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Abstract Let M be a closed and connected manifold, H : T ∗M×R/Z→R a Tonelli

1-periodic Hamiltonian and L ⊂ T ∗M a Lagrangian submanifold Hamiltonianly iso-

topic to the zero section. We prove that if L is invariant by the time-one map of H,

then L is a graph over M.

An interesting consequence in the autonomous case is that in this case, L is invariant

by all the time t maps of the Hamiltonian flow of H.

Keywords Lagrangian Dynamics, Weak KAM Theory, Lagrangian submanifolds,

generating functions.
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1 Introduction and Main Results.

A lot of problems coming from the physics are conservative, as the N-body problem

and other classical mechanical systems: in other words, they are symplectic.

Close to the completely elliptic periodic orbits of symplectic dynamics, it is in general

possible to use some change of coordinates called normal form (see [19]) and thus to

be led to study a local diffeomorphism

(θ ,r) ∈ Tn ×Rn 7→ (θ +α +β .r,r)+ small (1)
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close to the zero section Tn ×{0} with β being a symmetric matrix. When β is a

definite matrix, these diffeomorphisms are called twist maps and it can also be proved

that they are the time 1 map of a so-called Tonelli Hamiltonian vector field.

This kind of diffeomorphisms was introduced for example by Poincaré in the study of

the circular restricted 3-body problem. When n = 1, they were intensively studied by

G.D. Birkhoff. In [7], G.D. Birkhoff proved that if γ is an embedded circle of T×R

that is not homotopic to a point and that is invariant by some conservative twist map,

then γ is the graph of a Lipschitz map T→ R. A modern proof of this result can be

find in [14].

Question: what happens in higher dimensions?

A natural extension of the 1-dimensional annulus T ∗T = T×R is the cotangent

bundle T ∗M of a closed n-dimensional manifold M. We recall in section 1.1 that T ∗M

can be endowed with a symplectic form.

If we want to obtain some submanifolds that are graphs (or more correctly sec-

tions) in T ∗M, we are led to look at n-dimensional submanifolds. Moreover, we have

to impose some topological conditions for these submanifolds. Indeed, there are ex-

amples of conservative twist maps of T×R that have an invariant embedded circle

that is homotopic to a point (and then this is not a graph): this happens for example

for the time 1 map of the rigid pendulum close to the elliptic equilibrium.

But even if we ask that the invariant submanifold is homotopic to the zero-section

of T ∗M, it is easy to build examples of Tonelli Dynamics that have an invariant sub-

manifold that is not a graph but is homotopic to the zero section. The first author gave

in [2] an example of such a submanifold of T ∗T3 = T3 ×R3 that is invariant by the

Hamiltonian flow of H(q, p) = 1
2
‖p‖2 = 1

2
(p2

1 + p2
2 + p2

3), which is the geodesic flow

for the flat metric on T3.

That is why we focus on the particular case of Lagrangian submanifolds.

DEFINITION. A submanifold L ⊂ T ∗M is Lagrangian if dimL = n and ω|TL = 0.

Even if the set of Lagrangian submanifolds is very small in the set of all the n-

dimensional submanifolds (more precisely it has no interior when endowed with the

Hausdorff topology in T (T ∗M)), there exist a lot of invariant Lagrangian submani-

folds for the symplectic dynamics.

EXAMPLES.

– In T ∗T, a loop is always Lagrangian;

– a vertical fiber T ∗
q M is Lagrangian;

– the zero-section is Lagrangian;

– more generally, a C1 graph is Lagrangian iff it is the graph of a closed 1-form: for

example, {(q,dS(q));q ∈ M} is a Lagrangian submanifold;

– the stable or unstable (immersed) submanifold at a hyperbolic equilibrium is La-

grangian;

– for the so-called completely integrable systems the phase space is foliated by

invariant Lagrangian tori;

– some of these invariant tori remain after perturbation (K.A.M. theory).
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Let us come back to the expression (1). When β is indefinite, M. Herman con-

structed in [16] some examples with an invariant Lagrangian torus that is isotopic

to the zero section but not a graph. That is why we will assume that β is positive

definite, i.e. we will work with Tonelli Hamlitonians.

DEFINITION. A C2 function H : T ∗M×T→ R is a Tonelli Hamiltonian if

– the Hamiltonian vector field1 associated to H is complete;

– H is C2-convex in the fiber direction, i.e. has a positive definite Hessian in the

fiber direction;

– H is superlinear in the fiber direction, i.e. for every B > 0, there exists A > 0 such

that:

∀(q, p, t) ∈ T ∗M×T,‖p‖ ≥ A ⇒ H(q, p, t)≥ B‖p‖.

EXAMPLE. A Riemannian metric defines an autonomous Tonelli Hamiltonian.

Let us recall that we need to ask some topological condition on the invariant

Lagrangian submanifold to be able to prove that it is a graph. To explain that, we

need a definition.

DEFINITION. Two submanifolds L1 and L2 of T ∗M are Hamiltonianly isotopic if

there exists a time-dependent Hamiltonian H : T ∗M ×R → R such that, if (φ s,t
H ) is

the family of symplectic maps that is generated by the Hamiltonian vector field of H,

then

L2 = φ0,1
H (L1).

Our main result is the following one.

Main Theorem Let M be a closed manifold, let H : T ∗M ×T → R be a Tonelli

1-time periodic Hamiltonian, and let L ⊂ T ∗M be a C1 Lagrangian submanifold

Hamiltonianly isotopic to a Lagrangian graph. If L is invariant by the time one map

associated to H, then L is the Lagrangian graph of a C1 closed 1-form.

A submanifold L is Hamiltonianly isotopic to the zero-section if and only if the

two submanifolds are isotopic in some particular subset E of the set of Lagrangian

submanifolds of T ∗M, the set of the so-called exact Lagrangian submanifolds. Hence

some related questions remain open.

Questions

– Is the same conclusion true if we replace “Hamiltonlianly isotopic” by ” iso-

topic”?

– Is the same conclusion true if we replace “Hamiltonlianly isotopic” by ” homo-

topic”?

Let us mention some related existing results.

– In [1], the first author proved that if a Lagrangian submanifold that is Hamiltoni-

anly isotopic to a Lagrangian graph is invariant by a autonomous Tonelli Hamli-

tonian flow, then it has to be a graph. In next Corollary, we will explain how our

result improves this statement.

1 This will be defined in section 1.1.
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– In [4], P. Bernard and J. dos Santos extended this result in the autonomous case

to the case of Lipschitz Lagrangian submanifolds.

– In [5] and [6], for M = Tn, with a weaker topological assumption (they assume

that L is homologous to the zero-section) but a strong hypothesis on the restricted

Dynamics (it is assumed to be chain-recurrent), M. Bialy and L. Polterovich ob-

tain the same result.

– In [15], M. Herman proved a similar result for a submanifold that is:

– compact and Lagrangian;

– with a Maslov class equal to 0;

– invariant by an exact symplectic twist map of Tn ×Rn that is C1-close enough

to a completely integrable symplectic twist map;

– such that the restricted dynamics is chain recurrent.

Our result is valid on all cotangent bundles and doesn’t assume any dynamical

behaviour of the restriction to the invariant submanifold.

However, it cannot be extended to any twist map because we don’t know if a general

twist map (in any dimension) is the time 1 map of a Tonelli Hamiltonian (see [13] for

an interesting discussion on this subject).

Some arguments of our proof are common with the proof of the autonomous case

in [1], but not all. Moreover, even if some of our techniques come from weak KAM

theory, we tried to avoid to use the whole theory, as the Aubry set, the weak KAM

solutions . . . and to write a self-contained article.

Corollary 1 Let M be a closed manifold, let H : T ∗M →R be an autonomous Tonelli

Hamiltonian, and let L ⊂ T ∗M be a C1 Lagrangian submanifold Hamiltonianly iso-

topic to a Lagrangian graph. If L is invariant by the time one map associated to H,

then L is the Lagrangian graph of a C1 closed 1-form and it is invariant by all the

time t maps φ t
H .

To any Tonelli Hamiltonian H : T ∗M×T→R, a Lagrangian function L : T M×T→
R can be associated via the Legendre duality.

∀(q,v, t) ∈ TM×T, L(q,v, t) = inf
p∈T ∗

q M
(p.v−H(q, p, t)).

DEFINITION. A continuous and piecewise C1 arc γ0 : [a,b] → M is minimizing if

for every continuous and piecewise C1 arc γ : [a,b]→ M such that γ0(a) = γ(a) and

γ0(b) = γ(b), we have

∫ b

a
L(γ0(t), γ̇0(t), t)dt ≤

∫ b

a
L(γ(t), γ̇(t), t)dt.

Corollary 2 Let M be a closed connected manifold, H : T ∗M ×T → R a Tonelli

1-time periodic Hamiltonian, and L ⊂ T ∗M a C1 Lagrangian submanifold Hamilto-

nianly isotopic to a the zero section. If L is invariant by the time one map associated

to H, then the orbit of every point of L is minimizing.



Birkhoff Theorem 5

1.1 Notations

– M is a closed Riemannian manifold, π : T ∗M → M is its cotangent bundle and

ZT ∗M the zero section; if q = (q1, . . . ,qn) are coordinates in a chart of M, the dual

coordinates p = (p1, . . . , pn) ∈ T ∗
q M are defined by pi(δq j) = δi, j where δqi is

the ith vector of the canonical basis and δi, j is the Kronecker symbol;

– T ∗M is endowed with the Liouville 1-form that is defined by:

∀p ∈ T ∗M,∀v ∈ Tp(T
∗M),λ (v) = p ◦Dπ(p)(v);

in a dual chart, we have λ =< p,dq >= ∑ pidqi;

– the canonical symplectic form on T ∗M is ω = −dλ ; in a dual chart we have

ω = dq∧d p = ∑dqi ∧d pi;

– T = R/Z is the 1-dimensional torus with length 1 and T2 = R/2Z is the 1-

dimensional torus with length 2; we denote by t ∈ R 7→ [t]1 ∈ T and t ∈ R 7→
[t]2 ∈ T2 the corresponding covering maps;

– a complete C2 Hamiltonian H : T∗M×T→ R being given, the Hamiltonian vec-

tor field XH is defined by ω(XH(x,s),δx) = dH(x,s)δx and the corresponding

Hamiltonian familly of diffeomorphisms is denoted by (ϕs,t
H )s,t∈R.

