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Lp ALMOST CONFORMAL ISOMETRIES OF
SUB-SEMI-RIEMANNIAN METRICS AND
SOLVABILITY OF A RICCI EQUATION

ERWANN DELAY

Abstract. Let M be a smooth compact manifold without bound-
ary. We consider two smooth Sub-Semi-Riemannian metrics on M .
Under suitable conditions, we show that they are almost confor-
mally isometric in an Lp sense. Assume also that M carries a
Riemannian metric with parallel Ricci curvature. Then an equa-
tion of Ricci type, is in some sense solvable, without assuming any
closeness near a special metric.
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1. Introduction

The goal of this note is to prove that the two principal results of
D. DeTurck [11] given for positive definite symmetric bilinear form and
for special Einstein metrics can be extended significantly in different
ways.

Firstly, we can extend the positive definideness condition of the Rie-
mannian metrics to Sub-Semi-Riemmannian metrics with the same
rank and signature.

Secondly we are able to replace some particular Einstein metrics of
non zero scalar curvature by any parallel Ricci metrics (ie. metrics
with covariantly constant Ricci tensor).
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2 E. DELAY

Let M be a smooth compact manifold without boundary. A Sub-
Semi-Riemannian metric G (SSR-metric for short) is a symmetric co-
variant 2-tensor field with constant signature and constant rank.

Let us now state the first result, interesting by itself, about almost
conformal isometries.

Lemma 1.1. Assume that G and G are two smooth SSR-metrics on
M with the same rank and signature. Let g be a smooth Riemmannian
metrics on M , let p ∈ [1,∞) and let ε > 0. Then there exist a smooth
diffemorphism Φ and a smooth positive function f such that Φ∗(fG)−G
is ε-close to zero in the Lp norm relative to g.

Before going to the application for a Ricci equation, let us introduce
some notations. For (M, g) a smooth riemannian manifold, we denote
by Ric(g) its Ricci curvature. For a real constant Λ, we consider the
operator

Ein(g) := Ric(g) + Λg.

This operator is geometric in the sense that for any smooth diffeomor-
phism ϕ,

ϕ∗ Ein(g) = Ein(ϕ∗g).

We would like to invert Ein. We thus choose E a symmetric 2-tensor
field on M , and look for g Riemannian metric such that

Ein(g) = E . (1.1)

This is a geometrically natural and difficult quasilinear system to solve,
already for perturbation methods. The prescribed Ricci curvature
problem has a long history starting with the work of D. DeTurck [9],
[11], [10], [13], [12], [1], [14], [2], [3], [6], [8], [7], [5], [4],...

Motivated by the explosion of studies around the Ricci flow, and
recently, some discrete versions thereof (eg. Ein(gi+1) = gi), a renewed
interest arises for this kind of natural geometric equations. We invite
the reader to look at the nice recent works of A. Pulemotov and Y.
Rubinstein [16] and [17] for related results. Our contribution here is
the following.

Theorem 1.2. Assume that M carries a Riemannian metric g with
parallel Ricci tensor. Let Λ ∈ R such that Ein(g) is non degenerate,
and that −2Λ is not in the spectrum of the Lichnerowicz Laplacian of
g.1 Then for any E ∈ C∞(M,S2) with the same rank and signature as
Ein(g) at each point of M , there exist a smooth positive function f and
a Riemannian metrics g in C∞(M,S2) such that

Ein(g) = f E .

The proof goes by combining the Lemma 1.1 , the local inversion
result of Proposition 3.1 for weak regular metric (where the conformal

1Like D. Deturck [11], we may allow an eigenspace spanned by g when Λ = 0
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factor f is not required) and a regularity argument. We have then
solved the problem up to a positive function f . Here we do not expect
that f can be taken equals to one in general, this will be the subject
of future investigations.

