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RESUME. La modération du contenu posté par les utilisateurs de communautés en ligne est ma-
Joritairement effectuée manuellement. De par la taille des données a traiter, les méthodes au-
tomatiques ont un intérét certain pour réduire la charge de travail. Actuellement, ’industrie
utilise des approches basiques a base de recherche de mots, comme par exemple le filtrage
des messages contenant certains mots interdits. Nous nous intéressons dans cet article a une
tdche de classification permettant de déterminer si un message est abusif ou non. Ceci est com-
plexe, car les messages sont écrits dans un langage naturel non standardisé. Nous proposons
ici une approche originale de modération automatique appliquée au frangais, s’ appuyant a la
fois sur des outils classiques et un nouveau descripteur fondé sur la modélisation du comporte-
ment utilisateur face a un message abusif. Les résultats obtenus lors de cette étude préliminaire
montrent le potentiel de notre méthode, pour I’alerte automatique ou le support a la décision.

ABSTRACT. Moderating user content in online communities is mainly performed manually, and
reducing the workload through automatic methods is of great interest. The industry mainly uses
basic approaches such as bad words filtering. In this article, we consider the task of automati-
cally determining whether a message is abusive or not. This task is complex, because messages
are written in a non-standardized natural language. We propose an original automatic moder-
ation method applied to French, which is based on both traditional tools and a newly proposed
context-based feature relying on the modeling of user behavior when reacting to a message. The
results obtained during this preliminary study show the potential of the proposed method, in a
context of automatic processing or decision support.

MOTS-CLES : Détection d’abus, Communautés en ligne, Modération, Traitement du langage na-
turel

KEYWORDS: Abuse Detection, On-line Communities, Moderation, Natural Language Processing




1. Introduction

The Internet has revolutionized the way we communicate, by connecting commu-
nities of users and allowing them to exchange through various means, such as text mes-
sages, videos, on-line voice calls, social networks, etc. In the context of textual com-
munications, exchanges can be made through instant messaging (chat for example),
on messages boards through Internet forums, by commenting news articles, and other
ways.

As more and more people get access to the Internet, the size of these on-line com-
munities is rapidly increasing. Maybe because of this success, on-line exchange plat-
forms are inevitably confronted to abusive behaviors from users. The term abusive
is originally defined for real-life situations, but most types of abusive behavior can
be transposed to on-line exchanges, provided they do not require any physical inter-
action : verbal aggression, coercion or control, destruction, disruption, harassment,
intimidation, isolation or emission of threats. On-line abuse is a widespread issue,
impacting various types of communities, that may take different forms : unsolicited
messages (spam), provocative messages (such as trolls), racist messages, etc.

Such abuses are generally perceived as harmful to the quality of the service provi-
ded by on-line platforms : abused users tend to leave them and look for more comfor-
table communication means. More importantly, some forms of abuse are also simply
considered as illegal in certain countries, e.g. homophobic or racists comments in
France. In addition, in the past few years, specific laws have been passed in many
countries to explicitly hold the infrastructure maintainers responsible for the content
hosted on their platforms, even if such content is submitted under the cover of ano-
nymity. For these reasons, the administrators of on-line platforms started defining be-
having rules, often enforced by so-called moderators. However, due to the increasing
size of on-line communities, performing this task manually becomes more and more
difficult and expensive.

In this paper, we try to partially automate this task. We focus on on-line abuses
appearing in text messaging communications, and consider the detection of abusive
messages as a supervised classification problem. We evaluate the use of different clas-
sic features extracted from textual content (average word length, number of bad words,
message length...), and also propose a new feature, based on the detection of signifi-
cant changes in user behavior. Our assumption is that, when confronted to an abusive
situation, a user does not behave like he usually does. To model the user’s regular be-
havior, we build a word n-gram Markov chain using messages known to have been
published in a non-abusive situation. To assess and compare the discriminant power
of all these features, we use textual messages obtained from the official communi-
cation platform of the massively multiplayer on-line game (MMO) SpaceOrigin. We
consider two communication means : in-game messages, which could be compared to
e-mails, and chat messages, e.g. instant messages.

