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TANGENCY PROPERTY AND PRIOR-SATURATION POINTS IN
MINIMAL TIME PROBLEMS IN THE PLANE*

T. BAYENT AND O. COTS*

Abstract. In this paper, we consider minimal time problems governed by control-affine-systems
in the plane, and we focus on the synthesis problem in presence of a singular locus that involves
a saturation point for the singular control. After giving sufficient conditions on the data ensuring
occurence of a prior-saturation point and a switching curve, we show that the bridge (i.e., the optimal
bang arc issued from the singular locus at this point) is tangent to the switching curve at the prior-
saturation point. This property is proved using the Pontryagin Maximum Principle that also provides
a set of non-linear equations that can be used to compute the prior-saturation point. These issues
are illustrated on a fed-batch model in bioprocesses and on a Magnetic Resonance Imaging (MRI)
model for which minimal time syntheses for the point-to-point problem are discussed.

Key words. Geometric optimal control, Minimum time problems, Singular arcs,

AMS subject classifications. 49J15, 49N35, 70G45

1. Introduction. In this paper, we consider minimal time problems governed
by single-input control-affine-systems in the plane

w(t) = f(x(t) +ut) g(z(t)), |u(t)] <1,

where f, g : R? — R? are smooth vector fields. Syntheses for such problems have been
investigated a lot in the literature (see, e.g., [6, 12, 18, 23, 25, 24]). In particular, an
exhaustive description of the various encountered singularities can be found in [12],
as well as an algorithm leading to the determination of optimal paths. It is worth
mentioning that even though many techniques exist in this setting, the computation
of an optimal feedback synthesis (global) remains in general difficult because of the
occurence of geometric loci such as singular arcs, switching curves, cut-loci...

Our aim in this work is to focus on the notion of singular arc which appears in
the synthesis when the switching function (the scalar product between the adjoint
vector and the controlled vector field g) vanishes over a time interval. In that case,
the corresponding singular control us (which allows the associated trajectory to stay
on the singular locus) can be expressed in feedback form = — wug[x]. However, it
may happen that us becomes non admissible, i.e., x — us[z] takes values above the
maximal value for the control (namely 1 here). Such a situation naturally appears
in several application models, see, e.g., [2, 3, 15, 20]. In that case, we say that
a saturation phenomenon occurs. The occurence of such a phenomenon implies the
following (non-intuitive) property that, if a singular arc is optimal, then it should leave
the singular locus at a so-called prior-saturation point before reaching the saturation
point. This property has been studied in the literature in various situations such as
for control-affine systems in dimension 2 and 4 (see, e.g., [21, 22, 10, 3] and references
herein).

Our main goal in this paper is to provide new qualitative properties on the min-
imum time synthesis in presence of a saturation point. More precisely, our objective
is twofold:
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2 T. BAYEN, O. COTS

e We first give a set of conditions on the system that ensure occurence of prior-
saturation showing that, under certain assumptions, the system leaves the
singular arc at this point (before reaching the saturation point) with the
maximal value for the control, see Proposition 3.3. This last arc is usually
called bridge following the terminology as in [9, 7] (see also [11, 6]).

e Second, we introduce a shooting function that allows an effective computation
of the prior-saturation point. This mapping is used to show our main result
(Theorem 4.6) which can be stated as follows: when the system exhibits a
switching curve emanating from the prior-saturation point, then this curve is
tangent to the bridge (in the cotangent bundle) at this point.

The tangency property (in the state space) has been pointed out in several appli-
cation models (see, e.g., [3, 9]). To the best of our knowledge, this property has not
been addressed previously in this general setting in the literature. It allows to better
understand the construction of optimal paths locally at the prior-saturation point.

The paper is structured as follows: in Section 2, we recall classical expressions
and properties of singular controls for control-affine-systems in the plane introducing
the saturation phenomenon. In Section 3, we provide a set of conditions involving the
target set and the system ensuring the occurence of the prior-saturation phenomenon.
In Section 4, we show the tangency property between the switching curve emanating
from a prior-saturation point and the bridge, and we describe how to compute the
prior-saturation point thanks to a shooting function constructed via the Hamiltonian
lifts of f and g. Finally, we depict this geometrical property in Section 5 for a fed-
batch model [17, 3] and MRI model [9, 7]. This allows us to illustrate the notion of
bridge in various contexts: first, when it connects a component of the singular locus
to another one (see the MRI-model in Section 5 and [9, 7]), and then when it connects
a component of a singular locus to an extended target set (see the fed-batch model
in Section 5 and [17, 3]).

2. Saturation phenomenon. The purpose of this section is to recall some facts
about minimum time control problems in the plane that will allow us to introduce the
saturation phenomenon. Throughout the paper, the standard inner product in R? is
written a - b for a,b € R?, and a* denotes the vector a' := (—as, a;) orthogonal to a.
The interior of a subset S C R™, n > 2, is denoted by Int(S).

2.1. Pontryagin’s Principle. We start by applying the classical optimality
conditions provided by the Pontryagin Maximum Principle (PMP), see [19]. Let
f,9 : R? — R? be two vector fields of class C°°, and consider the controlled dynamics:

(2.1) i(t) = f(x(t)) + u(t) g(z(t)),
with admissible controls in the set
U= {u:[0,400) — [~1,1] ; v meas.}.

Given an initial point zo € R? and a non-empty closed subset 7~ C R?, we focus on
the problem of driving (2.1) in minimal time from z( to the target set 7T

(2.2) 111615 T, st. x,(T,) €T,

where ,,(+) denotes the unique solution of (2.1) associated with the control v such that
24,(0) = xo, and T, € [0, 400] is the first entry time of z,,(-) into the target set 7. We
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TANGENCY PROPERTY AND PRIOR-SATURATION POINTS 3

suppose hereafter that optimal trajectories exist! and we wish to apply the PMP on
(2.2). The Hamiltonian associated with (2.2) is the function H : RZ x R2x R xR — R
defined as
H(z,p,p’u) =p- f(z) +up-g(z) +p’.

If w is an optimal control and x,, is the associated trajectory steering x to the target
set T in time T,, > 0, the following conditions are fulfilled:

e There exist p° < 0 and an absolutely continuous function p : [0,T,] — R?

satisfying the adjoint equation

(2.3) B(t) = =V H (. (t),p(t), 0% u(t)) ae. t€0,T,].

e The pair (p°, p(+)) is non-zero.
e The optimal control u satisfies the Hamiltonian condition

(2.4) u(t) € argmaxwe[fl’”H(xu(t),p(t),po,w) a.e. t €[0,T,].

e At the terminal time, the transversality condition® p(T,) € —N7(z,(Ty)) is

fulfilled.
Recall that an extremal (z,,(-), p(+), p°, u(+)) satisfying (2.1) and (2.3)-(2.4) is abnormal
whenever p° = 0 and normal whenever p° # 0. In the latter case, we take p° = —1

and the corresponding extremal is denoted by (x,(:),p(:),u(-)) and we shall then
write H(x,p,u) in place of H(z,p,p° u). Since T, is free and (2.1) is autonomous,
the Hamiltonian H is zero along any extremal: for a.e. t € [0,T,],

(2.5) H = p(t) - f(wu(t) +ult)p(t) - g(zu(1)) +p” = 0.

The switching function ¢ is defined as

(2.6) o(t) = p(t) - g(zu(t)), t€0,Tu],

and it gives us (thanks to (2.4)) the following control law:
pt) >0 = u(t)=+1,

27) { 6() <0 = ult)=—1.

