes sense only for initial conditions ζ(τ0) with τ0 < τ∗ because for τ0 ≥ τ∗, optimal
controls are not singular (since the singular control is non-admissible). We highlight the dependency of xe
w.r.t. initial conditions ζ(τ0) ∈ ∆SA as follows.

Proposition 3.2. Suppose that Assumption 3.1 holds true and that there are τ1, τ2 ∈ J with τ1 < τ2 < τ∗

such that any optimal trajectory starting from ζ(τ0) with τ0 ∈ [τ1, τ2) contains a singular arc S[τ0,τ2]. Then,
for any initial condition τ0 ∈ [τ1, τ2), one has xe = ζ(τe) with

τe := sup{τ ∈ J ; S[τ1,τ ] is optimal} ∈ [τ2, τ
∗). (3.5)

Moreover, for any τ0 ∈ [τe, τ
∗] an optimal trajectory starting at ζ(τ0) leaves the singular locus at ζ(τ0).

Proof. Let E := {τ ∈ J ; S[τ1,τ ] is optimal} and F := {τ ∈ J ; S[τ0,τ ] is optimal} where τ0 ∈ [τ1, τ2) is fixed.
Take a point τ ∈ F . Then, from our assumption, S[τ1,τ ] is also optimal (by concatenation) which shows that
τ ∈ E. On the other hand, if τ ∈ E, then S[τ0,τ ] remains optimal (as a sub-arc). It follows that E = F
and, in addition, since xe is defined as the point such that S[τ1,τ ] ceases to be optimal, we obtain (3.5). From
Proposition 3.1, we have τe < τ∗.

Finally, for every τ0 ∈ [τe, τ
∗), a singular arc S[τ0,τ ′0] with τ0 < τ ′0 < τ∗ cannot be optimal, since otherwise,

this would contradict the definition of τe. It follows that for every τ0 ∈ [τe, τ
∗], an optimal path cannot contain

a singular arc, implying the desired property.

This property implies in particular that for every initial conditions x0 := ζ(τ0) ∈ ∆SA such that τ0 ∈ [τ1, τ2],
then the corresponding optimal path has a singular arc until the point xe and a switching point at this point.

Remark 3.2. In addition to Assumption 3.1 (in particular (3.2)), if we suppose that T is not reachable
with the constant control u = −1 from those points of ∆SA located between xe and x∗ (i.e. corresponding
to τ ∈ [τe, τ

∗]), then the maximal value for the control u = +1 is locally optimal from the prior-saturation
point xe. In other words, the bridge (the last arc leaving ∆SA) corresponds to u = +1. This can be proved by
using similar arguments as for proving Proposition 3.2. Since the singular arc is a turnpike, this additional
hypothesis also implies the existence of a switching curve emanating from xe. Our next aim is precisely to
investigate more into details geometric properties of optimal paths at the point xe.
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4 Tangency property and prior-saturation phenomenon

The aim of this section is to prove the tangency property as stated in Theorem 4.1.

4.1 Introduction to prior-saturation lift and tangency property

In this section, we first introduce the concept of prior-saturation lift and discuss its local uniqueness. We also
provide a set of nonlinear equations allowing to compute prior-saturation lifts given by the PMP. We end this
section with an introduction to the tangency property on an example.

Definition 4.1. Let xe be a prior-saturation point. Any point ze in the cotangent space at xe is called a
prior-saturation lift of xe.

To introduce the computation of prior-saturation lifts given by the PMP, let us start with an example.
Consider a target set T := {xf}, xf ∈ R2, with an optimal trajectory of the form σ−σsσ+, where σ−, σ+ and
σs are arcs, respectively, with control u = −1, u = +1 and u = us, where us is the singular control. Assume
that the optimal trajectory is unique and that the switching point between the singular arc σs (supposed to
be non-empty) and the positive bang arc σ+ is a prior-saturation point. The PMP3 gives necessary optimality
conditions satisfied by this extremal trajectory that we can write as a system of nonlinear equations, the
so-called shooting equations. We introduce some notation to define this set of shooting equations. We define
the Hamiltonian lifts associated with f and g as

Hf (z) := p · f(x) ; Hg(z) := p · g(x),

where z := (x, p) belongs to the cotangent bundle. All the others Hamiltonian lifts in the rest of the paper
are defined like this. Define also the Hamiltonians H± := Hf ±Hg and Hs := Hf + usHg, where us is viewed
here as a function of z:

us(z) := −p · [f, [f, g]](x)

p · [g, [f, g]](x)
= −

H[f,[f,g]](z)