This paper is organized as follows. In Section 2, we quickly review the main works
related to abuse detection and automatic moderation. In Section 3, we describe the fea-
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tures we use to automatically detect abusive messages, including both classic features
and the one we propose, based on the modeling of the user’s behavior. In Section 4,
we present our dataset, describe the experimental protocol we followed, and discuss
the results we obtained. Finally, we summarize the main points of our work in Section
5, and show how it could be extended.

2. Related Work

Several solutions have been proposed to automatically detect abusive messages
in on-line communities. While most of the works are evaluated on English datasets,
a vast majority of the methods used are language- and community-independent, and
can therefore be applied to any on-line text messaging community, which makes them
relevant to us. In this review, we first focus on the preprocessing step, because the
considered medium exhibits particular linguistic characteristics (ungrammaticality,
community-specific linguistic traits, misspelling...), and requires a specific prepara-
tion in order not to impact negatively the performance of the methods applied subse-
quently (Subsection 2.1). Then, we distinguish two types of approaches, depending
on the type of information they use to detect abusive messages : content- vs. context-
based methods. In the former case, the classification is performed based only on the
textual content of the considered message, whereas in the latter, it takes advantage of
additional data : structure of the conversation, user metadata, etc. (Subsection 2.2). The
best performance is globally reached with approaches taking advantage of the infor-
mation described in this review (preprocessing step, content messages, and contextual
information).

2.1. Preprocessing step

Preprocessing is usually a simple but important step when dealing with messages
posted on-line. The Internet medium introduces specific difficulties : disregard of syn-
tax and grammar rules, out-of-vocabulary words, heavy use of abbreviations, typos,
presence of URLs... The Denoising and Deobfuscation tasks both consist in mapping
an unknown word back into a dictionary of known words. In the first case, a word
is out of the vocabulary for unintentional reasons such as typos, e.g. "I uess so" for
"I guess so". In the second case, it is due to a more deliberate attempt to conceal the
word, e.g. "F8ck3r" for "fucker". Globally, mapping the word back into the dictionary
increases the performance of probabilistic learning methods, since these methods need
the cleanest possible text to achieve their maximum performance.

In (Sood et al., 2012), the Levenshtein distance (also called Edit Distance) is
used in an attempt to match unknown words against words in a crowd-sourced
list of manually annotated messages containing profanity. The Levenshtein distance
(Levenshtein, 1966) measures the number of insertions, deletions and replacements
needed to convert a string into another (e.g. The Levenshtein distance between " @ss"
and "ass" is 1). Computing the Levenshtein distance between two words of length n



and m is computationally expensive : the runtime is O(n - m), and for this specific
task each word has to be matched against each word in the dictionary, which is huge.
We base some of our features on the Levenshtein Distance.

Other works, such as (Brill et Moore, 2000), proposed to improve on simple Le-
venshtein distance based denoising (for the purpose of spell checking) by considering
the context of the string edition in a word (where the edited character is) and in a sen-
tence (does the edit maps the word into a high n-gram probability ?). However, this
approach is based on the assumption that out-of-vocabulary words are mainly due to
unintentional spelling mistakes and is therefore not applicable to deobfuscation.

In (Lee et Ng, 2005), the authors use a Hidden Markov Model customized with
dictionary and context awareness for the purpose of deobfuscating spam messages.
Those types of messages often include deliberately misspelled words in an attempt to
bypass filters. Their model showed impressive results with the ability to correct both
unintentional misspellings as well as deliberate obfuscation using weird characters
or digits and could even map segmented words back into complete words. (ie : "ree
movee" -> remove). This process is nonetheless also computationally intensive and
it requires curated data such as examples of word obfuscation in the given language,
therefore we will not use it in this paper, but will come back to it in future works.

Preprocessing is an important step in an automated abuse detection framework, but
it should be applied with caution. The goal of preprocessing is to increase the amount
of relevant information in a message, but it can have the opposite effect. For example,
the tendency of a user to misspell words can be viewed as an important feature to
describe this user, but blind preprocessing would hide that. In order to prevent this,
in this paper we use the preprocessing only when it is consistent with the considered
feature, and we use the raw text otherwise.

2.2. Text messaging classification

In this section we review existing classification approaches that consider the
content of the messages to detect abusive messages, and then the context of the ex-
changed messages.

