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A MULTIDIMENSIONAL BIRKHOFF THEOREM FOR

TIME-DEPENDENT TONELLI HAMILTONIANS

MARIE-CLAUDE ARNAUD†,‡ AND ANDREA VENTURELLI†

Abstract. Let M be a closed and connected manifold, H : T ∗M ×R/Z → R

a Tonelli 1-periodic Hamiltonian and L ⊂ T ∗M a Lagrangian submanifold

Hamiltonianly isotopic to the zero section. We prove that if L is invariant by
the time-one map of H, then L is a graph over M .
An interesting consequence in the autonomous case is that in this case, L is
invariant by all the time t maps of the Hamiltonian flow of H.

1. Introduction and Main Results.

A lot of problems coming from the physics are conservative, as the N -body prob-
lem and other classical mechanical systems: in other words, they are symplectic.
Close to the complectely elliptic periodic orbits of symplectic dynamics, it is in
general possible to use some change of coordinates called normal form (see [20])
and thus to be led to study a local diffeomorphism

(1) (θ, r) ∈ T
n × R

n 7→ (θ + α+ β.r, r) + small

close to the zero section T
n × {0} with β being a symmetric matrix. When β is

a definite matrix, these diffeomorphisms are called twist maps and it can also be
proved that they are the time 1 map of a so-called Tonelli Hamiltonian vector field.
This kind of diffeomorphisms was introduced for example by Poincaré in the study
of the circular restricted 3-body problem. When n = 1, they were intensively
studied by G.D. Birkhoff. In [7], G.D. Birkhoff proved that if γ is an embedded
circle of T × R that is not homotopic to a point and that is invariant by some
conservative twist map, then γ is the graph of a Lipschitz map T → R. A modern
proof of this result can be find in [15].

Question: what happens in higher dimensions?

A natural extension of the 1-dimensional annulus T ∗
T = T×R is the cotangent

bundle T ∗M of a closed n-dimensional manifold M . We recall in section 1.1 that
T ∗M can be endowed with a symplectic form.

If we want to obtain some submanifolds that are graphs (or more correctly sec-
tions) in T ∗M , we are led to look at n-dimensional submanifolds. Moreover, we
have to impose some topological conditions for these submanifolds. Indeed, there
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are examples of conservative twist maps of T×R that have an invariant embedded
circle that is homotopic to a point (and then this is not a graph): this happens for
example for the time 1 map of the rigid pendulum close to the elliptic equilibrium.

But even if we ask that the invariant submanifold is homotopic to the zero-section
of T ∗M , it is easy to build examples of Tonelli Dynamics that have an invariant
submanifold that is not a graph but is homotopic to the zero section. The first
author gave in [2] an example of such a submanifold of T ∗

T
3 = T

3 × R
3 that is

invariant by the Hamiltonian flow of H(q, p) = 1
2‖p‖

2 = 1
2 (p

2
1 + p22 + p23), which is

the geodesic flow for the flat metric on T
3.

That is why we focus on the particular case of Lagrangian submanifolds.

Definition. A submanifold L ⊂ T ∗M is Lagrangian if dimL = n and ω|TL = 0.

Even if the set of Lagrangian submanifolds is very small in the set of all the
n-dimensional submanifolds (more precisely it has no interior when endowed with
the Hausdorff topology in T (T ∗M)), there exist a lot of invariant Lagrangian sub-
manifolds for the symplectic dynamics.
Examples.

• In T ∗
T, a loop is always Lagrangian;

• a vertical fiber T ∗
qM is Lagrangian;

• the zero-section is Lagrangian;
• more generally, a C1 graph is Lagrangian iff it is the graph of a closed
1-form: for example, {(q, dS(q)); q ∈M} is a Lagrangian submanifold;

• the stable or unstable (immersed) submanifold at a hyperbolic equilibrium
is Lagrangian;

• for the so-called completely integrable systems the phase space is foliated
by invariant Lagrangian tori;

• some of these invariant tori remain after perturbation (K.A.M. theory).

Let us come back to the expression (1). When β is indefinite, M. Herman con-
structed in [17] some examples with an invariant Lagrangian torus that is isotopic
to the zero section but not a graph. That is why we will assume that β is positive
definite, i.e. we will work with Tonelli Hamlitonians.

Definition. A C2 function H : T ∗M × T → R is a Tonelli Hamiltonian if

• the Hamiltonian vector field1 associated to H is complete;
• H is C2-convex in the fiber direction, i.e. has a positive definite Hessian in
the fiber direction;

• H is superlinear in the fiber direction, i.e. for every B > 0, there exists
A > 0 such that:

∀(q, p, t) ