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NON-SINGULAR SPACETIMES WITH A NEGATIVE
COSMOLOGICAL CONSTANT: II. STATIC SOLUTIONS OF
THE EINSTEIN-MAXWELL EQUATIONS

PIOTR T. CHRUSCIEL AND ERWANN DELAY

ABSTRACT. We construct infinite-dimensional families of non-singular
static space times, solutions of the vacuum Einstein-Maxwell equations
with a negative cosmological constant. The families include an infinite-
dimensional family of solutions with the usual AdS conformal structure
at conformal infinity.
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1. INTRODUCTION

A class of spacetimes of interest is that of metrics satisfying the Einstein-
Maxwell equations with a negative cosmological constant and admitting a
smooth conformal completion at infinity. It is natural to seek for static
solutions with this property. In this paper we show that a large class of
such fields can be constructed by prescribing the conformal class of a static
Lorentzian metric and the asymptotic behaviour of the electric field on the
conformal boundary 0.7, provided that the boundary class is sufficiently
close to, e.g., that of anti-de Sitter spacetime and the freely prescribable
leading coefficient in an asymptotic expansion of the electric potential is
sufficiently small. This complements our previous work on vacuum metrics
in [7], which we think of as paper I in this series.
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2 P.T. CHRUSCIEL AND E. DELAY

The key new difference of the current result, as compared to [3,4,7], is
that we can drive the solution with the electric field maintaining, if desired,
a conformally flat structure at the conformal boundary at infinity.

We thus seek to construct Lorentzian metrics g, solutions of Einstein-
Maxwell equations with a negative cosmological constant A, in any space-
dimension n > 3. More precisely, we consider the following field equations
for a metric

g = gudatdx”
and a two-form field F' in space-time dimension n + 1, n > 3 generalising
the Einstein-Maxwell equations in dimension 3 + 1 as

Tr Ric(g)
2
where Tr denotes a trace with the relevant metric (which should be obvious

from the context), (F o F)qpg := g" FouFay, and

(F,F) = g*Pg" F,, Fp, = |F|?.
This is complemented with the Maxwell equations
(1.2) divg ' =0 = dF'.

We further assume existence of a hypersurface-orthogonal globally timelike
Killing vector X = 9/90t. In adapted coordinates the space-time metric can
be written as

1
(1.1) Ric(g) — g+Ag="FoF —(F Fg,

(1.3) g=-V2dt? + gl-jdxidxj ,
——
=g
We further assume that the Maxwell field takes the form
(1.5) F =dUdt), o0U=0.

Our main result reads as follows (see Section 2 below for the definition of
non-degeneracy; the function p in (1.7) is a coordinate near the conformal
boundary at infinity M that vanishes at dM ):

THEOREM 1.1. Let n =dim M > 3, k € N\ {0}, o € (0,1), and consider
an Einstein metric § as in (1.3)-(1.4) with strictly positive V. =V, g = §,
such that the associated Riemannian metric § = ‘Q/'Qdch +§onStx M
is C?-compactifiable and non-degenerate, with smooth conformal infinity.
For every smooth (7, sufficiently close to zero in C**2%(OM), there exists
a unique, modulo diffeomorphisms which are the identity at the boundary,
solution of the static Finstein-Maxwell equations of the form (1.3)-(1.5) such
that, in local coordinates near the conformal boundary OM ,

(1.6) V-V =0(), gj—23g;=001),
- O(p), n=3;
(1.7) U=U+<S O(p*lnp), n=4;
O(p?), n>5.
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REMARK 1.2. We have emphasised the freedom to choose the leading-order
behaviour U of U. As such, the leading-order behaviour of both V and g is,
similarly, freely prescribable near a non-degenerate solution [4,7]. Here one
can, if desired, proceed in two steps: first, find the static solution with new
fields V and g near a non-degenerate solution; small such perturbations will
preserve non-degeneracy. One can then use Theorem 1.1 at the perturbed
static solution to obtain a new U. O

The (n + 1)-dimensional anti-de Sitter metric is non-degenerate in the
sense above (see eg. [4] appendix D), so Theorem 1.1 provides in particular an
infinite dimensional family of solutions near that metric. We note existence
of further large classes of Einstein metrics satisfying the non-degeneracy
condition [1,2,4,13].