Content-based approaches (Spertus, 1997) was one of the first work to automate
detection of hostility in messages. While hostility does not imply abuse, abuse often
contains hostility. The paper defined a number of rules to identify certain characteris-
tics of the messages, such as Imperative Statement, Profanity, Condescension, Insult,
Politeness and Praise. A Decision Tree classifier was then used to categorize messages
into Hostile and Non-hostile classes. The setup showed good results but was limited
when dealing with sarcasm, noise or innuendo. This approach is interesting but highly
tuned for the grammar rules, semantics and idioms of a specific language.

In (Chen et al., 2012), the authors note that the mere presence of an offensive word
in a message is not a strong enough indication that the message itself is offensive, ie



"You are stupid." is way more offensive than "This is stupid.". This is an important ob-
servation and the authors showed that the lack of context can be mitigated by looking
at word n-grams instead of unigrams.

Another work by (Dinakar et al., 2011) used features computed from % f-idf
weights, a list of words reflecting negative sentiment and widely used sentences
containing verbal abuse to detect cyberbullying in comments associated with Youtube
videos. Their model showed good results for instances of verbal abuse and profanity,
but was limited with regard to sarcasm and euphemism.

Finally, the work by (Chavan et Shylaja, 2015) reviewed machine learning ap-
proaches for the classification of aggressive messages in On-line Social Networks,
described a full pipeline for achieving classification of raw comments and introdu-
ced two new features : Pronoun Occurrence and Skip-Gram features. They allow for
the detection of targeted phrases such as "He sucks" or "You can go die", and for the
identification of long distance relationship between words, respectively.

Content-based text classification performs relatively well as a starting point. The
computational cost to implement these approaches is usually reasonable. Nonethe-
less, these approaches have severe limitations. For instance, abuse can cross message
boundaries, and therefore a message can be abusive only because of the presence of
an earlier message. In other cases, messages can be abusive because they reference a
shared history between two users. Therefore, studying the context of a message, its
recipient, and its author might also be important.

Context-based approaches To go beyond the limitations of content-based ap-
proaches, authors proposed to take into account the context of messages, usually in
addition to the textual content itself.

Some works explore the use of the content neighboring the targeted message. In
(Yin et al., 2009), authors used a supervised classifier working on n-gram features,
sentence-level regular expression patterns and the features derived from the neighbo-
ring phrases of a given message to detect abuse on the Web. Their approach focused
on detecting derivations in the context of a discussion around a given topic and their
context features significantly improved the performance of their system. For this rea-
son, we want to adopt a similar approach for our own method, but by focusing on
derivations of users themselves from their usual patterns.

Other works have focused on modeling the users’ behaviors by introducing higher-
level features than the textual context. A comprehensive study of antisocial behavior
in on-line discussion communities has been proposed by (Cheng et al., 2015). Their
exploratory work reinforced the weight of classic features used to classify messages
such as misspellings and length of words, and provided insight into the devolution of
users over time in a community, regarding both the quality of their contributions and
their reactions towards other members of the community. This analysis is a good step
towards modeling abusive behavior. One of the essential results of the analysis is that
instances of antisocial messages tend to generate a bigger response from the commu-



nity compared to benign messages. The number of respondents to a given message is
a feature we use in this work.

A selection of contextual features aiming at detecting abuse in on-line game com-
munities has also been investigated in (Balci et Salah, 2015). These features form a
model of the users of the game by including information such as their gender, num-
ber of friends, investment in the platform, avatars, and general rankings. The goal
was to help human moderators dealing with abuse reports, and the approach yielded
sufficiently good results to achieve this goal. The work was however limited in appli-
cability because of the specifics of that given community, and of the raw amount of
data needed to perform similar experiments in other games.

When quantifying controversy in social media (Garimella et al., 2016), the struc-
ture of the community network is exploited to identify topics that are likely to trigger
strong disagreements between users. The approach relies on a network whose nodes
are Twitter users and links represent communications between them. It is interesting,
however hardly applicable to our case, since we cannot infer the exact network struc-
ture from our dataset unless we restrict the network to private conversations between
two users. As per the game’s terms of use, the content of these conversations is only
available to moderators when an abuse case is reported.