H[g,[f,g]](z)
. (4.1)

For any Hamiltonian H we define the Hamiltonian system
#—

H := (∂pH,−∂xH), and finally, we introduce the
exponential mapping exp(tϕ)(z0) as the solution at time t of the differential equation ż(s) = ϕ(z(s)) with
initial condition z(0) = z0, where ϕ is supposed to be smooth. The shooting equations are then given by

S(y) = 0, y := (p0, t1, t2, tf , z1, z2) ∈ Rn+3+(2n)×2, n := 2,

where the shooting function is defined by

S(y) :=



Hg(z1)
H[f,g](z1)

H+(exp((tf − t2)
#   —

H+)(z2)) + p0

π(exp((tf − t2)
#   —

H+)(z2))− xf
z1 − exp(t1

#    —

H−)(x0, p0)

z2 − exp((t2 − t1)
#  —

Hs)(z1)

 , (4.2)

where π(x, p) := x, and where x0 ∈ R2 is given and p0 = −1 in the normal case. The two first equations
mean that the trajectory is entering the singular locus at z1. Hence, the second arc is a singular arc. The
third equation takes into account the free terminal time. It could be replaced by H−(x0, p0) + p0 = 0 since
the maximized Hamiltonian is constant along the extremal. The fourth equation implies that the last bang
arc reaches the target T = {xf} at the final time tf , and the last two equations are the so-called matching
conditions (which are not required but improve numerical stability). Given a solution y∗ := (p0, t1, t2, tf , z1, z2)
to S(y) = 0 associated with the unique optimal trajectory, the point π(z2) is then a prior-saturation point
thanks to our hypotheses, and so, z2 is a prior-saturation lift.

Let us now discuss the uniqueness of the prior-saturation lift, considering for instance, a smooth and local
one-parameter family of initial conditions x0(α), α ∈ (−ε, ε), ε > 0, in relation with the construction of

3Since T := {xf} is a point, there is no transversality condition at the terminal time.
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optimal syntheses (see section 5) and in relation with Proposition 3.2. Let us assume that for any α ∈ (−ε, ε),
the unique optimal trajectory is of the form σ−σsσ+ and denote by

y∗(α) := (p0(α), t1(α), t2(α), tf (α), z1(α), z2(α))

the corresponding solution to the equation
S(y, α) = 0,

where S(·, α) is defined as (4.2) but with the initial condition x0(α) in place of x0. In addition, suppose that
the lengths t1, t2− t1 and tf − t2 are positive, that is, each arc is defined on a time interval of positive length.
In this setting, for any α, we have xe := π(z2(0)) = π(z2(α)), that is, the prior-saturation point xe is locally
unique. This is related to Proposition 3.2 and illustrated on Figure 1. Besides, whenever the prior-saturation
lift ze := z2(0) is also locally unique, see Proposition 4.1 and remark 4.1, we have z2(0) = z2(α) for any
α ∈ (−ε, ε).

ä
σs ä

σs

äσ−

äσ−

ä σ+

xe ∆SA

x0(0)
x0(α)

•
•

•
• •

Figure 1: Local uniqueness of the prior-saturation point xe.

Assuming that the prior-saturation lift ze is locally unique, we can compute it with a set of equations
excerpt from the shooting equations but with some minor modifications. Roughly speaking, the main idea
is to consider the particular case where the initial condition is the prior-saturation point, that is such that
x0 = xe. In this case, we have t1 = t2 = 0 and z1 = z2 = (xe, p0) = ze. This emphasizes the fact that
what happens before the prior-saturation lift is useless to compute it. With these considerations in mind we
introduce

Fex(tb, zb) :=


Hg(exp(−tb

#   —

H+)(zb))

H[f,g](exp(−tb
#   —

H+)(zb))
H+(zb) + p0

π(zb)− xf

 ,

where Fex : R5 → R5, and where we use the notation tb, zb (b stands for bridge) in relation with the concept of
bridge defined in [9] and detailed in the MRI example in Section 5.2. Note that the exponential mapping is here

computed by backward integration. Hence, with the preceding notation, we have zb = exp((tf − t2)
#   —

H+)(z2) =

exp(tf
#   —

H+)(ze) and tb = tf − t2 = tf . At the end, the prior-saturation lift is simply given by

ze = exp(−tb
#   —

H+)(zb),

for a couple (tb, zb) solution of Fex = 0.

Tangency property We end this section with an introduction to the tangency property. Let us start with
solutions of the form σ−σsσ+, considering a smooth and local one-parameter family of initial conditions x0(α),
α ∈ (−ε, ε), ε > 0, but assuming that for α = 0, the optimal solution is of the form σ−σsσ+ with σs reduced
to a single point, that is, t2(0)− t1(0) = 0, with

y∗(0) := (p0(0), t1(0), t2(0), tf (0), z1(0), z2(0)),

the solution to the associated shooting equations, still denoted S(y, α) = 0. Assume also that for α > 0, we
are in the previous case, that is one has t2(α)−t1(α) > 0 with y∗(α) := (p0(α), t1(α), t2(α), tf (α), z1(α), z2(α))
the corresponding solution of S(·, α) = 0. The prior-saturation lift is thus given by ze = z2(α) for α ∈ [0, ε).
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The idea is now to consider the case where there is a bifurcation in the structure of the optimal trajectories
when α = 0. We thus assume that for α ∈ (−ε, 0), the solutions are of the form σ−σ+ and we denote by z1(α)
the switching point (in the cotangent bundle) between the two arcs. In this setting, there exists a switching
locus in the optimal synthesis denoted Σ− ∪ Σ0, where

Σ− := {z1(α); α ∈ (−ε, 0]} and Σ0 := {z1(0) = ze}.

The aim of the next section is to prove that the semi-orbit Γ+ of ż =
#   —

H+(z) starting from ze is tangent to
the switching curve Σ− ∪ Σ0 at the prior-saturation lift ze in a general frame. This is precisely the tangency
property (see Fig. 2).

ΣSA

Σ−

ä

ä

ä

Γ+

äze

z0(0)
z0(α), α < 0

z1(α)

•
•

•

•

Figure 2: Illustration of the tangency property between Γ+ and Σ− ∪ Σ0 at the prior-saturation lift ze. The
singular locus in the cotangent bundle is ΣSA := {z ∈ R2n ; Hg(z) = H[f,g](z) = 0}.

4.2 Proof of the tangency property

From a general point of view, we shall assume that the prior-saturation lift is given by solving a set of nonlinear
equations of the following form:

F (tb, zb, λ) :=

(
H[f,g](exp(−tb

#   —

H+)(zb))
G(tb, zb, λ)

)
, (4.3)

where λ ∈ Rk is a vector of k ∈ N parameters, where F is a function from R5+k to R5+k and where G :
R5+k → R4+k is defined by

G(tb, zb, λ) :=

Hg(exp(−tb
#   —

H+)(zb))
H+(zb) + p0

Ψ(zb, λ)

 , (4.4)

with Ψ : R4+k → R2+k a given function and p0 = −1 considering the normal case. We assume that all the
functions F , G and Ψ are smooth. It is important to notice that the mapping Ψ does not depend on tb and
that we can replace H+ by H− without any loss of generality. In the previous example from section 4.1, we
have (with a slight abuse of notation) Ψ(zb) = π(zb)− xf which corresponds to the simplest case where there
are no transversality conditions and no additional parameters, that is k = 0. For a more complex structure of
the form σ−σsσ+σ−, the parameter λ would be the last switching time between the σ+ and σ− arcs. In this
case, Ψ would contain the additional switching condition Hg = 0 at this time.

Let (t∗b , z
∗
b , λ
∗) ∈ R5+k be a solution to the equation F = 0 and define

ze := exp(−t∗b
#   —

H+)(z∗b ) ∈ ΣSA := {z ∈ R2n ; Hg(z) = H[f,g](z) = 0}. (4.5)

We introduce the following assumptions at the point ze.

Assumption 4.1. We have H[g,[f,g]](ze) 6= 0 and us(ze) < 1 with us the singular control given by (4.1).
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Assumption 4.2. The matrix[
∂G

∂zb
(t∗b , z

∗
b , λ
∗)

∂G

∂λ
(t∗b , z

∗
b , λ
∗)

]
∈ GL4+k(R),

i.e., it is invertible in R(4+k)×(4+k).