A switching time is an instant ¢, € (0,7,) such that the control u is discontinuous at
time t.. We say that the corresponding extremal trajectory has a switching point at
time t.. Of particular interest is the case when there is a time interval [tq,t2] such
that the switching function vanishes over this interval, i.e.,

o(t) = p(t) - g(zu(t) =0, tel.

We then say that the extremal trajectory has a singular arc over [t1,t3]. Note that
we shall suppose such an extremal to be normal, i.e., p° # 0. Indeed, recall from [12,
Prop. 2 p.49] that under generic conditions, abnormal extremals are bang-bang. By
differentiating ¢ twice w.r.t. ¢, one gets

o(t) = p(t) - [f,gl(zu(t), te[0,Tu],

LTf the target can be reached from o and if f, g have linear growth, then (2.2) admits an optimal
solution, thanks to Filippov’s Existence Theorem, see, e.g., [26].

2Here, N7 (z) stands for the (Mordukovitch) limiting normal cone to 7~ at point z € T, see [26].
It coincides with the normal cone in the sense of convex analysis when 7 is convex.

This manuscript is for review purposes only.
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4 T. BAYEN, O. COTS

where [f, g](x) is the Lie bracket of f and g at point x, and

o) = p(t) - [f. [f gll(wu () + u(t) p(t) - [g, [f, 9]} (wu (1) ace.t € [0, T,].

The singular locus Aga (in the state space) is defined as the (possibly empty) subset
of R?

(28) ASA = {x S RQ 5 det(g(x)v [f: g](l‘)) = 0}

For future reference, we set dsa(z) = det(g(x), [f,g](z)) for x € R%. Note that if
an extremal is singular over a time interval [t1,t3], then one has z,(t) € Aga for
any t € [t1,t2] because p(-) must be non-zero and orthogonal to the vector space
span{g(z,(t)), [f, g](z.(t))} over [t1,t2]. The singular control us is then the value of
the control for which the trajectory stays on the singular locus Ag 4. Supposing then
that ¢(t) = G(t) = 0 over [t1, t2] gives:

p(t) - [g, [ gll(zu(t))’

provided that p(t) - [g, [f, g]](x«(t)) is non zero for t € [t1,t2]. This expression of the
singular control does not guarantee that u is admissible, that is, us(t) € [-1, 1]:

e When we have us(t) € [—1,1], the point x,(t) is said hyperbolic if p(t) -
9. f, gl (wa(£)) > 0, and elliptic if p(t) - [g, [£. g))(zu(t)) < O (see [11, 6]).

e When we have |us(t)| > 1 for some instant ¢, we say that a saturation phe-
nomenon occurs and that the corresponding points of the singular locus are
parabolic (see [11, 6]).

Our purpose in what follows is precisely to investigate properties of the synthesis of
optimal paths when saturation occurs. To this end, we suppose in the rest of the
paper that extremals are normal, i.e., p° # 0 (we take hereafter p° = —1).

2.2. Singular control and saturation phenomenon. In this part, we derive
classical expressions of the singular control in terms of feedback that will allow us to
introduce saturation points (in terms of the data defining the system). The collinearity
set associated with (2.1) is the (possibly empty) subset of R? defined as

(2.10) = {z € R?; det(f(x), g(x)) = 0}.
) =

(

Define two functions &g, : R? — R as dp(z) == det(f(z),g(z)), = € R?, and
)
)

det(g(z), [, [f; gll(=
det(g(x), [9, [/, gl](=

(2.11) Y(x) = — ; z € R%

LEMMA 2.1. Suppose that Aga # 0, that x — det(g(x), g, [f, g]](x)) is non-zero
over Aga, and consider a singular arc defined over an interval [t1,t2]. Then, one has:

(2.12) us(t) = ¥(z(t), et ta],

where x(-) is the corresponding singular trajectory such that x(t) € Aga fort € [t1,ta].

Proof. Since we supposed extremals to be normal, for every t € [t1, 2], the family
{f(x(t)),g(x(t))} is a basis of R? (using that H = 0). Using that H = 0 and p° = —1,

we obtain that p(t)- f(x(t)) = 1 for t € [t1, ta] which gives p(t) = —% ((f((f)))), t € [t1,ta).

This manuscript is for review purposes only.
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TANGENCY PROPERTY AND PRIOR-SATURATION POINTS 5

We also deduce (decomposing [f, [, g]}(z(t)) and [g, [f, g]]((?)) on {f(2(t)), g(=(£))})

that

p(t) - [f, [f, gll(z(t)) = det(g(z(?)), [, [f, gll(x(2))) A(z(t)),

p(t) - g, [f, gll(z(t)) = det(g(z(2)), [g, [f, 9]} (x (%)) A(x(2)),
where A(x) = S0 4 ¢ Ay Moreover, gt (x(t)) - f(x(t)) = —do((t)) and thus,
this scalar product is non-zero because extremals are normal (p° # 0). This ends the
proof using (2.9). O

Remark 2.2. Steady-state singular points are defined as the points * € AgaNAg
such that g(a*) # 0, see [12, 4] (if Aga N Ag # 0). Such points are equilibria of (2.1)
with u = ¢(x). A singular arc defined over a time interval [t,t5] does not contain
such a point because f(z(t)) and g(z(t)) must be linearly independent over [¢y,t3].
But, it can contain points x* € Aga N Ag such that g(z*) = 0.

To introduce the notion of saturation point, it is convenient to consider a param-

etrization of Aga as follows. When Aga N Ag is non-empty, Aga\Ap can be divided
into several subsets (called components hereafter). Hence, we write this set as

Asa\Do = | 7

keEK
where K is an index set.

LEMMA 2.3. Suppose that Aga is non-empty and that x — det(g(x), [g, [f, g]]())
is non-zero over Aga. Then, each component vy of Asa\Aqg can be parametrized by
a one-to-one parametrization ¢ : J — Yy, T+ ((7) of class C*, where J is an interval

of R.
Proof. For x ¢ Ay, one has span{f(z),g(z)} = R?, hence, there exist a(x), 3(z) €
R such that

(2.13) [f,9l(x) = a(z) f(z) + B(x)g(x).
By taking the determinant, we find that for = ¢ Ay,

_ det(g(x), [, g]()) det(f (), [f, g](x))
a@) == 5o () 5o() '
Consider now a component vy, of Aga\Ag and = € ~;. By computing [f, [f, g]](z)
thanks to (2.13), we get

det(g(),[g,[f, gll(z)) = =do(z)Va(z) - g(x), = €.

Since z — det(g(x), [g, [f, ¢9]](z)) is non-zero over Ag4, the preceding equality implies
that the scalar product Vo(z) - g(z) is non-zero. On the other hand, i is defined by
the implicit equation dg4(z) = 0. Observe that for x ¢ Ay, dsa(z) = —a(x)do(x).
By taking the derivative, we find that for ¢ Ag, one has Viga(z) = —dp(z)Va(z)—
a(x)Vép(x). Therefore, for x € v, we obtain Viga(x) = —dp(z)Va(z). We can
conclude that for any point « € i, the partial derivative 0ja(x) (w.r.t. z1) or drcx()
(w.r.t. 22) is non-zero. We are then in a position to apply the implicit function theorem
to dga locally at each point x € 7y, which then implies the desired property. ]

and f(z) =

Under the assumptions of Lemma 2.3, given a component 7y, of Agya, there is a
parametrization ¢ such that

= {C(T); T € J},

where (¢ : J — R? is C'-mapping (injective) and .J is an interval.

