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HILBERT MANIFOLD STRUCTURE FOR ASYMPTOTICALLY
HYPERBOLIC RELATIVISTIC INITIAL DATA

JEREMIE FOUGEIROL

ABSTRACT. We provide a Hilbert manifold structure a la Bartnik for the space of asymp-
totically hyperbolic initial data for the vacuum constraint equations. The adaptation led
us to prove new weighted Poincaré and Korn type inequalities for AH manifolds with
inner boundary and weakly regular metric.
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1. INTRODUCTION

This work follows on from a paper of 2005 [4] in which Bartnik described a Hilbert man-
ifold structure for the space of asymptotically flat solutions of the Einstein equations (see
also [17], [18], [19]). The work is done with rather weak regularity assumptions concern-
ing the metric involved (curvature constant only modulo weighted L? terms) and so can
be related to the context of the bounded L? curvature conjecture of KRS [20]. Actually
Bartnik showed in [3] that these assumptions on the regularity are the weakest possible to
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2 J. FOUGEIROL

define the ADM mass of the manifold, explaining why we chose the same regularity con-
ditions. In an undergoing work ( [10], [11]), we are showing that these very assumptions
allow us to properly define the mass of an asymptotically hyperbolic manifold compatible
with previous definitions of the mass (see 7] , [13] or [8]) and with the Hilbert manifold
structure exposed here. In order to overcome difficulties arising in the asymptotically
hyperbolic case, we had to create a Hessian-type operator T and a differential operator
of order two, called U, built up with the first derivatives of the Killing operator S. In
particular, we obtain Pomcare and Korn-type estimates of second order on an asymptot-
ically hyperbolic manifold with boundary. These estimates are the key to prove triviality
of the adjoint’s kernel.

Acknowledgement : I am really greatful to Erwann Delay for valuable advices and
comments during this work. His careful reading of a preliminary version of this paper led
to many improvements. I also thank Marc Herzlich for some helpful remarks.

2. NOTATIONS AND CONVENTIONS

Let (M, g) be a Riemannian manifold. We define 77 (M) to be the bundle of tensor
covariant of rank m and contravariant of rank r . For all u € T} (M), |u|, will denote
the norm of u with respect to the metric ¢ and notation |u|,, allows us to precise the
point of the manifold we consider. du(g) is the Riemannian measure determined by
g. Riemg, Ricg et R(g) are respectively the Riemann tensor, the Ricci tensor and the
scalar curvature of the metric g. For a Riemannian metric g with connection V, we set
the following notations concerning the Hessian and Laplacian of a function wu.

Viu = V;Vju
Au = trgV2u:gijV?ju

w.r.t is the abbreviation of "with respect to".

The work presented in this article is done on a n-dimensional manifold as often as possible
and, otherwise explicitely stated, the results presented here are valid in any dimension n.
Nevertheless, Sobolev inequalities strongly constrain the dimension to n = 3 in several
proofs ; this is clearly specified when this is the case. We chose to leave n and specify
n = 3 in the concerned results rather than replace n by its specific value since it helps to
understand where the dimension play a role.

Concerning constants in norm inequalities, the constant C will design in general a constant
depending on the background metric g and the decaying rate 6 and its expression may
change from line to line in a proof. The nature of the dependence of the constant C will
be systematically specified because it will depend on other parameters.

2.1. Conformally compact manifold.
Let (M, g) be a € n-dimensional complete non compact Riemannian manifold. The
manifold (M, g) is Conformally compact if there exists a Riemannian metric h such that
§=p2h , where (M, h) is a > compact Riemannian manifold with boundary M and
pis a functlon on M, called defining function on OM:

* pEEC™M)

e p>0on M
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e OM = {x e M :p(x) =0}
® dplogrp # 0

We call asymptotically hyperbolic metric on M every Riemannian metric ¢ verifying:

e ¢ is conformally compact.

° |dp|h8/\/t 1.

The existence of these two metrics on M can be source of confusion thereafter, so we
have to fix some notations. V, A Tlf July (resp. WV A ¢ F R lul;) will respectively
denote the connection, Laplace operator, Christoffel symbols and tensor norm w.r.t g
(resp. h) There are some correspondances between these quantities.

For volume measures, in dimension n, clearly du(§) = p~"du(h).
For Christoffel symbols, Tif: (h)Tikj — % (5;‘?81-,0 + 680;p — hklhij61p>
In particular, for the Hessian of p (e.g. equation (C.12) from [5])

8p0p
p P
Taking the trace of (1), we obtain the expression of the Laplace operator of p
Ap = p*Ajp — (n = 2)pldpl3. (2)

More generally,

n —

o 2
Vu € €°(M) , Au=p? (A;Lu — dp.,;du) , (3)
where .; is the scalar product w.r.t the metric h.
For tensor norms, for all u € T}, (M) , |u|g = p™ " |ulj,.

Definition 1. Cut-off function:
(M, g) is a conformally compact manifold with defining function p.
Let x : IR — IR be a smooth cut-off function such that:

e X(IR) C[0,1]
e supp x C (—o0,2]
L X|(—oo71} =1

then for R large enough, we can define a cut-off function on M by

Xr(#) = x(=In(p(x))/R).

Setting Qr = {x € M : p(z) = e} | then yr verifies

1 SU’/’QR/Q
XrR =
0 sur M\ Qg

In other words, xr is a cut-off function near the boundary of M.
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2.2. Sobolev and Ho6lder weighted spaces.
Thanks to the background metric g , we can define the following norm

1/p
Vi<p<oo ot deR = ([ luf o)
M
Forp=oo et 6 €R : ||ulloos = sup (p°|ul)
M

The Lebesgue weighted space L is now define as the space of measurable functions of
Lp

ne(R™) whose norm mentionned above is finite. The Sobolev weighted space Wf P s

then the space of measurable functions of W*? whose following norm is finite:
p loc g

ullkps = > IV ullps,

|al<k

where « is a multi-index of size n and V%*u = Vql . V%u

a=(ag,...,q) et |a] = Zal
NB: for 6 = 0, we get back to norms of the classic Lebesgue et Sobolev spaces.

Wf P(Tr M) will refer to Sobolev spaces of sections of the (r, m)-tensor bundle over M.

We will speak of WP~ norm to indicate the norm of a function u € Wy *P(T7; M). For a

domain U C M, ||u||,s0 will be the restriction to U of the Wy- norm of u. The Holder
weighted space C5(M, g) , with 0 < o < 1 is endowed with the norm

lellcge = max] V¥l cpe

ulz) —u(y)ls
||u||000 = Supp |u|g+ supp sup M ’
zeM dg(z,y)<1 dg(l‘a ?/)

where u and ¢ represente tensors u et g in an appropriate orthonormal basis.

with

2.3. Elliptic operators.
Here we recall classic results on elliptic operators that we may find in [1] for example.
Let By and Bs be two tensor bundles over a conformally compact manifold (M, g) with
defining function p and A : €°(B;) — €°°(B,) be a partial differential linear operator
of order m define by

A=) a,V° (4)

lal<m
Set s € N. We say operator A of the form (4) has symbol in OPY" if
€ %,/ L(B1, Bz), with sq =max(s,|a] —m+1).

We say A is an elliptic operator if a,&% : By — B, is a tensor bundles isomorphism, for

all v such that |o| = m and for all £* = £ ... % # 0 and if on top of that, for all £%,
there exists two constants ¢; and ¢y such that

laag®(lg < er €%l and  [[(aag®) Iy < c2 1675
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Lemma 1. Set so € N. For an elliptic operator A with symbol in OPY’ , there exists a
positive constant ¢ = ¢ (g,0) such that the following inequality is valid for all s < sq :

lullz.svms < ¢ ([|Aullzs5 + [ull200) ()

Theorem 1. For all R > 0, let Qg be like in Definition 1. Given d € IR and A an elliptic
operator with symbol in OPy'. Suppose there exists R large enough so that A verify

Vu € €M\ Qg) , lullzs < CllAullzs, (6)

where C' depend on A.
Then we can choose R large enough so that the following inequality

[lullm.26 < C ([ Aullas + [|ull2.505) (7)

is valid for all u € €>(M). In particular, A : Wi — L2 is semi-Fredholm, i.e. A has
finite dimensional kernel and closed range.

3. PRELIMINARY ANALYSIS
In this section, we introduce some useful inequalities (see [1] , th 2.3 for example):

Proposition 1. Weighted Holder inequalities (in any dimension):
e Setd € IR so that 6 = 01 + 62 , let p,q, v € N be such that

1 1 1
I<p<g<r<oo and —=—-+—,
p q T
then
wv[lps < [lullgs |[0]]r6,- (8)
e Setd € IR and X € [0,1] , let p,q,r € N be such that
1 X 1-=A
I<p<qg<r<oo et —=—+ )
p q r
then
Tl < Il g Nl )

Theorem 2. Let (M, g) be a conformally compact n-dimensional manifold.

Weighted Sobolev inclusion:
Forall1 <p<q<oo, forallk>k, ifd<6 —28L then W' C Wy,
i.e. there exists a positive constant ¢ = ¢ (g,9,d', k,k',n,p,q) such that

ullwper < cllullkge-
Ifg=o0, forall1 <p<oo; forallk >k, if6<8 =2, then Wy™ C Wk
i.e. there exists a positive constant ¢ = c(g,0,0', k,k',n,p) such that

e por < cllullro0s-

Weighted Holder inclusion:
Setke N, n=3etp=2, then forall0 < a < %, for all 6 < &, there exists a positive
constant ¢ = ¢ (g,6,0', k, k', o) such that

Yu € WA(M) ||u||C§/,a < c|ullz,z,- (10)
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Weighted Sobolev inequalities: ‘
Set 1 < p < oo and let k,j be integers. If u € Wg+k’p(./\/l), then in each of the following
cases, there exists a positive constant ¢ = ¢(g,9d,k,n, j,p,q) such that

[} [fpk<n ||u||_7q5 C||u||]+k,p57 VP q\nip

.
o Ifpk =mn, |lulljqs < cllulljrrps, VP <q<oo.
o If pk>mn, [|ulljgs < cllulljrnps , VP < q< o0,

Ehrling inequality:
For all € > 0, for all integers j, k such that 0 < j < k , there exists a positive constant
C(e) such that

k7
Vu e WP lullips < ellullps + Cle)ullps- (11)

Rellich Theorem.: ,
For all k > k' and § < &', the inclusion I/I/'(Sk’2 C WE? is compact.

A consequence of the Sobolev inequalities (cf. [5] for example) is
Proposition 2. In dimension n = 3, for all k > % ,
ue Wy? = u=o(p™). (12)

Lemma 2. In dimension 3, for all § € IR, there exists a positive constant ¢ = c (g, d1,2)
such that

lwvllos < ¢ [lull126, [[V]l128, 5 withé 4 02 = 6. (13)

Remark: In the particular case where d;,d, and § are non positive, then d; and &y are
both superior to §. The weighted Sobolev inclusion leads to

luvllas < ¢ ullr2s [[v]l124- (14)

Lemma 3. For each of the following inequalities, in dimension 3, there exists a positive
constant ¢ = ¢ (g,0) such that

Yu € Wt (M), [lullcs
Yu € Wy (M), lullss

e |[ulla,2,5 + ce [ |ul]1,2,5- (15)

e |lullias + e lull2s. (16)

VAR/A

Lemma 4. In all dimension n, we define for R real large enough,
Er =M\ Qr={p<e?}.
Then Yu € LY(ER), V0 € IR,

[ullparize < M ullpsip, V<0, V1< p< oo, (17)

4. THE HESSIAN TYPE OPERATOR T

Here we give some preliminary results concerning the operator T defined for a function
N by:
T =T(N) = V2N — Nj. (18)
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Lemma 5. For all 6 € IR, there exists a positive constant ¢ > 0 depending on g such that
for all N € W*3(M),

17(N)l2—5 = [IV*Nlla,-5 = ¢[IN|l2,s- (19)

Proof: The result stems from the definition of 7" and the Triangle inequality.

Lemma 6. For all 6 €] — (n+1)/2,0], there exists a positive constant ¢ = ¢ (g,0) telle
such that for all N € W>3 (M),

[V]12.-5 < e [[T(N)l2.s- (20)

Proof: By density, we can suppose N € €°(M). We use the proof of Proposition 4
which establishes (20) if the support of N is in a neighborhood of the boundary at infinity.
Here we ignore the ¢ restriction due to positivity of the interior boundary term since N
is compactly supported. We obtain the result near the boundary for 6 €] — (n+1)/2;0]
and conclude with kernel triviality of 7" for § < 241 (see [6]) thanks to a proof similar to
the one of Theorem 1.

Combination of Lemmas 5 and 6 gives

Proposition 3. For all 6 €] — (n+1)/2,0] , there exists a positive constant ¢ = ¢ (g,0)
such that

[V]Jo.2.-5 < e [[T(N)|l2,s- (21)

We will need the next three lemmas which give general equalities on (M, g), a n-

dimensional asymptotically hyperbolic Riemannian manifold with § = p~2h. From now
on, do(g) will be the measure induced by g on the boundary OM and 7 is the exterior
unit normal to OM in M.

Lemma 7. Let (M, g) be a n-dimensional asymptotically hyperbolic manifold and
N € € (M) with a compact support near OM. Y6 € IR ,

d ° o d o
/2N<dN,—p>gp%du(g)=—/ 20+1—n+o(DIN2p* du(g) + | N* (L. n)y p* do(d)
M p M oM P

Proof: Integration by parts gives

- 2v7i 26+1 _ d 20 2A —1 26+1
| TN duta) = [ 2NNy )~ [ NG )

+ [ 28+ DN dpl o du(a) (22)
M
Let us compute (see [5], (D.4) for instance)
2o/ 1y -1 20 —2 (h)—2
V(o) = p M dplig — p7 N (23)
Taking the g-trace,
A(p™) = np~Hdpl; — Ajp.
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The metric i being defined (and so bounded) on M and p being a smooth function on
M | A; pis a smooth function bounded on M and so, we can write Ajp = O(1) = o(p™)
near OM. We obtain

A(p™) = p~* (nldp[} + o(1)). (24)
According to |dp|fgl = 1+40(1) near the boundary on an asymptotically hyperbolic manifold,
(22) become

. s dp .
[ VN du) = [ 2NN L dutg)
M M P
+/ 26 +1 —n+o(1)]N?p® du(g). (25)
M
From the Divergence theorem,
dp

/ VANV dug) = [ N
M

A n)g p? do(g). (26)

We end the proof replacing the left-hand side of (25) by its expression (26). -

Lemma 8. Let (M, g) be a n-dimensional asymptotically hyperbolic manifold and
N € €°(M) with a compact support near OM. ¥§ € IR,

2 [ TN D) i) = [ 51 =m0} aN R duti)
- /M 26+ 1 —n+ (L) N2 du(g)
+ /a G |dN|3><%,n>gp% do(@),  (27)

Proof: We integrate by parts the term V;(|dN 2 Vi(p™) p?*1) and the result follows
on from the Divergence theorem and Lemma 7.

Lemma 9. Let (M, g) be a n-dimensional asymptotically hyperbolic manifold and
N € € (M) with a compact support near OM. Y6 € IR ,

—/ tryT' N p* du(g) = —/ [6(20 + 1 —n) —n+o(1)]N?p* dpu(g)
M
+ [N duta) — [ V(N o)
oM
4 [ ONHaN P dod), (28)
oM

Proof: We integrate by parts the term V,(N ViN p*?) and the result follows on from
the Divergence theorem and Lemma 7.

The next proposition stems from the two previous lemmas and will play an important
role to prove the adjoint kernel triviality:
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Proposition 4. For everye >0, for all § €] — (n+1)/2, —1], there exists R. 5 > 0 such
that for all R > R, s, there exists a positive constant ¢ such that

YN € €°(Eg), ||IN||2o,-s55n < ||To,—5.55- (29)

Proof: From T and trgf expressions and V,, N (resp. VrN ) being the component of
dN normal (resp. tangential) to OM |,

V.N = (dN,n); and |dN|? =|V,N[?+ |VsN[2.

(28) — £(27) give

. d o : o
/ TN, )0 du(g) - / NtryTp? dp(g)
M P M

= [ A b o ANT G () + [ (2% b+ 24 01N )
d . 3 .
+ [ {E = YN+ NN )p¥ do(g) — [ NVLN g% do(g). (30)
oM P oM

Application on Er: Egr possesses two type of boundary. An exterior boundary at infinity,
noted OF,, , and an interior boundary 9Qp = {p = e 2} . Since N € €>(Eg) , N is
surely null near 0FE,, but not necessarily on €2z and that’s the reason why boundary
terms in (30) will only concern 0Qg. If ng is the normal to 0Qpg exterior to Er and
considering that .
When R — 400, ng — d—pp — 0, so that (d—pp,nRﬁ - ‘dp[;‘é

+o(1) =1+ o(1).

o dp . o o
/ T(dN, ?)p% du(g) — [ NtrgTp® dp(g)
Er

Er

= [ R G o AN du(a) + [ 226 s+ 2+ o(DIN% di()
Er

Er
+ [ {6 =L+ 0(1)N? + LdN]2 — NV,N +o(1)}p* do(§).

O0ER

According to the following inequalities

trg T2 < n|T2.
TN, %) < 8|T12 + LIANP|dp2  ¥a >0, a>> 1.
—NitryT < Stry T2+ LN?[dpl? Wb >0, b>> 1.
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Ve > 0,dR, > 0 such that VR > R, ,

a+bn o 0 n o
(S5 [ 1R duta) > [ (20— 5= HanBe® duta
R R
_l’_

2

/ [—20% 4+ nd + =2 — ] N?p* du(g)
Egr
s G-1-aNP o

OFER

+/ {%WTNI?; +3(N - %HN)Q} p* do(g).
OER

e The N? interior term is non negative if § €] — % ; "TH[

e The |[dN|} interior term is non negative if § < (n +1)/2.

e The boundary term is non negative if 6 > 1.
Moreover, a quick calculation shows that on the interval [0; "TH[ ,

nil 5 < —26% +nb +

Consequently, for § €]1; "TH[,
Ve > 0,dR. > 0 such that VR > R, ,

a+ bn o , n .
( 5 )[E T70% du(g) > /E{%1—5—8}<N2+\dN|§)p25du(g)-
R R

namely

INh25:8n < €lIT1l2520-

Combining this inequality with Lemma 5 valid in particular on Fr, we end the proof of

(29).

5. KILLING OPERATOR S

Let S be the Killing operator defined on 1-forms by
° 1 o o o
S(Y)y = 5(ViYj + V,Yi) = ViYj.
The trace of this operator is

The next three lemmas are respectively versions of Lemma D.1 and Propositions D.2

and D.3 from [5] with boundary:
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Lemma 10. Let V be a vector field et Y a 1—form both compactly supported on M.
Then,

/M (S(Y) + Strg (SO Y, V) du(§)
- —%/M{%V(Y,Y)+§dwvw|§}dﬂ<§)+%/w<y, VY (Y1) do(3)

1 o
3 [ WE W dota)
oM

Lemma 11. Let u be a function, V' a vector field et Y a 1—form all compactly supported
on M. Then,

/M 1 (S(Y) + Ltry(S(Y)§) (Y V) dul§)
1

E . . 1 u .
=3 [ eIy 3V E o) + 5 [, onydoty
M oM

1 N u .
"/ e 2du, Yy (Y, V) + {du, Vgl Y 2} dpu(3) + / Y3 (Vin)g o).
2 Jm 4 Jom

Lemma 12. LetY be a 1—form compactly supported M and u,v € € (M) two functions
defined in a neighborhhod of Y support. Then,

_9 / v e S(Y)(dv, dv){dv,Y )4 du()
M

:/ (o, Y)o{ (v, Y [ldvf} + vAv + 20dv, duby] + 20 V(Y. do) } dp(9)
M

—/ ve*(dv,Y):(dv, )y do(g),
oM
Respective versions of Corollaries D.4 et D.5 de [5] with boundary come out from these

previous lemmas:

Corollary 1. Let (M, g) be an asymptotically hyperbolic manifold and Y a 1—form
compactly supported on OM. V6 € IR ,

2 [ B0+ 3ry (S0, L) dut)
M p
= [ et —a oIV = 25+ 0LV} aui)

1 dp i dp .
+§/ P2 (= mado(g) + | pP (Y, —)g (Y,m)gdo(g), (33)
OM P OM p

Proof: We apply lemma 11 with
V=dp)=—p2dp o [VV=V2p) = p Y dplRg — p? W from (23)
w=(6+%)Inp divV = A(p™) = p~L(n|dp|? + 0(1)) from (24)

d
du = (0 + %)—p and e* = p?t!,
p
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The metric i being defined (and so bounded) on M and p being a smooth function on

M , %) is a smooth function bounded on M and so, we can write V2p = o(p?)
near M. Thus,

VV(Y.Y) = p  (ldp[Y 1} + o(D)]Y]2)
divV|Y[3 = p~* (nldpl} + o(1))[Y[3

We obtain
[0+ b0 0 )
= %/Mp%{ [1=(0+3)+ 5] dpli|Y]; - (25+1)(%,Y>3+0(1)\Y\3}dﬂ(§)

3 [t g [, ot

We end with |dp|? = 1+ o(1) on an asymptotically hyperbolic manifold.