– we choose coordinates (q,τ) in the closed manifold M2 = M×T2 and denote the

dual coordinates by (p,E); then the Liouville 1-form on T ∗M2 is Θ =< p,dq >
+Edτ and the canonical symplectic form is Ω =−dΘ = dq∧d p+dτ ∧dE . We

will often use the identification T ∗M2 = T ∗M×T2 ×R;

– we choose similarly coordinates (q,τ) in the closed manifold M1 = M ×T and

denote the dual coordinates by (p,E); then the Liouville 1-form on T ∗M1 is

θ =< p,dq >+Edτ . We will often use the identification T ∗M1 = T ∗M×T×R.

– given a function v : M1 →R (resp. v : M2 →R) and a point z = (q, t)∈M1 (resp.

z = (q, t) ∈ M2), if v is differentiable on z we set

Jv(z) = (q,dqv(z), t,
∂v

∂ t
(z)).

It is an element of T ∗M ×T×R (resp. T ∗M ×T2 ×R) and it can be identified

with the differential of v at z = (q, t).

1.2 A useful reduction

Let us explain why we will assume that L is Hamiltonianly isotopic to the zero

section (instead of “to a Lagrangian graph”) in the proof.

Assume that L is Hamiltonianly isotopic to the Lagrangian graph L0 and that L is

invariant by the time 1 map of the Tonelli Hamiltonian H : T ∗M×T→R.

Then L0 is the graph of some closed 1-form Λ of M. Changing L0 in a very close

other graph, we can even assume that Λ is smooth. Then F : T ∗M → T ∗M that is

defined by F(q, p) = (q, p+Λ(q)) is a symplectic diffeomorphism so that

– F−1(L ) is Hamiltonianly isotopic to the zero section F−1(L0) = ZT ∗M;

– F−1(L ) is invariant by the time 1 map of the Tonelli Hamiltonian H̃(q, p, t) =
H(F(q, p), t).
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Hence if we have proved the main theorem for the submanifolds that are Hamiltoni-

anly isotopic to the zero section, we deduce that F−1(L ) and then L is a graph.

1.3 Structure of the article

– In the second section, we construct an extended autonomous Hamiltonian and an

extended Lagrangian submanifold in the extended phase space; we then build a

graph selector for the extended Lagrangian submanifold;

– in section 3, using the graph selector that was built in section 2, we build a domi-

nated function;

– in section 4, using the notion of calibrated curve, we prove the main theorem and

its corollaries.

2 Construction of a Lagrangian submanifold in the extended phase space and

its graph selector.

Standing hypotheses From now, we assume that H : T ∗M ×R/Z→ R is a Tonelli

time 1-periodic Hamiltonian and that L ⊂ T ∗M is a C1 Lagrangian submanifold

Hamiltonianly isotopic to ZT ∗M that is invariant by the time one map associated to

H.

The goal of this section is to build an extended autonomous Hamiltonian, an ex-

tended Lagrangian submanifold and a so-called graph selector. Moreover, we will

prove some properties for these objects.

2.1 Extension of the Lagrangian submanifold

In this section, adding two dimensions to the phase space, we will replace the non-

autonomous Hamiltonian flow by an autonomous one and extend the invariant sub-

manifold in the new phase space.

Let us comment on the choice of the new Hamiltonian and of the Lagrangian

submanifold. The method that gives an autonomous Hamiltonian is well-known but

the extended Hamiltonian is not Tonelli with respect to the new variables and we

cannot just apply the proof that the first author gave in [1] in the autonomous case.

The method to build an extended submanifold in the new phase-space is well-known

too, but:

– a priori, this new submanifold has a boundary; thus we would need to build a

theory of generating functions for manifolds with boundary to go on with our

proof and we prefer to avoid this. Moreover, we don’t know if this could work;

– an idea to remove the problem of boundary is to identify what happens for the

times t = 0 and t = 1. As the initial manifold is invariant, we can glue the two

ends of the extended submanifold in a smooth way and obtain a closed manifold.

Then a new problem appears: we cannot extend the isotopy that joins the zero
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section to the initial manifold in a periodic way because the submanifolds that

appear in the isotopy are not invariant by the initial time 1 map and thus their

extended submanifolds cannot be glued in a continuous way.

To overcome these problems, we had the idea to extend the Hamiltonian flow in a

2-periodic one by symmetrizing the extended Hamiltonian and the extended subman-

ifold. Let us explain this now.

We use the following function.

NOTATION. Let η :R→R be a non-negative and C∞ fonction satisfying the following

properties

i) η(−t) = η(t) and η(1− t) = η(1+ t) for every t ∈ R.

ii) η(0) = 0 and η(1) = 1.

iii) η̇(t)> 0 if t ∈ (0,1).
iv) η̇(0) = η̈(0) = η̇(1) = η̈(1) = 0.

t

η(t)

0 1 2

1

Let us introduce a new time-dependent Hamiltonian K : T ∗M ×T2 → R defined

by K(q, p, t)= η̇(t)H(q, p,η(t)). A straightforward computation shows that every in-

tegral curve of XK can be written as t 7→ (q, p)(t) = (Q,P)(η(t)), where s 7→ (Q,P)(s)
is an integral curve of XH . This fact can be expressed as follows :

ϕs,t
K (q, p) = ϕ

η(s),η(t)
H (q, p).

Roughly speaking, integral curves of XK are reparametrizations of segments of in-

tegral curves of XH , but they slow down and turn back at integer time. In partic-

ular, integral curves of XK are all 2-periodic and satisfy (q, p)(−t) = (q, p)(t) and

(q, p)(1− t) = (q, p)(1+ t).
Let now K : T ∗M×T2×R→R be the autonomous Hamiltonian on the extended

phase space T ∗M2 = T ∗M×T2 ×R defined by

K (q, p,τ,E) = K(q, p,τ)+E.
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The Hamiltonian equations for K are given by

{

dq
dt

= ∂K
∂ p

(q, p,τ), dτ
dt

= 1,
d p
dt

=− ∂K
∂q

(q, p,τ), dE
dt

=− ∂K
∂τ (q, p,τ),

(2)

We can see that the evolution on T ∗M is the same as for the Hamiltonian K, while the

variable τ is essentially the time. If φ t
K

denotes the Hamiltonian flow of K , by (2),

we easily get the relation

φ t
K (q, p,τ,E) = (ϕτ,τ+t

K (q, p),τ + t,E +K(q, p,τ)−K(ϕτ,τ+t
K (q, p),τ + t)). (3)

The evolution of the variable E can be obtained using the conservation of K by the

flow. Let G ⊂ T ∗M×T2 ×R be the submanifold defined by

G = {φ t
K (q, p,0,−K(q, p,0)),(q, p) ∈ L , t ∈ [0,2]}.

Since the flow φ t
K

is 2-periodic in time, G is a closed submanifold diffeomorphic to

L ×T2. If we cut G by a hypersurface τ = t and we forget the E variable, we get the

image of L by ϕ0,t
K = ϕ

0,η(t)
H .

Proposition 1 If L is Hamiltonianly isotopic to the zero section ZT ∗M of T ∗M, then

G is Hamiltonianly isotopic to the zero section ZT ∗M2
of T ∗M2.

Proof The proof is twofold. In the first part, we prove that G is isotopic to some

submanifold G0 by using the fact that L and ZT ∗M are isotopic. In the second part,

we prove that G0 is isotopic to ZT ∗M2
by using the time-dependent Hamiltonian

s 7→ sK.

Let (ψs) be a Hamiltonian isotopy of T ∗M such that ψ0 = IdT ∗M and ψ1(ZT ∗M) =
L . We use the notation Ls = ψs(ZT ∗M). We denote by h(q, p,s) a Hamiltonian

associated to (ψs).
For every s ∈ [0,1], we define the submanifold Gs of T ∗M2 = T ∗M×T2 ×R by

Gs = {φ t
K (q, p,0,−K(q, p,0)),(q, p) ∈ Ls, t ∈ [0,2]}.

Exactly for the same reason as G , Gs is a closed manifold that is diffeomorphic to

L ×T2.

Because t 7→ ϕ0,t
K is 2-periodic, we can use this notation for t ∈ T2 too.

We define Fs : T ∗M2 → T ∗M2 by

Fs(q, p,τ,E) = (ϕ0,τ
K ◦ψs ◦ϕτ,0

K (q, p),τ,E +K(q, p,0)−K(ϕ0,τ
K ◦ψs ◦ϕτ,0

K (q, p),τ)).

Note that F0 = IdT ∗M2
and that (Fs) is the Hamiltonian isotopy associated to the

Hamiltonian (q, p,τ,E) 7→ h(ϕτ,0
K (q, p),s).

As Fs(G0) = Gs and G1 = G , G is Hamiltonianly isotopic to G0.

Let us now prove that G0 is Hamiltonianly isotopic to the zero section ZT ∗M2
of

T ∗M2.

DEFINITION. A diffeomorphism G : T ∗M → T ∗M is exact symplectic if G∗λ −λ is

exact as a 1-form.
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Lemma 1 Let (Gs) be an isotopy of exact symplectic diffeomorphisms. Then it is a

Hamiltonian isotopy.

Proof If we denote the Liouville 1-form on T ∗M2 by Θ , we have: G∗
sΘ −Θ = dSs

and then if Xs is the vector field associated to (Gs), we have: G∗
s (LXsΘ) = dṠs, i.e.

G∗
s (iXs dΘ)+G∗

s (d(iXsΘ)) = dṠs. We finally obtain G∗
s (iXs Ω) = d(G∗

s (iXsΘ)− Ṡs).
Hence (Gs) is Hamiltonian and the associated Hamiltonian is iXsΘ − Ṡs ◦G−1

s .