This manuscript is for review purposes only.
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6 T. BAYEN, O. COTS

DEFINITION 2.4. A point x* = {(7*) with 7* € Int(J) is called saturation point
if Y(a*) =1, P({(7)) € (—1,1) for any T € J such that T < 7, and ¥({()) > 1 for
any T € J such that T > 7.

As well, we can define saturation points z* such that ¢ (z*) = —1, that is, when
the lower bound of the admissible control set is saturated. Our next aim is to study
the optimality of singular arcs in presence of a saturation point.

3. Existence of a prior-saturation point. In this section, we show that a
prior-saturation phenomenon can occur whenever the system exhibits a saturation
point. We start by introducing our main assumptions.
ASSUMPTION 3.1. The system (2.1) satisfies the following hypotheses:
(i) One has Ag =0 and 5o(z) < 0 for all z € R2.
(ii) The set Aga is non-empty, simply connected, and has exactly one saturation
point x* with Y(x*) = 1.

(iii) Along the singular locus, the strict Legendre-Clebsch optimality condition is
satisfied, that is, any singular extremal (z,(-),p(-),u(:)) defined over [ti,ts]
satisfies:

o on

Ou dt? du

(iv) IfT_ is the forward semi-orbit of (2.1) with uw = —1 with the initial condition
z* at time 0, then

(3.1) (2 (t), p(t),u(t)) >0, Vi€ [t1,ta].

(3.2) TNr_=40.

(v) The target T is reachable from every point xo € R2.

Remark 3.1. (i) The hypothesis Ag = ) is not restrictive since we could restrict
our analysis to a component v of Aga in place of Aga.
(ii) By the previous computations, we can observe that (3.1) is equivalent to

det(g(2), 9, [f, gll(x)) >0, Va e Aga.

Recall that, under the strict Legendre-Clebsch condition, the singular arc is a turnpike,
i.e., it is time-minimizing in every neighborhood of a hyperbolic point of Agg4, [11].
This property can be retrieved by the clock form argument [13].

Under Assumption 3.1, the singular locus Agy is written Agg = ((J) where
J C R is an interval and ¢ : J — Ag4 is a C'-mapping. In addition, Ag,4 partitions
the state space into two simply connected (open) subsets A;'E %

AL, = {z e R?; det(g(x), [, g](x)) > 0},
54 = {z € R?; det(g(x),[f, g](z)) <0}

Given a normal extremal (z,(-),p(+),u(-)), the function
t = yu(t) = Bxu(t) — alzu(t))u(t), te[0,T],

is well-defined since Ay = 0.

LEMMA 3.2. Along a normal extremal (x,,(+),p(+),u(-)), the switching function ¢
satisfies the ODE

(3-3) O(t) = 7u()o(t) + alzu(t)) ae. t€[0,T,].

This manuscript is for review purposes only.
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TANGENCY PROPERTY AND PRIOR-SATURATION POINTS 7

Proof. The proof follows using the expression of é and the fact that the Hamil-
tonian H is constant equal to zero. 0

The next proposition shows that an extremal trajectory containing a singular arc
until the point z* is not optimal.

PROPOSITION 3.3. Suppose that Assumption 3.1 holds true, and consider an op-
timal trajectory steering xo to the target T in time T,. Then, the corresponding
extremal (2, (), p(+),u(-)) does not contain a singular arc defined over a time interval
[t1,t2] such that x,(ta) = x*.

Proof. Suppose by contradiction that there is a time interval [t1, t2] such that the
trajectory is singular over [tq,ts] with z,(t2) = z*. We claim that, at time t5, the
vector f(z,(t2)) +g(zy(t2)) is tangent to Aga. Indeed, it is enough to check that the
vector f(z*) + g(x*) is orthogonal to Viga(z*) = —do(z*)Va(z*). As we have seen
in the proof of Lemma 2.3, one has for x € Aga:

—do(x)Va(x) - g(x),

det(g(), [g,[f g]](2)) ( g
(3.4) —6o(x)Va(z) - f(z).

det(g(z), [, [f, gll(x))

These equalities imply that

—00(z*)Va(a") - (f(z7)+g(z%)) = det(g(2"), [9, [f, g]](«")) +det(g ("), [£, [f, gl] (7))

Since ¥ (z*) = 1, the right member of the above equality is zero which shows the
claim. In addition, for © € Aga, (3.4) implies the equalities

Visa(x) - (f(x) + g(x)) = det(g(x), [9, [f, 9]](2)) (1 = ¢(x))
Visa(z) - (f(x) = g(x)) = det(g(x), [g, [f, 9]l (2)) (=1 — ¥ (2)).

Consider now the unique solution z_ of (2.1) with u = —1 starting from z* at time
to. This trajectory enters into the set Ay, for ¢t > ¢, ¢ close to to, because one has
Viosa(x*) - (f(x*) — g(z*)) < 0. Going back to the optimal trajectory, there are now
two possibilities for z,(-). In a right neighborhood of ¢ = ¢, either z,(-) enters into
Ag 4 or into Ay, (because the singular control becomes non admissible).

Suppose first that z,(-) enters into A& ,. Then, there is € > 0 such that one has
a2y (t)) > 0 for t € (to,ta + ¢]. It follows from (3.3) that one has u = +1 on this
interval. But the velocity set being convex, we obtain a contradiction with the non-
admissibility of the singular control at z* (because x_ enters into Ag,). It follows
that the optimal trajectory necessarily enters into the set Ag,. But then, since o < 0
in Ag,, (3.3) implies that u = —1 in some time interval (t2,t2 + €.

From Assumption 3.1, the forward semi-orbit with w = —1 starting from z* does
not reach the target set. Hence, z,(-) must have a switching point to u = +1 in Ag,
or it must reach Ags with the control v = —1. We see from (3.3) that the first case
is not possible because at a switching time ¢, such that z,(t.) € Ag,, we would have
é(t.) > 0 in contradiction with a(z,(t.)) < 0.

Suppose now that x,(-) reaches Ag4 at some point z := {(7) with 7 < 7*. Then,
we obtain Viga(z) - (f(z) — g(x)) < 0 since ¢(z) > —1. But, as x,(-) reaches Agy
with w = —1 at point x, the trajectory enters into the set Ags U A;CA and we must
have Véga(x) - (f(x) —g(x)) >0 (Vdsa(z) is collinear to the outward normal vector
to Aga at point x). This gives a contradiction. In the same way, the trajectory
cannot reach a point © € Agy such that = ((7) with 7 > 7*.

This manuscript is for review purposes only.
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8 T. BAYEN, O. COTS

We can conclude that for any time ¢ > to, one has u(t) = —1, but then, the
optimal trajectory cannot reach the target set which is a contradiction (Assumption
3.1 (iv)). This concludes the proof. |

As an example, if xg := ((79) belongs to the singular locus with 7o < 7*, and
if an optimal trajectory starting from xy contains a singular arc, then the trajectory
should leave the singular locus before reaching z*. Let us insist on the fact that this
property of leaving the singular locus before reaching z* relies on the fact that the
optimal trajectory should contain a singular arc. In the fed-batch model presented in
Section 5.1, this property can be easily verified (see [3]).

We now introduce the following definition (in line with [15, 21, 22]). Hereafter,
the notation Sj; -, denotes a singular arc passing through the points ¢ (74) and ¢(7o)
with 7y < 79 < 7.

DEFINITION 3.4. Let 79 < 7*. A point x. = ((7) € Aga with 19 < Te < T*
is called a prior-saturation point if the singular arc Si, ) ceases to be optimal for
T2 Te.