Parallel Ricci metrics, are (locally) products of Einstein metrics (see
eg. [18]). They exists on the simplest examples of manifolds who do not
admit Einstein metrics, like S1×S2, Σg×S2, (g ≥ 1) or Σg×T2, (g ≥ 2)
where Σg is a surface of genius g. They are also static solutions of some
geometric fourth order flows (eg. ∂tg = ∆g Ric(g)). Finally they are
particular cases of Riemannian manifolds with Harmonic curvature (or
equivalently Codazzi Ricci tensor).

Our global result show once again that such metrics with covariantly
constant Ricci tensor deserve a particular attention.

Acknowledgments : I am grateful to Philippe Delanoë for com-
ments and improvements, and to Alexandra Barbieri and François
Gautero for the picture of the simplex.

2. Lp closeness of some Sub-Semi-Riemannian metrics

We follow the section 3 called ”approximation lemma” in [11] in
order to verify that all the step there can be adapted for SSR-metrics
as above. This will prove the Lemma 1.1.

We will keep almost the same notations as in [11], just replacing S
and R there respectively by G and G here.

Let G and G be as in the introduction, we thus assume they have the
same signature and the same rank. For the rest of the section we fix
a Riemannian metric g, an ε > 0 and p ∈ [1,+∞). All the measures,
volumes, and norms are understood with respect to g.

At each point x ∈M , the two SSR-metric G and G having the same
rank and signature, there exists an orientation preserving automor-
phism ux of TxM , such that

Gx(ux(.), ux(.)) = Gx(., .).

For x ∈ M , the following construction can be performed using the g-
exponential map at x. There exists an open set Ux such that :

(i) Ux is contained in a coordinate neighborhood of x where in this
coordinate (centered at 0), up to a positive automorphism ux of TxM ,
G is equal to G at x:

tux Gx ux = Gx,

(ii) For any positive real αx, the linear change of coordinates

Φx :=
√
αx ux
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satisfies on Ux the estimate (the left hand side of which does not depend
upon αx, and vanishes at the origin),

∣∣∣∣(Φ∗x 1

αx

G)y −Gy

∣∣∣∣p ≤ min

(
εp

2Vol(M)
, |Gy|p

)
. (2.1)

We consider a triangulation of M where each simplex S lies in the in-
terior of some Ux with x ∈ S̊. Since the point x belong to the interior
of the simplex S, shrinking αx if necessary, we are sure that Φx send S
into S (the norm of Φx approaches zero when αx tends to zero).

Let Ω, Ω1, Ω2, Ω3 be some open neighbourhoods of the (n−1) dimen-
sional skeleton (composed with union of the boundary of all simplex)
with the properties :

Vol(Ω) <
εp

2(maxM |G|+ 2 maxM |G|)p
,

and

Ω3 ⊂ Ω3 ⊂ Ω2 ⊂ Ω2 ⊂ Ω1 ⊂ Ω1 ⊂ Ω.

The rest of the proof in section 3 of [11] is based on triangular inequal-
ities between norms of tensors and can be implemented here without
any change. For a better understanding, though, we provide further
details of the figure page 368 of [11], specifying the estimates that occur
on the differents parts of the simplex, see figure 1. On the picture, we
have denoted the error |Φ∗(fG)−G| by e :

e = |Φ∗(fG)−G|.

On the inner part T of the simplex, e is estimated by (2.1). The tran-
sition of the diffeomorphism Φ, on the middle ring R2 = S ∩ (Ω1\Ω2),
from Φx to the identity, still exist because our Φx =

√
αx ux is an

orientation preserving map with norm less than 1 as in [11].
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Figure 1. The simplex S with the values of f and Φ,
and the estimates of e.

Exemple 2.1. The simplest non trivial example consists of a product
of manifolds M = X × Y × Z with the two SSR-metrics of the form

G(x, y, z) = −gX ,y,z(x)⊕ gY,x,z(y)⊕ 0Z ,

where gX ,y,z is a family of Riemannian metrics on X , depending on the
parameters y, z and smooth in all of its arguments. Here, any of the
three manifolds but one may be reduced to a point.

