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POLYGONAL SMOOTHING OF THE EMPIRICAL

DISTRIBUTION FUNCTION

DELPHINE BLANKE AND DENIS BOSQ

Abstract. We present two families of polygonal estimators of the distribution
function: the first family is based on the knowledge of the support while the

second addresses the case of an unknown support. Polygonal smoothing is a
simple and natural method for regularizing the empirical distribution function
Fn but its properties have not been studied deeply. First, consistency and
exponential type inequalities are derived from well-known convergence prop-
erties of Fn. Then, we study their mean integrated squared error (MISE) and
we establish that polygonal estimators may improve the MISE of Fn. We con-
clude by some numerical results to compare these estimators globally, and also
together with the integrated kernel distribution estimator. Distribution func-
tion estimation, Polygonal estimator, Cumulative frequency polygon, Order
statistics, Mean integrated squared error, Exponential inequality, Smoothed
processes 62G05, 62G30, 62G20

1. Introduction

Distribution function estimation finds many applications especially in survival
analysis or for quantile estimation of a population. This explain why a large num-
ber of articles are devoted to its estimation, see e.g. the nice review written by
Servien (2009). The most classical and simple estimate of the cumulative distribu-
tion function (cdf) F is the empirical distribution function (edf) Fn. Properties of
Fn are well-known, it is an unbiased and strongly uniformly consistent estimator of
F . But if F is absolutely continuous with density f , the edf Fn does not take into
account this smoothness property. Several smoothing techniques have been consid-
ered in the literature to correct this drawback. The kernel estimator is one of the
most commonly used. Theoretical properties of this estimator are now well estab-
lished, we may refer to Swanepoel and Van Graan (2005); Servien (2009) and more
recently to Quintela-del Rı́o and Estévez-Pérez (2012) for a literature review about
it. Other techniques are possible such as moving polynomial regression (Lejeune
and Sarda, 1992), polynomial spline regression (Cheng and Peng, 2002), level cross-
ings (Huang and Brill, 2004), Bernstein polynomials (with degree depending on the
sample size n, Babu et al., 2002; Leblanc, 2012) among others. All these methods
depend on some smoothing parameter to calibrate to avoid classical phenomena of
over or under-smoothing.

For density estimation, polygonal frequency estimators, connecting mid-bin val-
ues of an histogram by straight lines, are classical and have been widely studied, see
eg Scott (1985), Simonoff (1996, p. 20-39) and references therein. For estimating
the distribution function, practitioners are also accustomed to use the cumulative
frequency polygons (hand drawing graphs, sometimes called ogives), especially for
grouped data. In this paper, we consider n independent and identically distributed
(iid) real-valued X1, . . . , Xn with an absolutely continuous cumulative distribu-
tion function (cdf) F having the density f . For estimating F , a simple polygonal
smoothing of the empirical distribution function is considered. More precisely, we
present and study two families of polygonal estimators of F : the first one supposes
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that the support [a, b] of f is known while the second one addresses the case of un-
known support. Until now, and as far as we can judge, comparison of these simple
estimators with the classical edf has not been studied deeply. To our knowledge,
the single reference is Read (1972) where a continuous estimator of F , namely join-
ing the points (X∗

i ,
i

n+1 ), with X∗

1 , . . . , X
∗

n the ordered sample, is studied. For n
sufficiently large, it is shown that his expected squared error is no larger than that
of Fn and that it dominates Fn in terms of the integrated error (with respect to
F ). Our goal is to extend these first results to our two general families of smoothed
estimators of Fn.

The paper is organized as follows. In Section 2, we introduce our two families
of polygonal estimators and give their first properties that can be deduced from
their proximity to Fn. In Section 3, the MISE of these estimators is established in
Theorem 3.6, the main result of this paper. To examine the small sample behaviour
of the polygonal estimators, we present in Section 4 a simulation study that includes
also the kernel distribution estimator. To this aim, we consider the mixtures of
normal distributions introduced by Marron and Wand (1992) and completed by
Janssen et al. (1995). A conclusion and discussion about the possible extensions
of our results appear in Section 5. Finally, the most technical auxiliary result is
proved in the Appendix A and parameters of the normal mixtures involved in the
simulations are recalled in the Appendix B.

2. Polygonal distribution estimators

2.1. Definition. For i.i.d random variables X1, . . . , Xn with absolutely continuous
cdf F , we consider two families of polygonal estimators of F derived from the
classical empirical distribution function Fn:

Fn(x) =
1

n

n∑

i=1

I(−∞,x](Xi), x ∈ R

where IA denotes the indicator function of the set A. The first family adresses
the case of a known support [a, b] while the second is adapted to the case of un-
known/infinite support. If X∗

1 < · · · < X∗

n (almost surely) denotes the ordered

sample, we define G
(j,p)
n , j = 1, 2 as follows (see also Figure 1 for an illustration

with p = 0, p = 1
2 and p = 1):

G(1,p)
n (t) =

(t− a)(1 − p)

n(X∗

1 − a)
I[a,X∗

1
)(t) +

(
1− p(b − t)

n(b −X∗
n)

)
I[X∗

n
,b](t)

+

n−1∑

k=1

t+ (k − p)X∗

k+1 − (k + 1− p)X∗

k

n(X∗

k+1 −X∗

k )
I[X∗

k
,X∗

k+1
)(t) (1)

and

G(2,p)
n (t) = G(1,p)

n (t) I[X∗

1
,X∗

n
)(t)

+ max
(
0,

t− (2− p)X∗

1 + (1− p)X∗

2

n(X∗

2 −X∗

1 )

)
I(−∞,X∗

1
)(t)

+ min(1,
t+ (n− 1− p)X∗

n − (n− p)X∗

n−1

n(X∗
n −X∗

n−1)

)
I[X∗

n
,+∞)(t). (2)

By this way, their construction depend on a known real parameter p, chosen in
[0,1], indicating that the sample points (X∗

k + p(X∗

k+1 −X∗

k),
k
n ), k = 1, . . . , n− 1,

are connected. For example, the case p = 0 (respectively p = 1) joins the points

(X∗

k ,
k
n ) (resp. (X∗

k+1,
k
n )) while the midpoints (

X∗

k
+X∗

k+1

2 , k
n ) are connected when
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Figure 1. Estimators Fn, G
(j,0)
n , G

(j, 1
2
)

n , G
(j,1)
n , j = 1, 2, for a

distribution with support [a, b]

p = 1
2 . These two families of estimators constitute proper distribution functions as

continuous and increasing functions.

Note that Read (1972) has studied an estimator very similar to G
(1,0)
n (namely,

with a = 0, b = 1 and n + 1 at the denominator rater than n). He established
that its pointwise risk is no larger than that of Fn and, that it dominates Fn in
terms of integrated risk (however, this latter result is stated without proof). In the
following, we study the exact second order asymptotic behaviour of the MISE of
our general estimators.