3. Features for abusive message detection

In this work, we propose to use a selection of features to characterize an abusive
message, including one newly proposed by us. In this section, we describe according
to their type : low-level morphological features (Subsection 3.1), higher level language
features (Subsection 3.2), and user-related features (Subsection 3.3).

3.1. Morphological Features

Message length. This feature corresponds to the length of a message, expressed in
number of characters, before any pre-processing such as normalization. The intuition
is that abusive messages are usually either kept short (e.g. "Go die."), or extremely
long, which is symptomatic of a massive copy/paste.

We also consider the length expressed in terms of words. In conjunction with
the character count, it can match certain overly emphasized messages (e.g.
"Shuuuuuuuuuuuuuuuuuuuuuuut vuuuUUUUUUUUUUUUUUUUp M.

Character classes. We split characters into 5 classes : Letters, Digits, Punctuation,
Spaces and Others. We keep track of the number of characters in those classes and the
ratio of those classes in the message. This is done before any preprocessing on the raw
message.

We selected these features based on several observations we made on the
abusive messages. First, some of them have an unusual number of charac-



ters in the "Other" class, e.g. : "8 D". Second, some
use digits to obfuscate their meaning, in violation of the game rules. For ins-
tance, "01000111011011110010000001100100011010010110010100101110" and
"476F206469652E" are obfuscated versions of the text "Go die." : the first one is
coded in binary, and the second in hexadecimal.

Abusive users also commonly "yell" insults using capital letters, which is why
we keep track of both the number of caps and the corresponding ratio of caps in the
message.

Compression ratio. This feature is defined as the ratio of the length of the com-
pressed message to that of the original message, both expressed in characters. It is
based on the observation that certain users tend to repeat exactly and many times the
same text in their abusive messages. We use the Lempel-Ziv—Welch (LZW) compres-
sion algorithm (Batista et Meira, 2004), and the features therefore directly relates to
the number of copy/pastes made in the same message.

Unique characters. By counting the number of distinct characters in
the message, we can detect the use of binary or hexadecimal obfusca-
tion, as well as the overuse of punctuation. For instance, for the message
"01000111011011110010000001100100011010010110010100101110", this feature
has only a value of 2. This value is also computed before any preprocessing.

Collapsed characters. This feature is processed after normalization, and more
particularly after the removal of consecutive characters. When three or more identi-
cal consecutive characters are found in the message, they are collapsed down to two
characters. For instance, "looooooool" would be collapsed to "lool". The feature is
the difference between the length of the original message and that of the collapsed
one. This preprocessing step has been widely used in the classification of Tweets, for
instance in (Roy et al., 2013).

3.2. Language Features

Word length. This feature is a component of the Automated Readability Index
(ARI) (Senter et Smith, 1967). It measures how proficient someone is at creating text
documents. While abusive messages are sometimes surprisingly well written, this re-
mains rare.

Unique words. We consider the number of unique words in the message. The
intuition is that messages with more words are likely to be more constructive in terms
of their content.

t f-idf Scores. Those features are the sums of the ¢ f-idf scores of each individual
word in the message. We use two distinct scores : the so-called non-abuse score is
processed relatively to the non-abuse class, whereas the abuse score is processed over
the abuse class.



If the considered word is unknown, in the sense it does not appear in the training
set, we process an approximation of these scores. For this purpose, we first search for
known words located within a given Levenshtein distance from the word of interest,
and average their own scores.

Computing the full Levenshtein Distance between two words is computationally
expensive. For this reason, solutions proposed in this paper never compute the full Le-
venshtein Distance between two words. Instead, a specialized tree-based index data-
structure with a search function that yields all words in the tree within a given maxi-
mum edit distance is used. We use 2 as the maximum edit distance. This is considera-
bly faster because branches of the tree are pruned as soon as we reach a state where
the maximum edit distance is exceeded. It is still the most computationally intensive
operation in our experiments.

Sentiment Scores. These features are numeric values derived from the number
of words in the message that have a sentiment weight. It is based on the sentiment
corpus presented in (Chen et Skiena, 2014), which was automatically generated for
the French language and we augmented it manually by selecting words from a large
list of insults.