The requirement of strict positivity of V excludes black hole solutions, we
are hoping to return to this question in a near future. In fact, this work was
prompted by [12], where static Einstein-Maxwell black holes solutions driven
by the asymptotics of the electric field have been discovered numerically.

Similarly to [12], for generic U the resulting space-time metric will have
no isometries other than time-translations.

When the free boundary data U are smooth and when g is conformally
smooth, the solutions constructed here will have a polyhomogeneous expan-
sion at the conformal boundary at infinity. The proof of this is an immedi-
ate repetition of the argument presented in [7, Section 7], where the reader
can also find the definition of polyhomogeneity. The decay rates in (1.6)-
(1.7) have to be compared with the local-coordinates leading-order behavior
p~2 both for V2 and gij- A more precise version of (1.6)-(1.7) in terms
of weighted function spaces (we follow the notation in [7,13]) reads, in all
dimensions,

(1.8) (V—V) ey (M), (g—§) € CyT*(M,Ss),
(1.9) U-U e M),

and the norms of the differences above are small in those spaces. To this
one can add, in dimensions n > 4,

(1.10) U—U—Upp*lnp e CE2(M),

with the function Uy, € C*°(S! x M) given by (5.4) below when n = 4, and
U = 0 in dimension n > 5. Interestingly enough, in dimension n = 4 the
function Uy, vanishes only when dU = 0, hence the space-time is vacuum,
see Remark 5.3 below.

The proof of Theorem 1.1 can be found at the end of Section 5. It follows
closely [7], and proceeds through an implicit-function argument, with the
key isomorphism properties of the associated linearised operator borrowed
from [7,13], and presented in Section 3.

We note that a constant U implies vacuum, by uniqueness of solutions.
Hence the energy density of the Maxwell field behaves as p* for small p
if not identically zero (cf. (A.14) below), which leads to finite-total-energy
configurations in space-dimensions n = 3 and 4, but infinite matter energy
in higher dimensions.
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2. DEFINITIONS, NOTATIONS AND CONVENTIONS

Our definitions and conventions are identical to those in [7, Section 2].

Here we simply recall that the Lichnerowicz Laplacian acting on a symmetric
two-tensor field is defined as [6, § 1.143]

Aphij = —VFVihi; + Righ®; + Riph®; — 2Ry M
The operator Ay, + 2n arises naturally when linearising the equation
(2.1) Ric(g) = —ng.
where Ric(g) is the Ricci curvature of g, at a solution. We will say that a

metric is non-degenerate if Ar, + 2n has no L?-kernel.

3. ISOMORPHISM THEOREMS

In this section we recall two isomorphism results from [7, Section 3] and
prove an isomorphism theorem on scalars, as needed in the remainder of this
work. The reader might also want to consult the introductory comments
in [7, Section 3|, which remain valid in the current context.

3.1. An isomorphism on two-tensors. We will need [7, Corollary 3.2]:

COROLLARY 3.1. Let (S' x M, V2dp? + g) be an asymptotically hyperbolic
non-degenerate Riemannian manifold with 0,V = 0 = 0,g. Consider the
map
(W, h) = (W, h), LW, h)),

where
(3.1)  IW,h) =V[(V*V+2n+V IV'VV + V 2dV ) )W

+VTIVVVIW — VNI VYAV Ry + (Hessy Vi b))
and

(32)  Ly(W,h) = %ALhij + nhi; — %V—lv’“vvkh,j
—i—%V‘Q(ViVVthkj + V;VV V)
—%V—l(viv’wh,ﬁ + ViV )
+2V 7AW (Hess, V)ij — 2V 3V, VV, VIV .