Remark 2.1. The families G
(1,p)
n and G

(2,p)
n differ only at the two ends of the

interval [a, b]: the first uses the support in its construction while the second one is
adapted to the case of unknown or unbounded support. We may remark as in Babu
et al. (2002) that to obtain the bounded support [0, 1], a monotone transformation
like Y = X/(1 +X) may handle the case of random variables with support [0;∞),
and Y = (1/2)+(tan−1 X/π) can be taken for real random variables. Then estima-

tors of the cdf may be derived with ˜F̃
(p)
n (x) = G

(1,p)
n (y) (and [a, b] = [0, 1]). Also,

in our numerical studies of Section 4 where random variables are real-valued, [a, b]
is taken as a prediction interval with quite good results.

2.2. Properties. First, remark that G
(1,p)
n and G

(2,p)
n are equal to k−p

n at sample
points. So for k = 1, . . . , n− 1, j = 1, 2:

G(j,p)
n (X∗

k+1)−G(j,p)
n (X∗

k ) = Fn(X
∗

k+1)− Fn(X
∗

k) =
1

n
.

Moreover, it is easy to show that for p in [0, 1) and j = 1, 2, G
(j,p)
n (t) and Fn(t) are

equal for t = X∗

k + p(X∗

k+1 −X∗

k), k = 1, . . . , n− 1. For example, G
(j, 1

2
)

n intersects
Fn in the middle of [X∗

k , X
∗

k+1], k = 1, . . . , n − 1. The case p = 1 is specific with

G
(j,1)
n (X∗

k+1) = Fn(X
∗

k ), j = 1, 2, k = 1, . . . , n− 1.
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For random variables with support [a, b], one has also G
(1,p)
n (a) = Fn(a) = 0 and

G
(1,p)
n (b) = Fn(b) = 1. On the other hand, we may note that

G(2,p)
n (t) =

{
0 for t ≤ (2− p)X∗

1 − (1− p)X∗

2 ≤ X∗

1

1 for t ≥ (1 + p)X∗

n − pX∗

n−1 ≥ X∗

n

but
[
(2−p)X∗

1 − (1−p)X∗

2 , (1+p)X∗

n−pX∗

n−1

]
is not necessarily included in [a, b].

With the help of known properties of Fn, it is easy to obtain first results of con-
vergence. To simplify the presentation of our results and without loss of generality,

we suppose from now on that [a, b] = [0, 1] in the definition of the family G
(1,p)
n .

We start with a lemma that gives the proximity of the estimators G
(j,p)
n with Fn.

This lemma is simple but essential for all the results derived in this paper.

Lemma 2.2. We get

(a)

G(1,p)
n (t)− Fn(t) =

(1− p)t

nX∗

1

I[0,X∗

1
)(t)−

(1− t)p

n(1−X∗
n)

I[X∗

n
,1](t)

+

n−1∑

k=1

t− pX∗

k+1 − (1− p)X∗

k

n(X∗

k+1 −X∗

k)
I[X∗

k
,X∗

k+1
)(t); (3)

(b)

G(2,p)
n (t)− Fn(t) =

t+ (1− p)X∗

2 − (2− p)X∗

1

n(X∗

2 −X∗

1 )
I[(2−p)X∗

1
−(1−p)X∗

2
,X∗

1
)(t)

+
t− (1 + p)X∗

n + pX∗

n−1

n(X∗
n −X∗

n−1)
I[X∗

n
,(1+p)X∗

n
−pX∗

n−1
](t)

+

n−1∑

k=1

t− pX∗

k+1 − (1− p)X∗

k

n(X∗

k+1 −X∗

k)
I[X∗

k
,X∗

k+1
)(t). (4)

Proof. Straightforward from the definition of Fn and relations (1)-(2). � �

From Lemma 2.2, one may deduce that

1

2n
≤

∥∥∥Fn −G(j,p)
n

∥∥∥
∞

= max
( p
n
,
1− p

n

)
≤ 1

n
(5)

so that
∥∥∥Fn −G

(j,p)
n

∥∥∥
∞

is maximal and equals to 1
n for p = 0 or p = 1. Its minimal

value is reached for p = 1
2 with 1

2n . Next, we may derive an exponential inequality.

Proposition 2.3. We obtain

(a) For j = 1, 2 and ε > 1
2n(1−a0)

with 0 < a0 < 1,

P
( ∥∥∥G(j, 1

2
)

n − F
∥∥∥
∞

≥ ε
)
≤ 2 exp(−2a20nε

2), n ≥ 1.

(b) More generally,

P
( ∥∥∥G(j,p)

n − F
∥∥∥
∞

≥ ε
)
≤ 2 exp(−2a20nε

2), 0 < a0 < 1,

for ε > max(p,1−p)
n(1−a0)

, n ≥ 1.

Proof. First, for all p ∈ [0, 1], we have

G(j,p)
n − F =

(
G(j,p)

n − Fn

)
+
(
Fn − F

)
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so by (5)
∥∥∥G(j,p)

n − F
∥∥∥
∞

≤ max
( p
n
,
1− p

n

)
+ ‖Fn − F‖

∞
.

Thus, since F is supposed to be absolutely continuous in our framework, Massart’s
inequality (1990) gives

P
( ∥∥∥G(j,p)

n − F
∥∥∥
∞

≥ ε
)
≤ P

(
‖Fn − F‖

∞
≥ ε−max

( p
n
,
1− p

n

))

≤ 2 exp
(
− 2n

(
ε−max

( p
n
,
1− p

n

))2)
.

Next, (b) holds with ε−max
(
p
n ,

1−p
n

)
≥ a0ε for ε > max(p,1−p)

n(1−a0)
and one derives (a)

with the choice p = 1
2 . � �

Another derivation is envisaged in the following proposition.

Proposition 2.4. We get

(a) for p = 1
2 , j = 1, 2:

P
( ∥∥∥G(j, 1

2
)

n − F
∥∥∥
∞

≥ ε
)
≤ 2 exp(−2nε2), 0 < ε <

1

4n
, n ≥ 1;

(b) and more generally,

P
( ∥∥∥G(j,p)

n − F
∥∥∥
∞

≥ ε
)
≤ 2 exp(−2nε2), 0 < ε < max

( p

2n
,
1− p

2n

)
,

n ≥ 1.

Proof. For all p ∈ [0, 1], we have again:

P
( ∥∥∥G(j,p)

n − F
∥∥∥
∞

≥ ε
)
≤ 2 exp

(
− 2n

(
ε−max(

p

n
,
1− p

n
)
)2)

= 2 exp(−2nε2) exp
(
− 2

n

(
max(p, 1− p)

)2
+ 4εmax(p, 1− p)

)
.

So, for n ≥ 1, one gets the result P
( ∥∥∥G(j,p)

n − F
∥∥∥
∞

≥ ε
)
≤ 2 exp(−2nε2) as

2nε < max(p, 1− p) ⇐⇒ 4εmax(p, 1− p)− 2

n

(
max(p, 1− p)

)2
< 0.