This definition makes sense only for initial conditions ((79) with 79 < 7* because
for 79 > 7, optimal controls are not singular (since the singular control is non-
admissible). We highlight the dependency of z. w.r.t. initial conditions ((79) € Aga
as follows.

PROPOSITION 3.5. Suppose that Assumption 3.1 holds true and that there are
1,72 € J with 11 < T2 < 7* such that any optimal trajectory starting from ((7o)
with 19 € [11,72) contains a singular arc Siro,ra]- Then, for any initial condition
To € [11,T2), one has x. = ((7.) with

(3.5) Te =sup{r € J ; S 7 Is optimal} € [r3, 7).

Moreover, for any 1o € [Te, T*] an optimal trajectory starting at {(79) leaves the sin-
gular locus at {(7p).

Proof. Let E == {7 € J; S, ;] is optimal} and F' = {7 € J; S|, - is optimal}
where 79 € [71,72) is fixed. Take a point 7 € F. Then, from our assumption, Sj;, 7
is also optimal (by concatenation) which shows that 7 € E. On the other hand, if
T € E, then S| ;) remains optimal (as a sub-arc). It follows that £ = F' and, in
addition, since z. is defined as the point such that S, ) ceases to be optimal, we
obtain (3.5). From Proposition 3.3, we have 7, < 7*.

Finally, for every 79 € [7e,7"), a singular arc Si;, ;) With 7o < 75 < 7 cannot
be optimal, since otherwise, this would contradict the definition of 7.. It follows that
for every 19 € [7.,7*], an optimal path cannot contain a singular arc, implying the
desired property. ]

This property implies in particular that for every initial conditions ¢ = ((79) €
Agy such that 79 € [y, 72|, then the corresponding optimal path has a singular arc
until the point z. and a switching point at this point.

Remark 3.6. In addition to Assumption 3.1 (in particular (3.2)), if we suppose
that 7 is not reachable with the constant control u = —1 from those points of Aga
located between z. and z* (i.e. corresponding to 7 € [7¢,7*]), then the maximal value
for the control © = +1 is locally optimal from the prior-saturation point z.. In other
words, the bridge (the last arc leaving Aga) corresponds to u = +1. This can be
proved by using similar arguments as for proving Proposition 3.5. Since the singular
arc is a turnpike, this additional hypothesis also implies the existence of a switching
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curve emanating from z.. Our next aim is precisely to investigate more into details
geometric properties of optimal paths at the point z..

4. Tangency property and prior-saturation phenomenon. The aim of this
section is to prove the tangency property as stated in Theorem 4.6.

4.1. Introduction to prior-saturation lift and tangency property. In this
section, we first introduce the concept of prior-saturation lift and discuss its local
uniqueness. We also provide a set of nonlinear equations allowing to compute prior-
saturation lifts given by the PMP. We end this section with an introduction to the
tangency property on an example.

DEFINITION 4.1. Let z. be a prior-saturation point. Any point z. in the cotangent
space at x. is called a prior-saturation lift of x..

To introduce the computation of prior-saturation lifts given by the PMP, let us
start with an example. Consider a target set 7 = {x¢}, zy € R2, with an optimal
trajectory of the form o_os0,, where o_, o4 and o are arcs, respectively, with
control u = —1, u = +1 and u = u,, where ug is the singular control. Assume that
the optimal trajectory is unique and that the switching point between the singular
arc o (supposed to be non-empty) and the positive bang arc o is a prior-saturation
point. The PMP? gives necessary optimality conditions satisfied by this extremal
trajectory that we can write as a system of nonlinear equations, the so-called shooting
equations. We introduce some notation to define this set of shooting equations. We
define the Hamiltonian lifts associated with f and g as

Hy(z):=p- f(z); Hy(2) =p-g(z),

where z := (z, p) belongs to the cotangent bundle. All the others Hamiltonian lifts in
the rest of the paper are defined like this. Define also the Hamiltonians Hy = Hy+H,
and H, := Hy +u.H,, where u, is viewed here as a function of z:

(4.1) Ug(z) = — L 11 9l@) . Higirg) (Z).

p-lg,[fi9ll(®)  Higr.gn(2)
For any Hamiltonian H we define the Hamiltonian system H:= (0pH,—0,H), and
finally, we introduce the exponential mapping exp(ty)(zo) as the solution at time ¢ of
the differential equation 2(s) = ¢(z(s)) with initial condition z(0) = z¢, where ¢ is
supposed to be smooth. The shooting equations are then given by

S(y) =0, y:=(po,t1,ta by, 21,20) € RMTITE2 0 g
where the shooting function is defined by

Hg(21)
fg]( 1)

H (exp((ty —t2)H. )(22))
4.2 S = )
“2) W)= wlexp((ty — ) ) (22)) -
z1 —exp(t1 H )(&po
zZ9 — GXp((tQ — tl)Hg)(Zl)
where 7(z,p) = x, and where zo € R? is given and p° = —1 in the normal case.

The two first equations mean that the trajectory is entering the singular locus at 2.

3Since T := {zs} is a point, there is no transversality condition at the terminal time.

This manuscript is for review purposes only.



294
295
296
297
298
299
300
301

10 T. BAYEN, O. COTS

Hence, the second arc is a singular arc. The third equation takes into account the
free terminal time. It could be replaced by H_(xq,po) + p° = 0 since the maximized
Hamiltonian is constant along the extremal. The fourth equation implies that the last
bang arc reaches the target 7 = {z s} at the final time ¢y, and the last two equations
are the so-called matching conditions (which are not required but improve numerical
stability). Given a solution y* = (po,t1,t2,ty, 21, 22) to S(y) = 0 associated with the
unique optimal trajectory, the point 7(22) is then a prior-saturation point thanks to
our hypotheses, and so, z5 is a prior-saturation lift.

Let us now discuss the uniqueness of the prior-saturation lift, considering for
instance, a smooth and local one-parameter family of initial conditions z(a), o €
(—¢,€), € > 0, in relation with the construction of optimal syntheses (see section 5)
and in relation with Proposition 3.5. Let us assume that for any o € (—¢,¢), the
unique optimal trajectory is of the form o_os0o, and denote by

y* (a) = (pO (Ol), ty (a)v t2(a)a tf (O‘)a 21 (a)7 32(04))
the corresponding solution to the equation
S(y, ) =0,

where S(-, o) is defined as (4.2) but with the initial condition z¢(a) in place of xg.
In addition, suppose that the lengths 1, to —t; and ty — ¢2 are positive, that is, each
arc is defined on a time interval of positive length. In this setting, for any «, we have
Ze = m(22(0)) = mw(22(x)), that is, the prior-saturation point z. is locally unique.
This is related to Proposition 3.5 and illustrated on Figure 1. Besides, whenever the
prior-saturation lift z, := 25(0) is also locally unique, see Proposition 4.3 and remark
4.2, we have 23(0) = 22(a) for any o € (—¢,¢).

Os
Aga
0+

o (0)
xo(a)

F1a. 1. Local uniqueness of the prior-saturation point xe.