Then (I,L) is an isomorphism from Cfff’a(M) X C§+2’O‘(M, S2) to

Cy (M) x CY* (M, S2) when § € (0,n).

3.2. An isomorphism on one-forms. We will also need [7, Corollary 3.5]:

COROLLARY 3.2. Let k € N, a € (0,1). Under the hypotheses of Corol-
lary 3.1, suppose moreover that the Ricci tensor of V2dp? + g is negative.
Consider the operator

Q; = B(Q); + Ry — VIV, VIVQ; = B(Q),,
where

B(Q); == ViV, + VIVAIY VL — VRV, VVRV QL
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Then B is an isomorphism from Cy ™ >*(M,Tp) to Cy*(M,T1) when 0-%] <
VY +1L

3.3. An isomorphism on functions. If we assume that V2dg? + g is a
static asymptotically hyperbolic metric on S* x M, then it is easy to check
that

(3.3) V=2dV|? - 1 and V-IVIV,V = n

as the conformal boundary is approached. We will need an isomorphism
property for the following operator acting on functions with s = —1; in [7]
the result has already been established with s = —3 and s = 3, so for future
reference it appears useful to consider all values of s:

o Teo =V VY(V*V,0) = V'Vio 4+ sV V'V V0.

THEOREM 3.3. Let (M, g) be an n-dimensional Riemannian manifold with
an asymptotically hyperbolic metric with V- > 0 and assume that (3.3) holds.
Let s 21 —n and suppose that
s+n—1—|s+n-—1| s+n—1+|s+n—1|
<6< .
2 2

If s > ==L then T, is an isomorphism from C§+2’G(M) to Cf’a(M). If
s < ==L then T is an isomorphism from C§+2’O‘(M)/R to

(3.4) {a e che () /M Vo = o} .

Proof. When s +n —1 > 0, we can use [5, Theorem 7.2.1 (ii) and Remark
(i), p. 77] to conclude. As we want the result for any s # 1 — n, for the
remaining cases we appeal to the results of Lee [13]. For this we need a

formally self-adjoint operator, so we set o = V3 f, thus

(3.5)

To = V3 [vivif - g <(§ —)V2av)? + V*lviviv) f} — VTITLS.

By assumption V=2|dV|*> — 1 and V~!V'V;V — n at the conformal bound-
ary, leading to the following indicial exponents for T%:

- n—1%[s+n—1|

= 5 .

We want to show that T satisfies condition (1.4) of [13],

(3.6) [ull L2 < ClTsull 2,

for smooth u compactly supported in a sufficiently small open set &/ C M
such that U is a neighborhood of M. Let us recall the following, well known
result (see eg. [7, Lemma 3.8]):

0

LEMMA 3.4. On an asympotically hyperbolic manifold (M, g) with boundary
definining function p we have, for all compactly supported C? functions,

/uV*Vu > <nT_1>2/(1—|-O(p))u2.
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Lemma 3.4 combined with the hypothesis (3.3) shows that

2
Tl > = [uta> [(EZ2E 456 +n-1)+o0)e,
from which it follows that Ty satisfies indeed (3.6) with
(s+n—1)°
1 .

We recall that the critical fall-off for a function to belong to L? is O(pnT_1 )-
This can be used to show that the L?-kernel of T} equals
{O} if s > -2+ :
ViR if s < —

! =

kerTs = V3RNL? = {

Indeed, assume that f is in the L?-kernel of 7. By elhptlc regularity (see [13,
Lemma 4.8] for instance) f is H? on M. This implies in particular that no
boundary terms arise in the following integration by parts:

0 = - [rns=- [V
~ [vewipp

So V™2 f is a constant. Using [13], Theorem C(c), we find:
e If s > =1 then the kernel (and then the cokernel) of T} is trivial so
Ty is an 1som0rphlsm from Ck+2 M) to C;’as( )

o If s < =22 then Ty is an 1somorphlsm from Ck+2 (M) /VS/?R to
2
the orthogonal to the kernel:

{f €0y (M) : /M Vel2p = o} .