� �

Finally, note that known asymptotic results on Fn allow to derive easily limits

in distribution for the estimators G
(j,p)
n , j = 1, 2 and p ∈ [0, 1]. From (5), we get

sup
t

∣∣√n
(
Gj,p

n (t)− F (t)
)
−√

n
(
Fn(t)− F (t)

)∣∣ ≤ 1√
n

and Theorem 3.1 in Billingsley (1999, p.27) implies that G
(j,p)
n and Fn, properly

normalized, have the same limit in distribution.

3. Mean integrated error of polygonal estimators

To establish the mean integrated error of the polygonal estimators, we suppose
from now on that X1, . . . , Xn, n are i.i.d. random variables with absolutely contin-
uous cdf F such that f has compact support [0, 1].
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3.1. Asymptotic integrated bias. We begin with a technical lemma useful for
further derivations of our results.

Lemma 3.1. For all m ∈ N
∗ and p ∈ [0, 1],

(a)

∫ 1

0

(
G(1,p)

n (t)− Fn(t)
)m

dt

=

(
(1− p)m − (−1)mpm

)(
pX∗

1 + (1 − p)X∗

n

)
+ (−1)mpm

(m+ 1)nm
;

(b)
∫

∞

−∞

(
G(2,p)

n (t)− Fn(t)
)m

dt

=
(1− p)m+1X∗

2 −X∗

1

(
2(1− p)m+1 + (−1)mpm+1

)

(m+ 1)nm

+
X∗

n

(
2(−1)mpm+1 + (1− p)m+1

)
+X∗

n−1(−1)m+1pm+1

(m+ 1)nm
.

Proof. Straightforward from Lemma 2.2 and formulas (3)-(4) raised to the power
of m and integrated term by term. � �

Note that for p = 1
2 and m even,

∫ 1

0

(
G

(1, 1
2
)

n (t) − Fn(t)
)m

dt becomes constant

and equal to (2n)−m

m+1 .

In the sequel, we will use the following conditions on the density f .

Assumption 3.1 (A3.1).

(i) f is continuous on [0,1] and inf
x∈[0,1]

f(x) ≥ c0 for some positive constant c0;

(ii) f is a Lipschitz function: there exists a positive constant c1 such that for all
(x, y) ∈ (0, 1)2, |f(x) − f(y)| ≤ c1 |x− y| .

Note that A3.1-(ii) is less stringent than usual conditions for kernel distribu-
tion estimators where, in general, f is supposed to be at least differentiable, see
e.g. Azzalini (1981); Swanepoel (1988); Jones (1990). The condition of minora-
tion in A3.1-(i) is of course more stringent but it is useful to derive the following
lemma where equivalent expressions are obtained for expectations of functions of
X∗

1 , . . . , X
∗

n.

Lemma 3.2. If the condition A3.1-(i) holds then, for all integers r ≥ 0 and m ≥ 1,
not depending on n, we get

(a)

E

(
inf

i=1,...,n+r
Xi

)m

=
am
nm

+O
( 1

nm+1

)
, am > 0;

(b)

E

(
1− sup

i=1,...,n+r
Xi

)m

=
bm
nm

+O
( 1

nm+1

)
, bm > 0.

(c)

E
(
X∗

2 −X∗

1

)
=

d1
n

+O
( 1

n2

)
, d1 > 0, and E

(
X∗

2 −X∗

1

)m
= O

( 1

nm

)
,

(d)

E
(
X∗

n −X∗

n−1

)
=

e1
n

+O
( 1

n2

)
, e1 > 0, and E

(
X∗

n −X∗

n−1

)m
= O

( 1

nm

)
.
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Proof. (a) We may write

E
(

inf
i=1,...,n+r

Xi

)m
= (n+ r)

∫ 1

0

xmf(x)
(
1− F (x)

)n+r−1
dx

= m

∫ 1

0

xm−1(1− F (x))n+r dx.

For m = 1, we get by condition A3.1-(i) that

1

(n+ r + 1) ‖f‖
∞

≤
∫ 1

0

(
1− F (x)

)n+r
dx ≤ 1

c0(n+ r + 1)

which implies in turn that there exists a1 > 0 such that
∫ 1

0

(
1− F (x)

)n+r
dx =

a1
n

+O
( 1

n2

)
.

For m ≥ 2, the result follows by induction.
(b) The proof is similar starting from

E
(
1− sup

i=1,...,n+r
Xi

)m

= (n+ r)

∫ 1

0

(1− x)mf(x)Fn+r−1(x) dx = m

∫ 1

0

(1 − x)m−1Fn+r(x) dx.

(c) From the joint density of (X∗

1 , X
∗

2 ) (see (A.16) or eg David and Nagaraja, 2003,
p. 12), we have

E (X∗

2 −X∗

1 )
m =

∫ 1

0

∫ 1

x

(y − x)mn(n− 1)f(x)f(y)(1− F (y))n−2 dy dx

= nm

∫ 1

0

∫ y

0

(y − x)m−1f(x)(1 − F (y))n−1 dxdy.

For m > 1, we may bound the last term by

‖f‖
∞

n

∫ 1

0

ym(1− F (y))n−1 dy = ‖f‖
∞

n

m+ 1

∫ 1

0

P( inf
i=1,...,n−1

Xi > t
1

m+1 ) dt

= ‖f‖
∞

n

m+ 1
E
(
( inf
i=1,...,n−1

Xi)
m+1

)

= O
( 1

nm

)
by (a).

Also, for m = 1, we have

E (X∗

2 −X∗

1 ) = n

∫ 1

0

F (y)(1− F (y))n−1 dy = n

∫ 1

0

t(1− t)n−1

f(F−1(t))
dt

and (c) may be deduced from

n

‖f‖
∞

∫ 1

0

t(1− t)n−1 dt ≤ n

∫ 1

0

t(1− t)n−1

f(F−1(t))
dt ≤ n

c0

∫ 1

0

t(1− t)n−1 dt

where n
∫ 1

0 t(1− t)n−1 dt = 1
n+1 .

(d) The last assertions follow from the joint density of (X∗

n−1, X
∗

n), see (A.16),
leading to

E (X∗

n −X∗

n−1)
m =

∫ 1

0

∫ y

0

(y − x)mn(n− 1)f(x)f(y)Fn−2(x) dxdy

= nm

∫ 1

0

∫ 1

x

(y − x)m−1Fn−1(x)f(y) dy dx.

� �
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Now, we are in position to derive the following result with asymptotic equivalents

for the integrated bias of the estimators G
(j,p)
n , j = 1, 2.

