# GRAPH-BASED FEATURES FOR ONLINE AUTOMATIC ABUSE DETECTION

5<sup>th</sup> SLSP Conference Statistical Language and Speech Processing Le Mans, France, October 23-25 2017

**Etienne Papegnies**<sup>1,2</sup>, Richard Dufour<sup>1</sup>, Vincent Labatut<sup>1</sup> & Georges Linarès<sup>1</sup>





firstname.lastname@univ-avignon.fr

1 : LIA EA 4128 – Université d'Avignon et des Pays de Vaucluse

2 : Nectar de Code, Barbentane

# **OVERVIEW**

- 1. Context
- 2. Existing approaches
- 3. Method
- 4. Results
- 5. Conclusions & perspectives

## **ONLINE COMMUNITIES & MODERATION**

- Online Communities
  - Important Medium : widely used, high socio-economical impact
  - Users are usually anonymous

## ONLINE COMMUNITIES & MODERATION

- Online Communities
  - Important Medium : widely used, high socio-economical impact
  - Users are usually anonymous
- Abusive Behavior
  - Violation of the rules of the community
  - Can lead to : community degradation, legal consequences

## ONLINE COMMUNITIES & MODERATION

- Online Communities
  - Important Medium: widely used, high socio-economical impact
  - Users are usually anonymous
- Abusive Behavior
  - Violation of the rules of the community
  - Can lead to: community degradation, legal consequences
- Moderation
  - Detecting abusive users and applying sanctions
  - Usually done by hand : costly

## **AUTOMATIZED MODERATION**

- Automation
  - Assistance : raise messages to moderator's attention
  - Full moderation : detect abuse and apply sanctions

## **AUTOMATIZED MODERATION**

### Automation

- Assistance: raise messages to moderator's attention
- Full moderation : detect abuse and apply sanctions
- Problem is not trivial (ex. Google Perspective API)
  - Noise (Can be intentional)
  - Natural Language
  - Context

## **AUTOMATIZED MODERATION**

### Automation

- Assistance : raise messages to moderator's attention
- Full moderation : detect abuse and apply sanctions
- Problem is not trivial (ex. Google Perspective API)
  - Noise (Can be intentional)
  - Natural Language
  - Context

#### In this work :

- Detection of abusive messages : binary classification task
- We use features extracted from a graph representation of the conversation surrounding a message
- Applied to data from the MMORPG SpaceOrigin

# ABUSE DETECTION

- Content-Based Approaches [Spe97, CZZX12, DRL11, CS15]
  - Badwords dictionaries
  - Static rules
  - Word n-gram approaches
  - Bag of Words models (tf-idf)

## ABUSE DETECTION

- Content-Based Approaches [Spe97, CZZX12, DRL11, CS15]
  - Badwords dictionaries
  - Static rules
  - Word n-gram approaches
  - Bag of Words models (tf-idf)
- Context-Based approaches
   [YXH+09, CDNML15, BS15, GDFMGM16]
  - Content of neighboring messages
  - User models (language, behavior)
  - Interactions outside of discussions

## ABUSE DETECTION

- Content-Based Approaches [Spe97, CZZX12, DRL11, CS15]
  - Badwords dictionaries
  - Static rules
  - Word n-gram approaches
  - Bag of Words models (tf-idf)
- Context-Based approaches

# [YXH<sup>+</sup>09, CDNML15, BS15, GDFMGM16]

- Content of neighboring messages
- User models (language, behavior)
- Interactions outside of discussions
- CICLing'17 [PLDL17]
  - Specific Preprocessing (ex. reversal of hex or binary coding)
  - Morphological Features: character counts, compression rate
  - Language Features: tf-idf, word / named entity counts, sentiment score...
  - Behavioral Features: response strength, user language models...

# **EXTRACTION OF CONVERSATIONAL NETWORKS**

Data : raw chat logs

# **EXTRACTION OF CONVERSATIONAL NETWORKS**

- Data : raw chat logs
- Objectives
  - Visualize interactions
  - Identify User Classes, Roles

## EXTRACTION OF CONVERSATIONAL NETWORKS

- Data : raw chat logs
- Objectives
  - Visualize interactions
  - Identify User Classes, Roles
- Problem : who's the intended recipient for a message?
  - Direct referencing (some flexibility) [Mut04, TMZ14, SR14]
  - Links to every possible recipients [TMZ14]
  - Predefined rules to identify recipients [Mut04, TMZ14]
  - Proximity and temporal density of messages [Mut04]
  - Thread detection by content analysis [TMR10]

1. Conversational Network Extraction

### 1. Conversational Network Extraction

- Weighted non-directional graph
- Build around a target message
- Spawns a pre-defined context period
- Vertices: active users within the context period
- Links: message-based interactions between users
- Weights: intensity of the interaction

- 1. Conversational Network Extraction
  - Weighted non-directional graph
  - Build around a target message
  - Spawns a pre-defined context period
  - Vertices: active users within the context period
  - Links: message-based interactions between users
  - Weights: intensity of the interaction
- 2. Compute topological measures