Assuming that the prior-saturation lift z. is locally unique, we can compute it
with a set of equations excerpt from the shooting equations but with some minor
modifications. Roughly speaking, the main idea is to consider the particular case
where the initial condition is the prior-saturation point, that is such that z¢g = x..
In this case, we have t; =t = 0 and 21 = 22 = (Z¢,pg) = 2.. This emphasizes the
fact that what happens before the prior-saturation lift is useless to compute it. With
these considerations in mind we introduce

H,(exp(~t,H2) (1))
— | Hip.g(exp(—toH)(2p))
ch(tb,Zb) . HJ,.(Zb) +p0
m(z) — x5

i
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TANGENCY PROPERTY AND PRIOR-SATURATION POINTS 11

where F,, : R® — R5, and where we use the notation ¢, 2, (b stands for bridge) in
relation with the concept of bridge defined in [9] and detailed in the MRI example
in Section 5.2. Note that the exponential mapping is here computed byizéckward
integration. Hence, with the preceding notation, we have z, = exp((ty —t2)Hy)(22) =
exp(tfﬁi)(ze) and t, =ty —to = ty. At the end, the prior-saturation lift is simply
given by N

ze = exp(—tpH1)(2p),

for a couple (¢, z5) solution of Fox = 0.

Tangency property. We end this section with an introduction to the tangency
property. Let us start with solutions of the form o_os04, considering a smooth
and local one-parameter family of initial conditions zg(a), a € (—¢,¢), € > 0, but
assuming that for « = 0, the optimal solution is of the form o_os0 with o4 reduced
to a single point, that is, t2(0) — ¢1(0) = 0, with

y*(0) = (po (0)7 tl(O), t2(0), Ly (0), 21 (0)7 Z2 (0))7

the solution to the associated shooting equations, still denoted S(y, ) = 0. Assume
also that for a > 0, we are in the previous case, that is one has t3(a) — t1(a) > 0
with y*(a) = (po(@),t1(a),tz(a),tr(a), z1(a), z2(a)) the corresponding solution of
S(-, &) = 0. The prior-saturation lift is thus given by z. = z2(«) for « € [0, ).

The idea is now to consider the case where there is a bifurcation in the structure
of the optimal trajectories when o = 0. We thus assume that for a@ € (—¢,0), the
solutions are of the form o_oy and we denote by z1(«) the switching point (in the
cotangent bundle) between the two arcs. In this setting, there exists a switching locus
in the optimal synthesis denoted ¥_ U X, where

Y_={z(a); a€ (-0} and 3g:={z1(0) = z.}.

The aim of the next section is to prove that the semi-orbit I'y of 2 = ITJ:(Z)
starting from z. is tangent to the switching curve ¥_ U at the prior-saturation lift
z. in a general frame. This is precisely the tangency property (see Fig. 2).

20(0)

zo(a), a <0

Fia. 2. Illustration of the tangency property between I'. and X_ U Xg at the prior-saturation
lift ze. The singular locus in the cotangent bundle is Sga == {z € R?" ; Hg(z) = Hiy g1(2) = 0}.

4.2. Proof of the tangency property. From a general point of view, we shall
assume that the prior-saturation lift is given by solving a set of nonlinear equations
of the following form:

(4.3) F(ty, 2, ) = <H[f,g] (255’;;%)(%))) |
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where A € R* is a vector of k € N parameters, where F is a function from R®>t* to
R5** and where G : Rot¥ — R4+F is defined by

Hy(exp(—tyHy ) (2))

(44) G(tba 2b; A) = H+ (Zb) + pO )
\I/(Zb, )\)
with W : R** — R2** 3 given function and p® = —1 considering the normal case. We

assume that all the functions F', G and ¥ are smooth. It is important to notice that
the mapping ¥ does not depend on ¢, and that we can replace H by H_ without any
loss of generality. In the previous example from section 4.1, we have (with a slight
abuse of notation) ¥(z,) = m(zp) — xy which corresponds to the simplest case where
there are no transversality conditions and no additional parameters, that is £ = 0.
For a more complex structure of the form o_os;0,0_, the parameter A would be the
last switching time between the oy and o_ arcs. In this case, ¥ would contain the
additional switching condition H, = 0 at this time.
Let (t;,z;,A*) € R5*F be a solution to the equation F = 0 and define

(4.5) 2o = exp(—t;Hy )(2) € Ssa = {z € R¥"; Hy(z) = Hs z(2) = 0}.

We introduce the following assumptions at the point z..
ASSUMPTION 4.1. We have us(z.) < 1 with us the singular control given by (4.1).
ASSUMPTION 4.2. The matriz

aizb(tbvzb’/\ ) a(tbvzbv)‘ )| € GLa1x(R),
i.e., it is invertible in R(4TR)>x(4+k)

Remark 4.2. Assumption 4.1 is related to the prior-saturation phenomenon while
in combination with Assumption 4.2, it is related to the well-posedness of the shooting
system F' = 0. Besides, the point z. is locally unique under these assumptions,
according to the following result.

PROPOSITION 4.3. Suppose that Assumptions /.1 and 4.2 hold true. Then,
Fl(tz, zp, \*) € GLs1x(R).
Proof. The Jacobian of the mapping F at the point (¢}, z;, A\*) is given by:

—a sk *

F/ t*VZ*a)\* = 6G * * * 6G * * * )
( br b ) —=b aizb(tbazlw)‘ ) a(tbvzlw)‘ )

where a = Hy g (2e) + Hig 11,9 (2¢) and b := (H{f g(2c),0,0). Observe now that
b =0 since F'(t},z;,A*) = 0 and that a # 0 since us(z.) < 1, which ends the proof. O

LEMMA 4.4. Suppose that Assumption 4.2 holds true. Then, there exists € > 0
and a Ct-map t, — o(ty) = (2p(ts), AM(tp)) € R¥*F defined over I. == (t; —e,t} +¢),
that satisfies

(4.6) Vi, € I, G(tb, U(tb)) =0.

In addition, one has o(t}) = (2, \*) and o’ (t}) = Oga+x.
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Proof. The existence of ¢ follows from the implicit function theorem applied to
the mapping G at (t},z;, A\*) which also gives (4.6). The derivative of ¢ is then
obtained from (4.6):

oG . 9G 17" 9G
(ty) = — | 7— — —[ty], ty€ L,
o)== |5e) S| - Fotnl ne
where [tp] stands for (tp,0(tp)). Since
oG .,
%[tb] = (H[f,g](Z6)70]R3+k‘) = Oga+r,
the result follows. d

Let us introduce the mapping ¢(t) = exp(—tbﬁ)(zb(tb)) for t, € I. and define
(4.7) E={pts); ty € I}.

Remark 4.5. The curve X is a switching curve in the contangent bundle since one
has H,(¢(ty)) = 0 by definition of G. However, this switching curve is not necessarily
optimal, that is, the optimal synthesis, with respect to the initial condition, may not
contain ¥. Let us stratify ¥ according to ¥ = X_ U ¥y U X4, with

So=A{ot) ; ts € (1} — &, 1)},
Yo = {p(ty)} = {2},
T ={o(ts) s ty € (4, t; + )}
A typical situation is when ¥_ U X is contained in the optimal synthesis while ¥ is

not optimal for local and/or global optimality reasons. See the end of Section 4.1 for
an example of this typical situation.

Our first main result is given by Proposition 3.5 which states the existence of a
prior-saturation point x. in the state space under Assumption 3.1. Our second main
result is the following.

THEOREM 4.6. Suppose the existence of a triple (ti,z;,\*) € RT* such that
F(t},z5,\*) = 0, with F defined by (4.3) and set z. = exp(—tZITJ:)(z;‘). Suppose
also that Assumption 4.2 holds true. Then, the switching curve i given by (4.7) is
tangent at z. to the forward semi-orbit I'y of 2 = H:(z) starting from ze.