Corollary 2. Let (M, g) be an asymptotically hyperbolic manifold and Y a 1—form
compactly supported on OM. Then,

2 / A5 (L Dy P ()
M

plp’p
d . d d .
- / P (n =1 =26+ 0(1)) (£, ¥)2dpu(3) + / (L YL )y do(g),
M P oM P P
(34)
Proof: We apply lemma 12 with
=1 dv=d(p~1) = —p~ 1% 2044
v=p S (p)dpp,, and Zp_22
u=(0+2)Inp du = (6 +2)¢ |dv\§—p |dpl?

together with
Vi =V (p!) = p7! (|dpl,%§ —p! (E)VQp) from (23)
Av = A(p_l) =p! <n|dp\i + 0(1)) from (24)
Since |dp|% =1+ o(1) on an asymptotically hyperbolic manifold, we end up with

2 [ PS(Y) (%, %) (.Y du(o) = [

M

dp .\, dp .
+/ PP (== Y) = m)gdo().
» <p >g<p )gdo(9).

The following lemma establishes a Korn-type inequality for the Killing operator S

{0+ 32642+ o<1>}<%,Y>§du<§>

Lemma 13. For all§ > —(n+1)/2 and § # —(n —1)/2, there exists a positive constant
¢ =c(§,6) such that for all 1-form Y € W'Z(T*M),

1Y 1h2-5 < e[ISOY)]]o,-s-
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Proof: Here again we base ourselves on the proof of Theorem 1 but for the operator
S. Lemma 2.8 from [5] (for g with N = 0) replaces Lemma 1, in order to get a Korn-type
inequality

c([[SY) = trg(SY))gll2,—s + [[Y]l2,-5)

c(ISY)l2,-5 + (1Y []2.-6) »

where ¢ = ¢(g, ) is a positive constant.

We now use Proposition D12 from [5]: Let (M, g) be a conformally compact manifold

with § = p2h . For all § # —(n+ 1)/2 and 6 # —(n — 1)/2, there exists two constants
cs > 0 and p. 5 > 0 such that for all differentiable vector field Y compactly supported in

{p< paﬁ} :

Y125 <
<

1Y ll2-5 < e5 [1S(Y)[2,-5- (35)

Defining R such that p. s = e 2%, we set (2 as in Definition 1 and we have (35) on M\ Qg
, as in hypothesis of Theorem 1. The rest of the proof is analogous to the one of Theorem
1 and we can choose R large enough so that for all Y € €>°(T*M) ,

¥ lhs < € (ISOaos + V|1 -s0s ) -

Hence operator S : Wh(T* M) — L2 4(T*M) has a finite dimensional kernel. So we can
write WL?(T*M) = kerS @ (keré’)l. From then, there exists a positive constant ¢ such
that for all Y € (kerS)*,

Y125 < el[S(Y)][es.

It remains to show that ker SNW2 = {0}, V6 > —(n +1)/2.

For that matter, we use the coordinate system (z' = p,2?,...,2") = (p,0) on a neigh-
borhood of the boundary [0, e] x M that we may find in [5]. From the expression of the
defining function p, the metric g can be written:

g=p""h=p(dp*+g(p)) with §(p)(d,,.) =0.

The same conventions and notations as in the paper are in order: the index p will be
the radial coordinate one whereas indices relative to tangential coordinates will be desig-
nated by latin capital indices. Finally lower case latin indices designate any components.
Christoffel symbols, in this coordinate system, are given in [5], just as the equation

ViX; +V,X; =0 (36)
which become the system:
0,X,+p "X, =0 (37)
0pXa+ 04X, + 20" Xa = §7P(p)ipa(p)Xe =0 (38)
0aXp + 0pXa — QfACB(P)XC + (Gan(p) — 2/)_1@AB<P))XP =0

where f':=0,f.
Solving equation (37) give
X,=p 'K(0).
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As the metric g is polyhomogeneous , g can be written as a development of powers of p
and In p, and the first terms only contain powers of p. We set

~CD At . mC
9 " gpa =T7},

where T' is and order two tensor whose development is
T (,0) = p'TS(6) + o(1).
Andersson and Chrusciel have shown in [2]| that the solution X of
(A —Ricg)X =0
is also polyhomogeneous
Xa(p,0) = p°Za(0) + o(p°).
Replacing in equation (38), we find s = —2 et X4 = p2Z4(0) + o(p~?).
We obtain the form of the solution of (36) near the boundary
X =p 'K@)dp+[p2ZA0) + o(p~?)] dz™.
Moreover, X € WLSZ , leading to Z = 0.
Indeed, suppose Z # 0. The g-norm of X is
X5 = o7 | K5 + 07 215,
with |K|? ~ |Z]> ~ p* O(1).
| X[5 = p72O(D).
Consequently

19
1Xlks <00 & [ IXEp®pmdp < o0
0

15
= / p—2p—26p—ndp<oo
0
&S —20—n—2> -1
& i< —(n+1)/2.

Given that 6 > —(n+1)/2, then X ¢ W"?. Hence, Z is necessarily null near the bound-
ary. Analysing the X development coeflicients, we realize Z = 0 lead to | X|; = O(p*).
We conclude the proof using the unique continuation theorem from [16]. .

6. THE CONTRAINT OPERATOR ®

Let M be a n-dimensional connected non compact oriented manifold. We consider M
as a spacelike totally geodesic hypersurface of a (n + 1)-dimensional Loretzian manifold
(N, 7), from now on refered to as spacetime. We will distinguish the two manifolds by
different indices: latin indices will take values from 1 to n and are spatial indices whereas
greec indices will take values from 0 to n and are spacetime indices. K is the second

fondamental form of M in N defined by
K(X,Y) = (X, "), (39)
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where ("W is the spacetime connection on TA , X,Y € T M and 7 is the future-directed
unit normal to M in N. It is convenient to consider the conjugate momentum 7 as a
reparametrisation of K

'l = %ij\/g_] with 79 = K% — t'rgKgij. (40)
where /g is the volume measure of the metric g.

Vdet(g) .
VI =T B )
Remark: V(,/g) = 0 since the covariant derivative of the volume form is null.

7 is a section of the bundle S2T'M whereas 7 is a section of the bundle S = S?TM ®
A3T* M. We consider a smooth and polyhomogeneous asymptotically hyperbolic metric ¢
asymptotically hyperbolic on M as model. We ask ¢ to satisfy the following integrability
condition

Riem gijr — Gudjk + Gixdj € L. (41)
In particular,
Ricgy+ (n—1)g; € L. (42)
For any sufficiently regular Riemannian metric g on M, we define the constraint operator
P = (Pg, P;) = B(g,7) as follows:
Do(g,m) = (R(g) —2A — \K\Z + (t'r’gK)z) VI
= (R(g) —20) Vg — (I7]; — ;55 (trgm)?) / /5. (43)
q)i(g, 7T) = 2(VJKZ] - VZ(tTgK))\/E
We set
K=r1g, (45)
where 7 is a real parameter.
The cosmological constant A is normalized here in dimension n by

2A =n(n —1)(7? — 1), (46)

so that ®(g, K) = 0 at infinity. Taking the g-trace of (42) considering (46), we end up
with the intégrability condition

R(§) —2A +n(n —1)7* € L3. (47)
The conjugate momentum 7 is then
i = (K9 — trgKg¥) dpa(g) = 7(1 = n)g" dp(). (48)

Remark : Vi = VK = 0.
If spacetime satisfies Einstein’s equations, the normalisation chosen insures the constraint
operator and energy-momentum tensor are related by

CI)Q = 167TGTﬁa\/§,

where G is Newton’s gravitationnal constant. £ = (N, X*) is the lapse-shift associated to
the spacetime foliation. We study the constraint operator ® for Riemannian metrics of
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the form g = g+ h. ¢ is asymptotic to g, i.e.|g — gl = |h|; —> 0.

S := S?T* M is the bundle of symmetric bilinear forms on M. S = S2TM @ A3T* M
is the bundle of symmetric 2-tensors-valued densities (3-forms) on M. T := TN is the
spacetime tangent bundle. The following spaces will be of particular interest in the sequel:

G = WHS).

K = {W:ﬂ—%EW;’Q(g)}.

Gt = {9:9—g€G,g>0}.

Gy = {gegG:Ag<g< Mg}, 0<A <1

£r = L3(T*® A¥T*M) is the dual space of L := L*4(T).

From (10), tensors in G are Holder-continuous and thus, matrices inequalities in spaces
Gt et G are satisfied pointwise. In particular, for all metric g € Gy, metrics g et g are
equivalent in the following sense

Agij(2) v'v? < gig(@) v < X g (x)v'? | Yo € M Yo € TM (49)

So |glg =~ ¢|glg =~ clgly = /.
F = G x K will be the phase space of the contraint operator ®. We will use (g, ) as
well as (g, K) to express coordinates on F.