Bad Words. This feature corresponds to the number of words in the message that
appear in a manually crafted list of bad words. The list of words was created from
a list of insults in French and then augmented with common Internet shorthand and
symbolism. (e.g : connard’, *fdp’, ’stfu’ but also ’..l..", *8==D" etc)

When we cannot match the considered word to any of the bad words in our list,
we try to perform a fuzzy match using the Levenshtein distance. This is supposed to
allow us picking up some obfuscated bad words.

We also perform the same tests using the collapsed version of the message (as
described for the Collapsed characters feature).

3.3. User Behavior Features

Number of respondents. Given a fixed size window after a target message, this
feature tracks how many distinct users replied to this message. This feature is relevant
because it has been shown that abusive comments tend to trigger a higher number of
responses from the community (Cheng et al., 2015).

Probability of n-gram emission. We investigate if the abusiveness of a user’s
message can be detected by considering the effect it has on the other users participa-
ting to the same conversation. To do this, we compare the writing behavior of these
other users before and after the apparition of the targeted message. We model this
behavior through a user-specific Markov chain, which we use to compute how likely
some text is to have been generated by the considered user.



message message message message message
Train Data | Sh(2) | | Sa(2) |
w w

Figure 1 : A sequence of messages broken down into n-grams. Each square repre-
sents an n-gram : red for the targeted message from userl, blue for the surrounding
messages written by user2.

We first sort the messages in chronological order. For each participant other than
the user who wrote the targeted message, we build a word n-gram Markov chain using
all but the last W n-grams in the messages posted before the target message.

The Markov chain is a convenient way to store the transition probabilities for all
couples of n-grams in a participant’s history. We compute two values : the average
emission probabilities of the n-grams in the W-length window before and after the
target message, as represented in Figure 1.

Let P; ;41 be the emission probability of a transition between the i** and i + 1*"
n-grams in the window of length . Then we define the average emission probability
S over the set of W n-grams as :

5= Zizo Piin [1]
w
We note Sp(u) and S (u), respectively, the average probabilities processed before
and after the targeted message, for the same user u. The final score S(u) for user u
corresponds to their difference :

S(u) = Sa(u) - Sp(u) [2]
This score is processed for every respondent to a message in a window of fixed

length after the message. We then compute our feature by averaging this score over all
the responding users.

4. Experiments
In this section we will describe the data used in our experiments (Subsection 4.1),

the experimental protocol we applied to the data (Subsection 4.2), and finally discuss
the results obtained with our proposed system (Subsection 4.3).
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4.1. Dataset

We have access to a database of user in-game interactions for the SpaceOrigin
MMO. This user-generated content was manually verified, in the sense the game users
had the ability to flag parts of the content as inappropriate (i.e. abusive). There are
many types of reportable contents, but, in this paper, we focus on two of them :
ingame-messages and chat-messages, collectively referred to as messages.

Ingame-messages are on-line messages with a clearly defined reach. They are the
equivalent of e-mails and can be sent to specific users or groups of users. They can
be edited a posteriori by moderators when an abuse case is reported. The reach of
chat-messages is loosely defined because it is limited to users currently active in a
chatroom. However, there is no way to determine which user has actually seen a spe-
cific chat-message based on the available data. Users are fed recent scroll history for
a chatroom upon joining, but it is not possible to reliably determine who has joined
when from the chat logs. Chat-messages cannot be edited by moderators afterwards.

The database contains 474, 599 in-game messages and 3, 554, 744 chat-messages.
We extract 779 abusive messages (0.02%), which constitute what we call the Positive
Class (Class 1) of messages. These messages were first flagged by the game users
using a built-in reporting tool, and then confirmed as being abuse cases by the game
community moderators. Of these 779 abusive messages, 14% are ingame-messages,
and the rest are chat-messages. We then extract non-abuse messages from the data-
base, in order to constitute the so-called Negative Class (Class 0). They are chosen at
random from a pool of messages written by users which have never been flagged by a
confirmed abuse report. For each message, we also gather context data : a window of
messages occurring before and after each message.

We run the experiments with different versions of the corpus : in-game messages
only (iM), chat-messages only (cM) and messages of both types combined (iM+cM).
Since the non-abuse class of message is chosen automatically at random from the
database, we also experiment with different number of messages in that class. We run
experiments with balanced classes (noted B), where the number of "abuse" messages
equals that of "non-abuse" ones ; and with unbalanced classes (noted U) where the
number of "non-abuse" messages is twice that of "abuse" ones. Those numbers are
listed in Table 1.