- 1. Conversational Network Extraction
  - Weighted non-directional graph
  - Build around a target message
  - Spawns a pre-defined context period
  - Vertices: active users within the context period
  - Links: message-based interactions between users
  - Weights: intensity of the interaction
- 2. Compute topological measures
- 3. SVM training

- 1. Define context period, centered on target message
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
  - Hyp. #1: current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2: message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a *current message* 
  - Hyp. #1: current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a *current message* 
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3 : directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a *current message*
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2: message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a *current message*
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a *current message*
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted





- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted





- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted





- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2 : message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted





- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2: message addressed to last seen users first
  - Hyp. #3 : directly referenced users even more targeted
- 4. Update the graph



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2: message addressed to last seen users first
  - Hyp. #3 : directly referenced users even more targeted
- 4. Update the graph



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2: message addressed to last seen users first
  - Hyp. #3: directly referenced users even more targeted
- 4. Update the graph



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2: message addressed to last seen users first
  - Hyp. #3 : directly referenced users even more targeted
- 4. Update the graph



- 1. Define context period, centered on target message
- 2. Slide window over conversation relative to a current message
- 3. Compute weights of links
  - Hyp. #1 : current message targeted towards other participants
  - Hyp. #2: message addressed to last seen users first
  - Hyp. #3 : directly referenced users even more targeted
- 4. Update the graph



## **TOPOLOGICAL MEASURES**

- Local measures
  - Degree, Eigenvector, PageRank, Hub & Authority
  - o Betweeness, Closeness, Eccentricity, Coreness

### **TOPOLOGICAL MEASURES**

- Local measures
  - Degree, Eigenvector, PageRank, Hub & Authority
  - Betweeness, Closeness, Eccentricity, Coreness
- Global measures
  - Vertices/Edges numbers, density
  - Diameter, average distance
  - Number of Cliques
  - Degree Assortativity
  - Averages of each local measure over the whole network

## **TOPOLOGICAL MEASURES**

- Local measures
  - Degree, Eigenvector, PageRank, Hub & Authority
  - Betweeness, Closeness, Eccentricity, Coreness
- Global measures
  - Vertices/Edges numbers, density
  - o Diameter, average distance
  - Number of Cliques
  - Degree Assortativity
  - Averages of each local measure over the whole network
- Three networks for each targeted message







Before

After

Full

## DATASET & EXPERIMENTAL PROTOCOL

### Dataset

- Chat logs from the MMORPG SpaceOrigin
- 4 029 343 instant messages
  - 779 messages flagged and later confirmed as abusive
  - Sample of 2 000 messages assumed non-abusive
  - All messages taken from different conversations





### DATASET & EXPERIMENTAL PROTOCOL

### Dataset

- Chat logs from the MMORPG SpaceOrigin
- 4 029 343 instant messages
  - o 779 messages flagged and later confirmed as abusive
  - Sample of 2 000 messages assumed non-abusive
  - All messages taken from different conversations





### Classification

- SVM (Sklearn C-Support Vector Classification)
- Cross validation with 70–30% split
- Feature importance estimated using ExtraTreesClassifier (Sklearn)

# CLASSIFICATION RESULTS

| Scores relative to the <i>Abuse</i> class    |           |        |           |
|----------------------------------------------|-----------|--------|-----------|
| Classifier                                   | Precision | Recall | F-measure |
| Random Baseline                              | 0,28      | 0,50   | 0,36      |
| Text-Based content/context features [PLDL17] | 0,70      | 0,74   | 0,72      |
| Graph Features                               | 0,77      | 0,77   | 0,77      |

# **CLASSIFICATION RESULTS**

| Scores relative to the <i>Abuse</i> class    |           |        |           |
|----------------------------------------------|-----------|--------|-----------|
| Classifier                                   | Precision | Recall | F-measure |
| Random Baseline                              | 0,28      | 0,50   | 0,36      |
| Text-Based content/context features [PLDL17] | 0,70      | 0,74   | 0,72      |
| Graph Features                               | 0,77      | 0,77   | 0,77      |

- Better performances even while completely ignoring content
  - Possible reasons : better usage of post-abuse information

# **CLASSIFICATION RESULTS**

| Classifier                                   | Precision | Recall | F-measure |
|----------------------------------------------|-----------|--------|-----------|
| Random Baseline                              | 0,28      | 0,50   | 0,36      |
| Text-Based content/context features [PLDL17] | 0,70      | 0,74   | 0,72      |
| Graph Features                               | 0,77      | 0,77   | 0,77      |

- Better performances even while completely ignoring content
  - Possible reasons : better usage of post-abuse information
- Classifier can be used to assist in moderation