Proposition 3.3. Suppose that the condition A3.1-(i) holds, then for all p ∈ [0, 1]
and constants a1, b1, d1 and e1 defined in Lemma 3.2, we have:

(a)

E

∫ 1

0

(
G(1,p)

n (t)− F (t)
)
dt =

pE (X∗

1 ) + (1− p)E (X∗

n)− p

2n

=
1− 2p

2n
+

pa1 − (1− p)b1
2n2

+O
( 1

n3

)
;

(b)

E

∫
∞

−∞

(
G(2,p)

n (t)− F (t)
)
dt

=
(1− p)2E (X∗

2 −X∗

1 ) + (1− 2p)E (X∗

n −X∗

1 )

2n
− E (X∗

n −X∗

n−1)p
2

2n

=
1− 2p

2n
− (a1 + b1)(1− 2p)

2n2
+

d1(1− p)2 − e1p
2

2n2
+O

( 1

n3

)
.

Proof. Since Fn is unbiased for estimating F we have, for j = 1, 2,

E

∫
∞

−∞

(
Gj,p

n (t)− F (t)
)
dt = E

∫
∞

−∞

(
Gj,p

n (t)− Fn(t)
)
dt

and results are straightforward from Lemma 3.1 (m = 1) and Lemma 3.2. � �

One may remark that these estimators are asymptotically unbiased. For p = 1
2 ,

the bias is minimal and of order n−2 while other values of p give only an integrated
bias of order n−1.

3.2. Mean integrated squared error of polygonal estimators. Concerning
the mean integrated squared error (MISE), we consider its decomposition with
respect to Fn:

E

∫
∞

−∞

(
G(j,p)

n (t)− F (t)
)2

dt

= E

∫
∞

−∞

(
Fn(t)− F (t)

)2
dt+ E

∫
∞

−∞

(
G(j,p)

n (t)− Fn(t)
)2

dt

+ 2E

∫
∞

−∞

(
G(j,p)

n (t)− Fn(t)
)(
Fn(t)− F (t)

)
dt, j = 1, 2, p ∈ [0, 1]. (6)

Note that these integrals exist as X1, . . . , Xn are supposed to be compactly sup-
ported on [0, 1]. By this way, the range of integration can be taken as [0, 1] for

j = 1 and
[
(2− p)X∗

1 − (1− p)X∗

2 , (1 + p)X∗

n − pX∗

n−1

]
when j = 2. The first term

represents the error of reference:

E

∫
∞

−∞

(
Fn(t)− F (t)

)2
dt =

∫ 1

0
F (t)

(
1− F (t)

)
dt

n
. (7)

It remains to study the values of p for which the sum of the two last terms in (6)
are globally negative. For such values, our families of polygonal estimators should
be more efficient than the empirical distribution estimator.

First, E
∫
∞

−∞

(
G

(j,p)
n (t) − Fn(t)

)2
dt, j = 1, 2 can be directly deduced from

Lemma 3.1 with m = 2 and Lemma 3.2.
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Proposition 3.4. Under the condition A3.1-(i), we have for all p ∈ [0, 1]

(a)

E

∫ 1

0

(
G(1,p)

n (t)− Fn(t)
)2

dt =
(1 − 2p)

(
pE (X∗

1 ) + (1 − p)E (X∗

n)
)
+ p2

3n2

=
1− 3(1− p) + 3(1− p)2

3n2
+O

( 1

n3

)
;

(b)

E

∫
∞

−∞

(
G(2,p)

n (t)− Fn(t)
)2

dt =
p3E (X∗

n −Xn−1) +
(
(1− p)3 + p3

)

3n2

+
(1 − p)3E (X∗

2 −X∗

1 ) + E (X∗

n −X∗

1 )
(
(1− p)3 + p3

)

3n2

=
1− 3(1− p) + 3(1− p)2

3n2
+O

( 1

n3

)
.

We may remark that, again, the case p = 1
2 appears as simpler since the calculus

of E
∫ 1

0

(
G

(1, 1
2
)

n (t) − Fn(t)
)2

dt reduces to 1
12n2 . The most difficult task is the

study of the double product, we obtain the following result which is proved in the
Appendix A.

Proposition 3.5. Under Assumption 3.1, we get for j = 1, 2 and p ∈ [0, 1]:

2E

∫ 1

0

(
G(j,p)

n (t)− Fn(t)
)(
Fn(t)− F (t)

)
dt = − 1

3n2
+O

( 1

n3

)
.

Now, collecting results in (6)-(7) and Proposition 3.4 and 3.5, we are in position
to state the main result of this paper.

Theorem 3.6. Under Assumption 3.1, we get for j = 1, 2 and all p ∈ [0, 1]:

E

∫
∞

−∞

(
G(j,p)

n (t)− F (t)
)2

dt =
1

n

∫ 1

0

F (t)
(
1− F (t)

)
dt− p(1− p)

n2
+O

( 1

n3

)
.

First, we may conclude that for all p ∈ [0, 1], estimators G
(1,p)
n and G

(2,p)
n are

asymptotically equivalent. Indeed, G
(2,p)
n is only a slight modification of G

(1,p)
n at

its extremities, so this result seems natural. Next, for all p ∈ (0, 1), the families

G
(j,p)
n , j = 1, 2 appear as more efficient than the empirical distribution estimator

Fn. The choices p = 0 or p = 1 turn out to be more problematic since the term
p(1−p)

n2 vanishes in these cases. If these estimators improve Fn, the gain can only
occur for the third order what seems to be of less interest. Finally, this latter term
is maximal for p = 1

2 with the value 1
4n2 . In conclusion, among all the family of

polygonal estimators, one should prefer to work with G
(1, 1

2
)

n or G
(2, 1

2
)

n (in the case of
unknown support [a, b]) because these estimators have both the smaller asymptotic
bias by Proposition 3.3 and the better efficiency relative to the classical distribution
estimator Fn.

4. Simulation

4.1. Framework. In this section, we look at the small sample behaviour of the

polygonal estimators, G
(j,p)
n , j = 1, 2 with a focus on the values p = 1

2 and p = 0
or 1 (represented on Figure 1). To this aim, we consider the set of 15 Gaussian
mixtures defined in Marron and Wand (1992), denoted by MW1-MW15 in the
sequel, and also, the 16th density introduced in Janssen et al. (1995), say MW16.
The parameters of these normal mixtures are recalled in the Appendix B. These
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distributions are easy to implement and describe a broad class of potential problems
that may occur in nonparametric estimation (skewness, multimodality, and heavy
kurtosis). As their parameters were chosen such that minℓ(µℓ − 3σℓ) = −3 and

maxℓ(µℓ + 3σℓ) = 3, the estimators G
(1,p)
n are computed with the values a = −3

and b = 3. For each of these distributions, N = 500 samples of sizes n = 20, 50
and 100 are generated with the R software (R Core Team, 2017). Next, a Monte
Carlo approximation, based on 14000 trials over [−7, 7], is operated for each sample

of size n to estimate
∫ 7

−7
(G

(j,p)
n − F (t))2 dt. The final approximation of the MISE,

M̂ISE, is obtained by averaging the results over the N = 500 replicates.