The conclusion follows for 7T; if we recall that o = V=2 f is in Cg’a(M )

iff fe Ck;a% (M). O

4. THE EQUATIONS
Rescaling the metric to achieve a convenient normalisation of the cosmo-
logical constant,
n(n—1)
5
the vacuum Einstein-Maxwell equations for a metric satisfying (1.3)-(1.4)
read (see Appendix A)

V(V*VV +nV) = —2=2|4U2
(42) { Ric(g) +ng — V' Hess, V = V?(—dU®dU+ _L_|dU 2 )
div,(V-IVU) = 0.

(4.1) A=—
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4.1. The linearised equation. We use the symbol Tr, or Tr, when the
metric could be ambiguous, to denote the trace. As in [7] we set

1 1
gravh =h— 5 Trghg, (divh); = ~VFh, (diviw)y = 5 (Viw; + Vjwi),

(note the geometers’ convention, in which we have a negative sign in the
definition of divergence). We consider the operator from the set of functions
times symmetric two tensor fields to itself, defined as

14 . V(V*VV 4+ nV)

g Ric(g) + ng — V" 'Hess, V |~
(To avoid ambiguities, V*V = —V'V; =: —A.) The two components of its
linearisation at (V,g) are

p(W,h) = V [(v*v + 20+ VIV W + (Hess, V, h),

—(div grav h, dV)Q] ,
P;j(W,h) = %ALhij + nhi; + %V—lka(vihkj + Vhi; — Vihis)

—(div* div grav h);; + V" 2W (Hess, V);; — V! (Hess, W);j -
It turns out to be convenient to introduce the one-form

wj = VIV Vhy + VFhy, — %vj(Tr h) - VIV, W - VAV, VW,
which allows us to rewrite P(W, h) as
P(W,h) = L(W,h)+diviw,
where L is as in Corollary 3.1. Similarly, p(WW, h) can be rewritten as
p(W,h) = I(W,h) +V(w,dV),,

with [ given by (3.1).
4.2. The modified equation. In Section 5 we will use the implicit function
theorem to construct our solutions, using the observation of [10], how to
obtain a well-behaved equation by adding “gauge fixing terms”. We choose
those terms as in [7], appealing to harmonic maps for the vacuum Einstein

equations in one dimension higher.
Indeed, we will be solving the following system of equations

V(V*VV +nV + (Q,dV)) + 222|dUJ2 = 0,
Ric(g) +ng — V=" Hess, V + div* Q

(4:3) ~V2 (—aU @ dU + ;L1dU2g) =0,
div,(V-IVU) =0,

where

44) - = -QV,g. Vi)

= gjﬂgaﬁ(F(G)gg - F(Q)Zﬁ)

. 1. B e
= 9" (Vimgje = 5Vigom) + Vg (VVIV = VVFY),
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where V-derivatives are relative to the metric g, with Christoffel symbols
'3, latin indices run from 0 to n, and g := V2(da®)? + g with Christoffel
symbols I’(g)gv, while the I’(é)gv’s are the Christoffel symbols of the metric
g.

The derivative of © with respect to (V,g) at (V,g) is

D(va)Q(f/7 §7 ‘0/7 é)(VV, h) = —w,

where w is the one-form defined in Section 4.1 with (V,g) replaced with
(V,g). Thus, the linearisation of (¢,Q) at (V,g) is

D(g,Q(V,§) = (L),
where (I, L) is the operator defined in Section 4.1 with (V, g) replaced with

(f/, g). We will show that, under reasonable conditions, solutions of (4.3)
are solutions of (4.2)).

ProprosITION 4.1. If (U,V,g) solves (4.3) then 2 is in the kernel of B. If

moreover §) € C(?’a for some 6 > n/2 — \/1+n?/4, then Q = 0, so that
(U,V,g) solves (4.2).