In order to use Lemma 1, we define Gs : T ∗M2 → T ∗M2 by:

Gs(q, p,τ,E) = (ϕ0,τ
sK (q, p),τ,E + s(K(q, p,0)−K(ϕ0,τ

sK (q, p),τ))).

Then G0 = IdT∗M2
and G1(ZT ∗M2

) = G0. If we succeed in proving that every Gs is

exact symplectic, we can deduce that G0 is Hamiltonianly isotopic to the zero section

and hence that G is isotopic to the zero section. We prove that only for s = 1 (we can

replace K by sK). We use the notations G = G1, ϕτ = ϕ0,τ
K and Kτ(q, p) = K(q, p,τ).

As (ϕτ ) is a Hamiltonian isotopy, every ϕτ is exact symplectic. We write: ϕ∗
τ λ −

λ = dSτ . We saw in the proof of Lemma 1 that d(iXK
λ −Kτ) = d(Ṡτ ◦ ϕ−1

τ ). By

adding to Sτ a function depending only on τ , we can assume that iXK
λ −Kτ = Ṡτ ◦

ϕ−1
τ .

Now we compute

G∗Θ −Θ = ϕ∗
τ (λ )+ϕ∗

τ (iXK
λ )dτ −λ +(K(q, p,0)−K(ϕτ(q, p),τ))dτ.

Note that K(q, p,0) = 0. We obtain then

G∗Θ −Θ = dSτ +ϕ∗
τ (iXK

λ )dτ −K(ϕτ(q, p),τ)dτ,

i.e. G∗Θ −Θ = dSτ + Ṡτdτ , then G is exact symplectic.

2.2 The generating function

There is a classical way of quantifying the Lagrangian submanifolds of a cotangent

bundle that are Hamiltonianly isotopic to the zero section. This is done by using the

so-called generating functions.

The facts that we recall here come from different articles; more precisely, the

existence theorem can be found in [22] and [8] and the uniqueness theorem is proved

in [24] and [23].

DEFINITIONS.

– Let p : E →M2 be a finite-dimensional vector bundle over M2. A C2 function S :

E →R is a generating function if its differential dS is transversal to the manifold

W = {ξ ∈ T ∗
e E;e ∈ E and ξ = 0 on Te(p−1(p(e)))}.

– Then the critical locus ΣS of S is the set ΣS = dS−1(W ).
– The map iS : ΣS → T ∗M2 is defined by iS(e) : T ∗

p(e)M2 → T ∗M2, iS(e)δx =

dS(e).δe where δe ∈ TeE is any vector so that d p(e).δe = δx.

– If G is a Lagrangian submanifold of T ∗M, S : E → R generates G if iS is a dif-

feomorphism from ΣS onto G .
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– When the bundle E =M2×Rk is trivial and there exists a non-degenerate quadratic

form Q : Rk → R such that S = Q outside a compact subset, we say that S is spe-

cial. The index of S is then the index of Q

Sikorav’s existence theorem Let G be a Lagrangian submanifold of T ∗M2 that is

Hamiltonianly isotopic to the zero section. Then G admits a special generating func-

tion.

NOTATION. We denote a special generating function of G by S(q,τ;ξ ) with ξ ∈ Rk.

REMARKS. When S : M2 ×Rk → R is special, we have:

ΣS = {(q,ξ ) ∈ M2 ×Rk;
∂S

∂ξ
(q,ξ ) = 0};

and

∀(q,ξ ) ∈ ΣS, iS(q,ξ ) = (q,
∂S

∂q
(q,ξ )).

Observe that the condition that S is a generating function means that the map ∂S
∂ξ

is a submersion at every point of ΣS.

Proposition 2 The special functions S0 : (q,ξ )∈M×Rk → S(q,0;ξ ) and S1 : (q,ξ )→
S(q,1;ξ ) generate the Lagrangian submanifold L ⊂ T ∗M.

Proof The only non trivial thing to be proved is that the functions Si are generating

function. Then the fact that they are special and that they generate L is straightfor-

ward.

We recall that

G = {φ t
K (q, p,0,0),(q, p) ∈ L , t ∈ [0,2]}.

Hence if (q, p) ∈ L , we have the equalities XK (q, p,0,0) = (0,0,1,0) ∈ T(q,p,0,0)G

and XK (ϕ0,1
K

(q, p),1,0) = (0,0,1,0)∈ Tφ 1
K

(q,p,0,0)G because η̇(0) = η̈(0) = η̇(1) =

η̈(1) = 0.

Let us recall that iS(q,τ,ξ ) = (q, ∂S
∂q
(q,τ,ξ ),τ, ∂S

∂τ (q,τ,ξ )). Then, for j = 0,1, we

have (D(iS)
−1(q, p, j,0))(0,0,1,0) = (0,1,δξ j) ∈ T

i−1
S

(q,p, j,0)ΣS.

As the equation of ΣS is ∂S
∂ξ

(q,τ,ξ ) = 0, we deduce that

∂ 2S

∂τ∂ξ
(i−1

S (q, p, j)) =−
∂ 2S

∂ξ 2
(i−1

S (q, p, j))δξ j .

This equality implies that for every (q, p) ∈ L and j = 0,1, we have

ImD

(

∂S

∂ξ

)

(i−1
S (q, p, j,0)) = ImD

(

∂S

∂ξ

)

(i−1
S (q, p, j,0))|δτ=0 = Rk,

i.e. that S j is a generating function.
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In the next subsection, we will build what is called a graph selector and we will

prove that it doesn’t depend on the generating function that we choose. To do that,

we need a uniqueness result for the generating functions that is due to C. Viterbo. Let

us explain this.

DEFINITIONS. Let p : E → M2 be a finite dimensional vector bundle and let S :

E → R be a generating function. Let us define the basic operations on generating

functions:

– Translation. If c ∈ R, then S′ = S+ c : E →R.

– Diffeomorphism. If p′ : E → M2 is another vector bundle and F : E ′ → E is a

diffeomorphism such that p ◦F = p′, then S′ = S ◦F : E ′ → R.

– Stabilization. If p′ : E ′ →M2 is another finite dimensional vector bundle endowed

with a function Q′ : E ′ → R that is quadratic non-degenerate when restricted to

the fibers of p′, then S′ = S⊕Q′ : E ⊕E ′ →R.

Then, two generating functions are equivalent if they can be made equal after a suc-

cession of basic operations.

REMARK. Observe that the basic operations that are given by the two first item are

reversible in the following sense: if S′ is obtained from S by such an operation, then

S is obtained from S′ by a similar operation. This is not the case for the third basic

operation, for which we can only add variables.

That is why the definition of equivalence is a little subtle: S is equivalent to S′ if there

exists a third generating function S′′ so that S′′ can be deduced from S by some basic

operations and S′′ can be deduced from S′ by some basic operations.

Viterbo’s uniqueness theorem Two special functions that generate the same La-

grangian submanifold are equivalent.

REMARK. The property of being special is not preserved by the basic operations.

2.3 Graph selector

Using the generating function S, we will construct a graph selector u : M2 → R.

Such a graph selector was introduced by M. Chaperon in [9] (see [20] and [21] too)

by using the homology. Here we prefer to use the cohomological approach. We now

explain this.

NOTATIONS. Let p : E → M2 be a finite dimensional vector bundle. If S : E → R

is a function that generates a Lagrangian submanifold, q ∈ M2 and a ∈ R is a real

number, we denote the sublevel with height a at q by

Sa
q = {e ∈ E; p(e) = q and S(e)≤ a}

and we use the notation Sq = S|Eq
.
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When S is special with index m, there exists N ≥ 0 such that all the critical values

are in (−N,N). Then the De Rham relative cohomology space with compact support

H∗(Eq,S
−N
q ) is isomorphic to R for ∗ = m and trivial if ∗ 6= m. We denote by αq

a closed m-form with compact support on Eq such that α
q|S−N

q
= 0 and 0 6= [αq] ∈

Hm(Eq,S
−N
q ).

If a ∈ (−N,N), we use the notation ia : (Sa
q,S

−N
q ) → (Eq,S

−N
q ) for the inclusion

and then i∗a : Hm(Eq,S
−N
q ) → Hm(Sa

q,S
−N
q ). The graph selector u : M2 → R is then

defined by:

u(q) = sup{a ∈ R; [i∗aαq] = 0}= inf{a ∈ R; [i∗aαq] 6= 0}.

Proposition 3 Let p : E → M2 be a finite dimensional vector bundle, let S : E → R

be a special generating function with index m and let σ : E ′ → R be a generating

function that is got from S after a succession of basic operations. If there are exactly

k stabilizations among these basic operations (with indices m1, . . . ,mk), the sum of

all the indices is denoted by ℓ= m+
k

∑
j=1

m j.

Then, for N positive large enough, Hℓ(E ′
q,σ

−N
q ) is isomorphic to R; if [Aq] is one of

its generator, we can define a graph selector by

U(q) = sup{a ∈R; [i∗aAq] = 0}= inf{a ∈ R; [i∗aAq] 6= 0}.

This graph selector is equal to the one associated to S plus a constant.

Proof If the basic operation that we use is a translation or a diffeomorphism, the

proposition is straighforward. The only non trivial case concerns stabilization. From

now, we forget the translations and the constants and we can assume that we are in

the following case.

Assume that S : E → R is a generating function such that after a fiber diffeo-

morphism ψ : E → E , S ◦ψ is non-degenerate quadratic in every fiber outside some

compact subset, the quadratic form being denoted by Q0 and having index m0. Then

Hm0(Eq,S
−N
q ) is isomorphic to R and H∗(Eq,S

−N
q ) = {0} if ∗ 6= m0. For such a func-

tion we can define a graph selector u as before (even if this function is not special).

Assume that Q : F → R is a non-degenerate quadratic form with index m when re-

stricted to the fibers of p′ : F → M2 and let us use the notation S = (S ◦ψ)⊕Q :

E ⊕F →R.

Dimension of H∗(Eq ⊕Fq,S
−N−C

q )
Observe that |S −Q0 ⊕Q| is bounded by some constant C. Hence we have:

{Q0 ⊕Q ≤ a−C} ⊂ {S ≤ a} ⊂ {Q0 ⊕Q ≤ a+C}.