Let I' and V (resp. I' and V) be the Christoffel symbols and the Levi-Civita connection
for g (resp. g). We define

Aikj = Fz‘kj - szg (5())
Remark: A is a symmetric tensor, arising from symmetry of the Christoffel symbols. We
easily show

Al =g" Ay = %gkl(%igjl + V91 — Vigiy) (51)
The scalar curvature of g can be express with V and Al (see eq. (21) of [4]):
Lemma 14.
R(g) = gijicéjk + gjk(%iAjik - ﬁinik + AjlkAiil - AjilAkli)
= ¢ Ric i+ Qg7 V) + " (Viigu — Vi) (52)
where Q is a sum of quadratic terms in g~ !, %g.
This result relies on the following fact:
Lemma 15.
Ric gjr, — Ric gjn = ViAf, — VAL + AAL — Al AL, (53)
Proof:
Ricgjr. — Ricgp, = aiAjik - 8J‘Azik + [Fliirjlk - fliifjlk] - [Fklirjil - Fklzrfl]
= aiAjik — AN+ [AliiAjlk + f‘liiAjlk + fjlkAziz‘]
—[ALA] DA+ DAL

We end the proof adding and substracting r jl ALY o
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Here we show @ is a well-defined mapping between the Hilbert spaces F et L*.

Proposition 5. Set (g,7) € G x K , with 0 < A < 1. Then in dimension n =3, for all
0 < 0, there exists a positive constant ¢ = ¢ (A, g,0) such that

1Bo(g, M hs < e (1+1lg = all3as+ lim = 7l325) (54)
19, Mo < e (IV(r = Allos + [Vallas(l+ 17 = #ll2s))  (55)

Proof: From R(g) expression (52), we can write
Po(g,m) = (Rlg) —2M)vg — (Inlg — 75 (trgm)’l/ Vg
= [R(9)-R(§) + R(g) - 2A+n(n — 1)7* —n(n - 1)7°]\/g
=l = &[5 = 7[5 + 2(r — 7)iy77 + 2|7]3)/\/9
+-L((trg(m — 7)) + (trgw)® + 2try(m — @) try7]/ /9
= [R(9)-R(g) + R(g) — 2A+n(n - 1)7° —n(n - 1)7°],/y
—[lm = 7lg + 2(m — 7)yy 7 + |7[g — 5 (tre®)’]/ Vg
+ih [(“‘g(W — 7))+ ((9 = 9)ig7)* + 2(g — §)ig7t Ttryh + 2try(m — 7) try7]/\/g
= [R(g) = R(9) + R(9) — 2A + n(n — 1)7*|\/g — [Im — 7] + 2(m — 7);577]/\/g
o5 (g (m = 7))° + ((9 = 9)i7)? + 2(g — §)ig T trsi + 2try(m — 7) try7] /\/g.
Since g € Gy, we can use (49) and from Cauchy-Schwarz inequality and 2ab < a® + b?
Bo(g,ml; < [IR(9) — R@)s+ IR@) — 24 + n(n — 1)7%,11/5
te[l+im =7y + 19— al)/ Vo
From (53), Ricg — Ric§ ~ VA+ A2 ~ (Vg)? + gV2g + g~ 2(Vg).
Using (13),

)
)

|Ricg — Ricillos < (c|[Vallias+clIV20llas)
< cllg—gll22-s

In particular, we have the following integrability conditions

Ricg — Ricg € L3. (56)

R(g) — R(g) € Lj. (57)
Thanks to (57),(47) and (14),

1®o(g, )ll2s < c(L+ (= 7)?|l2s +11(g = 9)°|l25)
< ¢ (1 + || — 7?“%,2,5 +lg — §||3,2,5) .

Hence, ®o(g,m) € L*.
Regarding ®;(g, 7) , using (50),

@i(g,m) = 295 (Vi(m — )% + A7, (m = 1)) + A 7).
Considering (51), ®;(g, ) is of the form
®i(g,m) =~ g(V(r —7) + ¢"'Vg (r — i) + 97 Vgi). (58)
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< c(IV(m =)z + [[Vg (m = 7)l[26 + [[Vg 7l|2.5)
< e(IV(m = m)ll2s + [[Vllzsllm = Tlli2s + [[Vll2s] |7 ]oc.0)
< c(IV(m = m)ll2s + [IVallas(L+ [l = 7ll126)).

119, ™)l|2.5

O

Proposition 6. Let (g, 7) € F. Then in dimension n =3, for all § <0,
® . F — L* is a smooth map between Hilbert spaces.

Proof: We recall the proof of [4] for completeness. From Proposition 5,
1@ (g, m)||zx < c(1+|lg — gl + ||m — 7||%) , i.e. @ is locally bounded on F. The polyno-
mial structure of the constraint operator allows us to show ® is smooth, i.e. indefinitely
differentiable in a Fréchet sense. From the expression (52) of scalar curvature and given
(58) , ® can be expressed as

®(g,7) = F(9,97',\/9,1//9,Vg,V?g,7,V7),
where F' = F(aq,...,ag) is a polynomial function quadratic in as et a; and linear in
the remaining parameters. The map ¢ — (g,97',/9,1/,/9) is analytic on the space of

positive definite matrices and the maps g — Vg, ¢ = V2g and 7 — V7 are bounded
linear, thus smooth, from F to £*, which are Hilbert spaces. A result from Hille [14] on
locally bounded polynomial functionals shows ® admit continuous Fréchet-derivatives of
all orders.

The set C = {(g,m) € G x K : ®(g,7) = 0} := ®~1({0}) C F is the set of initial data
for the vacuum Einstein’s equations. To prove C is a submanifold of F, we show 0 is a
regular value of ® | so we take an interest in the surjectivity of the differential of ®.

7. EXPRESSIONS OF THE LINEARIZATION OF ® AND ITS ADJOINT

In this section we recall the expression of the linearization of ® and its adjoint that we
may find in [4] or [9] for example.

Proposition 7.
D®o(g,7).(h,p) = (VVohi; — Agtrgh) /G — hij[RY — L(R(g) — 2A)g7]\/g
+hij (Ztrgrm — 2m w4 3lmls 97 — ﬁ(”gﬂQQij)/\/g
(25t — 2mi)) [V (59)

D®i(g,7).(h,p) = 7*2Vihij — Vihg) + 20 Viem?® + 2g4,V ;7" (60)
Using notations of [4] ,
5,0, = V'V hy.
EY = RY—3(R(g) —2M)g".
7 = (Ztrgen® —2m4a® + 3nl2 g — m(t'r’gwfg”)/(\/ﬁ)?
We can express D® in the matricial following form

[ (0,0, — Agtry +TT—E) —2K | [ h
D‘I)(g,ﬂ')(h,p) - ﬁ.v_|_25gﬂ. 25g p ) (61)



HILBERT MANIFOLD STRUCTURE FOR AH INITIAL DATA 19

with #Vh = 7%V hyy = (27%6] + 7916k — 7¥67)V  hyy.

To prove surjectivity of the differential of ® | we investigate injectivity of the adjoint
operator. Integrating by parts and ignoring boundary terms leads (cf. [9] for example) to
the expression of the formal L?(du(g))-adjoint of D®(g, ) :

/ D®(g, 7).(h,p) (N, X7) = / (h,p) » DB(g, 7)"(N, X°).
M M
Proposition 8.

(h,p) @ D®o(g,m)*N = hy[V'V/N — g9A;N — [R7 — {(R(g) — 2M)g”|N]\/g
+Nhyj (Ftrgnm® — 2wl m™ + §|w|2 g7 — m(t'r’gw)Qgij)/\/ﬁ
+NpY (Eqtrgmgs; — 2mi) /\/9-

(h,p) @ D®i(g, )" X" = hij(X*V,r + V, XFr — 2w, X Urik) — 2p0V ;X .

Then we can put D®* in the matricial form

D(g. (v, X) = | VIV 00 HI=E) VA TR e

with

(Vi —#V)X = Lxm=Vxr? -7V, X"
LX) = Lxg=2ViX; =2S(X).

Denoting D®(g, 7);.€ and D®(g, 7)5.£ the two components of D® (g, 7)* in (62).
L3¢ (resp. W, VE) is the set of terms of the form u & (resp. u V&) such that ||ul|os < C
(resp. ||ul|125 < C ), where C' is a constant depending on g,6 et ||(g, 7)||#.

D®(g,m)1.& = [ViViN = gijAgN + (Il — Eij)INV/g + (Vr — V) X.

(Vr—aV)X = X'Vymy; — (750, + 756, — mi;67) Vi X!
— L2X +WPVX 4+ (n— 1)7(25(X) — gtryS(X)).

(g, m)N = LiN+TI(g,%)N
= LiN+—1(n—1)(n—4)T*jN.

So we have the integrability condition
(g, 7) + 3(n— 1)(n — 4)7%g € Lj. (63)
Taking into account (42) and (47),

E+(n—1)§—in(n—1)7%g € L. (64)
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On one hand,

D®(g,m)1.6/\/g = VPN —gAGN + (n = 1)g + [T+ 5(n — 1)(n — 4)7%g]N
+(n—1)7(28(X) — §tryS(X)) — [E + (n — 1)§ — tn(n — 1)72g]N]
—(n—1)(n—2)7°gN + L2 + W}V X

= V2N — gA N+ (n—1)g+ (n — D)7(25(X) — gtrgS(X))
—(n—1)(n—2)7°GN + L + W}V X,
On the other hand,
D®(g, 7). = —2KN —25(X)
— —2(S(X) +TgN) + W€

From the definition of the operator T'= V2N — Ng and the expression of S as a function
of D®(g,m)5.&, we obtain

D®(g,n)i6/\Jg = T —gtryT + (n—1)7(25(X) — gtrgS(X))
—(n —1)(n—2)7°GN + L26 + W}V X, (65)
D®(g,m)5.6 = —2(S(X)+7GN)+ W€ (66)

It is useful to restructure D®* into the operator P* defined by

VA (VIV;N = 6" AgN + (S' — EL)N) + g YA Ly,
* . * . g J 179 i 7 / g X J
1 0 %
- ol g o ]epetre, (67)

where g'/4 = (det(g)/det(§))"/* du(g) is a density of weight % and

—1/4,
¢=((g) = l g Ogjk gl/ggik ] . (68)

Finally, we can put P () into the form

(g,m)

. —-1/4 D® , *
Po(©) = ( G DRemie ) ©

Expression (67) of P* allows us to rewrite the L?(du(g))-adjoint of P* as follows

1 0
P(gﬂr) = Di’(guﬂ-)o |: O _5g :| OCa (7())

with 6,¢ = V!(g’) so that P( : q)) = D®(f;;,q’) and so the composition PP* is well
defined.
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8. ELLIPTIC ESTIMATES RELATIVE TO THE ADJOINT
In this section, we gather elliptic estimates satisfied by the adjoint operator of D®.

Proposition 9. Set § €] — (n+1)/2,0], withn =3, and 6 # —(n —1)/2. There exists a
positive constant C' = C' (g, A\, 0, ||g||#) such that the following elliptic estimate is satisfied:
VE e W2HT) ,

1€]l22-6 < c (I[DR(g, 7)78] 2.5 + [|DD(g, 7)5.&l12.-5) + Cll€ll2—25. (71
Proof: Considering expression (66) of S as a function of D®(g, )3.€,
T gtr,T = D®(g,m)1€/v/G+ (n— Vr(DB(g, )5 — Litr DB(g, 7)5.)
+L2E+ WAVX (72)
From Proposition 3 and (8),
Nl s < c(IDB(g,m)ills s+ (n— 17 (1+ 2| DB(g, m)3£lss)
O ([I€]]o0,~25 + [[VE][5,-25)-
Using (15), (16) and Sobolev inclusion (§ < 0), there exists a positive constant

C=C(g,A0,]|g||7) such that
INll22-5 < c(I|[D®(g,7)5&llams + (n— D)7 (1 + 2)2||DB(g, 7)5.E]l2,s)
+¢ [[€]l2.2,—5 + C [[&]]1,2,~25- (73)

Besides, for every sufficiently regular 1-form X on M, we have the following identity for
the metric g (cf equation (29) of [4] for example)

6%){} = %kﬁle = Riem éijlel + @kg(X)” + %jg(X)zk - 6,5’()()]/“ (74)
Hence
IV°X|los < [|Riem g X]lo, -5+ ¢[[VS(X)[[2,s
< elIX a5 + e [[VS(X)]]2,-s- (75)
A consequence of Lemma 13 is
1X 125 < [1X]l1,2,-5 < e [|S(X)]]a,s, (76)

which imply, with (75)
IV2XJ2,-5 < € [IS(X)]2-5 + ¢ [[VS(X)] |25,
and considering (76),
1X1l22,-5 < e 15|25
From (66) and (15),
1S 2,-5 < 31IDR(g, )56l 2,5+ 07 || Nl [12,-5 + el €] |22-5 + C 1€ |1.2,-25-
Thus there exists a constant C' depending on g, A, &,6 et ||(g, 7)||# such that
1X]l22,-s = ner T[[N[12-5 < G [D®(g, 7)5.8 12,5 + €llEll22,-5 + C €122 (77)
We can choose ¢y << 1 so that (73) + £0(77) combine to yield (71). .
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Remark: it may be possible to extend this result to § = —(n — 1)/2 using operator U
introduced later on.

Combining Proposition 9 and Ehrling inequality (11), we get
Corollary 3. Let § €] — (n+1)/2,0], withn =3 and § # —(n —1)/2.
Then the following estimate is verified: V& € WE(;Z(T) ,
1€ll22,-5 < ¢ (I|ID®(g, 7)7-El2,—5 + || DR(g, 7)5.&ll1,2-5) + C [€]]2,-25, (78)
where C' depends on g, \,d and ||(g, 7)||

The next lemma will be very useful during the proof of proposition 10 since it is the
Time-symmetric version.

Lemma 16. In dimensionn =3, let 6 <0, then the operator
D®(g,0)5(.,0) : W>H M) — L?4(S) is bounded and depends on g in a Lipschitz way,

| [D®(9.0 — D2(3.0)5] (V,0)| < Cllg = 3ll= N ]loa.s (79)

where constant C' depends on ¢, 0, ||g||+ et ||g]|#-
Proof: Let us recall the expression of D®(g,0);
D®(g,0)5-(N,0) = [ViV;N — g;;A,N — [Rij — 5(R(g) — 2A)gi;]N]\/g. (80)

Let us begin by showing D®(g,0)§ is bounded.
We set O = V2N — g A, N = L(V?N) where L is a linear invertible operator, so

10lls-5 < ¢l[V2Nllss = (|[V2Nl[a5 + | AdN ]}z, )

< C|N|l22,-s-
Indeed, AdN ~ gflﬁg dN. Using Holder inequality (8) , (13) and Sobolev inclusion,

1AdNl5 < [lg w0l Vg dN|l2, s
¢[[Vglh,26lldN 12,2
CINll22,-s (81)
[D®(g,0)5-(N,0),/V3ll2~s < [[O]l2,~5 + [[(Ricg — Ricg) N|2,—s + |[(n = 1)gN|[2,-

H|[Ricg + (n = 1)g] N2 + [|3n(n = 1)7° g N2,

[R(9) —2A+n(n—1)7%] g NH2,5.

/

NN

.

Considering (56), (42),
||(Ricg — Ricg)N||a—s < C||N||22.-s
[Ricg+ (n—1)§IN||2—s < c¢||N]|22-s.

For the scalar curvature term, using Holder inequality (8) and Sobolev inclusion together
with (47) and (57),

(R(g) —2A+n(n—1)7*) g N|]2-s < |[(R(§) —2A+n(n—1)7%) g N||2—s
+[|(R(g) — R(9)) g Nll2,-s
< C|[N]l22,-s-
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[[(n = 1)gN||2,—s < (0= 1)|[g]]oc,0l| V|2,—s
< c¢l||N||2.2,-s-

Similarly,
Iin(n —1)7%gN|ls-s < c||N||22,-s-
We end up with

1D®(g,0)5-(N,0),/Vgll2,~5 < Cl[N]l22,-5
and finally

1D®(g,0)5-(N, 0)[2,-5 < C[[V/glloool[Nll2.2,-5 < C[IN]]2,2,-5, (82)

where C'is a constant depending upon ¢, d and ||g||#.

Proof of (79): V ,A | Ric(3) and R(j§) will denote The Levi-Civita connection, the
Laplacian, the Ricci tensor and the scalar curvature of the Riemannian metric g.
In order to lighten notations, we set

D®¢(g)*N := D®(g,0)5(N,0) and D®o(3)*N := D®(g,0)5 (N, 0)

[D®o(g)* — D®o(3)*IN = (V7 — V/7) D(I)(i/ﬁ N+\fgv[D¢>(jg)*N_D¢(ig)*N}
H[DQO@) — D®y(g NH < lg—=19llF HM -
+CHD‘I’$§> N_D‘I’%VN o®

= (V—=V)dN 4 gA,N — §AN — [Ric(g) — Ric(§)|N

+1[(R(g) — 20)g — (R(3) - 20)] V.

1(V = V) dN|lo.—5 + [lg A;N = GAN]]_5

HD%(g)*N _ D®o(3)"'N
NG NG

+{[it) 2009 - (RG) 203 N,
—|[[Ric(g) — Ric(g)]N||2,-s-
e For the Hessian:
V-V=('=§")Vg+3i'Vig—29. (84)

Using Holder and Sobolev weighted inequalities, Sobolev inclusion (6 < 0) and
(13),

I[(V — V)dN||2 5 < Clg = gll2.2,61|N]]2,2,—s- (85)
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e For the Laplacian:

gAN—GAN = gAN—GAN +GAN — GAN

= (9—9AN +§(A,N — AN)

= (9= 9)g 'VAN +§(g"" = § " )VAN + g (V = V)dN.
Using Holder inequality (8), Sobolev inclusion (6 < 0) and Sobolev inequality,
19 AN = GAN|l2 5 < cllg = §llansl[VANIs 5+ ¢[[(V = V)dN]]s .
Considering (81) and given that V ~ A + v,

IVdN|ls,—5 < C'|[N|l22,-5, (86)

Using (85) et (86) , we get

lg AyN — GAN |25 < C|lg — dlo.26]|N||2.2,—5-

e For the Ricci tensor:

We define Ak _Fk F"“
Set T:=V =V =5"'Vj—g'Vg= (9" =5 H)Vg+35 V(g -9
Using Holder inequality (8), Sobolev inclusion (6 < 0) and Sobolev inequality,

T2 < Cllg—gll22s (87)
We can show, adding and substracting Ric(g) and using (53), that
[Ric(g) — Ric(§)]N ~ (VT + AT + T*)N ,
which leads to
[[Ric(g) — Ric(§)]N|ls,—5 < |IVTN||2,—5 + [[ATN]||5,-5 + || T*N||2,s. (83)

Using Hélder and Sobolev inequalities along with l'inclusion de Sobolev (§ < 0)
and (87)

IVTN|o-s < Cllg = gll224l| V22,5
The same method for the term ATN gives , considering (13)
IATN|l5-5 < Cllg = dllo2slINll22,-5

Using (8) , (14) , Sobolev inclusion (§ < 0) and Sobolev inequality together with
(87)

IT*Nllz-s < Cllg = 3ll2.2,4lIN]22,-s-
Replacing in (88), we obtain
I[Ric(g) = Ric(g)IN]l2,-5 < Cllg = gll2.26/[N]l2.2,-5- (89)
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e For the scalar curvature,
(R(g) —20)g — (R(9) —2M)g = (9 —9)(R(g) — 2A) + gg~'(Ricg — Ricg)
+g(g™" — g~ ")Ricyg
= (9-3)[R(g) —2A+n(n — 1)7°]
—n(n— 1)7%(g — §) + 35 (Ricg — Ricj)
+3(g~" — g "){Ricg — Ricg}.
Holder and Sobolev inequalities as well as Sobolev inclusion (6 < 0) and (89) yield
I[(R(g) = 20)g — (R(g) = 2A)gIN |25 < Cllg = gll224]|N]2,25
given that Yu € L, Vv € L% such that |[[uN||s,_s < C||N||22.s ,
g =g)uvNllz—s < [lg = Gllscolltllocol[vN]|2, -5
< Cllg = gllz2sll0ll26]Nl22,-5,

where C' is a positive constant depending on ¢g,6 et ||g]||#.
Putting the pieces all together in (83) and taking (82) into account lead to

[D®o(g)" — DPo(9)"N||2.-5 < Cllg = gll2.26/Nll2.2,-

The dependence in (g, ) of P* is controled as follows :

Proposition 10. Let 6 < 0 , then in dimension 3, operator P* : Wff(T) — L% s
bounded and satisfy

1€]l22,5 < c|[PE]|2,—s + C[|€]|1,2,~25 , (90)
where C' depends on ¢,6 and ||(g,7)||#.
Moreover, P, ., depends on (g, 7) € F in a Lipschitz way,

(Pl = Pia.m) Ell2—s < Chll(g = g7 = 7)1 7 [[€] |22, (91)
where constant Cy depends on g,é, (g, ™)||7 et ||(g,7)|| 7

Proof: Let us begin by showing P* is bounded, i.e.

1P €ll2,—s < C'[|€]|2,2,-s- (92)
Set
P =Fim
D® = D®(g, )}
D®5 = D®(g,7);
From (69),

1P Ella—s < e ([|ID®1L]l2,-5 + [[VD®5.E]]2,-5)
< (DD Ellos + IVDBSE 2 s + [[ADBELl 12 s)- (93)
From (65),(8), (13), Sobolev inequality and inclusion (6 < 0)
1D®5&ll2s < e (ITl2s+ 11920 + [IN]]2,-5) + C (1€]loo 25 + [V X][1.2,-25)
< C(INlla-s + X Th2-5 + [[N]l2,-5) + C (1I€]]2,-5 + [V X [12,-5)
< Cllélloa s (94)
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From (66) along with (8), (13), Sobolev inequality and inclusion (§ < 0)

1 D®5.£ll2,—5 < ¢ ([[SX)|2.=5 + || N]]2—5) + C'[1&]1,2,26- (95)
|AD®5.Ell2—5 < ¢ (|[AS(X)[os + [|AN][2,-5) + |€]loc,—2s
< C (19 2=s + INl2.-5) + [1€ll2.2,-25
IVD@5.Ell2—5 < ¢ (IIVSQO)llams + IVNlo-5) + [[€]]oc,-25
< CllE]l22,-s-
Consequently,
[ D®3.L]|2,—5 < |[DR5.£|[1,2,—5 < C |[€][2,2,—5- (96)

Every term of (93) is controled by |[¢]]2.2,—25 leading to (92).
Estimate (90) verified by P* directly comes from (71). We now look into the Lipschitz
behaviour of P*:

Set
P =P
D®: = D®(j, 7):
D®; = D®(§, 7);
e = ( g1 DRLE—g ) DDLS )-(7).
gAY D®E — GV DBLE
So

1(P* = P*)€lla,—5 < [|Ell2,—5 + | Fll2—s: (97)

E = g VD& ¢— gV Dd¢
= (g7 =g DR+ 5TV (DRLE - D).
Using (8), Sobolev inequality and inclusion (6 < 0)
1Elb-s < [[(g7* =37 D®1El[o, s + 17 /* (DB} — DBTE)| 5,5
< cllg = gl D®T.El|2—5 + c|[DPT.£ — DRT.E[2,—s.
From (65),
D®}.6— D®1.E = [D(g,0)5 — DB(3,0)5] (N,0) + (S/g — Sv/GN + XV (r — 7)
+(r —F)VX + AX (r — 7).
Using (8), (13), Sobolev inequality and inclusion (6 < 0)
[(m = ) VX o5 + IXV(T = D)llo5 < lm = 7lh2al [ VX [12-25
HIV(m = )26/ X oo, 25

< cllm = Tllzs [1X]]2,2,-5-

|AX (7 = 7)]]2,-5 G = 72,51 X[ o0, ~25

<
< Ol = 7l|izs [1X]|2,2, -6
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~ 1 1
S\/E—S\/T ~ _g—lﬂ_Z_ ~_1ﬁ'2

NG N
Lo _ Y2 L~71 72— 72 4 L . i ~717~T2.
~ ﬁ@ ) +\/§g ( ) + (\f \f)

15vg = SV@Nlas < Clilg =g, m = D)IFlN]l22,-5-
Given (79),
|D®}.6 — D@} &l 5 < Cll(g = G, 7 — 7)€ |25

and taking (94) into account,

E[2,-5 < Cl(g — g, — )| 7[[€]]2.2,6- (98)
F = ¢g"*vD®%c—g'/* VD& ¢
= ¢""(V=V)D®5E+ (97" = 3 VD®LE + g V(DB — DB3.L).
Using (84),(8), (13), Sobolev inequality and inclusion (§ < 0)
1Flloms < cl|V = V126l D®3.E] 1225 + [|g"* = 3 |so,—sl| VD®5.£| |22
+c||V(D®5.E — D®3.E)||o,—5 + ¢ || A(D®S.E — DBE)]a, s
< Cllg = gllFlD®3.El[12,-25 + c|lg — Gl 7|V D®.E] 2,25
+c||[V(D®5.€ — D®3.€)||o,—5 + c|[|[A(D®3.£ — DB.E)|s,s.
Considering (95) and (96),
1Fllos < Cllg = gll#llEll2zms + |V (DB5.E — DB5.E)||2—s (99)
+e[|A(D®3.E — D83.E)||2,-s-

D®5.E— D®LE ~ (K—K)N+(A—A)X
~ (T=F)N+(V-V)X
Using (84),(8), (13), Sobolev inequality and inclusion (6 < 0)
IV(D®5.£ — D®B5.6)|la—s < c||V(m — 7)lasl| Nloo26 + ¢ || = #||1.25] [ VN]1.2,-25
HIV(V = V)lasl | X |oom2s + IV = V|12 VX |12, 25
< el = 7lh2slINl22,-5 + ||V = V125l X]]2,2,-5
< Clilg =g, 7 =) #ll€l]2,2,—s-
In the same way,
|A(D®3.£ — D®3.E)|lo—s < c||A(T — 7)o N]oo—25 + AV = V)||2.5] | X || 0,25
< Cllg =g, 7 = )| #ll€l]2,2,—s-
We deduce from (99)
[ Fll2,—s < C (g — 3,7 — T)||#]I€]]2,2,-5- (100)
and résult (91) arises from (97), considering (98) and (100). o
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We show in the following proposition that the estimate (71) of Proposition 9 is also
verified by weak solutions ¢ only in L?4(7). We say that £ € £ is a weak solution of

D®(g, 7)€ = (f1, fo) , with (f1, f2) € L24(S) x W'2(S) when

[ € 02.m-(hi= [ (s by Vi) € Gx K-
M M

It suffices to test with (h, p) € €°(S x S) since this place is dense in G x K.

Proposition 11. Let 6 €] = (n+1)/2,0]\ {=(n = 1)/2} withn =3 , (9,7) € G x K,
(f1, f2) € L2 5(S) x W'2(S). Let € € L be a weak solution of D®(g,7)"¢ = (fi, fa).
Then € € W2 (T) is a strong solution and satisfies (71).

Proof: In [4], Bartnik shows that & € W22
From (78), we can write

1€ll22,-5 < c([|D®(g,7)7Ell2-5 + [|D®(g,7)5.£l[1.2,-5) + C|€]]2,-25
< c(Ifillz=s + [ f2ll12,-5) + C ||€]]2,—s-
So & € W>Z(T) and € verifies (71). .

9. THE OPERATOR U

Here we introduce an operator U inspired by the formula (74). It will allow us to control
the W7 *-norm of X with the L3-norms of S and U , that'’s to say with the W *-norm of
S. The key estimate will arise from a succession of lemmas.

Let U be the operator defined on 1-forms by

[O]kji<X) = %ini — gk Xi + gik X (101)
This readily imply
IV2X o5 = e[| X]lo,-5 < JU(X)] |25 (102)

The next four lemmas are established on an asymptotically hyperbolic manifold (M, g) ,
with g = p~2h and |dp|? = 1+ o(1) near the boundary.

Lemma 17. Let (M, g) be an asymptotically hyperbolic manifold and X € €>°(T*M)
compactly supported on a neighborhood of OM. Y6 € IR ,

/ X (X5 du(y) = / P2 (21 = 6+ o(1)) [ X 2 dpa(g)
M 4 M

w5 | IXEEL g o) (103)
/VX Py o du(g) = —/Mp (dz’vX(X,%)Jr(%Jrl)(X,%)Q) du(@)

+/Mp26(1+o<1))\x|§du<§)

n / . if><x nsdo(3), (104)
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Proof: For (103), we integrate by parts the term Vz(|X\3 Vipp?1) and the result
follows from the Divergence theorem , along with the definition (101) of U and (1). For

(103), we integrate by parts the term V; (X7 (X, dp) p* ') and the result follows on from
the Divergence theorem , along with the definition (101).

Lemma 18. Let (M, g) be an asymptotically hyperbolic manifold and X € €>°(T*M)
compactly supported on a neighborhood of OM. Y§ € IR ,

| UaC0x P du) =~ [ VXL duta)
M M
w5 R =g =1) = (n = 1)+ o)X di()
. d )
[ VXX = AXE( L n)y) do(@). (105)
OM P
Proof: From (101), Up;i(X) §" X" = (X, AX) — (n — 1)|X 2.

We integrate the term Vk(VkXZX ip??) and the lemma stems from the Divergence theorem
and Lemma 17.

Lemma 19. Let (M, g) be an asymptotically hyperbolic manifold and N € €*°(M)
compactly supported on a neighborhood of OM. Y6 € IR ,

=~k

. ..V d
/ 2 (U COVIX YL 4 divX (X, ) dpu(g) =
M P P
e ° . dp .
[ 7 (252 = o)V = X ) = [ (254 10X D)~ X dti
1 o d O d o
w3 [ (VXBCEL )y~ XL o) do @)+ [ 7 (6 DX dog),
M P p OM p
(106)
Proof: From (101),
. SN v . SN v . d . d
Ukji(X)VJXZ¥ _ v@xmxzy - VX(?'O,X) +VX(X, ?p).

We integrate the term V(]VX \EVTICP/)Q‘S ) and the lemma stems from the Divergence the-
orem and Lemma 17.

Considering also the equality 2 \S(X)|§ = \VX\; + VX, VEXT | we get
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Lemma 20. Let (M, g) be an asymptotically hyperbolic manifold and X € €*>°(T*M)
compactly supported on a neighborhood of OM. Y6 € IR ,

/M P (X)X + 2SO - 20 divX (X, D)) di(a) =
[ P12 o)X B dut) + [ 719X duls)
M M

T /M 5 26(26 + 1)(X, % dp() + /6 (VX (X) =25 (X, %mx, 1)) do ()
(107)

Proof: From (101), Up;i(X) §* X7 = VZ,XEX7 + (n — 1)|X 2.
We integrate by parts the term Vk(V]X kX7p?) and the result follows on from the Di-
vergence theorem along with (104) and the equality 2 |S(X)[? = [VX 2+ V,; X, VF X7,

We can now prove the following proposition, crucial in the demonstration of the adjoint
kernel triviality.

Proposition 12. Set Er := M\ Qg , for an open set Qr. For all € > 0, for all
d €] —2,—1] , there exists R.s > 0 such that for all R > R.; , there exists a constant
¢ > 0 such that

VX € 62(ER) , IXIhasmn < cUIUX) s + 1S b se).  (108)
Proof: The linear combination (106) — 3(105) + £(107) + (33) — (34) yield
25 1° 2 z%kp 1ekjyvi | 1sikyj o
p Uka(X)(V X'— =507 X"+ 39" X )du(g)
M P
, . dp d d . d .
+ [ (18008 = SCOCL L) (%, L), + (2= 9)dinx (X, L)) aut)
M p’p p p
= [ {8 (4 ek 1 o)X d(d)
M
d
o [ {28 =2 = (242 4 o} XL i)
M

: o d O
+/M [ =6+ o(1)] |VX|§/)25d/~L(g)+/8 025%(5_1)‘X|§<?p,77>§d0(g)

M
- dp dp o dp o dp 3
+/ (%\vxlﬁ(—,mg + X ) + VX (X, L) — %VX(—,X)) do(§)
OM P p p P
dp dp,,,dp :
[ (=000 Ly, — 10X D)) doa) (109)
oM P P P

Application on Fg: Eg possesses two disjoint boundary components. An exterior bound-
ary at infinity, noted OE,, , and an interior boundary 9Qr = {p = e 2} . Since
X € €°(FEgr) , X is surely null near 0E, but not necessarily on 02 and that’s the
reason why boundary terms in (30) will only concern 0Q2g. If g is the normal to 0Qg
exterior to Fr and considering that
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2
‘dp‘;,

When R — 400 , nR———>0 SO that( L NR)g = o(1) =1+ o(1).
X, (resp. Xr) being the component of X normal (resp tangential) to OM,

Xp:=(X,n)y and |X[J=X?+ X7

25 1° o '6%

/ o7 Uyia(X) (W X1
Eg P

[ ISCOR = 000w m) X, + (2= 8)dinX X,) dui)

— 349X+ 15" X7) du(9)

= [ P8 ()6 0 L o)X du(d)
Er

+/E o {[242 — 0+ o] [VX [+ [0+ (457)5 + %51 + o(1)] X2} du(9)
R

+/ 0% %(5 — 1)(X% + 0(1)) do(g) + / 0% %(2 - 5)(X2 + 0(1)) do(g)

OER OER

[ (HXEI + HXE + 39X (X0) — 39X (0. X)) do(i).

R
Given the following equalities
<HVIXn' = Xl5 = VXl + X1 - $VX (1, X)

<4|V i +X@-I_§ = $IVXInlg + 71X[5 + 3 VX (X, n)

we get that for all € > 0 , there exists R. > 0 and ¢, >> 1 such that VR > R, ,
co [ P IOCOE+ISCOR) dul@) > [ (-84 (55 4 nt 1= ) X du(a)
ERr Er
| = - VX du(a
Er

[ (3 g = X aul)
Er

! / (25— &) X2 do(§)
2 OFER
1

+—/ P2 (0 —1—e)X2do(g). (110)
2 OFER

n+1[

The X7 term is non negative if § €] — 2

The X? term is non negative Vn > 3, V4 €]+ ; 2HL[.

The \VX|§ term is non negative if 6 < (n +1)/2.

The boundary term is non negative if § €]1, 2[.
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Hence, Vo €]1;2[, Ve > 0,3R. > 0 and ¢. >> 1 such that VR > R, ,

‘. /E (TGO + 1$(X)[2) dyu(g) > / P (B 5 — )| VX2 dpu()

Er

+/ p25 ({_52 + (HT%)é +n+1-— 5}X72, + {52 + (nTJ)(S + % - E}szz d”(é)) d:u(é)'
Egr

10. THE ADJOINT KERNEL TRIVIALITY

In this section we show that the kernel of D®(g, 7)* is trivial. We will need the following
lemmas and propositions in the demonstration of Theorem 3.

Lemma 21. Let § € IR and £ € W (T) be a solution of D®o(g,7)*¢ = 0. Then
¢ = (N, X) satisfies the system

{f(m — bof + by VE

S(X) = —grN + b€ (111)

with by € L2 et by, by € W7

Proof: From (72) and (66) , D®¢(g, 7)*¢ = 0 lead to
T — (tryT)g = L% + W, VX, (112)
S(X)=—grN + W€
Taking the trace of (112),
T(N) = L3¢ + W2 VE. (113)
S(X) = —gTN 4+ W3¢ .
Theorem 3. Triviality of ker D®¢(g)*.
Let Q C M be a connected open set such that Er C Q. We fix (g,m) € F. Set

§€l—(n+1)/2,—1] with n = 3. Suppose & € L* ;(M) verifies D®g(g,7)*¢ =0 on Q.
Then £ =0 on €.

Proof: From Proposition 11 , £ € Wi?(./\/l) According to the Lemma 21 and since &
is a solution of D®q(g)*¢ = 0, & satisfies

T(N) = bo§ + 5165
S(X) = —gTN + byt
with by € L? et by, by € W,
From (41),
Usjs(X) = Vi, X; — Riem gyja + L3X. (114)
Regarding (74)
UX) = aVS(X)+L2X
— —aTgVN + L2+ W) VE. (115)

O
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We must show that a solution & of (111) such that € = o(p?) (from (12)) vanishes. Before
pursuing the proof of the theorem, let’s recall Proposition 3.9 of [4] :

Proposition 13. In dimension n = 3, set § < 0 and (g,7) € F. Let  be a connected
subset of M. Let & satisfy D®(g,7)*¢ = 0 sur Q. If in addition £ = 0 on an open set
UcCQ, then =0 onf.

Given the previous proposition, it remains to show ¢ vanishes near infinity. The bound-
ary version of (102) gives

IV2XJo—58n — X l2—5in < [1U(X)]]2—538- (116)
Combine to (108), together with (115), Sobolev inequality and (8), we obtain

X258, < c(IUX)]l2-5:85 + |[S(X)]2,-5:5)
< c¢lINIh2-smn + C ([I€]loo, 262 + [[VE]|s,~25:2) (117)
Using Proposition 4 , there exists g << 1 such that (29) 4 ,(117) give

Iell22-s8r < T2 -smn + C (|[€]loo, 2025 + [[VE]l3 ~25:12)-
Considering Lemma 21 along with Sobolev inequality and (17) with ¢ < 0,

[€l]2.2,—6:8r < Cll€]l22, 26,85
< Ce"™ ||E]]a2,—5.5p-

We end up with Vé €] — (n+1)/2, —1],

1€l |2.2,-6:50 < C € [|€]]22,—5:E5-

For R large enough, ||¢||2.2.—s., = 0 and thanks to Sobolev inequality, £ vanishes on Eg,
for R >> 1. From Prop.13, £ = 0 on (2, because {2 is connected by assumption. This
ends the proof of Theorem 3. o

Corollary 4. Seté €] —(n+1)/2,0]\{—(n—1)/2}, with n = 3. There ezists a constant
C > 0 depending on ||(g, 7)||F such that for € € W>2(T),

1€l]22,-5 < C[|P7E]|2,-s- (118)

Proof: In order to show that the kernel of P* is finite dimensional, we apply Riesz
theorem showing every bounded subset of ker P* is || ||22,—s— compact. Let {{} be a
sequence of ker P* such that ||€g||22,—s = 1. Rellich theorem tells us we can extract from
{&} a sub-sequence, also noted {&}, converging in W' to a limit £&. Hence, {&} is a
Cauchy sequence in W'2,. From (71), considering that {&,} € kerP*, {&} is a Cauchy
sequence in Wz’f, and so converges to & in Wz’f, from the limit uniqueness. This ends the
proof of the finite dimension of ker P*. ker P* is thus a closed subspace of the Hilbert
vector space sz Being a finite dimensional closed subspace of a normed vector space ,
it splits and if we set W to be the closed complement of ker P*,

W22 = kerP* © W.
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From the same argument as in the proof of Theorem 1 , there exists a constant C' > 0
depending on ||(g, 7)||# such that for all £ € W |

I€l22,-5 < CI[P7E]]2,-5 (119)
We conclude thanks to the triviality of ker P* from Theorem 3. .

11. SUBMANIFOLD STRUCTURE

Lemma 22. Let X,Y be two Banach spaces and T a linear operator with closed range.

T:X — Y

™.y —» X*©
then (CokerT)* ~ kerT* , where CokerT = Y/[mT
Proof: We define
: kerT* — (CokerT)* = L(Y/lmTv ]R)
p = (Ay+TX —py))

The map A is well defined because Vo € X, p(Tz) = T*(p)(z) = 0.
The map 1 is invertible and
Pt (CokerT)* —  kerT™
A= ANy +TX) = p(y)

p € kerT* because T*(p)(x) = p(Tx) = A(0) = 0. .
Remark: The closed range of 7" imply CokerT is a Banach space.

We are now in possession of all the tools necessary to demonstrate the manifold structure
of C as a sooth submanifold of F. In fact, all level sets of ®(g, 7) are smooth submanifolds

of F.

Theorem 4. Let ® : F — L* be the constraint operator in dimension n = 3.
For every e € L* | for all § €] —2,—1] , the set of solutions of the constraint equations

Cle):={(g9,m) € F:®(g,m) =¢}

1s a submanifold of F. In particular, the space of solutions of the vacuum constraint
equations C = C(0) has a Hilbert submanifold structure.

Demonstration: In order to use the implicit function theorem, we want to show:
e ker D®(g, ) splits.

e D®(g, ) is surjective.

Given that the kernel of D®(g, ) is finite dimensional, we show that ker D®(g, )
is closed and hence splits. D®(g,7) being a bounded operator, its kernel is closed by
continuity:.

As we established the triviality of ker D® (g, 7)* in Theorem 3, leading to

(kerD® (g, 7)*)" = L.
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Using the classic relation
(kerD®(g, 7)")" = ImD®(g, ),

we get

mD®(g.7) = L
So in order to have the surjectivity of D®g(g) , il suffices to prove D®(g, ) has closed
range. To do so, we consider particular variations (h,p) of (g, ) of the form

hiy=2y95 ) (120)
p? = (28(Y)7 = g7trS(Y) — (n = 1)(n = 2)ry g7)\/g
determined from fields (y,Y"). We define the operator
F(y,Y") = [Fo(y,Y"), Fi(y,Y")] = [D®o(g, ) (h, p), D®i(g, ) (h. p)]. (121)

From (59) and (60),

Fo(y,Y') = 2(n—1)/g[-Ay+ ny] + (4 —n) Po(g, ™) y + 2(n — 2)7divY /g

+LE [y + Y]+ W, VY.