Experiment | Abusive Messages | Non-Abusive Messages
iM+cM U 779 1558
iM+cM B 779 779
iMU 111 222
iM B 111 111
cMU 668 1336
cM B 668 668

Tableau 1 : Corpus sizes depending on the considered experimental setup.
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Bag Of Words Features
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Naive Bayes Classifier
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i

SVM Classifier

Figure 2 : The full experimental setup

4.2. Experimental Setup

Our experiment is designed as a multi-stage classifier pipeline, as described in Fi-
gure 2 (each box corresponds to a stage). The first stage (Raw Messages) consists in
building the corpus. Messages from both the Abuse and Non-abuse classes are ex-
tracted from the database as explained in Subsection 4.1. The corpus is then split into
a Train set containing 70% of the messages, and a Test set containing the remaining

30%.

In the second stage (Bag of Words Features), messages are normalized, tokenized
and converted into Bags of Words (BoW). In the third stage (Naive Bayes Classi-
fier), the BoW representations of the Train messages are used to build a Naive Bayes
classifier. This classifier is then used to generate predictions for the class of the Test
messages. The output of this classifier is fetched as a feature to the SVM classifier,
described below.

In the fourth stage (Feature Extraction), we extract the features described in Sec-
tion 3 from the messages. As explained also in Section 3, some of these features are
derived from the messages before any normalization or preprocessing, whereas some
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features require a specific preprocessing. We then use another classifier, a Support
Vector Machine (SVM). We could directly feed the BoW to the SVM. However, gi-
ven the size of the vocabulary in our experiments, this would lead to a dimensionality
issue, with a number of features greatly exceeding the number of instances in the
corpus. Therefore, we prefer to consider the decision from the Naive Bayes classifier
(third stage) as an additional feature given to the SVM. All the features, including the
Naive Bayes decision, are gathered into an array.

The fifth stage (SVM Classifier) is the final classification : the feature arrays from
the Train set are fetched to an SVM classifier, and the resulting model is then used to
generate class predictions for the Test set.

4.3. Results

We evaluate the performance of our proposed abusive message detection system
in terms of the traditional Recall, Precision and F'-Measure, defined below :

TP
Recall = 5= FN 3]
TP
Precision = ———— 4
recision TP+ FP (4]

Precision - Recall
F =92. 5
measure Precision + Recall (5]

where TP, F'P and F'N are the numbers of True Positives (number of abusive mes-
sages correctly classified as abusive), False Positives (number of non-abusive mes-
sages incorrectly classified as abusive), and False Negatives (number of abusive mes-
sages incorrectly classified as non-abusive), respectively.

Given the relatively low number of abusive samples of the targeted corpus, the
whole dataset was split into 10 parts and every result given in this section is the average
value over a 10-fold cross validation. We use the notations defined in Table 1, i.e. : U
for unbalanced classes, B for balanced ones, iM for ingame-messages only, cM for
chat-messages only and iM+cM for all messages at once.

Table 2 and 3 present the results obtained when using only our content-based fea-
tures, with the Naive Bayes classifier and the SVM, respectively. Table 4 displays the
results obtained with the SVM when considering both content and context-based fea-
tures. We could not process all the possible cases because of the high computational
cost of this approach.

The behavior observed in Tables 2 and 3 is quite similar. The results are clearly
better for balanced classes than for unbalanced ones, be it for cM, iM or cM+iM, with
both Naive Bayes and the SVM. It is particularly strong for the precision obtained
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Data Recall | Precision | F'-Measure
iM+cMU | 0.656 0.650 0.653
iM+cMB | 0.674 0.761 0.715
iMU 0.585 0.433 0.498
iMB 0.718 0.739 0.724
cMU 0.590 0.737 0.656
cMB 0.645 0.785 0.708

Tableau 2 : Classification results with a Naive Bayes classifier using BoW features
(Baseline).

on iM. So our first observation is that the performances are clearly better when we
process a balanced dataset, even if this amounts to using less data. In the rest of our
discussion, we consequently focus on the results obtained on balanced classes.

| Data | Recall | Precision | F-Measure |
iM+cMU | 0.696 0.662 0.679
iM+cMB 0.731 0.765 0.748
iMU 0.625 0.458 0.529
iMB 0.697 0.718 0.707
cMU 0.658 0.747 0.700
cMB 0.705 0.793 0.747

Tableau 3 : Classification results with a SVM classifier using content features only.