Then we choose N ≥ 0 such that all the critical values of S (and then of S ) are in

(−N,N). Then the inclusion maps induce the following homomorphisms

H∗(Eq ⊕Fq,Q0 ⊕Q ≤−N)
j∗3

−→H∗(Eq ⊕Fq,S
−N−C

q )
j∗2

−→
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H∗(Eq ⊕Fq,Q0 ⊕Q ≤−N − 2C)
j∗1

−→H∗(Eq ⊕Fq,S
−N−3C

q ).

As the pairs (Eq ⊕Fq,Q0 ⊕Q ≤ −N) and (Eq ⊕Fq,Q0 ⊕Q ≤ −N − 2C) are homo-

topically equivalent and as the pairs (Eq ⊕Fq,S
−N−C

q ) and (Eq ⊕Fq,S
−N−3C

q ) are

homotopically equivalent, the maps j∗1 ◦ j∗2 and j∗2 ◦ j∗3 are isomorphisms, and then j∗2
is an isomorphism too. We deduce that H∗(Eq ⊕Fq,S

−N−C
q ) is isomorphic to R if

∗= m0 +m and {0} if ∗ 6= m0 +m.

The same is true if we replace S by the function σ = S⊕Q that will be denoted by

σ from now.

A first inequality between the two graph selectors

Let ε be a positive number. We will prove that U(q)≤ u(q)+ ε =: a+ ε
2
.

Let α be a closed m0-form that vanishes on S−N
q and is such that 0 6= [i∗aα]∈Hm0(Sa

q,S
−N
q )

and let β be a closed m-form that vanishes on Qε
q and such that 0 6= [i∗ε

2
β ]∈Hm(Q

ε
2
q ,Q−ε

q ).

We denote by A (resp. B) a m0-cycle of Sa
q with boundary in S−N

q (resp. m-cycle of Q
ε
2
q

with boundary in Q−ε ) such that α(A) 6= 0 (resp. such that β (B) 6= 0). We use the no-

tation µA = supQ|A and µB = supS|B. Using the gradient flow of Q0 on S−N
q to push A

or the gradient flow of Q on Q−ε to push B, we can asssume that S|∂A ≤−ε −N−µA

and Q|∂B ≤ −ε −N − µB; observe that this implies that ∂ (A×B) = (∂A×B)∪ (A×

∂B)⊂ σ−ε−N .

Then the cup product α ∨β is a closed (m+m0)-form that vanishes in (Q−ε
q ×Fq)∪

(Eq × S−N
q ) and such that (α ∨ β )(A×B) 6= 0. As the set (Q−ε

q ×Fq)∪ (Eq × S−N
q )

contains σ−ε−N and as the support of A×B is in Sa
q ×Q

ε
2
q ⊂ σa+ ε

2 , we deduce that

0 6= [i∗
a+ ε

2
(α ∨β )]∈ Hm+m0(σa+ ε

2 ,σ−ε−N) and thus U(q)≤ a+ ε
2
= u(q)+ε . Hence

we have U(q)≤ u(q).

The reverse inequality between the two graph selectors

Let us now prove that for ε > 0, we have U(q) ≥ u(q)− ε = a− ε
2
. We use the

notation j : σ
a− ε

2
q → Eq ⊕Fq, j1 : Sa

q → Eq and j2 : Q−ε
q → Fq for the inclusion maps.

As H∗(Sa
q,S

−N
q ) and H∗(Q

− ε
2

q ,Q−ε
q ) are trivial, there exists a (m0 − 1)-form α1 on

Sa
q such that α1|S≤−N = 0 and j∗1α = dα1 and a (m− 1)-form β1 on Q− ε

2 such that

β1|Q≤−ε = 0 and j∗2β = dβ1.

Observe that (Sa
q×Q−ε

q ,S−N
q ×Q

− ε
2

q ) is an excisive couple (see [17]), hence all the

following cohomology spaces vanish because they can be expressed with the trivial

spaces H∗(Sa
q,S

−N
q ) and H∗(Q

− ε
2

q ,Q−ε )

H∗
(

Sa
q ×Q

− ε
2

q ,
(

Sa
q ×Q−ε

q

)

∪
(

S−N
q ×Q

− ε
2

q

))

= {0}.

We have d(α1 ∨β ) = d((−1)m0α ∨β1) = α ∨β . We deduce that there exists a (m0 +

m− 2)-form µ on Sa
q ×Q

− ε
2

q that vanishes on (Sa
q ×Q−ε

q )∪ (S−N
q ×Q

− ε
2

q ) and is such
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that α1 ∨β − (−1)m0α ∨β1 = dµ . We can extend µ in a (m0 +m− 2)-form that is

defined on Eq ⊕Fq and vanishes on (Eq ×Q−ε
q )∪ (S−N

q ×Fq). Then the (m0 +m−1)-
form α1 ∨β that is defined on Sa

q ×Fq coincides on the intersection of the two sets

with the (m0+m−1)-form (−1)m0α×β1+dµ that is defined on Eq×Q− ε
2 . Together,

they define a (m0 +m− 1)-form µ1 on (Sa
q ×Fq)∪ (Eq ×Q− ε

2 )⊃ σ
a− ε

2
q such that

– µ1 vanishes on (Eq ×Q−ε)∪ (S−N ×Fq)⊃ σ−N−ε ;

– dµ1 = α ∨β .

We deduce that 0= j∗(α∨β )∈Hm+m0(σ
u(q)−ε
q ,σ−N−ε

q ) and then that U(q)≥ u(q)−
ε . Hence U(q)≥ u(q) and finally u(q) =U(q).

NOTATIONS. From now we denote by S : (q,τ,ξ )∈ E → S(q,τ,ξ ) a special generat-

ing function for G . The critical locus is denoted by Σ and the associated embedding

is i = iS : Σ → T ∗M2. We denote by u : (q,τ) ∈ M2 → u(q,τ) the graph selector

associated to S.

Following the proofs that are contained in [20] or [21] for the homology, we will

prove

Proposition 4 Let u : M2 → R be a graph selector for the special generating func-

tion S : M2 ×Rk → R. Then u is a Lipschitz function that is C1 on an open subset

U0 ⊂ M2 with full Lebesgue measure, and for every z = (q, t) ∈ U0, the following

properties hold

Ju(z) ∈ G , and u(z) = S ◦ i−1(Ju(z)), (4)

where Ju(z) = (q,dqu(z), t, ∂u
∂ t
(z)) ∈ T ∗M×T2 ×R and with the usual identification

T ∗M2 = T ∗M×T2 ×R.

Proof We assume that S = Q on all the levels that are not in (−N,N) and we denote

the index of Q by m. Let us fix z ∈M . We denote by α a m-form on Rk that vanishes

on Q−N and is such that 0 6= [α] ∈ Hm(Rk,Q−N). Because there is a change in the

topology of the sublevel with height u(z), u(z) is a critical value of Sz.

Let us prove that u is Lipschitz. Observe that the function V : M ×M ×Rk → R

that is defined by V (z,z′,ξ )= S(z′,ξ )−S(z,ξ ) is C1 and has compact support. Hence

there exists a constant L > 0 such that

∀z,z′ ∈ M ,∀ξ ∈Rk, |S(z,ξ )− S(z′,ξ )| ≤ L.d(z,z′).

We deduce that for every a ∈R, Sa
z ⊂ S

a+L.d(z,z′)
z′

. Then the inclusion maps induce the

following maps (note that S−N
z = S−N

z′
):

Hm(Rk,S−N
z )

j∗2
−→Hm(S

u(z)+L.d(z,z′)+ε
z′

,S−N
z′

)
j∗1

−→Hm(S
u(z)+ε
z ,S−N

z ).

We know that 0 6= ( j2 ◦ j1)
∗α ∈ Hm(S

u(z)+ε
z ,S−N

z ). This implies that j∗2α 6= 0 and

then that u(z′) ≤ u(z)+ ε +Ld(z,z′). This is also valid when we exchange z and z′.

Therefore, when we let ε go to zero, we get :

|u(z)− u(z′)| ≤ L.d(z,z′).
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Let us now prove that there exists an open subset U0 of M with full Lebesgue mea-

sure on which u is C1. Observe that the set U1 of the z ∈ M where Sz is Morse

is exactly the set of regular values of the restriction to ΣS of the first projection

(z,v) ∈ M ×Rk 7→ z and then has full Lebesgue measure by Sard’s theorem. It is

open. We denote by U0 the set of the z ∈ U1 such that the critical points of Sz have

pairwise distinct critical values. Let us prove that U1\U0 has only isolated points: this

will imply that U0 is open and has full Lebesgue measure. Let us consider z ∈U1\U0.

As Sz is Morse, ΣS is transverse to {z}×Rk and then above a neighbourhood Vz of

z in M , ΣS is the union of j graphs, the graphs of η1, . . . ,η j : Vz → Rk. If we use

the notation ψ j(z
′) = ∂S

∂q
(z′,η j(z

′)), then G is the union of the disjoints graphs of

ψ1, . . . ,ψ j above Vz. For z′ ∈ Vz, u(z′) is a critical value of Sz′ and then is one of the

real numbers S(z′,η1(z
′)), . . . ,S(z′,η j(z

′)). Note that every S(,ηi(.)) is C1 and that
∂S(,ηi(.))

∂ z
= ψi. As the ψi(z

′) are pairwise distinct, for i 6= j, {S(,ηi(.)) = S(,η j(.))}
has only isolated points.

Let us now consider z ∈U0. We can define a connected neighbourhood Vz, η1, . . . ,η j

and ψ1, . . . ,ψ j exactly as before. Then every u(z′) is one of the S(z′,ηi(z
′)). Because

Vz is a connected part of U0, there exists exactly one i such that ∀z′ ∈ Vz,u(z
′) =

S(z′,ηi(z
′)). Then we have du(z′) = ∂S

∂ z
(z′,ηi(z

′)) =ψi(z
′) and we deduce that u(z′) =

S ◦ i−1
S (Ju(z

′)) and Ju(z
′) ∈ G .