3. Solvability of a Ricci type equation

We revisit the section 2 of [11] called “perturbation lemma”.

We first need to introduce some operators. The divergence of a
symmetric 2-tensor field and its L2 adjoint acting on one form are

(δh)j := −∇ihij , (δ∗v)ij :=
1

2
(∇ivj +∇jvi).
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The gravitationnal operator acting on symmetric 2-tensors is

G(h) := h− 1

2
Trg(h)g.

The Lichnerowicz Laplacian is 2

∆L = ∇∗∇+ 2 Ric−2 Riem .

It appears in the Linearization of the Ricci operator :

DRic(g) =
1

2
∆L + δ∗δ G.

The Hodge Laplacian acting on one forms is

∆H = ∆ + Ric = ∇∗∇+ Ric = d∗d+ dd∗.

We also define the following Laplacian

∆V := 2 δ G δ∗ = ∇∗∇− Ric = ∆H − 2 Ric .

We denote by V its finite dimensionnal kernel, composed of smooth
one forms (by elliptic regularity).

We start with the equivalent of proposition 2.1 in [11].

Proposition 3.1. Let (M, g) be a smooth Riemannian manifold with
parallel Ricci curvature. Let Λ ∈ R such that Ein(g) is non degenerate
and that −2Λ is not in the spectrum of the Lichnerowicz Laplacian. Let
k ∈ N and p > n. Then for any E close to Ein(g) in Hk+1,p(M,S2),
there exist a Riemannian metrics g in Hk+1,p(M,S2) such that

Ein(g) = E .

In [11], the proof of the corresponding proposition is given by a suc-
cession of lemmas. We thus revisit them one after the other. Some care
is needed because we have to replace Ric and −∆L there, respectively
with Ein and ∆L + 2Λ here. Furthermore, in our context, the operator
∆L + 2Λ has no kernel whereas the kernel of ∆L is nonempty in [11],
spanned by g. We clearly have also for any Riemannian metrics g, the
Bianchi identity

δG(Ein(g)) = 0.

We start with a local study of the action of the diffeomorphim group
on the covariant symetrics 2-tensors, near a non degenerate parallel
one. The result obtained remains in the spirit of the local study near
a Riemmanian metric by Berger, Ebin, or Palais (see eg. the lemma
2.3 of [11]). Here the metric tensor is replaced by a non degenerate
parallel tensor field.

2Different sign convention with DeTurck
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Lemma 3.2. Let E be a smooth, non degenerate and parallel sym-
metric two tensor field. Let X be a smooth Banach submanifold of
Hk,p(M,S2), whose tangent space at E is a complementary of δ∗(Hk,p(M, T1)).
Then for any E close enough to E in Hk,p(M,S2), there exist an Hk+1,p

diffeomorphism Φ close to the identity such that Φ∗E ∈ X .

Proof. The tensor field E being parallel, its Lie derivative in the direc-
tion of a vector field v is

LvE = 2δ∗(Ev).

Locally, the submanifold X can be seen as the image of an immersion
X : U −→ Hk,p(M,S2), with X(0) = E. We define T ⊥ to be the set
of vector fields v ∈ Hk+1,p(M, T1) such that E v is L2-orthogonal 3 to
ker δ∗.

Let
F : U × T ⊥ ×Hk,p(M,S2) −→ Hk,p(M,S2),

defined by
F (k, Y, E) = Φ∗Y,1(E)− X(k),

where ΦY,1 is the flow of the vector field Y at time 1. We have
F (0, 0, E) = 0 and the linearisation of F in the first two variables
is

D(k,Y )F (0, 0, E)(l, X) = 2δ∗(EX)−DX(0)l.

Now because

Hk,p(M,S2) = δ∗(Hk+1,p(M, T1))⊕ Im DX(0),

and E is non degenerate, then D(k,Y )F (0, 0, E) is an isomorphism.
From the implicit function theorem, for E close to E, there exist k
and Y small such that F (k, Y, E) = 0. �

Let us recall the lemma 2.5 in [11] :4

Lemma 3.3. For k ≥ 1, we have

Hk,p(M,S2) =
(ker δG ∩Hk,p(M,S2))

δ∗(V )
⊕ δ∗(Hk+1,p(M, T1))⊕Gδ∗(V ).