Proof. A standard adaptation of the argument in [7] gives the result; we
sketch this for completeness. Set

a:=—-"=2V"2qU|?,
A:=V72(—dU ® dU + -1|dU*g).
With this notation, the first two equations in (4.3) take the form

(4.5) V*VV +nV 4+ (Q,dV) =Va,
’ Ric(g) + ng — V"' Hess, V +div: Q= A,

The tensor field E(g) = grav, Ric(g), has vanishing divergence, which pro-
vides the equation B(£2) = 0 for Q. Indeed, the operator B(§2) defined above
has been constructed in [7] so that it vanishes when the modified equation
for the metric holds and when the Lorentzian (n+1)-dimensional divergence
of the (n + 1)-dimensional energy-momentum tensor vanishes. The latter
condition is satisfied when the (n + 1)-dimensional matter field equations
hold; in the current case, this coincides with the last equation in (4.3).

An alternative, n-dimensional argument proceeds as follows: The calcu-
lation following [7, Equation (4.6)] shows that for a solution to the modified
equation, the divergence of E(g) equals

1
0=divE(g) = 58(9) + 8,
where
(4.6) B:=Vld(Va) -V A(VYV,.) + div(grav, A + gg) .
The vanishing of 8 can be checked by a somewhat lengthy calculation using
(4.3).
Either way, the Bianchi identity div E(g) = 0 shows that €2 is in the kernel

of B. It follows from Corollary 3.2 that the only solution of this equation
which decays as described is zero. O
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For future reference we consider the static equations, modified as in (4.5),
with a general energy-momentum tensor:

; 2A . aBTa
(47) _Vilvlviv -+ VﬁleQviV = — aBNaNﬁ _ u ,
n—1 n—1
_ 2A 1 gaﬁTaﬁ
(4.8) Ry -V 1Vz‘VjV — mg@'j + §(VZQ] + va@') =T — ﬁgzj ,
:AU

where N%0,, is the unit timelike normal to the initial data surface (compare

(A.8)-(A.9), Appendix A). We have:

PROPOSITION 4.2. Let T}, be divergence-free with respect to the time-
independent metric

g=-V3idt’+g¢
as a consequence of the matter field equations, with 0,1, = To; = 0. Set

aB abT
(4.9) a:= ~TosN“N° -2 _aﬁ o Ay =T - gfaﬁgz‘j-
n—1 1
Then
(4.10) B=0.

Proof. Equation (4.6) can be rewritten as

. 1 . .
(411) =B = Vi(4 = S(A% +a)8) + V7 (4 — agy)) VY

. 1 28 .
- Vz‘(”‘?%“kﬁaﬁé’)
8 ap
~1 9" Top 9" Top ;
+V (T ( 0 NN - )9ig ) V.
We have
2¢°8T,
29 LaB L pk g
n—1
ng‘ﬁTaﬁ ij n P, 8
=2 -~ Ty — —— g7 53 — T,sN*NP — 222 .
n—1 T 9oL n—lg af of n—1

The (n + 1)-decomposition of the equation V#T),, = 0, where V, is the
space-time covariant derivative associated with g, using the formulae for
the Christoffel symbols in Appendix A gives

(4.12) ViTy; + VTWsN*NPV,V + VIVIVT, =0,

where V' is the covariant derivative operator of g. Comparing with (4.11)
gives the result. O



10 P.T. CHRUSCIEL AND E. DELAY

5. THE CONSTRUCTION

We consider an asymptotically hyperbolic Einstein static metric g =
V2dp? 4+ g on S! x M. We apply Theorem 3.3 with s = —1, ¢ — a Rie-
mannian metric on M close to ¢ in Cg+2’a(M, S3), and V' — a function on
M close to V' in CELZO‘(M ). It is convenient to choose some
(5.1) € (0,1) whenn =3 and d =1if n > 3.
We conclude that for any Ue Ck+2.2(9M), there exists a unique solution

U=U(U,V,g) € Cy(M)

to
VH(V-IVU) =0,
U-UecCk ).