Proposition 5 There exist a real constant c such that the following identity holds

∀q ∈ M, u(q,1) = u(q,0)− c (5)

Proof We proved in Proposition 2 that S(q,0;ξ ) and S(q,1, ;ξ ) are two generating

functions for L . We deduce from Proposition 3 the wanted result.

Corollary 3 For the same constant c that is defined in Proposition 5, the function

S ◦ i−1
S satisfies the identity

S ◦ i−1
S (q, p,1,0) = S ◦ i−1

S (q, p,0,0)− c, (q, p) ∈ L . (6)

Proof As S(q,0;ξ ) and S(q,1;ξ ) are two generating functions for L , the functions

(q, p) ∈ L 7→ S ◦ i−1(q, p,1,0) and (q, p) ∈ L 7→ S ◦ i−1(q, p,0,0) are two primitive

on L of the Liouville 1-form λ . Hence their difference is a constant.

Moreover, u(.,0) and u(.,1) are two graph selectors for L so that u(.,0)−u(.,1)= c.

Hence there exists a dense open subset V0 of M with full Lebesgue measure such that

for i = 1,2

∀q ∈V0,(q,dqu(q,0)) = (q,dqu(q,1)) ∈ L and u(q, i) = S◦ i−1
S (q,dqu(q, i), i,0).

Take q ∈ V0. By Proposition 4, we have for (q, p) = (q,dqu(q,0)) = (q,dqu(q,1)) ∈
L that

S ◦ i−1
S (q, p,1,0) = u(q,1) = u(q,0)− c = S ◦ i−1

S (q, p,0,0)− c.
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3 Construction of a dominated function.

In this section, we come back to the original problem, and construct what is called a

dominated function for the Lagrangian L that is associated to H, where we recall the

definition of the Lagrangian that we gave in the introduction.

NOTATION. The Lagrangian L : T M×T→ R is the function that is associated to H

via the Legendre duality.

∀(q,v, t) ∈ T M×T,L(q,v, t) = inf
p∈T∗

q M
(p.v−H(q, p, t)).

We recall that L is as regular as H is, C2-convex in the fiber direction and super-

linear in the fiber direction (see e.g. [11]).

DEFINITION. A function U : M1 =M×T→R is dominated by L+c if it is Lipschitz

and if for every continuous and piecewise C1 arc γ : [a,b]→ M, we have

U(γ(b),b)−U(γ(b),b)≤
∫ b

a
(L(γ(t), γ̇(t), t)+ c)dt.

The goal of this section is to build a function u that is dominated by L+ c and to

prove some properties for this function.

Then, in the last section, we will prove that u is everywhere differentiable and

that L is contained in the graph of q 7→ du(q,0). After that, we will prove that du is

C1.

3.1 Construction of a dominated function.

Let us introduce a notation.

NOTATION. We define u : M× [0,1]→R by u(q, t) = u(q,η−1(t))+ ct.

Observe that a consequence of Proposition 5 is that u(.,0) = u(.,1). Hence we

can consider u as a function defined on M1 = M×T.

Proposition 6 The function u is Lipschitz and dominated by L+ c.

Proof We postpone the proof that u is Lipschitz after the proof of the domination

property, but we use the fact that u is Lipschitz in the first part of our proof.

The domination property

Let γ : [a,b] → M be a C1 arc with [a,b] ⊂ (0,1) and assume that the image of t ∈
[a,b] 7→ (γ ◦η(t), t) ∈ M1 is Lebesgue almost everywhere in U0 (U0 was defined in

Proposition 4). Then

u(γ(b),b)−u(γ(a),a) = u(γ(b),η−1(b))− u(γ(a),η−1(a))+ c(b− a),
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and if we use the notation δ = u(γ(b),η−1(b))− u(γ(a),η−1(a))

δ =
∫ η−1(b)

η−1(a)

(

dqu(γ(η(t)), t)γ̇(η(t))η̇(t)+
∂u

∂ t
(γ ◦η(t), t)

)

dt.

Young inequality for dual convex functions tells us that

∀p ∈ T ∗
q M,∀v ∈ TqM,∀t ∈ T, p.v ≤ H(q, p, t)+L(q,v, t).

Hence we have δ ≤

∫ η−1(b)

η−1(a)

[

η̇(t)
(

H(γ(η(t)),dqu(γ(η(t)), t),η(t))+L(γ(η(t)), γ̇(η(t)),η(t))
)

+
∂u

∂ t
(γ ◦η(t), t)

]

dt.

Proposition 4 tells us that u is a graph selector for G above U0. We can therefore re-

place in the integral ∂u
∂ t
(γ ◦η(t), t) by−K(γ(η(t)), p(t), t)=−η̇(t)H(γ(η(t)), p(t),η(t)),

where we set p(t) = dqu(γ(η(t), t). Using a change of variable s = η(t) we obtain

δ ≤

∫ η−1(b)

η−1(a)
η̇(t)L(γ(η(t)), γ̇(η(t)),η(t))dt =

∫ b

a
L(γ(s), γ̇(s),s)ds.

This gives the domination property

u(γ(b),b)−u(γ(a),a)≤

∫ b

a
(L(γ(s), γ̇(s),s)+ c)ds. (7)

How can we conclude for general γ : [a,b] → M that are continuous and piecewise

C1?

– if [a,b]⊂ (0,1) and γ is C1, by Lemma 2 below applied to γ ◦η , we can approxi-

mate γ in topology C1 by a sequence (γn)n such that (γn ◦η(t), t) ∈U0 for almost

every t ∈ [η−1(a),η−1(b)], hence the domination inequality holds for every γn.

Taking now the limit n →+∞, we find that inequality (7) holds for our curve γ .

– if [a,b]⊂ [0,1] and γ is C1, we can find a decreasing sequence (an) and an increas-

ing sequence (bn) so that (a,b) =
⋃

n∈N[an,bn]; then every γ|[an,bn] is dominated

and by taking a limit γ is dominated;

– for general γ , we can cut γ in sub-arcs γ1, . . . ,γn that are C1 and defined on some

intervals Ik that are contained in some intervals [nk,nk + 1] with nk ∈ Z; then

we have the domination property for every γ j and hence for their concatenation

γ = γ1 ∗ · · · ∗ γn.

Lemma 2 Given an interval [α,β ]⊂ (0,1), a set of full measure U0 ⊂ M1 and a C1

curve τ : [α,β ]→ M, there exists a sequence of C1 curves τn : [α,β ]→ M, n∈N such

that (τn)n∈N converges to τ in the C1-topology, and for every n ∈ N, (τn(t), t) ∈ U0

for almost every t ∈ [α,β ].
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Proof Without loss of generality, we can assume that τ is defined in a slightly big-

ger interval [α ′,β ′]⊂ (0,1) such that [α,β ]⊂ (α ′,β ′). The curve σ : [α ′,β ′]→ M1,

σ(t) = (τ(t), t) is a C1-embedding, and it can be embedded in a tubular neighbour-

hood, that is to say, there exist a C1-embedding Λ : [α ′,β ′]×O → M1, Λ(t,ξ ) =
(Γ (t,ξ ),T (t,ξ )) such that Γ (t,0) = τ(t) and T (t,0) = t, where O is on open neigh-

bourhood of 0 in Rn. Let us prove that it is always possible to find a tubular neigh-

bourhood Λ̃ of σ so that Λ̃(t,ξ )= (Γ̃ (t,ξ ), t). Indeed, let F : [α ′,β ′]×O →R×O be

the map defined by F(t,ξ ) = (T (t,ξ ),ξ ). Since T (t,0) = t, the differential D(t,0)F is

the identity. Eventually shrinking O we can assume that D(t,ξ )F is invertible for every

(t,ξ ) ∈ [α ′,β ′]×O . Since the map t 7→ T (t,ξ ) is C1-close to the identity for ξ suf-

ficiently small, hence injective, we can also assume that F is injective, and therefore

F defines a diffeomorphism from [α ′,β ′]×O to a neighbourhood of [α,β ]×{0}.

By definition of F , if we set Λ̃ = Λ ◦ F−1 we get Λ̃(t,ξ ) = (Γ̃ (t,ξ ), t), where

Γ̃ = Γ ◦F−1. Now F([α ′,β ′]×O) is a neighbourhood of [α,β ]×{0}, hence we

can find an open neighbourhood of 0 in Rn, here denoted Õ , such that [α,β ]× Õ ⊂
F([α ′,β ′]×O). Since Λ̃ is a C1-diffeomorphism, the set V0 = Λ̃−1(U0 ∩ Λ̃([α,β ]×
Õ)) has full measure in [α,β ]× Õ , and by Fubini Theorem, for almost every ξ ∈ Õ,

the set of t ∈ [α,β ] such that (t,ξ ) ∈V0 has full measure in [α,β ], therefore, we can

find a sequence (ξn)n in Õ such that ξn → 0 and for almost every t ∈ [α,β ] we have

(Γ̃ (t,ξn), t) ∈U0. By defining τn(t) = Γ̃ (t,ξn) we have the desired property.

The Lipschitz property

Let us remark that η−1 : [0,1]→ [0,1] is an absolutely continuous function. In-

deed, it is a C∞ function on the open interval (0,1), and if we set g(t) = (η−1)′(t) for

t ∈ (0,1), for every segment [a,b]⊂ (0,1) we have

η−1(b)−η−1(a) =
∫ b

a
g(t)dt, (8)

and by construction of η we know that g(t)> 0 for t ∈ (0,1). By continuity of η−1, if

we take the limits a → 0 and b → 1, we find that g is absolutely integrable on (0,1),
and identity (8) holds for every [a,b] ⊂ [0,1], hence η−1 is absolutely continuous.

As u is Lipschitz, the function u that we defined by u(q, t) = u(q,η−1(t)) + ct is

(uniformly) absolutely continuous in the t-direction and (uniformly) Lipschitz in the q

direction. Hence, to prove that u is Lipschitz, we just have to prove that its derivative,

which is defined Lebesgue almost everywhere, is bounded on a set with full Lebesgue

measure.