Remark 4.1. Assumption 4.1 is related to the prior-saturation phenomenon while in combination with As-
sumption 4.2, it is related to the well-posedness of the shooting system F = 0. Besides, the point ze is locally
unique under these assumptions, according to the following result.

Proposition 4.1. Suppose that Assumptions 4.1 and 4.2 hold true. Then,

F ′(t∗b , z
∗
b , λ
∗) ∈ GL5+k(R).

Proof. The Jacobian of the mapping F at the point (t∗b , z
∗
b , λ
∗) is given by:

F ′(t∗b , z
∗
b , λ
∗) =

−a ∗ ∗

−b ∂G

∂zb
(t∗b , z

∗
b , λ
∗)

∂G

∂λ
(t∗b , z

∗
b , λ
∗)

 ,
where a := H[f,[f,g]](ze)+H[g,[f,g]](ze) and b := (H[f,g](ze), 0, 0). Observe now that b = 0 since F (t∗b , z

∗
b , λ
∗) = 0

and that a 6= 0 since us(ze) < 1 and H[g,[f,g]](ze) 6= 0 by Assumption 4.1, which ends the proof.

Lemma 4.1. Suppose that Assumption 4.2 holds true. Then, there exists ε > 0 and a C1-map tb 7→ σ(tb) :=
(zb(tb), λ(tb)) ∈ R4+k defined over Iε := (t∗b − ε, t∗b + ε), that satisfies

∀tb ∈ Iε, G(tb, σ(tb)) = 0. (4.6)

In addition, one has σ(t∗b) = (z∗b , λ
∗) and σ′(t∗b) = 0R4+k .

Proof. The existence of σ follows from the implicit function theorem applied to the mapping G at (t∗b , z
∗
b , λ
∗)

which also gives (4.6). The derivative of σ is then obtained from (4.6):

σ′(tb) = −
[
∂G

∂zb
[tb]

∂G

∂λ
[tb]

]−1
· ∂G
∂tb

[tb], tb ∈ Iε,

where [tb] stands for (tb, σ(tb)). Since

∂G

∂tb
[t∗b ] = (H[f,g](ze), 0R3+k) = 0R4+k ,

the result follows.

Let us introduce the mapping ϕ(tb) := exp(−tb
#   —

H+)(zb(tb)) for tb ∈ Iε and define

Σ := {ϕ(tb) ; tb ∈ Iε}. (4.7)

Remark 4.2. The curve Σ is a switching curve in the contangent bundle since one has Hg(ϕ(tb)) = 0 by
definition of G. However, this switching curve is not necessarily optimal, that is, the optimal synthesis, with
respect to the initial condition, may not contain Σ. Let us stratify Σ according to Σ = Σ− ∪ Σ0 ∪ Σ+, with

Σ− := {ϕ(tb) ; tb ∈ (t∗b − ε, t∗b)},
Σ0 := {ϕ(t∗b)} = {ze},
Σ+ := {ϕ(tb) ; tb ∈ (t∗b , t

∗
b + ε)}.

A typical situation is when Σ− ∪ Σ0 is contained in the optimal synthesis while Σ+ is not optimal for local
and/or global optimality reasons. See the end of Section 4.1 for an example of this typical situation.

Our first main result is given by Proposition 3.2 which states the existence of a prior-saturation point xe
in the state space under Assumption 3.1. Our second main result is the following.
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Theorem 4.1. Suppose the existence of a triple (t∗b , z
∗
b , λ
∗) ∈ R5+k such that F (t∗b , z

∗
b , λ
∗) = 0, with F defined

by (4.3) and set ze := exp(−t∗b
#   —

H+)(z∗b ). Suppose also that Assumption 4.2 holds true. Then, the switching

curve Σ given by (4.7) is tangent at ze to the forward semi-orbit Γ+ of ż =
#   —

H+(z) starting from ze.

Proof. From Assumption 4.2 and by lemma 4.1, one can define the switching curve Σ by (4.7). To prove the

tangency property, we have to show that ϕ′(t∗b) is collinear to
#   —

H+(ze). For any tb ∈ Iε, we have

ϕ′(tb) = − #   —

H+(ϕ(tb)) + Φ(tb, zb(tb)) z
′
b(tb),

where Φ(t, z0) is defined as the solution at time t of the Cauchy problem

Ẋ(s) = A(s, z0)X(s), X(0) = I2n,

with A(s, z0) := − #   —

H+
′(exp(−s #   —

H+)(z0)). By lemma 4.1, one has σ′(t∗b) = 0 thus z′b(t
∗
b) = 0 and we get

ϕ′(t∗b) = − #   —

H+(ϕ(t∗b)) = − #   —

H+(ze), which concludes the proof.