Proof. From Assumption 4.2 and by lemma 4.4, one can define the switching
curve ¥ by (4.7). To prove the tangency property, we have to show that ¢'(t}) is
collinear to ITJ:(ze) For any t, € I, we have

@/ (1) = —H (1)) + Dt 2(t)) 23(1n),
where ®(t, z9) is defined as the solution at time t of the Cauchy problem
X(s) = A(s, 20) X (s), X(0) = I,
with A(s, z9) = fﬁ/(exp(fs@}(zo)). By leg{na 4.4, one has o'(tf) = 0 thus
zp(t5) = 0 and we get ¢’ (t7) = —H4(¢(t;)) = —H4(z.), which concludes the proof.O0

Remark 4.7. It is worth to mention that the tangency property is proved in the
cotangent bundle, and thus it is also true in the state space at a prior saturation point
(under the assumptions of Proposition 3.3).
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Setting (z) == (Hy(2), Hjy,4(2)) the singular locus ¥sa can be written Y¥ga =
£ 1({0gz2}), and we have the following relation between the singular locus and the
switching curve.

COROLLARY 4.8. Suppose that € is a submersion at z. and that Assumptions /.1
and 4.2 hold true. Then the switching curve X is transverse to the singular locus Yga
at Ze.

Proof. Since £ is a submersion at z., the singular locus g is locally a regular

submanifold of codimension two near z.. Its tangent space at z. is given by the kernel
of the matrix &’(z.). But,

€ (2) ' (t)) = —€'(2.) Hy (2) (see the proof of Theorem 4.6)

(s ) ()

_ ( Hig g () )
Hif 1,91 (ze) + Hig 1,91 (2¢)
# Oz (by Assumption 4.1),

recalling that ¢ is given from lemma 4.4 by Assumption 4.2. O

Remark 4.9. From Theorem 4.6, the tangency property holds even if the singular
control at z. is saturating. The main reason of the tangency property comes from the
fact that z, belongs to the singular locus ¥Xg4. However, if the singular control at z.
is not saturating, for instance if z. is a prior-saturation lift, then the switching curve
3 is transverse to the singular locus Xga at z. according to Corollary 4.8.

5. Illustration of the prior-saturation phenomenon. The aim of this sec-
tion is to develop two examples arising in the field of bioprocesses and magnetic
resonance imaging respectively, that will highlight the various concepts introduced in
Sections 3-4. For the related minimal time problems, we shall also briefly discuss the
corresponding optimal syntheses that exhibit prior-saturation points and bridges.

5.1. The fed-batch model. A bioreactor operated in fed-batch is described by
the controlled dynamics (see [17]):

(5.1) 8= —pls) (B + sin — 5) + Lol (s — 5),
' b = Qmar (] 4y),

where s;, and s denote respectively the input substrate and substrate concentrations,
and v is the volume of the reactor’. The parameter Qnqs > 0 is the maximal speed
of the input pump so that %(1 + u) represents the input flow rate, u(-) being the
control variable with values in [—1,1]. Finally, M € R depends on the initial value of
micro-organism concentration®. As in many engineering applications (see, e.g., [5]),

the kinetics p of the reaction is of Haldane type, i.e.,

HhS
pls) =
K+s+ 2

4In contrast with the previous sections in which state variables are (x1,x2), we chose to adopt
the notation (s,v) that is commonly used in the bioprocesses literature for fed-batch operations.

5Micro-organism concentration X > 0 can be expressed as a simple function of (s,v), namely
X := M/v+ s;n — s, thus (5.1) is enough to describe a bioreactor operated in fed-batch mode.
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with a unique maximum s* := \/KK; € (0, s;,,) (parameters u,, K, K are positive).
This type of growth function models inhibition by substrate (microbial growth is
limited when s is too large w.r.t. s*). It is worth mentioning that D := (0, s4,] x R,
is invariant by (5.1). For waste water treatment purpose, the problem of interest is:

(5.2) 1}1615 T, st (s(Tw),v(Tw)) €T,

where T := (0, Spes] X {Umaz} is the target set, s,y < 8y, is a given threshold, and
Umaz > 0 denotes the maximal volume of the bioreactor. From a practical point of
view, the goal is to treat a volume v,,,, of wasted water in minimal time. For more
details about this system, we refer to [17, 3].

It appears that Problem (5.2) may exhibit a saturation phenomenon. Indeed, by
using the PMP, we can check that there is a singular locus that is the line segment

AS’A = {5*} X (Ouvmam]7
and that the singular control can be expressed in feedback form as

p(s) M+ o(sin =)
(Sin - S*)Qmax ’

(writing $ = 0 along s = s*). It follows that there exists a unique saturation point

ug[v] =

Lsat -— (5*7 U*),

252(’;;“)1' - SML_S* and us[v*] = 1 if the following condition is fulfilled

with v* =
(5.3) 0 < v < Vmaz-

This typically happens when v,,q, (the volume of water to be treated) is too high,
see [3]. Next, we suppose that (5.3) holds true.

At this step, we wish to know if prior-saturation occurs (according to Propositions
3.3 and 3.5). Doing so, let us check Assumption 3.1. One gets

50(s,0) = —pu(s)(M/v + 850 — )Qun /2 = ()X Qun /2 < 0,

hence AgND = () and §y < 0 in D. Now, the singular arc is of turnpike type and
Legendre-Clebsch’s optimality condition holds true because p has a unique maximum
for s = s*, see [1], or a clock form argumentation in [17]. In addition, observe that,
in the (s, v)-plane, trajectories of (5.1) with u = —1 are horizontal, hence, every arc
with © = —1 and starting at a volume value vy < V4, never reaches the target set
T. Finally, T is reachable from D taking the control © = +1 until reaching v = vy,qz
and then v = —1 until reaching s,.y.

Second, let us verify the hypotheses of Proposition 3.5. Doing so, let v — 5(v) be
the unique solution to the Cauchy problem

ds w(s) [M Sin — § .
d'U - (_Qmax v + Sin — S + v ) S(U’ma:v) =5,

(the solution of (5.1) with v = 1 backward in time from ($*,vmaz)). From [3], if
there exists v, € (0,v*) such that §(v.) = s*, then optimal paths starting at a volume
value sufficiently small necessarily contain a singular arc (this actually follows using
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the PMP). Now, by using Cauchy-Lipschitz’s Theorem, the existence of v, is easy
to verify when M = 0, and thus, it is also verified for small values of the parameter
M (by a continuity argumentation). To pursue our analysis, we suppose next the
existence of v, € (0,v*). We are then in a position to apply Propositions 3.3 and
3.5. Tt follows that there is a unique volume value v, € (0,v*) such that any singular
arc starting at a volume value vy < v, will be optimal only until v.. In addition,
combining this result with a study of extremals using the PMP, we obtain that
e if the initial condition is (s*,vg) with vy < v, then the optimal path is of the
form 0,05 0_ (see below for the definition of ¢4 );
e if the initial condition is (s*,vg) with vy > v, then the optimal path is of the
form oo_ ;
e for any initial condition (s;,,v0) with ve < vg < Upmaz, the optimal path is
of the form o_o,0_ where the first switching time appears on a switching
curve emanating from (s*,v.).
To determine the prior-saturation point z. := (s*,v.) numerically, we proceed as in
Section 4. For this application model, it is convenient to introduce an extended target
set as T := (0, 5in] X {Vmaz} (observe that for initial conditions on 7, optimal paths
are o_ arcs). In this context, a bridge is defined as an arc oy (denoted by o%) on
[0,%p] such that