Moreover, the map (U,V,g) — U — U € C§+2’O‘(M) is smooth.

We define a new map F', defined on the set of functions on the conformal
boundary at infinity 0., M times functions on M times symmetric two-tensor
fields on M, mapping to functions on M times symmetric two-tensor fields
on M, which to (U,V, g) associates

V(VEVV +nV + (QV,g,V,§),dV)) + 2=2|dU |2
Ric(g) +ng — VIV, V;V + div: Q(V, g, v, §)+V2(dU @ dU — ﬁ\dUPg)
PROPOSITION 5.1. Let § = V2dp? + § be an asymptotically hyperbolic static
Einstein metric on S' x M, k € N, a € (0,1). The map F defined as
CH2(OM) x OFP>*(M) x CyT2* (M, Sy) — Gy (M) x C5 (M, Ss)
(U, W, h) —  FU,V+W,g+h)
is smooth in a neighborhood of zero.

Proof. Let § be as in (5.1). We have, by direct estimations,
— 1 o «@
V2(dU @ dU — mwﬁq) € Oys(M, Ss) COP™(M,Ss) .

The remaining arguments of the proof of [7, Proposition 5.2] apply with triv-
ial modifications: The function V € CELZ’O‘(M ) is strictly positive, so the
same is true for V +W if W is sufficiently small in Cf+2’a(M) C CELZ’O‘(M).
Similarly, the symmetric two-tensor field g + h € Cg+2’a(M ,S2) is pos-
itive definite when A is small in CoT>%(M,S;) C Cat**(M,S,). The
map (ﬁ ,V,g) — U is smooth. The fact that the remaining terms in

F(ﬁ, V+W, g+ h) are in the space claimed, and that the map is smooth,
follows from standard calculations (see [11, proof of Theorem 4.1] or [9, Ap-
pendix] for associated detailed calculations). O

We are ready to formulate now:

THEOREM 5.2. Let dim M =n > 3 and let ‘72d4p2 + g be a non-degenerate
asymptotically hyperbolic static Einstein metric on S'xM, k € N, a € (0,1),
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0€(0,1)inn=3andd =1ifn>3. Forall U close to zero in Ck+2.2(9M)
there exists a unique solution

(U, V,g) = (U +u,V+W,i+h)
to (4.2) with
(u, W, h) € CF T2 (M) x O3 (M) x C§ (M, Sy),

close to zero, satisfying the gauge condition 0 = 0. Moreover, the map
U+ (u, W, h) is a smooth map of Banach spaces near zero.

Proof. As already pointed out, the function U = U(ﬁ ,V,g) exists and is
unique when W and h are small. From Proposition 5.1 we know that the
map F is smooth. The linearisation of F at zero is

D(W,h)]:(o’oao) = D(V,Q)F(Oa ‘7,.&) = (laL) :

From Corollary 3.1, with § = 2, we obtain that Dy ;)7 (0,0,0) is an iso-
morphism. The implicit function theorem shows that the conclusion of
Theorem 5.2 remains valid for the modified equation (4.3). Returning to
Section 4.2, we see that Q = Q(V,g,V,§) € C’éﬂrl’a(M7 Ty). Corollary 3.2
gives 2 = 0, and we have obtained a solution to (4.2). O
PrOOF OF THEOREM 1.1: Existence and uniqueness of a solution with
(52) V-V=0(p), U=sU+0("), g-§=04p") =0p;(1),
follows from Theorem 5.2. Here and elsewhere we write u = O(p?) for a
tensor u if the coordinate components of u in local coordinates near the
boundary are O(p?), and u = Oy(p?) if the norm |u|g of u with respect to
the metric g is O(p?). Standard arguments show that all the fields V, U
and ¢ are polyhomogeneous (cf. e.g. [8], compare [7, Section 7]).