Observe that for every segment [a,b]⊂ (0,1), the map η
∣

∣

[a,b] : [a,b]→ [η(a),η(b)]
is a bi-lipschitz homeomorphism; we deduce that the set

U0 = {(q,η(t)));(q, t) ∈U0 ∩ (M× (0,1))} (9)

has full Lebesgue measure in M1 =M×T. For (q, t)∈U0, we have (q,η−1(t))∈U0

and then (q,η−1(t),du(q,η−1(t))) ∈ G . This implies that dqu(q,η−1(t)) is (uni-

formly) bounded on U0 and

∂u

∂ t
(q,η−1(t)) =−K(q,dqu(q,η−1(t)), t) =−η̇(η−1(t))H(q,dqu(q,η−1(t)), t).
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We deduce that

du(q, t)(δq,δ t) = dqu(q,η−1(t))δq+
1

η̇(η−1(t))

∂u

∂ t
(q,η−1(t))δ t (10)

is equal to

du(q, t)(δq,δ t) = dqu(q,η−1(t))δq−H(q,dqu(q,η−1(t)), t)δ t

and thus du is bounded above U0.

Let us now conclude. Given now two points (q, t) and (q′, t ′) ∈ M1, we have

|u(q′, t ′)−u(q, t)| ≤ | u(q′, t ′)−u(q, t ′)|+ |u(q, t ′)−u(q, t)|
≤ Adist(q′,q)+ |u(q, t ′)−u(q, t)|

(11)

where dist( , ) is a Riemannian distance on M, A is a positive constant independent

from (q, t) and (q′, t ′). By an argument similar to the one given in proof of Lemma 2,

and eventually cutting the segment s 7→ (q,s) in a finite number of pieces, we can find

a sequence of points (qn)n in M converging to q and such that for every n ∈ N, the

point (qn,s) is in U0 for almost every s ∈ [t, t ′] (without loss of generality we assume

t < t ′). Since we know that du is bounded above U0 we find

|u(qn, t
′)−u(qn, t)| ≤

∫ t′

t

∣

∣

∣

∣

∂u

∂ t
(qn,s)

∣

∣

∣

∣

ds ≤ B |t ′− t|,

for some constant B > 0. Taking now the limit n → +∞ and replacing in (11) we

finish the proof.

3.2 The dominated function u can be seen as a kind of graph selector

In this part, we construct an extended Hamiltonian of H and an extended Lagrangian

submanifold Y of L by using H. We will prove that in some sense, u is a graph

selector for Y .

NOTATION. We introduce the autonomous Hamiltonian H on T ∗M1 = T ∗M×T1 ×
R that is defined by

H (q, p,τ,e) = H(q, p,τ)+ e.

The Hamiltonian equations for H are
{

dq
dt

= ∂H
∂ p

(q, p,τ), dτ
dt

= 1,
d p
dt

=− ∂H
∂q

(q, p,τ), de
dt

=− ∂H
∂τ (q, p,τ),

(12)

and the flow of (12) is given by

φ t
H (q, p,τ,e) = (ϕτ,τ+t

H (q, p),τ + t,e+H(q, p,τ)−H(ϕτ,τ+t
H (q, p),τ + t)). (13)

If we denote by FE(q, p,τ,e) = (q, p,τ,e+E) the translation in the energy direction

by E , observe that FE ◦φ t
H

= φ t
H

◦FE . Hence the restriction of (φ t
H
) to every level

{H =E} is conjugated (via FE) to the restriction of (φ t
H
) to the zero level {H = 0}.



20 Marie-Claude Arnaud† , Andrea Venturelli

Similarly to what we did in the previous section for the construction of G , we

now extend L to a Lagrangian submanifold Y of T ∗M1 invariant by the flow (φ t
H
).

The only change is that we choose the lift in such a way that Y ⊂ {H = c} for the

constant c that we introduced in Proposition 5 and Corollary 3.

Y = {φ t
H (q, p,0,−H(q, p,0)+ c);(q, p)∈ L , t ∈ [0,1]}.

Since L is invariant by ϕ0,1
H , Y is a closed submanifold of T ∗M1. Observe that Y

is contained in the energy level {H = c}.

Proposition 7 The manifold Y is exact Lagrangian, i.e. the Liouville 1-form θ =<
p,dq >+Edτ has a primitive S along Y .

Proof Let Ỹ be the set Ỹ = {(q, p, t,e) ∈ T ∗M× [0,1]×R;(q, p, [t]1,e) ∈ Y }.

We define the map ψ : T ∗M× [0,1]×R→ T ∗M2 by

ψ(q, p, t,e) = (q, p,η−1(t), η̇(η−1(t))(e− c)). (14)

Lemma 3 ψ
∣

∣

Ỹ
is an homeomorphism from Ỹ onto G ∩ (T ∗M× [0,1]×R).

Proof Let (q, p, t,e)∈ Ỹ . This means that e= c−H(q, p, t) and ϕt,0
H (q, p)∈L . Then

ψ(q, p, t,c−H(q, p, t)) = (q, p,η−1(t),−K(q, p,η−1(t))) with ϕ
η−1(t),0
K (q, p) ∈ L .

Hence ψ(Ỹ ) is G ∩ (TM× [0,1]×R).
The continuity and injectivity are straightforward.

We define then s0 by

s0(q, p, t,e) = S ◦ i−1
S ◦ψ(q, p, t,e)+ ct.

Because of equality (6), we have

s0(q, p,1,e) = S ◦ i−1
S (q, p,1,0)+ c = S ◦ i−1

S (q, p,0,0) = s0(q, p,0,e).

Hence we can define S : Y → R by S (q, p, [t]1,e) = s0(q, p, t,e).
This function S is continuous on Y and is differentiable except on the slice

Y ∩{t = 0}. We have dS (q, p, t,e)(δq,δ p,δ t,δe) =

d(S ◦ i−1
S )(q, p,η−1(t), η̇(η−1(t))(e− c))(δq,δ p,

1

η̇(η−1(t))
δ t,δE)+ cδ t,

with δE = η̇(η−1(t))δe+(e− c) η̈(η−1(t))
η̇(η−1(t))

δ t.

As S◦ i−1
S is a primitive of the Liouville 1-form Θ =< p,dq >+Edτ , we deduce that

dS (q, p, t,e)(δq,δ p,δ t,δe)=< p,δq>+η̇(η−1(t))(e−c)
δ t

η̇(η−1(t))
+cδ t =< p,δq>+eδ t.

Hence S is continuous on Y and is a primitive of θ on Y \{t = 0}.

As Y is Lagrangian, a primitive of θ along Y exists always locally and is C1.

Then for every point in Y , there exists a connected open neighborhood V on which

θ has a C1 primitive s. Without loss of generality we can assume that V \{t = 0}
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is made by one or two (open) connected components V1, V2 (that may be equal).

Observe that V1 ∩ V2 6= /0. On each of these open and connected components Vi,

S − s is differentiable with its differential equal to 0, hence (S − s)|Vi
is equal to a

constant ci. As S − s is continuous, we have also (S − s)|Vi
= ci. As V1 ∩V2 6= /0,

we have c1 = c2 ad then S − s is constant on V , therefore S is C1 everywhere and

is a primitive of the Liouville 1-form θ .

As the exact Lagrangian G has a graph selector, the same is true for Y .

Proposition 8 The function u is differentiable at every z = (q, t) ∈ U0, where U0 is

the open subset defined in (9) and moreover

∀z ∈ U0, Ju(z) ∈ Y and u(z) = S (Ju(z)), (15)

where Ju(z) = (q,dqu(z), t,
∂u
∂ t
(z)) ∈ T ∗M×T×R= T ∗M1. Moreover identity (15)

holds for every z ∈ M1 where u is differentiable and where H (Ju(z)) = c.

Proof Proof that u is a graph selector.

NOTATION. Let h : M1 → M1 be defined by h(q, t) = (q,η−1(t)).

Observe that h is an homeomorphism and that h|M×(0,1) is a diffeomorphism onto

M× (0,1). By definition, the function u is differentiable on every z = (q, t) ∈ U0 and

moreover

Ju(z) = (q,dqu(h(z)), t,c+
1

η̇(η−1(t))

∂u

∂ t
(h(z))).

As u is a graph selector for G , we have

ψ(Ju(z)) = (q,dqu(h(z)),η−1(t),
∂u

∂ t
(h(z))) = Ju(h(z)) ∈ G ∩ (T ∗M× (0,1)×R).

By construction of ψ and by Lemma 3, we can say that ψ maps Y ∩ (T ∗M× (0,1)×
R) diffeomorphically onto G ∩ (T ∗M× (0,1)×R), therefore Ju(z) ∈ Y .

Moreover we have

u(z) = u(h(z))+ ct = S ◦ i−1
S (Ju(h(z)))+ ct = S ◦ i−1

S ◦ψ(Ju(z))+ ct = S (Ju(z)).

Proof that Identity (15) holds for every z∈M1 where u is differentiable and where

H (Ju(z)) = c.

Let z = (q, t) ∈ M1 be a point where u is differentiable and H (Ju(z)) = c. We

follow the same step as in [1], and we introduce two subsets of T ∗
z M1 = T ∗

q M ×R.

Let Ku(z) be the set of all limit points of sequences (du(zn))n∈N where zn ∈ U0 and

lim
n→+∞

zn = z, and let Cu(z) be the convex hull of Ku(z). Let us give a result due to

F. Clarke (see [12] for a proof of [10] for a more general result).
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Lemma 4 Let f : U → R be a Lipschitz function defined on a open subset U of Rd

and let U0 ⊂U be a subset with full Lebesgue measure such that f is differentiable at

every point of U0. We introduce a notation. If q ∈U, K f (q) is the set of all the limits

lim
n→∞

d f (qn) where qn ∈ U0, lim
n→∞

qn = q and C f (q) is the convex hull of K f (q). Then,

at every point q ∈U where f is differentiable, we have : d f (q) ∈C f (q).