The equivalent of the lemma 2.6 in [11] becomes (we do not have to
quotient by Rg because of no kernel for us, and so we do not need to
adjust with a constant c).

Lemma 3.4. Suppose k ≥ 0, p > n, and g satisfies the hypotheses of
theorem 1.2 let

K =
(ker δG ∩Hk+2,p(M,S2))

δ∗(V )
⊕Gδ∗(V )

3closed complementary suffice
4It seems there is a misprint in the proof this lemma: The Ricci term for δGδ∗

at the top of page 362 in [11] has a different sign.
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and define F : K −→ Hk,p(M,S2) by5

F (b) := Ein(g + b).

Then for some neigbborood U of 0, F (U) is a Banach submanifold of
Hk,p(M,S2) whose tangent space at F (0) = Ein(g) is a complementary
space of δ∗(Hk+1,p(M, T1)).

Proof. We have to show that the derivative of F at g is injective and its
image has the closed subspace δ∗(Hk+1,p) as complementary. A metric
with parallel Ricci tensor is a local Einstein product so is smooth. We
first show that the spaces Im δ∗ and ker δG are “stable” (modulo two
points of regularity) by ∆L+2Λ but also by DEin(g) (when the metric
is Ricci parallel). Indeed, recall that in that case [15]:

δ∆L = ∆H δ,

and the adjoint version :

∆L δ
∗ = δ∗∆H .

We deduce that

(∆L + 2Λ) δ∗ = δ∗ (∆H + 2Λ) = δ∗ (∆V + 2 Ein),

and

DEin(g) δ∗ =
1

2
δ∗ (∆H + 2Λ) +

1

2
δ∗∆V = δ∗ (∆V + Ein) = δ∗ (∆ + Λ)

thus the “stability” of Im δ∗ by the two operators above.
When restricted on the kernel of δ G, we trivially have

DEin(g) =
1

2
(∆L + 2Λ),

but also, by linearising δ G Ein(g) = 0 for instance,

δ G (∆L + 2Λ) = 0,

then the stability of ker δ G.
We can also remark that with the formula above, if v ∈ V ,

(∆L + 2Λ)(δ∗v) = 2δ∗(Ein v) = 2 Ein δ∗v

and
DEin(g)(δ∗v) = δ∗(Ein v) = Ein δ∗v.

For any function u, it is well known that ∆L(ug) = (∆u)g, so

(∆L + 2Λ)(d∗w g) = [(∆ + 2Λ)d∗w]g = [d∗(∆H + 2Λ)w]g.

We obtain that

(∆L + 2Λ)Gδ∗ = Gδ∗(∆H + 2Λ).

If v ∈ V , we deduce

(∆L + 2Λ)Gδ∗v = Gδ∗(2 Ein v).

5To avoid ambiguities, we may take any fixed closed complementary W to δ∗(V )
in ker δG ∩Hk+2,p(M,S2) instead of the first factor of K



Lp ALMOST CONFORMAL ISOMETRIES AND RICCI OPERATOR 9

Assume that −2Λ is not an eigenvalue of ∆L, then ∆L + 2Λ is an
isomorphism from Hk+2,p(M,S2) to Hk,p(M,S2). The image of the
splitting in Lemma 3.3 by ∆L + 2Λ produce:6

Hk,p(M,S2) =
(ker δG ∩Hk,p(M,S2))

δ∗(EinV )
⊕δ∗(Hk+1,p(M, T1))⊕Gδ∗(EinV ).