To justify (1.7), we plug-in a polyhomogeneous asymptotics as in (5.2) in
the equations. Since the trace-free part of the Ricci tensor of g = —V2dt?+g¢
decays in g-norm as p* near p = 0, the metric g = —V?2dt? + ¢ is vacuum
up to this order, which implies that the usual Fefferman-Graham expansion
holds this metric up to terms Oy(p?Inp). This leads to the following form
of the metric near the conformal boundary

(5.3) g=p2(dp*+h), h=h+05(p"), V=Vp'+0(p),
where h is a family of Riemannian metrics on the boundary depending upon
p, with )

9=3+0;(p*), V=V+0(p).
The equation V;(V~'V'U) = 0 in local coordinates (p,z4) as in (5.3) takes
the form

V=W deth 8, [p* (1 + 0(p*))d,U]
= 3y, [(V—lvdet bt O(p2)> (hAB oAB(pQ))aBU]
+9, (P> 0A(1)04U) + 94 (0 "OH(1)8,U) .
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Let U a polyhomogenous solution with U = U +0(p®). When n = 3, we can

see that no logarithmic term O(pln p) is needed in U so that U = U+ O(p).
When n = 4, we find

~ 1o o U og o~
(5.4) U=U —§VVA(V_1VAU) p?lnp+0(p?).

=:Uln

(In dimensions n > 5 on expects in general a logarithmic term O(p" 21In p)
in an asymptotic expansion of U.) O

REMARK 5.3. The equality

5 / o, = / U OR,
oM oM

proves that Uy, = 0 if and only if U is constant. When U is constant the
function U := U solves the equations and satisfies the right-boundary values,
so the associated solution is vacuum.

APPENDIX A. STATIC EINSTEIN-MAXWELL EQUATIONS IN DIMENSIONS
n+1>4

Consider a Riemannian manifold (M, g), let us denote by V the Levi-
Civita derivative operator associated with g. Let V : M — R, and set

(M =RxM,jg=cV?dt’?+g), e==*1,

and (z#) = (2 = t, 2" = (2!, ..., 2"™)). We have

(
(A1) T =TY% =Tk =0, TY =V~19,V, Tl =—eVVtV, T =1L,
(A2)  Rlyr =Rk, Rloo=—eVV,;V'V, R=V-1V,V,V,
(A.3) RO = Rlijo = Rloji, = R, = R%; 0 =0,
(Ad) Ry =Ry —V'ViViV, Ro, =0, Roo = —eVViV,V,
(A.5) R=R—-2V-IVIV,V.
Consider the (n + 1)-dimensional Einstein equations
~ 1~_ _
(A.6) Rap — §R9aﬁ + Agap = Top -
Equations (A.6) with § = —V?2dt? + g lead to
~ 2N —Trp T
(A7) Rop = Tlggaﬁ + Tap
_ 2A Trs T
(A.8) R =V IVNJ»V + mgij + 15 — n—ilgij ,
, Try T — 2A
(A.9) VV'V,V = V? <TQ5NO‘Nﬁ - %) ’

where N®9,, is the unit timelike normal to the level sets of ¢.
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For a static electric field F' = d(Udt), o,U = 0, and T, as in (1.1) we
find

(A.10) F|? = —2V2dUJ?,
(A1) §"T, = TyT = @\FF = —LG)vﬂdUP,
1
(A.12) T,; = -V 2V,UV;U+ iv—deUngij ,
. )

a1 gy = " Dyaop

v 1 —
(A.14) Ty = TwN'N" =3V 21dU 2.
Choosing A as in (4.1), Equation (A.9) gives

n—2 20V2  n -2
A15) VAV = —|dU* - = AU +nV?.
( ) (n—l)‘ | n—1 (n—l)’ "+ n
When g = eV?2dt? + g is static and

(A.lﬁ) T = Too(dm'o)Q + Tijd.%'idm'j ,  OoToo = 80Tij =0,

then
(A17)  VThpda’ = (VT + V7IVIVT, — eV 3V V) da?
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