We now focus on the effect of the message type (only on balanced classes). In the
case of Naive Bayes, the Recall is better for ingame-messages, whereas the precision
is better for chat-message. For the SVM, we observe that the Recall is about the same,
whereas the Precision is better for chat-messages. So, the type of message does appear
to affect the performance. When combining both types of messages (iM+cM), the
resulting performance is similar to that of the chat-messages only so it seems like
there is not downside to grouping the types. Finally, the disappointment comes from
the performances obtained when incorporating our context-based features (Table 4).
Indeed, no improvement in terms of performance has been observed. It would seem
that the features linked to the context, in the way that we made it, do not incorporate
information in addition to the content ones.

Data Recall | Precision | F'-Measure
iM+cMU | 0.701 0.663 0.681

Tableau 4 : Classification results using both content and context features.

Let us now compare both classifiers. When considering the Recall, the SVM is
always at least as good, and generally better, as Naive Bayes. The difference is es-
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Figure 3 : Precision and Recall by varying a threshold on the posterior probability of
the SVM classifier on the abusive message class.

pecially strong for cM (0.705 vs. 0.645). For the Precision too, the SVM classifier
dominates, but with a smaller margin (0.765 vs. 0.761 on the iM+cM data).

Previous experiments showed that, even if acceptable results could be obtained
with our abusive message detection system (best F'-measure of more than 70%), per-
formance is still not good enough to be directly used as a fully automatic system that
replaces human moderation. Nonetheless, we think that this system could be useful to
help moderators to focus on messages considered has potentially abusive, instead of
having to analyze all messages. In this context, Figure 3 presents the curve obtained (in
terms of precision and recall) using our proposed combined content-context approach,
by varying a threshold on the posterior probability of the SVM classifier on the abusive
message class. For example, a threshold of 0.8 means that if the classifier associates
a posterior probability greater than 0.8 to a message for the abusive class, then the
abusive class is chosen (otherwise, the message is considered as a non-abusive one).
This posterior probability is obtained using SKlearn’s Platt Scalling implementation
(Platt et al., 1999).

As expected, we can see that the posterior probability is an interesting information
to take into consideration depending on the targeted application. Indeed, if the targe-
ted application requires to be very precise in the decision to take (i.e. be sure that the
message is abusive), such as a fully automatic system, then a higher threshold should
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be used, with a loss in terms of retrieved abusive messages (i.e. lower recall). On the
contrary, if the targeted application wants to recover as many abusive messages as pos-
sible, such as a moderator helper, then a lower threshold should be used, which will
have the effect of having a higher recall (more abusive messages are retrieved) asso-
ciated to a lower precision (more non-abusive messages will be wrongly considered
by the automatic system as abusive).

5. Conclusion

In this paper we developed a system to classify abusive messages from an on-line
community. It is developed on top of a first-stage Naive Bayes classifier and relies
on multiple types of features : morphological features, language features and context
features, that have proven useful in previous research. We added several features that
we derived directly from observations of our corpus, and developed a context feature
that aims to capture abnormal reactions from users caused by an abusive message.

This preliminary work shows that abusive messages, in their particular form, have
characteristics that can be caught by an automatic system, our proposed system achie-
ving a recall of 70% with a precision of 66% on our dataset, with a false positive rate
10%. While the performance of the system is not yet good enough to be deployed
as an automated moderation tool, this can already help moderators to focus on mes-
sages being identified as abusive, with then a manual verification. However, because
some features used in the system are specific to the community in which it is meant to
operate, care must be taken when adapting the system to work on a different dataset.

We now plan to pursue our work in several ways. First, we will experiment with
computationally more demanding preprocessing methods, and evaluate their contribu-
tion to the classifier performance. One such approach is the HMM-based preprocessor.
(Lee et Ng, 2005) Second, we want to derive variants of our Markov chain-based fea-
ture, and assess which one is the most appropriate in our situation. More generally, we
want to propose other context-based features, especially ones based on the network of
user interactions.
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