The two first factors are the same than the image by DEin(g) of the
corresponding spaces in Lemma 3.3. Let us study the image of third
one. For v ∈ V , we compute

δ∗δGGδ∗v = δ∗δG(δ∗v +
1

2
d∗v g) =

1

2
δ∗δG(d∗v g) =

2− n
4

δ∗δ(d∗v g)

=
n− 2

4
δ∗dd∗v =

n− 2

2
δ∗δδ∗v = −Gδ∗δδ∗v. (3.1)

We deduce for instance that

DEin(g)Gδ∗V =

[
Gδ∗(Ein .) +

n− 2

2
δ∗δδ∗

]
V. (3.2)

Let us define

F := δ∗(Hk+1,p(M, T1))⊕Gδ∗(EinV ).

We now prove that

F = δ∗(Hk+1,p(M, T1))⊕DEin(g)Gδ∗V. (3.3)

The fact that F is the sum of the two factors is clear by (3.2). Let w
in the intersection of the two factors, so

w = δ∗u = Gδ∗ Ein v + δ∗δδ∗
n− 2

2
v,

for some u ∈ Hk+1,p(M, T1) and v ∈ V . Because of the decomposition
of F , we deduce that Gδ∗ Ein v = 0 thus (∆L + 2Λ)Gδ∗v = 0, then
Gδ∗v = 0 and finally, by (3.1), n−2

2
δ∗δδ∗v = 0 so w = 0. We have

obtained

Hk,p(M,S2) = Im DF (0)⊕ δ∗(Hk+1,p(M, T1)).
We claim that DF (0) is injective. Indeed, let h in the kernel of DF (0),
then h = [u] + Gδ∗v with [u] in the first summand of K. Thus [∆L +
2Λ][u] + DEin(g)Gδ∗v = 0 so because of the decomposition (3.3), we
obtain [∆L + 2Λ][u] = DEin(g)Gδ∗v = 0. Its implies [u] = 0 and from
equation (3.2), v ∈ Gδ∗ EinV ∩ δ∗(Hk+1,p(M, T1)) = {0}, so h = 0. �

From the Lemma 3.2 with E = Ein(g) and Lemma 3.4 we directly
deduce :

Lemma 3.5. If E ∈ Hk,p and |E − Ein(g)|k,p < ε, then there exist a
metric g ∈ Hk+2,p and a diffeomorphism ϕ ∈ Hk+1,p for which Ein(g) =
ϕ∗E.

6Here also we have to replace the first factor by (∆L + 2Λ)W when a choice of
W was made in the first factor of K.
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We will complete the proof of proposition 3.1, where now E ∈ Hk+1,p,
but g and ϕ still cames from Lemma 3.5 so ϕ is a priori not regular
enough. If we inspect the pages 364-365 in [11] we can see that we just
have to change Ric(g) by Ein(g) to obtain that ϕ is in fact in Hk+2,p.
We conclude that (ϕ−1)∗g ∈ Hk+1,p and has E as its image by Ein. At
this level we also use that Ein(g) is non degenerate (see equation (2.8)
there).

The Theorem 1.2 is now a direct consequence of the Lemma 1.1, the
Proposition 3.1 with k = 0, and the regularity result of [12].

Exemple 3.6. Recalling that the Ricci curvature of a product of Rie-
mannian manifolds is the direct sum of the Ricci curvatures of each
factors, we see that a product of Einstein manifolds clearly satisfies the
assumption of the Theorem 1.2. The simplest example combining the
3 possibilities of Einstein constants is the following. Let us consider
three compact Einstein manifolds (X , g−), (Y , g+), (Z, g0) with Ricci
curvatures given by Ric(g−) = −g−, Ric(g+) = g+, Ric(g0) = 0. Then
M = X × Y × Z endowed with

g = g− ⊕ g+ ⊕ g0,
has parallel Ricci curvature equal to

Ric(g) = −g− ⊕ g+ ⊕ 0.

In this example, the kernel of ∆L contains the parallel tensors

h = c−g− ⊕ c+g+ ⊕ c0g0,
for any constants c−, c+, c0. Here, we only have to choose Λ in order to
destroy this kernel and make Ein(g) non degenerate.
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