FIGURE – Precision-Recall curves for the 10 classifiers

Method : successive ablation of features

Method : successive ablation of features



Method: successive ablation of features

Most discriminating features in the Graph-based approach

| Graph  | Feature              | F-measure before ablation |
|--------|----------------------|---------------------------|
| Full   | Average Betweenness  | 0,76                      |
| Before | Average Coreness     | 0,75                      |
| After  | Edge Number          | 0,75                      |
| After  | Density              | 0,73                      |
| Full   | Hub Score            | 0,73                      |
| After  | Degree Centrality    | 0,68                      |
| Before | Vertice Number       | 0,67                      |
| Full   | Average Eccentricity | 0,58                      |
| Before | Average Eigenvector  | 0,57                      |
| Full   | Eccentricity         | 0,35                      |
|        |                      |                           |

Method: successive ablation of features
 Most discriminating features in the Graph-based approach

| Graph  | Feature              | F-measure before ablation |
|--------|----------------------|---------------------------|
| Full   | Average Betweenness  | 0,76                      |
| Before | Average Coreness     | 0,75                      |
| After  | Edge Number          | 0,75                      |
| After  | Density              | 0,73                      |
| Full   | Hub Score            | 0,73                      |
| After  | Degree Centrality    | 0,68                      |
| Before | Vertice Number       | 0,67                      |
| Full   | Average Eccentricity | 0,58                      |
| Before | Average Eigenvector  | 0,57                      |
| Full   | Eccentricity         | 0,35                      |

#### Observations

- Important measures characterize the graph in different ways.
- Some measures belong to high correlation groups and can be swapped
- Considering the two sides (before / after) yields better discrimination

## **CONCLUSIONS & PERSPECTIVES**

## Main results

- Simple approach
- Robust with regard to text preprocessing issues
- Results are better than with our text-based approach
- Performance is good enough to provide support, not full automation
- Limits: computational cost, no real-time application

### **CONCLUSIONS & PERSPECTIVES**

### Main results

- Simple approach
- Robust with regard to text preprocessing issues
- Results are better than with our text-based approach
- Performance is good enough to provide support, not full automation
- Limits: computational cost, no real-time application

## Perspectives

- Tweak parameters used for network extraction
- Use different graph measures
- Combine the approach with the text-based one
- Explore combinations and individual contributions of the three graphs
- Dynamic network modeling
- User model profiles



[BS15] K. Balci and A. A. Salah.

Automatic analysis and identification of verbal aggression and abusive behaviors for online social games. Computers in Human Behavior, 53:517–526, 2015.

[CDNML15] J. Cheng, C. Danescu-Niculescu-Mizil, and J. Leskovec.

Antisocial behavior in online discussion communities.

arXiv :1504.00680 [cs.SI], 2015.

[CS15] V. S. Chavan and S. S. Shylaja.

Machine learning approach for detection of cyber-aggressive comments by peers on social media network. In *IEEE ICACCI*, pages 2354–2358, 2015.

[CZZX12] Y. Chen, Y. Zhou, S. Zhu, and H. Xu.

Detecting offensive language in social media to protect adolescent online safety.

In PASSAT/SocialCom, pages 71-80, 2012.

[DRL11] K. Dinakar, R. Reichart, and H. Lieberman.

Modeling the detection of textual cyberbullying.

5th International AAAI Conference on Weblogs and Social Media, pages 11–17, 2011.

[GDFMGM16] K. Garimella, G. De Francisci Morales, A. Gionis, and M. Mathioudakis.

Quantifying controversy in social media.

In 9th ACM International Conference on Web Search and Data Mining, pages 33-42, 2016.

[Mut04] P. Mutton.

Inferring and visualizing social networks on internet relay chat.

In 8th International Conference on Information Visualisation, pages 35-43, 2004.

[PLDL17] E. Papegnies, V. Labatut, R. Dufour, and G. Linarès.

Impact of content features for automatic online abuse detection.

In International Conference on Computational Linguistics and Intelligent Text Processing, 2017.

[Spe97] E. Spertus.

Smokey: Automatic recognition of hostile messages.

In 14th National Conference on Artificial Intelligence and 9th Conference on Innovative Applications of Artificial Intelligence, pages 1058–1065, 1997.

[SR14] T. Sinha and I. Rajasingh. Investigating substructures in goal oriented online communities: Case study of Ubuntu IRC.

In IEEE International Advance Computing Conference, pages 916-922, 2014.

[TMR10] S. Trausan-Matu and T. Rebedea. A polyphonic model and system for inter-animation analysis in chat conversations with multiple participants.

> In Computational Linguistics and Intelligent Text Processing, volume 6008 of Lecture Notes in Computer Science, pages 354-363, Springer, 2010.

S. Tavassoli, M. Moessner, and K. A. Zweig.

Constructing social networks from semi-structured chat-log data.

In IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, pages

146-149, 2014.

[TMZ14]

[YXH+09] D. Yin, Z. Xue, L. Hong, B. D. Davison, A. Kontostathis, and L. Edwards.

Detection of harassment on Web 2.0.

In WWW Workshop: Content Analysis in the Web 2.0, 2009.

## IMPACT OF LENGTH OF CONTEXT PERIOD

