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Abstract 

This paper describes a multimodal approach for speaker verification. The system consists of two classifiers, one using 
visual features, the other using acoustic features. A lip tracker is used to extract visual information from the speaking face 
which provides shape and intensity features. We describe an approach for normalizing and mapping different modalities onto 
a common confidence interval. We also describe a novel method for integrating the scores of multiple classifiers. 
Verification experiments are reported for the individual modalities and for the combined classifier. The integrated system 
outperformed each sub-system and reduced the false acceptance rate of the acoustic sub-system from 2.3% to 0.5%. © 1997 
Elsevier Science B.V. 
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I .  Introduct ion 

Automatic verification of a person's identity is a 
difficult problem and has received considerable at- 
tention over the last decade. The ability of such a 
system to reject impostors, who claim a false iden- 
tity, becomes a critical issue in security applications. 
The use of multiple modalities like face, profile, 
motion or speech is likely to decrease the possibility 
of false acceptance and to lead to higher robustness 
and performance (see, e.g., (Acheroy et al., 1996)). 
Brunelli and Falavigna (1995) have previously de- 
scribed a bimodal approach for person identification. 
The system was based on visual features of the static 
face image and on acoustic features of the speech 
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applications) project, granted by the ACTS program. 

signal. The performance of the integrated subsystem 
was shown to be superior to that of each subsystem. 

The cognitive aspect of lip movements in speech 
perception has been studied extensively and the com- 
plementary nature of the visual signal has been 
successfully exploited in bimodal speech recognition 
systems. The fact that temporal lip information not 
only contains speech information but also character- 
istic information about a person's identity has largely 
been ignored, until recently, when Luettin et al. 
(1996a) have proposed a new modality for person 
recognition based on spatio-temporal lip features. 

In this paper, we extend this approach and address 
the combination of the acoustic and visual speech 
modality for a speaker verification system. We de- 
scribe the normalization and mapping of different 
modalities and the determination of a threshold for 
rejecting impostors. A scheme for combining the 
evidence of both modalities is described and we 
show that the multimodal system outperforms both 
unimodal subsystems. 
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2. The database 

The M2VTS audio-visual database has been col- 
lected at UCL (Catholic University of Louvain) and 
is described by Pigeon and Vandendorpe (1997). It 
contains 37 speakers (male and female) pronouncing 
in French the digits from zero to nine. One recording 
is a sequence of the ten digits pronounced continu- 
ously. Five recordings have been taken of each 
speaker, at one week intervals to account for minor 
face changes like beards and hairstyle. The images 
contain the whole head and are sampled at 25 Hz. 

We have divided the database into 3 sets: the first 
three shots were used as training set, the 4th shot as 
validation set and the 5th shot as test set. The 5th 
shot represents the most difficult recordings to rec- 
ognize. This shot differs from the others in face 
variation (head tilted, unshared), voice variation 
(poor voice SNR), or shot imperfections (poor focus, 
different zoom factor). 

3. Lip feature extraction 

We are interested in facial changes due to speech 
production and therefore analyse the mouth region 
only. Common approaches in face recognition are 
often based on geometric features or intensity fea- 
tures, either of the whole face or of parts of the face 
(see, e.g., (Chellappa et al., 1995)). We combine 
both approaches, assuming that much information 
about the identity of a speaker is contained in the lip 
contours and the grey-level distribution around the 
mouth area. During speech production the lip con- 
tours deform and the intensities in the mouth area 
change due to lip deformation, protrusion and visibil- 
ity of teeth and tongue. 

These features contain information specific to the 
speech articulators of a person and to the way a 
person speaks. We aim to extract this information 
during speech production and to build spatio-tem- 
poral models of a speaking person. 

track and parameterize the lips over an image se- 
quence of a speaking person. 

Features are recovered from tracking results. They 
describe the shape of the inner and outer lip contours 
and the intensity in the mouth area. The shape 
features and the intensity features are both based on 
principal component analysis which was performed 
on a training set. 

The intensity model deforms with the lip contours 
and therefore represents shape independent intensity 
information. This is an important property of the 
model. We obtain detailed shape information from 
the shape parameters and therefore would like the 
intensity model to describe intensity information 
which is independent of the lip shape and lip move- 
ments (Luettin et al., 1996b). 