By hypothesis the function p 7→ H(q, p, t) is strictly convex, therefore the energy

sublevel

H
−1
(q,t)

((−∞,c]) =
{

(p,e) ∈ T ∗
(q,t)(M×T1), H(q, p, t)+ e ≤ c

}

is also strictly convex (up to the symmetry e 7→ −e, it is the epigraph of the function

p 7→ H(q, p, t)− c), and in particular, every point (p,e) in the energy level H
−1
(q,t)

(c)

is extremal for H
−1
(q,t)

((−∞,c]). By hypothesis, du(z) is in the energy level H −1
z (c),

therefore it is an extremal point of Cu(z), hence a point of Ku(z), and by definition

of Ku(z) there exist a sequence (zn)n∈N of points of U0 such that (zn,du(zn))n∈N

converges to (z,du(z)), or equivalently (Ju(zn))n∈N converges to (Ju(z)), but every

point Ju(zn) lies in Y and satisfies the identity u(zn) = S (Ju(zn)). Taking the limit

n →+∞ we get (15).

4 Calibration and conclusion

In this section, we will prove that Y is contained in the graph of du.

Observe that

– the projection of Y is compact because Y is compact;

– the projection of Y is dense in M1. Indeed, Proposition 8 implies that this pro-

jection contains U0, which is dense in M1.

Hence the projection of Y is M1 and we will conclude that Y is a graph above the

whole M1 and that u is everywhere differentiable. Thus Y is the the graph of du.

Morever, we will also prove that Y is a locally Lipschitz graph in T ∗M1. Hence Y

is a C1 manifold that is the graph of a locally Lipschitz map. As M is compact, this

implies that Y is the graph of a C1 map, i.e. that u is C2 and Y is the graph a C1

exact 1-form: du.

The main tool that we will use is the notion of calibrated curve.

4.1 Calibration

We will explain what happens along the curves that satisfy the equality in the inequal-

ity of domination (7). The proof is an analogue of the proof given by A. Fathi in [11]

in the autonomous case.

DEFINITION. If γ : [a,b]→ M is a C1 arc, its defect of calibration is

δ (γ) =

∫ b

a
(L(γ(t), γ̇(t), t)+ c)− (u(γ(b),b)−u(γ(a),a)).



Birkhoff Theorem 23

Then

– δ is always non-negative;

– if (γn) C1-converges to γ , then lim
n→∞

δ (γn) = δ (γ);

– if I ⊂ J, then δ (γ|I)≤ δ (γ|J).

DEFINITION. A C1 curve γ : I → M is (u,L,c)-calibrated if ∀[a,b]⊂ I, δ (γ|[a,b]) = 0.

Proposition 9 If γ : I → M is (u,L,c)-calibrated, then

– u is differentiable at every (γ(t), t) with t in the interior of I;

– for all t in the interior of I, we have dqu(γ(t), t)=
∂L
∂v
(γ(t), γ̇(t), t) and H (Ju(γ(t), t))=

c.

Proof We assume that γ is C1 and calibrated.

Value of du(γ(.), .) if u is differentiable along t 7→ (γ(t), t).
Let us assume that u is differentiable at every point of {(γ(t), t);t ∈ (a,b)}.

We have

∀t ∈ (a,b),u(γ(t), t)−u(γ(a),a)) =

∫ t

a
(L(γ(s), γ̇(s),s)+ c)ds.

Differentiating with respect to t ∈ (a,b), we obtain

dqu(γ(t), t).γ̇(t)+
∂u

∂ t
(γ(t), t) = L(γ(t), γ̇(t), t)+ c.

Using Young inequality, we deduce

c = dqu(γ(t), t).γ̇(t)+
∂u
∂ t
(γ(t), t)−L(γ(t), γ̇(t), t)

≤ ∂u
∂ t
(γ(t), t)+H(γ(t),dqu(γ(t), t), t) = H (γ(t), t,du(γ(t), t)).

(16)

But Lemma 4 implies that H (γ(t), t,du(γ(t), t))≤ c. Hence Inequality (16) is in fact

an equality. Il particular we have equality in Young inequality

dqu(γ(t), t).γ̇(t) = L(γ(t), γ̇(t), t)+H(γ(t),dqu(γ(t), t), t)

then dqu(γ(t), t) = ∂L
∂v
(γ(t), γ̇(t), t) and so ∂u

∂ t
(γ(t), t) = c−H(γ(t),dqu(γ(t), t), t).

This can be written H (Ju(γ(t), t)) = c.

Proof that u is differentiable at every (γ(t), t) with t in the interior of I

Let us fix t0 ∈ (a,b). We work in a chart around γ(t0) = x. Then for every t ∈ (a,b)
and y close to x, we consider the arc γy,t : [a, t] → M that is defined by γy,t(s) =
γ(s)+ s−a

t−a
(y− γ(t)). The domination property implies that

u(y, t)≤ ψ+(y, t) = u(γ(a),a)+

∫ t

a
(L(γy,t(s), γ̇y,t (s),s)+ c)ds.
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Observe that u(x, t0) = u(γ(a),a)+
∫ t0

a (L(γ(s), γ̇(s),s)+ c)ds = ψ+(x, t0) because γ
is calibrated. Observe to that

ψ+(y, t) = u(γ(a),a)+
∫ t

a
(L(γ(s)+

s− a

t − a
(y− γ(t)), γ̇(s)+

1

t − a
(y− γ(t)),s)+ c)ds

and thus ψ+ is C1.

Let us now consider the arc ηy,t : [t,b] → M that is defined by ηy,t(s) = γ(s) +
b−s
b−t

(y− γ(t)). Then

ψ−(y, t) = u(γ(b),b)−

∫ b

t
(L(ηy,t (s), η̇y,t (s),s)+ c)ds ≤ u(y, t).

ψ− is C1 and because γ is calibrated we have ψ−(x, t0) = u(x, t0).
Finally, we have found two C1 function ψ− and ψ+ such that ψ− ≤ u ≤ ψ+ and

ψ−(x, t0) = u(x, t0) = ψ+(x, t0). This implies that u is differentiable at (x, t0).

4.2 Study along the Ω -limit set of ϕ0,1
H|L

Proposition 10 Let (q, p) ∈ Ω(ϕ0,1
H|L

) be a point of the Ω -limit set of ϕ0,1
H|L

and let

(q, p,0,c−H(q, p,0)) be the corresponding point in Y . Then the projection of the

H orbit of (q, p,0,c−H(q, p,0)) on M is (u,c,L)-calibrated.

Proof Let us fix [a,b]⊂ R and let us consider the piece of orbit

t ∈ [a,b] 7→ ζ (t) = φ t
H (q, p,0,c−H(q, p,0)) = (q(t), p(t), t,c−H(q(t), p(t), t)).

Because (q, p) ∈ Ω(ϕ0,1
H|L

), we can find a sequence of pieces of H orbits

t ∈ [a,bn] 7→ ζn(t) = (qn(t), pn(t), t,c−H(qn(t), pn(t), t))

in Y such that bn−a∈N, lim
n→∞

bn =+∞, lim
n→∞

(qn(a), pn(a)) = (q(a), p(a)) and lim
n→∞

(qn(bn), pn(bn)) = (q(a), p(a)).

Because of the properties of the defect of calibration δ , we have

0 ≤ δ (q|[a,b]) = lim
n→∞

δ (qn|[a,b])≤ liminf
n→∞

δ (qn|[a,bn]).

We have

δ (qn|[a,bn]) = u(qn(bn),bn)−u(qn(a),a)−
∫ bn

a
(L(qn(t), q̇n(t), t)+ c)dt.

We prove now the following lemma.

Lemma 5 If t ∈ R 7→ ζ (t) = (q(t), p(t), t,c−H(q(t), p(t), t)) is an orbit for H on

Y , then we have

∫ b

a
(L(q(t), q̇(t), t)+ c) = S (ζ (b))−S (ζ (a)). (17)
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Because of Proposition 7, we know that S is a primitive of θ along Y and so we

have

S (ζ (b))−S (ζ (a)) =
∫

ζ |[a,b]
θ =

∫ b

a
(p(t).q̇(t)−H(q(t), p(t), t)+ c)dt

and along every orbit we have p(t).q̇(t)−H(q(t), p(t), t)= L(q(t), q̇(t), t). This proves

the lemma.

Applying Lemma 5, we obtain:

δ (qn|[a,bn]) = u(qn(bn),bn)−u(qn(a),a)− (S (ζn(bn))−S (ζn(a))).

Using the continuity of u and S and the fact that lim
n→∞

ζn(a) = ζ (a) and lim
n→∞

ζn(bn) = ζ (b),

we deduce that

lim
n→∞

δ (qn|[a,bn]) = u(q(a),a)−u(q(a),a)− (S (ζ (a))−S (ζ (a))) = 0

and thus q is calibrated.

4.3 Every orbit in Y is in the graph of du

Proposition 11 Let t 7→ ζ (t)= φ t
H
(q, p,0,c−H(q, p,0))= (q(t), p(t), t,c−H(q(t), p(t), t))

be an orbit for H on Y . Then the curve q(t) is (u,c,L)-calibrated and we have

∀t ∈ R,(p(t),c−H(q(t), p(t), t)) = du(q(t), t).

Proof We choose (q+, p+)∈ω((q(0), p(0)),ϕ0,1
H ) and (q−, p−)∈α((q(0), p(0)),ϕ0,1

H )
and we denote by ζ±(t) = (q±(t), p±(t), t,c−H(q±(t), p±(t), t)) the corresponding

H orbits in Y .

Then there exists two increasing sequences (ni) and (mi) of positive integers so that

lim
i→∞

ζ (−mi) = ζ−(0) and lim
i→∞

ζ (ni) = ζ+(0). (18)

If [a,b]⊂ R, we have

0 ≤ δ (q|[a,b])≤ liminf
i→∞

δ (q[−mi,ni]),

hence we will prove that this last limit is zero.

