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ONLINE COMMUNITIES & MODERATION

# Online Communities
◦ Important Medium : widely used, high socio-economical impact
◦ Users are usually anonymous

# Abusive Behavior
◦ Violation of the rules of the community
◦ Can lead to : community degradation, legal consequences

# Moderation
◦ Detecting abusive users and applying sanctions
◦ Usually done by hand : costly

3



ONLINE COMMUNITIES & MODERATION

# Online Communities
◦ Important Medium : widely used, high socio-economical impact
◦ Users are usually anonymous

# Abusive Behavior
◦ Violation of the rules of the community
◦ Can lead to : community degradation, legal consequences

# Moderation
◦ Detecting abusive users and applying sanctions
◦ Usually done by hand : costly

3



ONLINE COMMUNITIES & MODERATION

# Online Communities
◦ Important Medium : widely used, high socio-economical impact
◦ Users are usually anonymous

# Abusive Behavior
◦ Violation of the rules of the community
◦ Can lead to : community degradation, legal consequences

# Moderation
◦ Detecting abusive users and applying sanctions
◦ Usually done by hand : costly

3



AUTOMATIZED MODERATION

# Automation
◦ Assistance : raise messages to moderator’s attention
◦ Full moderation : detect abuse and apply sanctions

◦ Problem is not trivial (ex. Google Perspective API)
◦ Noise (Can be intentional)
◦ Natural Language
◦ Context

# In this work :
◦ Detection of abusive messages : binary classification task
◦ We use features extracted from a graph representation of the

conversation surrounding a message
◦ Applied to data from the MMORPG SpaceOrigin
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ABUSE DETECTION

# Content-Based Approaches [Spe97, CZZX12, DRL11, CS15]
◦ Badwords dictionaries
◦ Static rules
◦ Word n-gram approaches
◦ Bag of Words models (tf–idf )

# Context-Based approaches
[YXH+09, CDNML15, BS15, GDFMGM16]
◦ Content of neighboring messages
◦ User models (language, behavior)
◦ Interactions outside of discussions

# CICLing’17 [PLDL17]
◦ Specific Preprocessing (ex. reversal of hex or binary coding)
◦ Morphological Features : character counts, compression rate
◦ Language Features : tf–idf , word / named entity counts,

sentiment score...
◦ Behavioral Features : response strength, user language

models...
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EXTRACTION OF CONVERSATIONAL NETWORKS

# Data : raw chat logs

# Objectives
◦ Visualize interactions
◦ Identify User Classes, Roles

# Problem : who’s the intended recipient for a message?
◦ Direct referencing (some flexibility) [Mut04, TMZ14, SR14]
◦ Links to every possible recipients [TMZ14]
◦ Predefined rules to identify recipients [Mut04, TMZ14]
◦ Proximity and temporal density of messages [Mut04]
◦ Thread detection by content analysis [TMR10]
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METHOD

1. Conversational Network Extraction

◦ Weighted non-directional graph
◦ Build around a target message
◦ Spawns a pre-defined context period
◦ Vertices : active users within the context period
◦ Links : message-based interactions between users
◦ Weights : intensity of the interaction

2. Compute topological measures
3. SVM training
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CONVERSATIONAL NETWORK EXTRACTION

1. Define context period, centered on target message
◦ Hyp. #1 : current message targeted towards other participants
◦ Hyp. #2 : message addressed to last seen users first
◦ Hyp. #3 : directly referenced users even more targeted

Time
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CONVERSATIONAL NETWORK EXTRACTION
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CONVERSATIONAL NETWORK EXTRACTION

1. Define context period, centered on target message
2. Slide window over conversation relative to a current message
3. Compute weights of links

◦ Hyp. #1 : current message targeted towards other participants
◦ Hyp. #2 : message addressed to last seen users first
◦ Hyp. #3 : directly referenced users even more targeted
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TOPOLOGICAL MEASURES

# Local measures
◦ Degree, Eigenvector, PageRank, Hub & Authority
◦ Betweeness, Closeness, Eccentricity, Coreness

# Global measures
◦ Vertices/Edges numbers, density
◦ Diameter, average distance
◦ Number of Cliques
◦ Degree Assortativity
◦ Averages of each local measure over the whole network

# Three networks for each targeted message

Before After Full
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DATASET & EXPERIMENTAL PROTOCOL

# Dataset
◦ Chat logs from the MMORPG SpaceOrigin
◦ 4 029 343 instant messages

◦ 779 messages flagged and later confirmed as abusive
◦ Sample of 2 000 messages assumed non-abusive
◦ All messages taken from different conversations

# Classification
◦ SVM (Sklearn C-Support Vector Classification)
◦ Cross validation with 70–30% split
◦ Feature importance estimated using ExtraTreesClassifier

(Sklearn)

34

https://www.spaceorigin.fr/


DATASET & EXPERIMENTAL PROTOCOL

# Dataset
◦ Chat logs from the MMORPG SpaceOrigin
◦ 4 029 343 instant messages

◦ 779 messages flagged and later confirmed as abusive
◦ Sample of 2 000 messages assumed non-abusive
◦ All messages taken from different conversations

# Classification
◦ SVM (Sklearn C-Support Vector Classification)
◦ Cross validation with 70–30% split
◦ Feature importance estimated using ExtraTreesClassifier

(Sklearn)

34

https://www.spaceorigin.fr/


CLASSIFICATION RESULTS

Scores relative to the Abuse class
Classifier Precision Recall F -measure
Random Baseline 0,28 0,50 0,36
Text-Based content/context features [PLDL17] 0,70 0,74 0,72
Graph Features 0,77 0,77 0,77

# Better performances even
while completely ignoring
content
◦ Possible reasons : better

usage of post-abuse
information

# Classifier can be used to
assist in moderation Figure – Precision-Recall curves for

the 10 classifiers
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FEATURE SELECTION

# Method : successive ablation of features

Most discriminating features in the Graph-based approach
Graph Feature F -measure before ablation
Full Average Betweenness 0,76
Before Average Coreness 0,75
After Edge Number 0,75
After Density 0,73
Full Hub Score 0,73
After Degree Centrality 0,68
Before Vertice Number 0,67
Full Average Eccentricity 0,58
Before Average Eigenvector 0,57
Full Eccentricity 0,35

# Observations
◦ Important measures characterize the graph in different ways.
◦ Some measures belong to high correlation groups and can be

swapped
◦ Considering the two sides (before / after) yields better

discrimination
◦ Both Average and Local Eccentricity are important
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CONCLUSIONS & PERSPECTIVES

# Main results
◦ Simple approach
◦ Robust with regard to text preprocessing issues
◦ Results are better than with our text-based approach
◦ Performance is good enough to provide support, not full

automation
◦ Limits : computational cost, no real-time application

# Perspectives
◦ Tweak parameters used for network extraction
◦ Use different graph measures
◦ Combine the approach with the text-based one
◦ Explore combinations and individual contributions of the three

graphs
◦ Dynamic network modeling
◦ User model profiles
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IMPACT OF LENGTH OF CONTEXT PERIOD
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