3.2. Lip tracking 

Experiments were performed on all 5 shots of the 
M2VTS database. The database consists of colour 
images which were converted to grey-level images 
for our experiments. Several subjects have a beard or 
did not shave between different recordings. We used 
examples from the training set to build the lip model. 
The model was then used to track the lips over all 
image sequences of all three sets. This consisted of 
analysing over 27000 images which we believe is the 
largest experiment reported so far for lip tracking. It 
is important to evaluate the performance of the track- 
ing algorithm and we have previously attempted to 
do this by visually inspecting tracking results (Luet- 

3.1. Lip model 

Our lip model is based on active shape models 
(Cootes et al., 1994) and has been described in detail 
by Luettin and Thacker (1997). It is used to locate, Fig. 1. Examples of lip tracking results. 
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tin and Thacker, 1997). However this task is very 
laborious and subjective. Here we omit direct perfor- 
mance evaluation of the tracking algorithm. Instead 
we try to evaluate the combined performance of the 
feature extraction and the recognition process by 
evaluating the person recognition performance only. 
Person recognition errors might therefore be due to 
inaccurate tracking results or due to classification 
errors. Examples of lip tracking results are shown in 
Fig. 1. 

tomer independent threshold, based on a dichotomic 
method. The use of this method implies that the 
function of verification errors is convex. This func- 
tion is computed on the validation set and the value, 
for which the number of false acceptance and false 
rejection errors is minimum, is used as a threshold 
value. 

4.2. Acoustic speaker verification 

4. Speaker verification 

4.1. Test protocol 

We use the sequences of the training set (first 3 
shots) of the 36 customers for training the speaker 
models. The validation set serves for computing the 
normalization and mapping function for the rejection 
threshold and the test set is used for the verification 
tests. Subject 37 is only used as impostor, claiming 
the identity of all 36 customers. Each customer is 
also used as an impostor of the 35 other customers. 
The verification mode is text-dependent and based 
on the whole sequence of ten digits. 

For the verification task, we make use of a world 
model, which represents the average model of a large 
number of subjects (500 speakers for the acoustic 
model and 36 for the labial one). For each digit we 
compute the corresponding customer likelihood and 
the world likelihood. We can so obtain a customer 
likelihood Lc(O) and a world likelihood Lw(O) for 
all speech data. The difference between the ratio of 
the two scores and the threshold t is then mapped to 
the interval [0,1] using a sigmo'id function (Genoud 
et al., 1996): 

1 

S(c )  = l + e x p ( _ ( L c ( O ) / L w ( O  ) - t ) ) "  (1) 

If a final score S(c) is equal to 0.5, no decision is 
made; if it is below 0.5, the speaker is rejected else 
he is accepted. Several methods have been proposed 
to find an a priori decision threshold, according to 
various criteria, e.g., Equal Error Rate and Furui's 
method (Furui, 1994). Due to the small amount of 
speech data for each speaker we calculated a cus- 

Since the word sequences are known in our exper- 
iments, we use a HMM based speech recognition 
system to segment the sentences into digits. The 
recognizer uses the known sequence of digit word 
models, which were trained on the Polyphone 
database of 1DIAP (ChoUet et al., 1995), to find the 
word boundaries. 

Each digit HMM has been trained with 110 to 200 
examples of 835 speakers. The segmentation is per- 
formed on all three sets. The segmented training set 
is used to train one model for each digit and speaker. 
These models are called customer models. The 
acoustic parameters are Linear Prediction Cepstral 
Coefficients with first and second order derivatives. 
Each vector has 39 components. 

We used left-right HMMs with between 2 and 7 
emitting states, depending on the digit length. Each 
state is modelled with one single Gaussian mixture 
with diagonal covariance matrix. The same configu- 
ration is used for the world model. The world model 
is trained on the Polyphone database using 300 
examples from 500 speakers for each digit. 

When an access test is performed, the speech is 
first segmented into digits. The test protocol de- 
scribed above is applied, where the customer and 
world likelihoods are obtained by the product of all 
digit likelihoods, using the customer and world mod- 
els, respectively. 

The mapping function, obtained from the valida- 
tion set, is used in the test set to map the score into 
the confidence interval. On the test set, we obtain a 
false acceptance rate of 2.3% and a false rejection 
rate of 2.8%. The identification rate of the 36 speak- 
ers was 97.2% (see Fig. 2 and Table 1). However, it 
is well worth noting that only 36 tests were con- 
ducted for identification and false rejection but 1332 
(36 X 37) tests for false acceptance. 
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Fig. 2. Acoustic verification results (validation set). 
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Fig. 3. Labial verification results (validation set). 