Remark 4.3. It is worth to mention that the tangency property is proved in the cotangent bundle, and thus
it is also true in the state space at a prior saturation point (under the assumptions of Proposition 3.1).

Setting ξ(z) := (Hg(z), H[f,g](z)) the singular locus ΣSA can be written ΣSA = ξ−1({0R2}), and we have
the following relation between the singular locus and the switching curve.

Corollary 4.1. Suppose that ξ is a submersion at ze and that Assumptions 4.1 and 4.2 hold true. Then the
switching curve Σ is transverse to the singular locus ΣSA at ze.

Proof. Since ξ is a submersion at ze, the singular locus ΣSA is locally a regular submanifold of codimension
two near ze. Its tangent space at ze is given by the kernel of the matrix ξ′(ze). But,

ξ′(ze)ϕ
′(t∗b) = −ξ′(ze)

#   —

H+(ze) (see the proof of Theorem 4.1)

= −
(
∂xHg(ze) ∂pHg(ze)
∂xH[f,g](ze) ∂pH[f,g](ze)

)(
∂pH+(ze)
−∂xH+(ze)

)
= −

(
H[f,g](ze)

H[f,[f,g]](ze) +H[g,[f,g]](ze)

)
6= 0R2 (by Assumption 4.1),

recalling that ϕ is given from lemma 4.1 by Assumption 4.2.

Remark 4.4. From Theorem 4.1, the tangency property holds even if the singular control at ze is saturating.
The main reason of the tangency property comes from the fact that ze belongs to the singular locus ΣSA.
However, if the singular control at ze is not saturating, for instance if ze is a prior-saturation lift, then the
switching curve Σ is transverse to the singular locus ΣSA at ze according to Corollary 4.1.

5 Illustration of the prior-saturation phenomenon

The aim of this section is to develop two examples arising in the field of bioprocesses and magnetic resonance
imaging respectively, that will highlight the various concepts introduced in Sections 3-4. For the related
minimal time problems, we shall also briefly discuss the corresponding optimal syntheses that exhibit prior-
saturation points and bridges.

5.1 The fed-batch model

A bioreactor operated in fed-batch is described by the controlled dynamics (see [17]):{
ṡ = −µ(s)

(
M
v + sin − s

)
+ Qmax(1+u)

2v (sin − s),
v̇ = Qmax

2 (1 + u),
(5.1)
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where sin and s denote respectively the input substrate and substrate concentrations, and v is the volume
of the reactor4. The parameter Qmax > 0 is the maximal speed of the input pump (chosen large enough) so
that Qmax

2 (1 + u) represents the input flow rate, u(·) being the control variable with values in [−1, 1]. Finally,
M ∈ R depends on the initial value of micro-organism concentration5. As in many engineering applications
(see, e.g., [5]), the kinetics µ of the reaction is of Haldane type, i.e.,

µ(s) :=
µhs

K + s+ s2

KI

,

with a unique maximum s∗ :=
√
KKI ∈ (0, sin) (parameters µh, K, KI are positive). This type of growth

function models inhibition by substrate (microbial growth is limited when s is too large w.r.t. s∗). It is worth
mentioning that D := (0, sin]× R∗+ is invariant by (5.1). For waste water treatment purpose, the problem of
interest is:

inf
u∈U

Tu s.t. (s(Tu), v(Tu)) ∈ T , (5.2)

where T := (0, sref ] × {vmax} is the target set, sref � sin is a given threshold, and vmax > 0 denotes the
maximal volume of the bioreactor. From a practical point of view, the goal is to treat a volume vmax of wasted
water in minimal time. For more details about this system, we refer to [17, 3].