Using Lemma 5, we obtain

δ (q[−mi,ni]) =
∫ ni
−mi

(L(q(t), q̇(t), t)+ c)dt− (u(q(ni),ni)−u(q(−mi),−mi))

= S (ζ (ni))−u(q(ni),ni)− (S (ζ (−mi))−u(q(−mi),−mi))

Because of (18) and of the continuity of u and S , we obtain

lim
i→∞

δ (q[−mi,ni]) = S (ζ+(0))−u(q+(0),0)− (S (ζ−(0))−u(q−(0),0)).
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We deduce from Proposition 10 and Proposition 9 that u is differentiable at every

(q±(t), t) and that

dqu(q±(t), t)=
∂L

∂v
(q±(t), q̇±(t), t) and H (q±(t),dqu(q±(t), t), t,

∂u

∂ t
(q±(t), t))= c.

This implies that du(q±(t), t) = (p±(t),c−H(q±(t), p±(t), t)) and then that ζ±(t) =
(q±(t),dqu(q±(t), t), t,

∂u
∂ t
(q±(t), t)). This gives that

lim
i→∞

δ (q[−mi ,ni]) = S (q+(0),dqu(q+(0),0),0,
∂u

∂ t
(q+(0),0))−u(q+(0),0)

−(S (q−(0),dqu(q−(0),0),0,
∂u

∂ t
(q−(0),0))−u(q−(0),0)).

Proposition 8 tells us that

∀t ∈ R,(q±(t),dqu(q±(t), t), t,
∂u

∂ t
(q±(t), t)) ∈ Y

and

u(q±(t), t) = S (q±(t),dqu(q±(t), t), t,
∂u

∂ t
(q±(t), t)).

We finally deduce that

lim
i→∞

δ (q[−mi,ni]) = 0

and that q is (u,L,c)-calibrated.

We deduce from Proposition 9 that u is differentiable at every (q(t), t) and that

dqu(q(t), t) =
∂L

∂v
(q(t), q̇(t), t) and H (q(t),dqu(q(t), t), t,

∂u

∂ t
(q(t), t)) = c.

This implies that ζ (t) = (q(t),dqu(q(t), t), t,
∂u
∂ t
(q(t), t)) = Ju(q(t), t).

4.4 The Lipschitz property of Y

We know that Y is the graph du. We wish to show that du is locally Lipschitz. Then

we will deduce that L , which is a C1 Lagrangian submanifold and a locally Lipschitz

graph, is the graph of a C1 1-form.

We use Proposition 4.11.3 of [11]:

Criterion for a Lipschitz derivative (Albert Fathi) . Let B = B(x0,r0) be an open

ball in Rn, let u : B → R be a function and let K > 0 be a positive constant. We

introduce the following notation

AK,u = {x ∈ B;∃ϕx ∈ L(Rn,R),∀y ∈ B, |u(y)− u(x)−ϕx(y− x)| ≤ K‖y− x‖2}.

Then u has a derivative at every point of AK,u and if x ∈ AK,u, we have dxu = ϕx.

Moreover, the restriction of x 7→ dxu to {x ∈ AK,u;‖x− x0‖ ≤
r0
3
} is Lipschitz with a
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Lipschitz constant equal to 6K.

Let us fix (x0, t0) ∈ M× [0,1] and let us prove that du is Lipschitz in some neigh-

bourhood of (x0, t0). We work in some chart, i.e. B0 = B̄(x0,r0). Then we choose

B1 = B̄(x0,r1)( B0 and I0 = [t0 − ε0, t0 + ε0], such that

∀t,τ ∈ I0,∀x ∈ B1,π ◦ϕt,τ
H (x,dqu(x, t)) ∈ B0.

Let us set ε1 =
ε0
4

and I1 = [t0−ε1, t0+ε1]. If (x, t)∈B1× I1, we consider the (u,L,c)-
calibrated curve

Γ = Γx,t : [t − 3ε1, t + 3ε1] → B0

s 7→ π ◦ϕt,s
H (x,dqu)(x, t)).

Then, for every (y,τ) ∈ B1 × I1, we can build two curves (as we did in the proof of

Proposition 9)

– γy,τ = γy,τ,x,t : [t − 3ε1,τ]→ B0 defined by

γy,τ(s) = Γx,t(s)+
s− (t − 3ε1)

τ − (t − 3ε1)
(y−Γx,t(τ));

– ηy,τ = ηy,τ,x,t : [τ, t + 3ε1]→ B1 defined by

ηy,τ(s) = Γx,t(s)+
(t + 3ε1)− s

(t + 3ε1)− τ
(y−Γx,t(τ)).

Observe that γx,t = Γx,t

∣

∣

[t−3ε1,τ] and ηx,t = Γx,t

∣

∣

[τ,t+3ε1] . We then define

ψ+(y,τ) = ψ+,x,t(y,τ) = u(Γx,t(t −3ε1), t −3ε1)+
∫ τ

t−3ε1

(L(γy,τ (s), γ̇y,τ (s),s)+ c)ds

and

ψ−(y,τ)=ψ−,x,t(η ,τ)= u(Γx,t (t+3ε1), t+3ε1)−

∫ t+3ε1

τ
(L(ηy,τ (s), η̇y,τ (s),s)+ c)ds.

Let us recall that ψ− ≤ u≤ ψ+, that ψ− and ψ+ are C1 and that ψ−(x, t) = u(x, t) =
ψ+(x, t). In particular,

u(y,τ)−u(x, t)≤ ψ+(y,τ)−ψ+(x, t) = α + c(τ − t)+β (19)

where

α =

∫ t

t−3ε1

(L(γy,τ (s), γ̇y,τ (s),s)−L(γx,t (s), γ̇x,t (s),s))ds

and

β =
∫ τ

t
L(γy,τ (s), γ̇y,τ (s),s)ds.

Because each curves s 7→ ∂L
∂v
(Γx,t(s),Γ̇x,t (s),s) is drawn on Y and then bounded, there

exists a constant K0 such that

∀(x, t) ∈ B1 × I1, ∀s ∈ [t − 3ε1, t + 3ε1], ‖Γ̇x,t(s)‖ ≤ K0.
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Because L is C2, there also exists a constant K1 ≥ K0 such the first and second deriva-

tive of L are bounded by K1 on the set

B1 ×B(0,K0 +
2r0

ε1
)× I1.

REMARK. Because γ̇y,τ(s) = γ̇x,t(s)+
y−Γx,t (τ)

τ−(t−3ε1)
, we have

‖γ̇y,τ(s)‖ ≤ K0 +
1

ε1

‖y−Γx,t(τ)‖ ≤ K0 +
2r0

ε1

= K2. (20)

In the following of the proof we denote by K3, K4, K5 ... some positive constants

depending only on the restriction of L to the set B0 ×B(0,K2)× I0. Taylor-Lagrange

inequality implies that for every s ∈ [t − 3ε1,τ], we have

∣

∣L(γy,τ (s), γ̇y,τ (s),s)−L(γx,t (s), γ̇x,t (s),s)−
∂L

∂x
(γx,t (s), γ̇x,t (s),s)

s− (t − 3ε1)

τ − (t − 3ε1)
(y−γx,t(τ))

−
∂L

∂v
(γx,t (s), γ̇x,t (s),s)

y− γx,t(τ)

τ − (t − 3ε1)

∣

∣≤
K3

ε2
1

‖y− γx,t(τ)‖
2. (21)

Using Euler-Lagrange equations, inequality (21) and an integration by parts, since

γx,t = Γx,t

∣

∣

[t−3ε1,τ] , we get the following inequality

∣

∣

∣

∣

∣

α −

[

∂L

∂v
(Γx,t(s),Γ̇x,t (s),s)

s− (t − 3ε1)

τ − (t − 3ε1)
(y−Γx,t(τ))

]s=t

s=t−3ε1

∣

∣

∣

∣

∣

≤
3K3

ε1

‖y−Γx,t(τ)‖
2

i.e.
∣

∣

∣

∣

α −
3ε1

τ − (t − 3ε1)

∂L

∂v
(Γx,t (t),Γ̇x,t(t), t)(y−Γx,t(τ))

∣

∣

∣

∣

≤
3K3

ε1

‖y−Γx,t(τ)‖
2.

We deduce from inequality (20) that ‖Γx,t(τ)−Γx,t(t)‖ ≤ K2|t − τ| and then ‖y−

Γx,t(τ)‖= ‖(y−x)+(x−Γx,t(τ))‖≤ ‖y−x‖+K2|t−τ|. We note too that | 3ε1
τ−(t−3ε1)

−

1| ≤ |t−τ|
ε1

and so

∣

∣α − dqu(x, t)(y−Γx,t(τ))
∣

∣≤ K4(‖y− x‖+ |t− τ|)2.

Observe that Euler-Lagrange Equation implies that the Γ̈x,ts are uniformly bounded

by some constant. Hence

‖y−Γx,t(τ)− (y− x− Γ̇x,t(t)(τ − t))‖ ≤ K5(τ − t)2.

We deduce

∣

∣α − dqu(x, t)(y− x− Γ̇x,t(t)(τ − t))
∣

∣≤ K6(‖y− x‖+ |t− τ|)2. (22)

In a similar way, we obtain

∣

∣β − (τ − t)L(x,Γ̇x,t(t), t)
∣

∣≤ K7(‖y− x‖+ |t− τ|)2. (23)



Birkhoff Theorem 29

Equations (19), (22) and (23) imply that

u(y,τ)−u(x, t)− dqu(x, t)(y− x)− (τ − t)
∂u

∂ t
(x, t)≤ K8(‖y− x‖+ |t− τ|)2.

Using ψ− instead of ψ+, we obtain then

|u(y,τ)−u(x, t)− dqu(x, t)(y− x)− (τ − t)
∂u

∂ t
(x, t)| ≤ K9(‖y− x‖+ |t− τ|)2.

Using the criterion for a Lipschitz derivative, we conclude.

4.5 Proof of the corollaries

We prove the corollaries that were given in the introduction.

Proof or Corollary 1 With the hypothesis of the corollary, we obtain that L is a

graph. We then use Theorem 6.4.1 of [11], which is a corollary of the convergence of

the Lax-Oleinik semi-group in weak KAM theory, to conclude.

Proof or Corollary 2 We proved that the H orbit of every point in Y is (u,L,c)-
calibrated. This implies (see for example [3]) that every orbit is minimizing.
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