F(y,Y") = —2yg[-AY"+ (n = DY)+ 28i(g. 1)y + Wy Vy + L[y + Y].

Definition 2. Operator asymptotic to A.
We say an operator P of the form
Pu= aij(:p)ﬁfju + b (2)Ou + c(x)u

1s asymptotic to A with a decaying rate T if there exists n < ¢ < oo , 7 < 0 and two
positive constants Cy, A such that

MELF < a”(2)&&; < ATHELG Yo € M, £ € TM.
18" = §" |l + 116']]g.r + llellg2r < Ch.

Proposition 14. Let g € G with § < 0. Then A is asymptotic to A with a decaying
rate 0.

Proof:
A= gijvgj = gij%?j + gij(Vi - ﬁl)ﬁj
= ¢V} —g7AN Vi (122)
The metrics g et g being equivalent, equation (49) directly gives
MElG < g7 ()66 < ATELG Ve e M, £ € TM.
Setting B
b= giak,
then b € W;** from (51). Given the Sobolev inequality, there exists a constant C; > 0
such that

197 = 37 l6s + [1B¥]l6.5 < e (197 = 722 + [6]1126) < C1.

We will justify later on the terminology "asymptotic" used in this definition.
The operator A = —A + n , acting on functions, will be of great interest.
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Proposition 15. Let g € GT with § <0 and A = —A +n. Let s € IR. There exists a
constant C = C(n,p,q,s,0,C1, ) such that if u € L? and Au € L? | then u € W22 et

lullz2,s < C ([[Aullzs + [[ull2s) -

Proof: By elliptic regularity, u € T/Vlif and the estimate arises from interior estimates
(see [12] for example) and scaling.

Theorem 5. Let g € G with 6 < 0 so that A is asymptotic to A.

Set A=—A+n, withn = 3.

Let |s| < (n+1)/2. Then A: W2**(M) — LA(T* @ A>°T*M) is bounded.
Moreover, it satisfy the following elliptic estimate

lull2.2.s < C ([|Aull2,s + [|ull2.s05) - (123)

In particular, A is a semi-Fredholm operator , i.e. A has finite dimensional kernel and
closed range.

Proof: We define the following operator norm:
1A = Allop = sup{[|(A = AYullzs - u € W22, |lulloz,s = 1}
and || ® ||,y r denotes the same norm restricted to functions supported in Exr = M \ Q.
If supp(u) C Eg , then from the expression (122) of A,
1A = A)ullos < (g7 = §9)Viullas + |6 Viull2,s
< ng{g” GV ullz,s + 116"Vl |2,

< cllg = dllooomel[Viullzs + 116 Vulla,s.
Using (8), Sobolev inequality and inclusion (6 < 0),

1A = A)ulles < c(llg = dll2sm, + [bl1258) [Jull22.

Recalling that [|g — g||2,2,6 + ||b]]1,2,s is bounded because g € G,

|IA = Al|gpr = 0(1) quand R — +oo. (124)

This justifies a posteriori terminology used in the definition 2.

Let xgr be a cut-off function as in Definition 1

1OHQR/2
XrR =
0on M\ Qp

Then we can decompose u = g + too , With us = (1 = xgr)u.
We look into the operator A=—-A+n acting on functions. Using Corollary 3.13 of [1]

with A = n , we obtain that V|s| < (n+1)/2, A W22 — L% is a Fredholm operator and
an isomorphism. So there exists a positive constant C' = C(n, s) such that

[ull2..6 < C [ Aulfa,s. (125)
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Applying (125) to u
ltoollazs < C l Atog]|2,s
< Ol Ausg|lzs + [|A = Allop, rl|tioo|]2,2,s- (126)

Yet Auy, = Au — Aug = Au—yrAu+xrAu — Aug.
Thus,

Mtss|l2s < [JAullzs + [[xrAU2s + [[XRAU = Aug|]2,5
< Ol Aullzs + [[xrAu = Augll2,5:04-
From the expression (122) of A,

xrAu — Aug = —uAxg+ nxru + 29”7 0ud;xr
= 2¢Y0ud;xr + (gij%?jXR + V' Oixr)u,
leading to
IxrAU — Augl|2,5.0, < c|lul|1 2,504
Finally

[l AUooll2,s < C (|| Aullzs + ||ul12,504)
Replacing (126) and considering (124), we obtain for R large enough
[ltooll26 < Ntcoll2.2,s < C ([[Aullzs + [Jul12,5:05) - (127)
Using (127) and the fact that on Qpg, |uels < |ulg
lullz.s < luco]l2.s + [uol]2,s
< O ([MAullos + [[ull12,505) + [ull2,50k-
Thanks to Ehrling inequality (11),
lullzs < C ([[Aullas + [|ull2.s0r) + ellull2.2.508
< O ([ Aullas + [Julla,s0r) + ellull2z,s-
and we conclude with Proposition 15.

Let B=—A+n—1bean operator acting on 1-forms.

Theorem 6. Let 6 <0 and g € G*. Setting B=—-A+n—1 and |s| < (n+1)/2.
Then B : W2*(T* M) — L2(T* @ A*T* M) is bounded. Furthermore, it satisfies

Y l22.s < C (1B ll2.s + [[Y[]2.5:05) (128)

In particular, B is a semi-Fredholm operator , i.e. B has finite dimensional kernel and
closed range.

Proof: From Proposition E of [15], the indicial radius of B is (n+1)/2 and by Theorem
C of [15], V|s| < (n+1)/2 , B : W22 — L2 is a Fredholm operator. By Corollary 3.13
of [1] , B is an isomorphism for the same span of s. So there exists a positive constant
C = C(n,s) such that

1V llaze < C[IBY]fon (129)
The proof is nearly identical to the one of Theorem 5 with (129) replacing (125). .
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Theorem 7. Let 6 €] — (n+1)/2,0] with n = 3. Then the operator
FW2T) — LAT* @ A*T*M) := L* is bounded. Furthermore, it verifies
1w V)25 < C (1F (Y, Y26 + (v V)20 + 11y, Yl |25:05) - (130)

In particular, F is a semi Fredholm operator, i.e. F' has finite dimensional kernel and
closed range.

Proof: Plugging the expression of Fy(y,Y?) in (123) and using Holder inequality (8) ,
(15) ,Ehrling inequality (11) along with Sobolev inclusion (with § < 0) and ®(g, 7) € L3,

yll22s < C ([[=Ay +nyllas + |[yll26:08)
< C(1F, Y)ll2s + 11w, Y)llz0 + [[Yll2.26 + [[Yll2.5:07) - (131)

Plugging the expression of Fj(y, Y?) in (128) and using Hélder inequality (8) , (15) ,Ehrling
inequality (11) along with Sobolev inclusion (with 6 < 0) and ®;(g,7) € L3,

Y220 < C ([[FAY 4+ (n = 1)Y]las + [[Y]]26:05)
< C([F(y, Y)llas + 1w, Y)ll20 + Y 26:05) - (132)

Finally, combination of (131) and (132) gives (130).
Starting from the definition of F', the Triangle inequality together with (54) and the
Sobolev inclusion (with 6 < 0) directly yield

HEWl26 < Cllyll2.20,

where C' is a constant depending on ¢ and ||g||r. Hence F' is a bounded (continuous)
operator. For all § €] — (n+ 1)/2,0] , the estimate (130) verified by F' est analoguous
to the one of Theorem 1 and by a similar proof, we show F' is semi-Fredholm, i.e. F' has
finite diensional kernel and closed range.

Now F' and its adjoint F™* have similar structure (F' is formally self-adjoint)
F* o L2 5(T) = W2A(T @ AT*M).
Let F* be the restriction of F* defined as follows
Fr i W2A(T) = L2(T* @ A*T*M).
We can apply Theorem 7 to F*:
Theorem 8. Let 6 €] — (n+1)/2,0] with n = 3. Then the operator
F*:W22(T) — L?5(T* @ A’T* M) is bounded. Furthermore, it satisfies
1w Y)lla2s < € (IF @)l las + 10Vl ass + 10V gn) - (133)

In particular, F* is a semi-Fredholm operator , i.e. F* has finite dimensional kernel and
closed range.

Proof: Plugging the expression of ﬁg‘(y, Y?) (formally identical to Fy(y,Y?)) in (123)
and using Holder inequality (8) , (15) ,Ehrling inequality (11) along with Sobolev inclusion
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(with § < 0) and ®¢(g,7) € L3,
(3, Y)ll2.2.-5 (II=Ay + nyll2,-s + [[N]2,-505)

< C
< C (B 0o + 1wV la, 25 + 1V 20,5 + lyl 2,50, ) (134)
Plugging the expression of ]?i;(y, Y?) (formally identical to Fj(y,Y")) in (128) and using
Holder inequality (8) , (15) ,Ehrling inequality (11) along with the Sobolev inclusion (with
§ < 0) and ®5(g, 7) € L3,

Vlh2os < C (=AY + (0= DY ls +1[Vll2-50,)
< € (IE @) as + 1@ Y Mllo2s + Y | son) - (135)

Finally, combination of (134) and (135) gives (133).

From the definition of F*, the Triangle inequality together with (54) and the Sobolev
inclusion with § < 0 directly yield

1 W)ll2.-s < Cllyll22.-5

and for all § €] — (n+1)/2,0], F* is a semi-Fredholm operator. By elliptic regularity,
ker F* = ker F'* is also finite dimensional. If we apply Lemma 22 to F' , we get

(Coker F')* ~ ker F"*.

So (CokerF')* is finite dimensional and (CokerF')* ~ CokerF'. Thus we have the isomor-
phism

CokerF' = L7, =~ kerF™.
The operator F' satisfies

ImF C ImD®(g,7) C L.

Let 7 be the canonic projection:
T L= L

m(ImD¢) is closed as subspace of a finite dimensional vector space. Im(D¢) is closed,

being the inverse image of a closed set by a continuous map. o
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