It appears that Problem (5.2) may exhibit a saturation phenomenon. Indeed, by using the PMP, we can
check that there is a singular locus that is the line segment

∆SA := {s∗} × (0, vmax],

and that the singular control can be expressed in feedback form as

us[v] :=
µ(s∗) [M + v(sin − s∗)]

(sin − s∗)Qmax
− 1,

(writing ṡ = 0 along s = s∗). It follows that there exists a unique saturation point

xsat := (s∗, v∗),

with v∗ := 2Qmax

µ(s∗) −
M

sin−s∗ and us[v
∗] = 1 if the following condition is fulfilled

0 < v∗ < vmax. (5.3)

This typically happens when vmax (the volume of water to be treated) is too large, see [3]. Next, we suppose
that (5.3) holds true.

At this step, we wish to know if prior-saturation occurs (according to Propositions 3.1 and 3.2). Doing so,
let us check Assumption 3.1. One gets

δ0(s, v) = −µ(s)(M/v + sin − s)Qmax/2 = −µ(s)XQmax/2 < 0,

hence ∆0∩D = ∅ and δ0 < 0 in D. Now, the singular arc is of turnpike type and Legendre-Clebsch’s optimality
condition holds true because µ has a unique maximum for s = s∗, see [1], or a clock form argumentation in
[17]. In addition, observe that, in the (s, v)-plane, trajectories of (5.1) with u = −1 are horizontal, hence,
every arc with u = −1 and starting at a volume value v0 < vmax never reaches the target set T . Finally, T is
reachable from D taking the control u = +1 until reaching v = vmax and then u = −1 until reaching sref .

Second, let us verify the hypotheses of Proposition 3.2. Doing so, let v 7→ ŝ(v) be the unique solution to
the Cauchy problem

ds

dv
= −

(
− µ(s)

Qmax

[
M

v
+ sin − s

]
+
sin − s
v

)
, s(vmax) = s∗,

(the solution of (5.1) with u = 1 backward in time from (s∗, vmax)). From [3], if there exists v∗ ∈ (0, v∗) such
that ŝ(v∗) = s∗, then optimal paths starting at a volume value sufficiently small necessarily contain a singular

4In contrast with the previous sections in which state variables are (x1, x2), we chose to adopt the notation (s, v) that is
commonly used in the bioprocesses literature for fed-batch operations.

5Micro-organism concentration X > 0 can be expressed as a simple function of (s, v), namely X := M/v + sin − s, thus (5.1)
is enough to describe a bioreactor operated in fed-batch mode.
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arc (this actually follows using the PMP). Now, by using Cauchy-Lipschitz’s Theorem, the existence of v∗ is
easy to verify when M = 0, and thus, it is also verified for small values of the parameter M (by a continuity
argumentation). To pursue our analysis, we suppose next the existence of v∗ ∈ (0, v∗). We are then in a
position to apply Propositions 3.1 and 3.2. It follows that there is a unique volume value ve ∈ (0, v∗) such
that any singular arc starting at a volume value v0 < ve will be optimal only until ve. In addition, combining
this result with a study of extremals using the PMP, we obtain that

• if the initial condition is (s∗, v0) with v0 < ve, then the optimal path is of the form σsσ
b
+σ− (see below

for the definition of σb+);

• if the initial condition is (s∗, v0) with v0 ≥ ve, then the optimal path is of the form σ+σ− ;

• for any initial condition (sin, v0) with ve ≤ v0 < vmax, the optimal path is of the form σ−σ+σ− where
the first switching time appears on a switching curve emanating from (s∗, ve).

To determine the prior-saturation point xe := (s∗, ve) numerically, we proceed as in Section 4. For this
application model, it is convenient to introduce an extended target set as T := (0, sin]× {vmax} (observe that
for initial conditions on T , optimal paths are σ− arcs). In this context, a bridge is defined as an arc σ+
(denoted by σb+) on [0, tb] such that

φ(0) = φ̇(0) = φ(tb) = 0 and v(tb) = vmax,

where φ is the switching function defined by (2.6) and tb is the time to steer xe at time 0 to the extended
target set T with u = +1. To compute xe, we need to compute the extremities of the bridge together with
its length. Denoting by t∗b the length of the bridge and by z∗b its extremity in the cotangent bundle whose
projection on the state space belongs to T , the point (t∗b , z

∗
b ) is then a solution of the equation Fbio = 0 with

Fbio(tb, zb) :=


H[f,g](exp(−tb

#   —

H+)(zb))

Hg(exp(−tb
#   —

H+)(zb))
H+(zb) + p0

Hg(zb)
vb − vmax

 , (5.4)

where (sb, vb) is the projection of zb on the state space and vector fields f, g are given by (5.1). From Theorem
4.1, the bridge is then tangent to the switching curve at xe (the projection of Σ given by (4.7) onto the
state space). To conclude this part, let us comment Fig. 3 on which the optimal synthesis is plotted in a
neighborhood of the prior-saturation point:

• In black, the switching curve Σπ emanates from the prior-saturation point. It is computed using the
shooting functions Fbio.