4.2. Results for the polygonal estimators. Approximations of the MISE for

Fn and estimators G
(j,p)
n , j ∈ {1, 2}, p ∈ {0, 12 , 1} are reported in Figure 2. Here,

only the cases n = 20 and n = 50 are represented since for n = 100 results are
similar but with almost indistinguishable differences between the estimators. First
of all, we remark that the obtained results are in accordance with the theoretical

results of Theorem 3.6: the estimators G
(j, 1

2
)

n have a smaller MISE than Fn for

all simulated distributions. In addition, the estimator G
(1, 1

2
)

n calculated with the

choice [a, b] = [−3, 3] gives slight better results than G
(2, 1

2
)

n . So even if [−3, 3] is not
the true support of our simulated distributions, the knowledge of this prediction

interval is sufficient to improve the estimation. Concerning G
(j,0)
n and G

(j,1)
n , results

are clearly inferior to those of G
(j, 1

2
)

n . In accordance with our theoretical results,

the use of these estimators should not be recommended (even if G
(j,0)
n seems to

achieve globally better results than G
(j,1)
n ).
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4.3. Comparison with kernel distribution estimators. To complete our sim-
ulation study, we also compare our estimators with the nonparametric kernel dis-
tribution estimator defined by

Kn(t) =
1

nhn

n∑

i=1

L
( t−Xi

hn

)
, t ∈ R

where hn is the bandwidth and L(t) =
∫ t

−∞
K(x) dx. Here K is the usual kernel

used in density estimation, chosen as a known continuous density on R, symmetric
about 0. Theoretical properties of this estimator are well known, one may refer
e.g. to Swanepoel and Van Graan (2005) or Servien (2009) with a rich literature

review. The weighted MISE of Kn, E
∫
∞

−∞

(
Kn(t) − F (t)

)2
f(t) dt is established

in Swanepoel (1988) where optimal choice of the kernel K is discussed. The un-
weighted case is derived in Jones (1990) when F has two continuous derivatives f
and f ′:

E

∫
∞

−∞

(
Kn(t)− F (t)

)2
dt =

∫
∞

−∞
F (t)(1 − F (t)) dt

n
− 2hn

n

∫
∞

−∞

tK(t)L(t) dt

+
h4
n

4
(

∫
∞

−∞

t2K(t) dt)2
∫

∞

−∞

(
f ′(t)

)2
dt+ o

(
h4
n

)
+ o

(hn

n

)
.

Actually, if one considers only the Lipschitz condition A3.1-(ii) given on f , straight-
forward calculation with Taylor series yields that the latter result is weakened in

E

∫ 1

0

(
Kn(t)− F (t)

)2
dt =

∫ 1

0 F (t)(1 − F (t)) dt

n
− 2hn

n

∫
∞

−∞

tK(t)L(t) dt

+O
(
h4
n

)
+ o

(hn

n

)
. (8)

Comparing (8) with results of Theorem 3.6, it appears that the expressions are
similar with the presence of the MISE of Fn in both of ones. Also, for hn of order

n−
1
3 , the improvement toward Fn stands only on the 2nd order effect: about n−4/3

for Kn; but only n−2 for the estimators G
(j,p)
n when p ∈ (0, 1). Indeed, Kn should

be asymptotically better but, the following numerical results show that exceptions
hold for some densities. As usual, choosing the bandwidth hn is a critical task to
avoid over or under-smoothing of the data. Several procedures have been proposed
in the literature for kernel distribution estimation, we may refer among others to
Sarda (1993) for a leave-one-out cross-validation method, Altman and Léger (1995)
or Polansky and Baker (2000) for a plug-in bandwidth choice and Bowman et al.
(1998) for a modified cross-validation method. First, we compare Fn to these
estimators respectively called Kn,AL, Kn,PB and Kn,CV in the following. To this
end, we use in R the kerdiest package of Quintela-del Rı́o and Estévez-Pérez
(2012). The selection of K appears as less crucial and we take the normal kernel
in our simulations.

It appears in Figure 3 that for n = 20 and n = 50, the plug-in bandwidth choices
of Altman and Léger (1995) and Polansky and Baker (2000) give very similar results
except than for MW16 where Kn,AL performs quite badly (with an approximate
MISE beyond the frame). Also, the cross-validation proposed by Bowman et al.
(1998) seems to be less recommandable for these sample sizes. We may observed
that for most of the distributions, Kn,AL and Kn,PB have a smaller MISE than Fn.
Exceptions hold for n = 20 with the two distributions MW3 and MW16 and, MW15
in addition for n = 50. Again, the case n = 100 is not represented but results are
similar for Kn,AL and Kn,PB (with the same exceptions). Also, we observe that
Kn,CV gives much more satisfactory results.
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Figure 5. Densities of 4 selected MW distributions.

4.4. Comparison of G
(1, 1

2
)

n and Kn,PB. In this part, we focus on the Polansky
and Baker (2000) bandwidth choice (with multistage plug-in) because it is fastest
in terms of computation time and also, it gives the most homogeneous results for
the tested distributions. Indeed, since polygonal estimators do not depend on any
bandwidth, it seems fairer to select one particular bandwidth choice rather than
to adapt the method according to the density or the sample size. In Figure 4, the
MISE of this kernel estimator (ordered by increasing value) is compared to the best

polygonal estimator G
(1, 1

2
)

n . For n = 20, 50 and 100, the obtained results are quite
close and Kn,PB performs better for almost all distributions. This is not surprising
from the result derived in (8). The sensitivity toward a bad bandwidth choice
appears for the distributions MW3, MW4, MW15 and MW16 where the polygon
estimator achieves better results. The respective densities are drawn in Figure 5

and the obtained estimations for G
(1, 1

2
)

n and Kn,PB are given in Figure 6 for n = 50.
It appears that the estimates are quite close but in these special cases, the kernel

estimator misses the curvatures. Finally, recall that G
(1, 1

2
)

n is constructed with the

help of the prediction interval [-3,3] and the full nonparametric estimator G
(2, 1

2
)

n

differs from G
(1, 1

2
)

n only at both ends. Lower tail of estimated distributions are
zoomed in Figure 7 to compare these two estimators.

5. Discussion

We have studied two general families G
(1,p)
n and G

(2,p)
n of smoothed polygonal

distribution estimators and have derived their properties as well as exact expansions
for the MISE at the second order for compactly supported distributions. These esti-
mators present several advantages: they can be derived directly from the empirical
distribution function Fn, they do not depend on any smoothing parameter and may
be hand drawn. Because of their proximity to Fn, they also inherit its convergence
properties. Their study fills a gap since these estimators are quite naturally used
by practitioners but their theoretical properties had not yet been studied in depth.