4.3. Labial  speaker verification 

For segmenting the labial data we use the previ- 
ous acoustic segmentation. Lip features can improve 
speech recognition results (see, e.g., (Jourlin, 1996)), 
but they do not provide enough information to seg- 
ment speech into phonemic units. Lip movements 
may be useful in addition to the acoustic signal for 
segmenting speech, especially in a noisy acoustic 
environment (see, e.g., (Mak and Allen, 1994; Jourlin 
et al., 1995)). We did not use visual information for 
segmentation since our acoustic models were trained 
on a very large database and are therefore more 
reliable than our labial models. We used the same 
scoring method for labial verification as for acoustic 

verification, except the world model, which was 
trained on the 36 customers from the M2VTS 
database. Labial data has a four times lower sam- 

piing frequency than acoustic data. The number of 
emitting states was therefore chosen to be 1 or 2, 
depending on the digit length. The parameter vectors 
consisted of 25 components: 14 shape and 10 inten- 
sity parameters and the scale. The same test protocol, 

which was used for acoustic experiments, was now 
used for labial verification. On the test data set, we 
obtained a false acceptance rate of 3.0% and a false 
rejection rate of 27.8%. The identification rate was 
72.2% (see Fig. 3 and Table 1). 

4.4. Acoustic-labial  verification 

The acoustic-labial score is computed as the 
weighted sum of the acoustic and the labial scores. 
Both scores have been normalized as described in 
the previous sections. The process uses individual 
threshold values for each modality and maps the 
scores into a common confidence interval. The nor- 

malization process is a critical point in the design of 
an integration scheme and is necessary to ensure that 
different modalities are mapped into the same inter- 
val and share a common threshold value. The differ- 

ent modalities are now normalized but they provide 
different levels of confidence. We therefore need to 
weigh the contribution of each modality according to 
their confidence level. The weight is a for the 
acoustic score and 1 - a  for the labial one. The 

Table 1 
Results on validation and test set: ID is the correct identification, FA the false acceptance and FR the false rejection rate 

Type of score Validation Test 

ID FA FR ID FA FR 

Acoustic 100.0 2.5 
Labial 82.3 4.9 
Bimodal 100.0 0.6 
Number of tests 36 1332 

0.0 97.2 2.3 2.8 
8.8 72.2 3.0 27.8 
0.0 100.0 0.5 2.8 
36 36 1332 36 
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Fig. 4. Results with different weights (validation set). 

same dichotomic algorithm, used to compute the 
thresholds, is now used to find the optimal weight o~. 
The function of verification results on the validation 
data is used for the dichotomic search, for the same 
reasons as described for threshold search. 

The following results were obtained on the test 

set: using a weight of 0.86, we obtain a false accep- 
tance rate of 0.5%, a false rejection rate of 2.8% and 
a correct identification rate of 100.0%. The absolute 
gain over the acoustic system is a 1.8% reduction in 
cumulated verification errors (FA + FR) and an in- 
crease of  2.8% in the identification rate (ID). Fig. 4 
shows the effects of weighing on acoustic-labial 
results, when the acceptance threshold is optimally 
fixed for each modality. Table 1 sums up the results. 

We have followed a data-driven approach for 
fusion, where data fusion is present at different 
levels. At the first stage, learning and decoding of 
the labial models use the segmentation obtained from 
the acoustic models. The first score normalization is 
performed by normalizing the scores with respect to 
a world model for each modality. The final normal- 
ization is obtained by finding an optimal mapping in 
the interval [0,1 ] for each modality. At this stage, the 
two scores are normalized, but we know that each 
modality has different levels of reliability. So, the 
last level of the fusion process is to find the optimal 
weight for the two sources of information (see Fig. 
5 ) .  
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Fig. 5. Overview of the acoustic-labied system. 

$. Conclusion 

We have described a novel approach for multi- 
modal person authentication based on acoustic and 
visual HMM speaker models. Experiments were per- 
formed for speaker identification and verification on 
one of the largest audio-visual speech databases. 

Results have shown that the performance of the 
visual system was considerably lower than the per- 
formance of the acoustic system. This could be due 
to the lower frame rate of the visual features, lip 
tracking errors, inappropriate features, or an inappro- 
priate modelling method. More research is necessary 
to investigate these issues. The integrated acoustic- 
labial system increased the identification rate of the 
acoustic system from 97.2% to 100% and reduced 
the false acceptance rate from 2.3% to 0.5%. These 
results show that acoustic and labial features contain 
comp]ementary information and that the performance 
of an acoustic speaker recognition system can be 
improved by the use of visual information. 
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