• The synthesis is such that trajectories are horizontal (u = −1) until reaching ∆SA or the switching
curve. For initial conditions with a substrate concentration less than s∗ and v0 ≥ ve, then u = 1 is
optimal until reaching T .

5.2 The MRI model

In Nuclear Magnetic Resonance (NMR) saturating one chemical species consists in driving the magnetization
vector representing the state to zero. In Magnetic Resonance Imaging (MRI) a challenging problem is to
maximize the constrast between two observed species (for instance, healthy tissues and tumors) saturating
one species. For the model, we consider an ensemble of spin-1/2 particles, excited by a radio-frequency (RF)
field which is ideally assumed homogeneous, each spin of this ensemble being described by its magnetization
vector whose dynamics is governed in a specific rotating frame, after some normalizations and considering the
2-dimensional case, by the Bloch equation [16]:{

ẋ1 = −Γx1 − ux2,
ẋ2 = γ(1− x2) + ux1,

(5.5)
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Figure 3: Minimal time synthesis for (5.2): the target set T = (0, sref ] × {vmax} is in black (left). The
switching curve Σπ (in black) is tangent to the bridge σb+ (in red) at xe. Arcs with u = +1 (resp. u = −1) are
depicted in red (resp. in blue).

where x := (x1, x2) is the normalized magnetization vector, where (γ,Γ) is a couple of parameters satisfying the
physical constraint 0 < γ ≤ 2Γ and depending on the longitudinal and transveral relaxation constants specific
to the observed species, and where u is the RF-field which plays the role of the control. The time-minimal
problem of interest here is the following:

inf
u∈U

Tu s.t. xu(Tu, x0) = O := (0, 0), (5.6)

where the initial condition x0 belongs to the set B := {(x1, x2) ∈ R2 ; x21 + x22 ≤ 1} called the Bloch ball and
where xu(·, x0) is the unique solution of (5.5) such that xu(0, x0) = x0.

Remark 5.1. The problem of saturation in MRI is the problem (5.6) with x0 = N , where N := (0, 1) is the
North pole of the Bloch ball. We refer to [8, 7] for more details about the saturation and contrast problems
in MRI. In [8], the following optimal synthesis is constructed: the authors give the optimal paths to go from
N to any reachable point of the Bloch ball. Hence, the initial point is fixed to the North pole while the final
point may be seen as a parameter. Here, we are interested in the converse problem, that is, the parameter is
the initial condition and we want to steer the system to a given target, which is the origin O. The common
problem in these two cases is the problem of saturation where the initial condition is N and where the target
is O.

In this MRI application [8], the singular locus has a singularity at the intersection of two lines. Setting
δ := γ − Γ, the singular locus is described by

∆SA = ∆h
SA ∪∆v

SA,

where ∆h
SA := {x2 = γ/(2δ)} is a horizontal line and where ∆v

SA := {x1 = 0} is the vertical axis. On the
vertical axis, the singular control is zero while on the horizontal line, the singular control is given in feedback
form by

us[x1, x2] := γ(2Γ− γ)/(2δx1).

Considering only the half space x1 ≤ 0 of the Bloch ball (this is possible due to a discrete symmetry) and
restricting (γ,Γ) to the interesting case 0 < 3γ ≤ 2Γ (in this case, the horizontal line cuts the Bloch ball), there
exists only one saturation point denoted by xsat ∈ ∆SA. The point xsat belongs to the set ∆h

SA ∩ {x1 < 0}, it
satisfies us(xsat) = 1, and it is given by

xsat :=

(
γ(2Γ− γ)

2δ
,
γ

2δ

)
.
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Following [8], we introduce the concept of bridge. An arc σ+ or σ− with control u = +1 or u = −1, is called
a bridge on [0, tb] if its extremities correspond to non ordinary switching points, that is, if

φ(0) = φ̇(0) = φ(tb) = φ̇(tb) = 0,

where φ is the switching function defined by (2.6). According to [8], there exists a bridge with u = +1
(supposed to be unique) denoted σb+ connecting ∆h