¢(O) = ¢(O) = ¢)(tb) =0 and U(tb) = Umax;

where ¢ is the switching function defined by (2.6) and ¢, is the time to steer z. at
time 0 to the extended target set 7 with v = +1. To compute ., we need to compute
the extremities of the bridge together with its length. Denoting by ¢; the length of
the bridge and by z; its extremity in the cotangent bundle whose projection on the
state space belongs to T, the point (¢}, z;) is then a solution of the equation Fi;, =0
with

Hig,g(exp(—tHy)(2))
Hy(exp(—tH1)(2))
(5.4) Fiio(ty, 2p) = Hy(z) +p° )
Hg(zb)

Vb — Umax

where (sp, vp) is the projection of z, on the state space. From Theorem 4.6, the bridge
is then tangent to the switching curve at z. (the projection of 3 given by (4.7) onto
the state space). To conclude this part, let us comment Fig. 3 on which the optimal
synthesis is plotted in a neighborhood of the prior-saturation point:
e In black, the switching curve ¥™ emanates from the prior-saturation point.
It is computed using the shooting functions F' = 0 adapted to (5.2).
e The synthesis is such that trajectories are horizontal (v = —1) until reaching
Aga or the switching curve. For initial conditions with a substrate concen-
tration less than s* and vy > v, then u = 1 is optimal until reaching 7.

5.2. The MRI model. In Nuclear Magnetic Resonance (NMR) saturating one
chemical species consists in driving the magnetization vector representing the state
to zero. In Magnetic Resonance Imaging (MRI) a challenging problem is to maximize
the constrast between two observed species (for instance, healthy tissues and tumors)
saturating one species. For the model, we consider an ensemble of spin-1/2 particles,
excited by a radio-frequency (RF) field which is ideally assumed homogeneous, each
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FIG. 3. Minimal time synthesis for (5.2): the target set T = (0, Sref] X {Vmax} is in black
(left). The switching curve ™ (in black) is tangent to the bridge ai (in red) at xe. Arcs with
u =41 (resp. u = —1) are depicted in red (resp. in blue).

spin of this ensemble being described by its magnetization vector whose dynamics is
governed in a specific rotating frame, after some normalizations and considering the
2-dimensional case, by the Bloch equation [16]:

1 = —Txy —uxs,
(5.5) { 1 1 2

o = Y(1 — xz2) + um,

where x := (z1,22) is the normalized magnetization vector, where (vy,I') is a couple
of parameters satisfying the physical constraint 0 < v < 2I" and depending on the
longitudinal and transveral relaxation constants specific to the observed species, and
where u is the RF-field which plays the role of the control. The time-minimal problem
of interest here is the following:

(5.6) inf T, s.t. a,(Ty,z0) =0 = (0,0),

ueU

where the initial condition zo belongs to the set B = {(x1,22) € R? ; 22 + 22 < 1}
called the Bloch ball and where z,(-,z¢) is the unique solution of (5.5) such that
24,(0,20) = xp.

Remark 5.1. The problem of saturation in MRI is the problem (5.6) with g = N,
where N = (0, 1) is the North pole of the Bloch ball. We refer to [8, 7] for more details
about the saturation and contrast problems in MRI. In [8], the following optimal
synthesis is constructed: the authors give the optimal paths to go from N to any
reachable point of the Bloch ball. Hence, the initial point is fixed to the North pole
while the final point may be seen as a parameter. Here, we are interested in the
converse problem, that is, the parameter is the initial condition and we want to steer
the system to a given target, which is the origin O. The common problem in these
two cases is the problem of saturation where the initial condition is IV and where the
target is O.

In this MRI application [8], the singular locus has a singularity at the intersection
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of two lines. Setting 0 := -« — I, the singular locus is described by
Asa = AG, UAG,,

where A%, = {xs = v/(26)} is a horizontal line and where AY , := {z; = 0} is the
vertical axis. On the vertical axis, the singular control is zero while on the horizontal
line, the singular control is given in feedback form by

ug|zy, x2] = v(2T —v)/(26x1).

Considering only the half space x; < 0 of the Bloch ball (this is possible due to a
discrete symmetry) and restricting (v,T) to the interesting case 0 < 3y < 2T" (in this
case, the horizontal line cuts the Bloch ball), there exists only one saturation point
denoted by Zsa; € Aga. The point g,y belongs to the set A%, N{z; < 0}, it satisfies
us(Zsat) = 1, and it is given by

oo (2= v
sat - 25 ’26 .

Following [8], we introduce the concept of bridge. An arc o} or o_ with control
u =41 or u = —1, is called a bridge on [0,tp] if its extremities correspond to non
ordinary switching points, that is, if

$(0) = $(0) = ¢(ty) = d(ty) = O,

where ¢ is the switching function defined by (2.6). According to [8], there exists
a bridge o (supposed to be unique) connecting A%, and A%,. We denote by
ZTe = (Te1,%e2) the extremity of the bridge on the horizontal line AgA and we
can now restrict the analysis to the following situation. We assume that the following
conditions are satisfied by the couple of parameters (v,I") (see Fig. 3 of [8] and the
description that comes after for details):

(i) x. belongs to the Bloch ball B (this implies in particular that 3y < 2T"),

(ii) 0 < (this comes from the physical constraint),

(iii) 0 < (2I'2 — AT + 1) exp((a — v)tp) — 28 (hence the origin O is reachable by a

Bang-Singular sequence from g, and so also from z.),

where « = §/2 and ¢y = arctan(—F/a)/8 with § := v/1 — «?. In this setting, for
any initial condition z¢ == (20,1,70.2) € A%, N B such that 291 < z.1, the optimal
trajectory (see [8]) is of the form o,0% 00, that is composed of a singular arc on A%,
followed by the bridge with v = +1 and ending with a singular arc oo along A%,
with w = 0. The first singular arc reduces to a point if xg = z.. At z., the singular
control is not saturating, so, in conclusion, the point z. is a prior-saturation point.

Remark 5.2. In the MRI application, Assumption 3.1 is not exactly satisfied since
the collinearity set Aq is non-empty and plays a role in the optimal synthesis, such as
the singularity of the singular locus at the intersection of the two lines. However, the
singular arcs are turnpikes and Legendre-Clebsch optimality condition holds. Besides,
there exists a prior-saturation point and so this case is more general than the fed-
batch application. We will see hereinafter that the tangency property holds at the
prior-saturation point and that the switching curve is transverse to the singular locus.

We end this part by showing how to compute the prior-saturation point z. and by
giving the optimal synthesis near x, for an initial condition on the horizontal singular
line. To compute z., we need to compute the extremities of the bridge together with

This manuscript is for review purposes only.



TANGENCY PROPERTY AND PRIOR-SATURATION POINTS 19

560 its length. Denoting by t; the length of the bridge and by z; the extremity of the
561 bridge in the cotangent bundle whose projection on the state space belongs to A% 4,
562 the point (tf, z;) is then a solution of the equation F,; = 0 with

563 (5.7) Fovi(tp, 26) = Hy(2) +p° ’
Hipg)(20)
Hg(Zb)

564 where the vector fields f and g are given by (5.5) and where the Hamiltonians, the
565 Hamiltonian lifts and the Hamiltonian vector field are defined in Section 4.1. We
566 recognize here a function of the form (4.3) without any additional parameter A and
567 SO, Ze = exp(ftZE:)(zg‘) is the prior-saturation lift such that 7(z.) = x. € Al,.
568  Finally, the optimal synthesis near z. is given on Fig. 4. The optimal solution from
569 the initial condition xy € Ag 4 is of the form Usaioo. The red arc O'Ijr is the bridge

b I BN R B BN |
Tl = W N =

starting from x., it is a part of the forward semi-orbit I'y of Z = E’ (z) starting
from z. projected into the state space. The black curve ¥™ is the existing part in
the optimal synthesis of the projection of the switching curve ¥ defined by (4.7).
According to the tangency property from Theorem 4.6, the arc aljr is tangent to 3™
at the prior-saturation point x.. Note also that the switching curve 7 is transverse

to the singular locus Ag 4 in accordance with Corollary 4.8.

v Ot Ot Ot Ot Ot

€2

€
\J0

Fic. 4. Optimal synthesis near the prior-saturation point x. in the left part of the Bloch ball.