Examination of the second-order effect in the MISE shows that G
(1,p)
n and G

(2,p)
n

are asymptotically equivalent. Also, the MISE of Fn is improved for all p chosen in
(0, 1), and its minimal value is reached for p equals to 1

2 . On the other hand, our
results, for p = 0 or 1, also show that joining the ends of Fn does not necessarily
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improve the estimation and indeed may be worsen it. Our simulations on Gaussian

mixtures support these conclusions and also show that G
(1, 1

2
)

n may achieve better

results than G
(2, 1

2
)

n even for distributions with infinite support.
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Various extensions of these results may be envisaged. A first one is to relax the
assumption of bounded support and then, to consider a weighted mean integrated
squared error to ensure the existence of the integrals. Remark that the family of

estimatorsG
(2,p)
n is naturally adapted to this framework. This approach involves not

only technical difficulties for the study of the integrals but also for establishing the
analog of Lemma 3.2 where the asymptotic behaviour of extremal order statistics
has to be studied, see e.g. David and Nagaraja (2003, chapter 4) and references
therein.

Another possible extension is to consider the non-iid case where X1, . . . , Xn are
only identically distributed random variables. Examination of our proofs shows
that the results mainly depend on the bounds obtained for E (X∗

1 ), E (X∗

2 −X∗

1 ),
E (X∗

n −X∗

n−1) and E (X∗

n), and, on Proposition A.1 (derived in the Appendix A).
We infer that some of our results can be straightforward generalized to the case of
exchangeable variables, ie, with a joint cumulative distribution function supposed
to be symmetric in its arguments. Concerning the extension of Proposition A.1,
a first step would be the study of f(X∗

k
,X∗

k+1
). To this end, results obtained by

Maurer and Margolin (1976); Caraux and Gascuel (1992); Rychlik (1993, 1994)
and Kaluszka and Okolewski (2001) should be interesting.

In the framework of stochastic processes, a last possibility may be envisaged
concerning the smoothed Poisson process where, proceeding as in (1)-(2), one may
link the process between successive arrival times. An alternative should be also the
spline smoothing with derivatives. This allows to consider this smoothed process
as a functional process with values in C([0,+∞)) and to consider limit theorems
and exponential inequalities in this space. We refer to Bosq (2017) for further
developments in this direction.

The authors gratefully thank the referees and editors for their constructive and
insightful comments on the manuscript.
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Appendix Appendix A. Proof of Proposition 3.5

To prove Proposition 3.5, we start from equation (6) and consider, for j = 1, 2,
its decomposition in two terms:

2E

∫ 1

0

(
G(j,p)

n (t)− Fn(t)
)(
Fn(t)− F (t)

)
dt = I

(j,p)
1 + I

(j,p)
2
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with

I
(j,p)
1 = 2E

∫ +∞

−∞

(
G(j,p)

n (t)− Fn(t)
)
Fn(t) dt (A.9)

and

I
(j,p)
2 = 2E

∫ +∞

−∞

(
Fn(t)−G(j,p)

n (t)
)
F (t) dt. (A.10)

Note that for j = 1, the range of integration is reduced to the interval [0, 1].

A.1. Study of I
(1,p)
1 . From (3), we have

2
(
G(1,p)

n (t)− Fn(t)
)
Fn(t) =

n−1∑

k=1

2kt− 2pkX∗

k+1 − 2(1− p)kX∗

k

n2(X∗

k+1 −X∗

k)
I[X∗

k
,X∗

k+1
)(t)

− 2p(1− t)

n(1−X∗
n)

I[X∗

n
,1](t).

The calculation of the integral leads to

I
(1,p)
1 = −E

( n−1∑

k=1

(2p− 1)k(X∗

k+1 −X∗

k )

n2

)
− p(1− E (X∗

n))

n

so one may conclude that

I
(1,p)
1 =

−p− (1− 2p)E (X1) + (1− p)E (X∗

n)

n

and Lemma 3.2-(b) gives in turn

I
(1,p)
1 =

(1− 2p)(1− E (X1))

n
− b1(1− p)

n2
+O

( 1

n3

)
. (A.11)

A.2. Study of I
(1,p)
2 . It is the most difficult term. Again from (3), we may derive:

2
(
Fn(t)−G(1,p)

n (t)
)
F (t) = −2(1− p)tF (t)

nX∗

1

I[0,X∗

1
)(t)+

2p(F (t)− tF (t))

n(1−X∗
n)

I[X∗

n
,1](t)

− 2

n

n−1∑

k=1

tF (t)−
(
pX∗

k+1 + (1− p)X∗

k

)
F (t)

X∗

k+1 −X∗

k

I[X∗

k
,X∗

k+1
)(t).

Denoting by K0(t) the primitive of F (t) and K1(t) that of tF (t), we get

2

∫ 1

0

(
Fn(t)−G(1,p)

n (t)
)
F (t) dt

= −2(1− p)
(
K1(X

∗

1 )−K1(0)
)

nX∗

1

+
2p

(
K0(1)−K0(X

∗

n)−K1(1) +K1(X
∗

n)
)

n(1−X∗
n)

− 2

n

n−1∑

k=1

(
K1(X

∗

k+1)−K1(X
∗

k )
)
−
(
pX∗

k+1 + (1 − p)X∗

k

)(
K0(X

∗

k+1)−K0(X
∗

k)
)

X∗

k+1 −X∗

k

.

(A.12)

Setting X∗

0 = 0 and X∗

n+1 = 1, we have also for all k = 0, . . . , n:

K0(X
∗

k+1)−K0(X
∗

k ) = (X∗

k+1 −X∗

k )F (X∗

k ) +

∫ X∗

k+1

X∗

k

f(t)(X∗

k+1 − t) dt (A.13)
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and, after integration by parts,

K1(X
∗

k+1)−K1(X
∗

k ) =
1

2

(
(X∗

k+1)
2 − (X∗

k )
2
)
F (X∗

k) +
1

2

∫ X∗

k+1

X∗

k

f(t)
(
(X∗

k+1)
2 − t2

)
dt.

(A.14)

We report (A.13) and (A.14) in (A.12) to obtain with M∗

k = X∗

k+θk(X
∗

k+1−X∗

k),
0 < θk < 1 for k = 0, . . . , n:

2

∫ 1

0

(
Fn(t)−G(1,p)

n (t)
)
F (t) dt =

1

n

n−1∑

k=1

(2p− 1)(X∗

k+1 −X∗

k)F (X∗

k )

+
−2(1− p)(X∗

1 )
2f(M∗

0 ) + 3pF (X∗

n)(1 −X∗

n) + pf(M∗

n)(1 −X∗

n)
2

3n

+
1

n

n−1∑

k=1

∫ X∗

k+1

X∗

k

f(t)
( X∗

k+1 − t

X∗

k+1 −X∗

k

)(
(X∗

k+1 − t)− 2(1− p)(X∗

k+1 −X∗

k)
)
dt.

giving in turn

2

∫ 1

0

(
Fn(t)−G(1,p)

n (t)
)
F (t) dt

=
−2(1− p)(X∗

1 )
2f(M∗

0 ) + 3pF (X∗

n)(1 −X∗

n) + pf(M∗

n)(1−X∗

n)
2

3n

+
1

n

n−1∑

k=1

(2p− 1)(X∗

k+1 −X∗

k)F (X∗

k ) +
3p− 2

3
f(M∗

k )(X
∗

k+1 −X∗

k)
2.

