Impact Of Content Features For Automatic Online Abuse Detection

Etienne Papegnies Vincent Labatut, Richard Dufour, Georges Linares

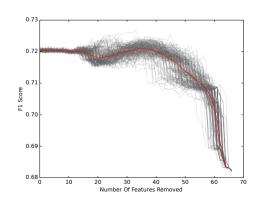
Laboratoire Informatique d'Avignon

{firstname.lastname}@univ-avignon.fr

Task: Automatically Detect Abuse In An Online Community

- Classify messages in two classes:
 - Abusive
 - Non-Abusive
- Abusive messages can be:
 - Straight Insults
 - Violations of the community usage guidelines
- Moderation done by hand is:
 - Expensive
 - Hard on the moderators

Idea: tune preprocessing and detect impact of message


- We use specific preprocessing approaches for a target community
 - Meta Word for community jargon
 - Community-specific Deobfuscation
 - URL discrimination
- We develop a couple of features to detect impact of a message
 - Based only on messages from other users in response
 - These features are immune to intentional obfuscation

Results

Advanced preprocessing and new features improves classification score by 3.2 points

Data	Features	Preprocessing	Precision	Recall	F -Measure
iM+cM	Classic set	Basic	65.7	72.3	68.9
	Full set	Advanced	68.3	76.4	72.1

The new features and two others account for 15% Of classifier performance

Impact Of Content Features For Automatic Online Abuse Detection

Etienne Papegnies etienne.papegnies@univ-avignon.fr Georges Linares incent Labatut and Richard Dufour (LI Pierre GotabStanislas Oger (Nectar de Code)

Problem Description

- In Online communitabuse is common.
- Community maintainers have to ensure moderation of user-generation
- → So users want to stay
- → Sometimes because the Law requires it
- Moderation is usually done by hand
- → It's expensive
- → It's hard for the moderators

- Develop an automatic system to assist moderation
- · There is two tasks for this system
- → Automatically flag content for review by human moderators
- → Perform automatic moderation

challenges

→ Abbreviationsīvos → Natural Language

> · Two types of player communications: → Messages from Internal mail system

→ Messages from Chat system (cM) Abusive messages reported by players then confirmed by moderators · Non-Abusive messages are selected at Configuration Abusive Messages Non-Abusive Messages

→ ImagesURLs

(iM)

→ Abuse can depend on context

Experiment and Results

Features

- Classic Set
- → Morphological features
- * Message Length * Capitalized letters
- * Punctuation
- → Content Features
- * Bag Of Words
- * tf-idf weigths
- * Badwords
- Full Set
- → New content featureNE
- → PNE Applicability Criterion

Preprocessing

- Basic
- → Tokenization
- Advanced
- → Elision Reversal
- → Meta words for jargon
- → Word extraction for URLs
- * Deobfuscation
- * URL discrimination

- → Normalization
- → Stemmina
- → Community-Specific:

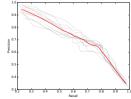
iM+cM 111 222 cM 1336

New featur@robability of N-Gram Emissions

 $P_{i,i+1}$: Emission Probability of transition between i + i n-grams in window W . Average Emission Probability S over W

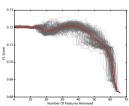
$$5 = \frac{P_{i=0}^{W-1} P_{i,i+1}}{W} \tag{1}$$

 $S_B(u), S_A(u)$: average probabilities before and after targeted metswagser u. Final score S(u) for user u is:


$$S(u) = S_A(u) - S_B(u) \tag{2}$$

Classification tasksults

Data	Features	Preprocessing	Precision		
iM only	Classic set	Basic	66.9	72.8	69.7
-	Full set	Basic	67.2	73.4	70.2
	Full set	Advanced	69.6	76.2	72.8
cM only	Classic set	Basic	65.2	71.6	68.2
	Full set	Basic	65.5	72.2	68.7
	Full set	Advanced	67.6	75.9	71.5
iM+cM	Classic set	Basic	65.7	72.3	68.9
	Full set	Basic	65.9	73.2	69.3
	Full set	Advanced	68.3	76.4	72.1


- · Stacked Naive Bayes SVM classifiers
- · Results are averages for 10-fold cross-validation
- Advanced preprocessing increase performance by 2.8 points
- · We have similar results for both message types
- The new features increase performance by 0.4 points
- → The new feature is immune to intentional obfuscation

Precision-Recall Curves

System can be tuned for automatic moderation or as a warning system by shifting the post-probability threshold.

Feature Selection

Drop at the end4 features account for 15% of classifier performance umber of bad words Average word lengt NE and it's Applicability criterion