SA and ∆v
SA. We denote by xe := (xe,1, xe,2) the extremity

of the bridge on the horizontal line ∆h
SA and we can now restrict the analysis to the following situation. We

assume that the following conditions are satisfied by the couple of parameters (γ,Γ) (see Fig. 3 of [8] and the
description that comes after for details):

(i) xe belongs to the Bloch ball B (this implies in particular that 3γ ≤ 2Γ),

(ii) 0 < γ (this comes from the physical constraint),

(iii) 0 ≤ (2Γ2 − γΓ + 1) exp((α − γ)t0) − 2δ (hence the origin O is reachable by a Bang-Singular sequence
from xsat and so also from xe),

where α := δ/2 and t0 := arctan(−β/α)/β with β :=
√

1− α2. In this setting, for any initial condition
x0 := (x0,1, x0,2) ∈ ∆h

SA ∩B such that x0,1 ≤ xe,1, the optimal trajectory (see [8]) is of the form σsσ
b
+σ0, that

is composed of a singular arc on ∆h
SA followed by the bridge with u = +1 and ending with a singular arc σ0

along ∆v
SA with u = 0. The first singular arc reduces to a point if x0 = xe. At xe, the singular control is not

saturating, so, in conclusion, the point xe is a prior-saturation point.

Remark 5.2. In the MRI application, Assumption 3.1 is not exactly satisfied since the collinearity set ∆0

is non-empty and plays a role in the optimal synthesis, such as the singularity of the singular locus at the
intersection of the two lines. However, the singular arcs are turnpikes and Legendre-Clebsch optimality con-
dition holds. Besides, there exists a prior-saturation point and so this case is more general than the fed-batch
application. We will see hereinafter that the tangency property holds at the prior-saturation point and that the
switching curve is transverse to the singular locus.

We end this part by showing how to compute the prior-saturation point xe and by giving the optimal
synthesis near xe for an initial condition on the horizontal singular line. To compute xe, we need to compute
the extremities of the bridge together with its length. Denoting by t∗b the length of the bridge and by z∗b the
extremity of the bridge in the cotangent bundle whose projection on the state space belongs to ∆v

SA, the point
(t∗b , z

∗
b ) is then a solution of the equation Fmri = 0 with

Fmri(tb, zb) :=


H[f,g](exp(−tb

#   —

H+)(zb))

Hg(exp(−tb
#   —

H+)(zb))
H+(zb) + p0

H[f,g](zb)
Hg(zb)

 , (5.7)

where the vector fields f and g are given by (5.5) and where the Hamiltonians, the Hamiltonian lifts and the
Hamiltonian vector field are defined in Section 4.1. We recognize here a function of the form (4.3) without any

additional parameter λ and so, ze := exp(−t∗b
#   —

H+)(z∗b ) is the prior-saturation lift such that π(ze) = xe ∈ ∆h
SA.

Finally, the optimal synthesis near xe is given on Fig. 4. The optimal solution from the initial condition
x0 ∈ ∆h

SA is of the form σsσ
b
+σ0. The red arc σb+ is the bridge starting from xe, it is a part of the forward

semi-orbit Γ+ of ż =
#   —

H+(z) starting from ze projected into the state space. The black curve Σπ is the existing
part in the optimal synthesis of the projection of the switching curve Σ defined by (4.7). According to the
tangency property from Theorem 4.1, the arc σb+ is tangent to Σπ at the prior-saturation point xe. Note also
that the switching curve Σπ is transverse to the singular locus ∆h

SA in accordance with Corollary 4.1.

6 Conclusion

Even though the tangency property between the bridge and the switching curve provides useful informations
on the minimum time synthesis when prior saturation occurs (typically, under assumptions of Proposition
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Figure 4: Optimal synthesis near the prior-saturation point xe in the left part of the Bloch ball.

3.1), it remains valid in a larger context (under the hypotheses of Theorem 4.1) and not only in the framework
of saturation and prior-saturation of the singular control for affine-control systems in the plane. This property
also appears in other settings such as in Lagrange control problems governed by one-dimensional systems, see,
e.g., [14]. Future works could then investigate prior-saturation phenomenon and the tangency property in
other frameworks or in dimension n ≥ 3.

Acknowledgments
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