Finally, the condition A3.1-(ii) leads to:

I
(1,p)
2 = 2

∫ 1

0

(
Fn(t)−G(1,p)

n (t)
)
F (t) dt =

−2(1− p)(X∗

1 )
2
(
f(0) +X∗

1R1,0

)

3n

+
p(1−X∗

n)
(
3F (X∗

n) + (1−X∗

n)(f(X
∗

n) + (1−X∗

n)R1,n)
)

3n

+
(2p− 1)

n

n−1∑

k=1

(X∗

k+1−X∗

k)F (X∗

k )+
(3p− 2)

3n

n−1∑

k=1

(X∗

k+1−X∗

k)
2
(
f(X∗

k)+(X∗

k+1−X∗

k)R1,k

)

(A.15)

with |R1,k| ≤ c1θk < c1, k = 0, . . . , n.
Next, the following proposition will be useful for further calculations. It is ob-

tained with the binomial theorem applied to the joint density of (X∗

k , X
∗

k+1) (see
e.g. David and Nagaraja, 2003, p. 12) given by

f(X∗

k
,X∗

k+1
)(x, y) =

n!

(k − 1)!(n− k − 1)!
F k−1(x)f(x)f(y)(1−F (y))n−k−1

I[0,y](x)I[0,1](y).

(A.16)

Proposition A.1. If h is measurable and integrable on [0, 1]2, then

n−1∑

k=1

E
(
h(X∗

k , X
∗

k+1)
)
= n(n−1)

∫ 1

0

∫ y

0

h(x, y)f(x)f(y)
(
1−F (y)+F (x)

)n−2
dxdy.
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For expressions depending on k in (A.15), we get from Proposition A.1 and after
integration by parts, that

n−1∑

k=1

E

(
(X∗

k+1 −X∗

k)F (X∗

k )
)
=

∫ 1

0

F (x) dx − 1

n+ 1
−
∫ 1

0

nFn+1(x)

n+ 1
dx

+

∫ 1

0

(1− F (y))n+1

n+ 1
dy,

which, with Lemma 3.2, can be written as

n−1∑

k=1

E

(
(X∗

k+1 −X∗

k)F (X∗

k )
)
= 1− E (X1)−

1

n+ 1
− n

n+ 1
E (1− sup

i=1,...,n+1
Xi)

+
1

n+ 1
E ( inf

i=1,...,n+1
Xi) = 1− E (X1)−

1

n
− b1

n
+O(

1

n2
). (A.17)

Next,

n−1∑

k=1

E

(
(X∗

k+1 −X∗

k)
2f(X∗

k)
)
= −

∫ 1

0

nf2(x)(1 − x)2Fn−1(x) dx

+ 2n

∫ 1

0

∫ y

0

f2(x)(y − x)(1 − F (y) + F (x))n−1 dxdy

and from

‖f‖
∞

∫ 1

0

(1− x)2f(x)nFn−1(x) dx = 2 ‖f‖
∞

∫ 1

0

(1 − x)Fn(x) dx

= ‖f‖
∞

∫ 1

0

P(1−X∗

n ≥
√
t) dt = E ((1−X∗

n)
2),

we get

n−1∑

k=1

E

(
(X∗

k+1 −X∗

k)
2f(X∗

k)
)

= 2n

∫ 1

0

∫ y

0

f2(x)(y − x)(1 − F (y) + F (x))n−1 dxdy +O(
1

n2
).

As f2(x) = f(x)f(y) + f(x)(f(x) − f(y)), the double integral is equal to

2n

∫ 1

0

∫ y

0

f(x)f(y)(y − x)(1 − F (y) + F (x))n−1 dxdy

+ 2n

∫ 1

0

∫ y

0

f(x)(f(x) − f(y))(y − x)(1 − F (y) + F (x))n−1 dxdy.

For the first integral, the following expression is obtained:

2

n+ 1
− 2

n+ 1

∫ 1

0

(
1− F (y)

)n+1
dy − 2

n+ 1

∫ 1

0

Fn+1(x) dx =
2

n
+O(

1

n2
)

by Lemma 3.2. On the other hand, the second integral can be bounded with the
condition A3.1-(ii) to obtain the following new bound:

2nc1

∫ 1

0

∫ y

0

f(x)(y − x)2(1− F (y) + F (x))n−1 dxdy

= 4c1

∫ 1

0

∫ y

0

(y − x)(1 − F (y) + F (x))n dxdy +O(
1

n3
).
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Using the condition A3.1-(i), one may bound this double integral with

c−1
0

∫ 1

0

∫ y

0

f(x)(y − x)(1 − F (y) + F (x))n dxdy

and an integration by part gives

1

c0

∫ 1

0

y(1− F (y))n+1

n+ 1
dy +

1

c0

∫ 1

0

∫ 1

x

(1− F (y) + F (x))n+1

n+ 1
dy dx

≤
E (( inf

i=1,...,n+1
Xi)

2)

2c0(n+ 1)
−

1− E ( sup
i=1,...,n+2

Xi)

c20(n+ 2)(n+ 1)
+

1

c20(n+ 1)(n+ 2)
.

Finally, we may conclude with Lemma 3.2-(a)(b) that

n−1∑

k=1

E

(
(X∗

k+1 −X∗

k)
2f(X∗

k)
)
=

2

n
+O(

1

n2
). (A.18)

Concerning the last term, we have

n−1∑

k=1

E (X∗

k+1 −X∗

k)
3 = −3

∫ 1

0

(1− x)2Fn(x) dx − 3

∫ 1

0

y2(1− F (y))n dy

+ 6

∫ 1

0

∫ y

0

(y − x)(1− F (y) + F (x))n dxdy.