6 6. Conclusion. Even though the tangency property between the bridge and the
7 switching curve provides useful informations on the minimum time synthesis when
& prior saturation occurs (typically, under assumptions of Proposition 3.3), it remains
9 valid in a larger context (under the hypotheses of Theorem 4.6) and not only in the
80 framework of saturation and prior-saturation of the singular control for affine-control
systems in the plane. This property also appears in other settings such as in Lagrange
82 control problems governed by one-dimensional systems, see, e.g., [14]. Future works

co
—_

v Ov Ot Ot Ot Ot Ot
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could then investigate prior-saturation phenomenon and the tangency property in
other frameworks or in dimension n > 3.

and
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[10]

[11]

(12]

Acknowledgments. We are very grateful to E. Trélat for helpful discussions
suggestions about the tangency property at the prior-saturation point.

REFERENCES

T. BAYEN, P. GAJARDO, AND F. MAIRET, Optimal synthesis for the minimum time control
problems of fed-batch bioprocesses for growth functions with two mazxima, J. Optim. Theory
Appl., 158 (2013), pp. 521-553.

T. BAYEN, J. HARMAND, AND M. SEBBAH, Time-optimal control of concentration changes in
the chemostat with one single species, Applied Mathematical Modelling, 50 (2017), pp. 257
— 278.

T. BAYEN, M. MAZADE, AND F. MAIRET, Analysis of an optimal control problem connected
to bioprocesses involving a saturated singular arc, Discrete Contin. Dyn. Syst. Ser. B, 20
(2015), pp. 39-58.

T. BAYEN, A. RAPAPORT, AND M. SEBBAH, Minimal time control of the two tanks gradostat
model under a cascade input constraint, STAM J. Control Optim., 52 (2014), pp. 2568-2594.

O. BERNARD, Z. HADJ-SADOK, D. DocHAIN, A. GENOVESI, AND J.-P. STEYER, Dynamical
model development and parameter identification for an anaerobic wastewater treatment
process, Biotechnology and Bioengineering, 75 (2001), pp. 424-438.

B. BONNARD AND M. CHYBA, Singular trajectories and their role in control theory, vol. 40 of
Mathématiques & Applications (Berlin) [Mathematics & Applications|, Springer-Verlag,
Berlin, 2003.

B. BONNARD, M. CLAEYS, O. CoTs, AND P. MARTINON, Geometric and numerical methods
in the contrast imaging problem in nuclear magnetic resonance, Acta Appl. Math., 135
(2015), pp. 5-45.

B. BonNARD, O. Cots, J. RouoT, AND T. VERRON, Time minimal saturation of a pair of
spins and application in magnetic resonance imaging, Math. Control Related Fields, (2019)
https://doi.org/10.3934/mecrf.2019029.

B. BoNNARD, O. Cots, S. GLASER, M. LAPERT, D. SUGNY, AND Y. ZHANG, Geometric opti-
mal control of the contrast imaging problem in nuclear magnetic resonance, IEEE Trans.
Automat. Control, 57 (2012), pp. 1957-1969.

B. BONNARD AND J. DE MORANT, Toward a geometric theory in the time-minimal control of
chemical batch reactors, STAM J. Control Optim., 33 (1995), pp. 1279-1311.

B. BONNARD AND M. PELLETIER, Time minimal synthesis for planar systems in the neigh-
borhood of a terminal manifold of codimension one, J. Math. Systems Estim. Control, 5
(1995), p. 22.

U. BoscAIN AND B. PiccoLi, Optimal syntheses for control systems on 2-D manifolds, vol. 43
of Mathématiques & Applications (Berlin) [Mathematics & Applications|, Springer-Verlag,
Berlin, 2004.

H. HERMES AND J. LASALLE, Functional analysis and time optimal control, Academic Press,
New York-London, 1969. Mathematics in Science and Engineering, Vol. 56.

N. KaLBoussi, A. RAPAPORT, T. BAYEN, N. B. AMAR, F. ELLOUZE, AND J. HARMAND, Opti-
mal control of membrane-filtration systems, IEEE Transactions on Automatic Control, 64
(2019), pp. 2128-2134.

U. LEDZEWICZ AND H. SCHATTLER, Antiangiogenic therapy in cancer treatment as an optimal
control problem, STAM J. Control Optim., 46 (2007), pp. 1052-1079.

M. LevIiTT, Spin Dynamics: Basics of Nuclear Magnetic Resonance, Wiley, 2008.

J. MORENO, Optimal time control of bioreactors for the wastewater treatment, Optimal Control
Appl. Methods, 20 (1999), pp. 145-164.

B. PiccoLi, Classification of generic singularities for the planar time-optimal synthesis, STAM
J. Control Optim., 34 (1996), pp. 1914-1946.

L. S. PONTRYAGIN, V. G. BOLTYANSKII, R. V. GAMKRELIDZE, AND E. F. MISHCHENKO, The
mathematical theory of optimal processes, Translated by D. E. Brown, A Pergamon Press
Book. The Macmillan Co., New York, 1964.

A. RAPAPORT, T. BAYEN, M. SEBBAH, A. DONOSO-BRAVO, AND A. TORRICO, Dynamical model-
ing and optimal control of landfills, Math. Models Methods Appl. Sci., 26 (2016), pp. 901—
929.

H. SCHATTLER AND M. JANKOVIC, A synthesis of time-optimal controls in the presence of

This manuscript is for review purposes only.


https://doi.org/10.3934/mcrf.2019029

641
642
643
644
645
646
647
648
649
650
651

TANGENCY PROPERTY AND PRIOR-SATURATION POINTS 21

saturated singular arcs, Forum Math., 5 (1993), pp. 203-241.

H. ScHATTLER AND U. LEDZEWICZ, Geometric optimal control, vol. 38 of Interdisciplinary
Applied Mathematics, Springer, New York, 2012.

H. J. SUSSMANN, Regular synthesis for time-optimal control of single-input real analytic systems
in the plane, SIAM J. Control Optim., 25 (1987), pp. 1145-1162.

H. J. SUSSMANN, The structure of time-optimal trajectories for single-input systems in the
plane: the C°° nonsingular case, STAM J. Control Optim., 25 (1987), pp. 433-465.

H. J. SussMANN, The structure of time-optimal trajectories for single-input systems in the
plane: the general real analytic case, STAM J. Control Optim., 25 (1987), pp. 868-904.

R. VINTER, Optimal control, Systems & Control: Foundations & Applications, Birkh&user
Boston, Inc., Boston, MA, 2000.

This manuscript is for review purposes only.



	Introduction
	Saturation phenomenon
	Pontryagin's Principle
	Singular control and saturation phenomenon

	Existence of a prior-saturation point
	Tangency property and prior-saturation phenomenon
	Introduction to prior-saturation lift and tangency property
	Proof of the tangency property

	Illustration of the prior-saturation phenomenon
	The fed-batch model
	The MRI model

	Conclusion
	References