We obtain
n−1∑

k=1

E (X∗

k+1 −X∗

k )
3

= −E ((1−X∗

n)
3)− E ((X∗

1 )
3) + 6

∫ 1

0

∫ y

0

(y − x)(1 − F (y) + F (x))n dxdy

= 6

∫ 1

0

∫ y

0

(y − x)(1 − F (y) + F (x))n dxdy +O(
1

n3
)

and, previous calculations lead to

n−1∑

k=1

E (X∗

k+1 −X∗

k )
3 = O(

1

n2
). (A.19)

Noting that E ((1 −X∗

n)
2f(X∗

n)) = O( 1
n2 ) and

E ((1 −X∗

n)F (X∗

n)) =
n

n+ 1
E (1− sup

i=1,...,n+1
Xi) =

b1
n

+O(
1

n2
),

we may plug the results in (A.15), together with (A.17)-(A.19), to obtain that:

I
(1,p)
2 = 2E

∫ 1

0

(
Fn(t)−G(1,p)

n (t)
)
F (t) dt

=
(2p− 1)(1− E (X1))

n
+

b1(1− p)

n2
− 1

3n2
+O(

1

n3
) (A.20)

A.3. Conclusion for G
(1,p)
n . Collecting the results obtained in (A.9)-(A.11) and

(A.20), we obtain that

2E

∫ 1

0

(
G(1,p)

n (t)− Fn(t)
)(
Fn(t)− F (t)

)
dt = − 1

3n2
+O(

1

n3
),

so Proposition 3.5 is proved for G
(1,p)
n .
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A.4. Study of I
(2,p)
1 . Concerning the estimators G

(2,p)
n , proofs are similar but

with more complex terms due to the random integration bounds. Here and in the

following, we point out only the main changes. For the term I
(2,p)
1 defined in (A.9),

first we have

2
(
G(2,p)

n (t)− Fn(t)
)
Fn(t) = 2

(
G(1,p)

n (t)− Fn(t)
)
Fn(t)

)
I[X∗

1
,X∗

n
)(t)

+
t− (1 + p)X∗

n + pX∗

n−1

n(X∗
n −X∗

n−1)
I[X∗

n
,(1+p)X∗

n
−pX∗

n−1
)(t).

The calculation of the integrals and their expectation lead to

I
(2,p)
1 =

−(2p− 1)(1− E (X1))

n
+

(2p− 1)b1
n2

− p2e1
n2

+O
( 1

n3

)
(A.21)

where e1 is defined in Lemma 3.2-(d).

A.5. Study of I
(2,p)
2 . We get from (4):

2
(
Fn(t)−G(2,p)

n (t)
)
F (t) = 2(Fn(t)−G(2,p)

n (t)F (t) I[X∗

1
,X∗

n
)(t)

+

(
− 2t− 2(1− p)X∗

2 + 2(2− p)X∗

1

)
F (t)

n(X∗

2 −X∗

1 )
I[(2−p)X∗

1
−(1−p)X∗

2
,X∗

1
)(t)

+

(
− 2t+ 2(1 + p)X∗

n − 2pX∗

n−1

)
F (t)

n(X∗
n −X∗

n−1)
I[X∗

n
,(1+p)X∗

n
−pX∗

n−1
)(t).

Using again the notation K0 and K1 and Taylor formula with integral remainder,
the new terms to control are

−E

( (1− p)2(X∗

2 −X∗

1 )

n
F
(
(2−p)X∗

1−(1−p)X∗

2

))
+E

(p2(X∗

n −X∗

n−1)

n
F (X∗

n)
)

+E

( 1

n(X∗

2 −X∗

1 )

∫ X∗

1

(2−p)X∗

1
−(1−p)X∗

2

f(t)(X∗

1 − t)
(
X∗

1 − t− 2(1− p)(X∗

2 −X∗

1 )
)
dt
)

+ E

( 1

n(X∗
n −X∗

n−1)

∫ (p+1)X∗

n
−pX∗

n−1

X∗

n

f(t)
(
t− (1 + p)X∗

n + pX∗

n−1

)2
dt
)
.

With Lemma 3.2, we may conclude that

2E

∫ (p+1)X∗

n
−pX∗

n−1

(2−p)X∗

1
−(1−p)X∗

2

(
Fn(t)−G(2,p)

n

)
F (t) dt =

p2e1
n2

− (2p− 1)b1
n2

+
(2p− 1)(1− E (X1))

n
− 1

3n2
+O

( 1

n3

)
. (A.22)

Details are omitted.

A.6. Conclusion for G
(2,p)
n . Collecting the results obtained in (A.9)-(A.10) and

(A.21)-(A.22), we obtain that

2E

∫ 1

0

(
G(2,p)

n (t)− Fn(t)
)(
Fn(t)− F (t)

)
dt = − 1

3n2
+O(

1

n3
),

so Proposition 3.5 is proved also for G
(2,p)
n .
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Appendix Appendix B. Parameters of the 16 normal mixtures densities

Number Name Distribution function:
k∑

ℓ=0

wℓN (µℓ, σ
2
ℓ )

1 Normal N (0, 1)

2 Skewed unimodal 1
5N (0, 1) + 1

5N (12 , (
2
3 )

2) + 3
5N (1312 , (

5
9 )

2)

3 Strongly skewed
7∑

ℓ=0

1
8N (3((23 )

ℓ − 1), (23 )
2ℓ)

4 Kurtotic unimodal 2
3N (0, 1) + 1

3N (0, ( 1
10 )

2)

5 Outlier 1
10N (0, 1) + 9

10N (0, ( 1
10 )

2)

6 Bimodal 1
2N (−1, (23 )

2) + 1
2N (1, (23 )

2)

7 Separated bimodal 1
2N (− 3

2 , (
1
2 )

2) + 1
2N (32 , (

1
2 )

2)

8 Asymmetric bimodal 3
4N (0, 1) + 1

4N (32 , (
1
3 )

2)

9 Trimodal 9
20N (− 6

5 , (
3
5 )

2) + 9
20N (65 , (

3
5 )

2) + 1
10N (0, (14 )

2)

10 Claw 1
2N (0, 1) +

4∑
ℓ=0

1
10N ( ℓ2 − 1, ( 1

10 )
2)

11 Double claw 49
100N (−1, (23 )

2) + 49
100N (1, (23 )

2) +
6∑

ℓ=0

1
350N ( ℓ−3

2 , ( 1
100 )

2)

12 Asymmetric claw 1
2N (0, 1) +

2∑
ℓ=−2

21−ℓ

31 N (ℓ + 1
2 , (

2−ℓ

10 )2)

13 Asymmetric double
1∑

ℓ=0

46
100N (2ℓ− 1, (23 )

2) +
3∑

ℓ=1

1
300N (− ℓ

2 , (
1

100 )
2)

claw +
3∑

ℓ=1

7
300N ( ℓ2 , (

7
100 )

2)

14 Smooth comb
5∑

ℓ=0

25−ℓ

63 N (65−96(1/2)ℓ

21 , (32/63)2

22ℓ
)

15 Discrete comb
2∑

ℓ=0

2
7N (12ℓ−15

7 , (27 )
2) +

10∑
ℓ=8

1
21N (2ℓ7 , (

1
21 )

2)

16 Distant bimodal 1
2N (− 5

2 , (
1
6 )

2) + 1
2N (52 , (

1
6 )

2)

Table 1. Distribution functions used in the simulation study: #1-
#15 are from Marron and Wand (1992), #16 from Janssen et al.
(1995)
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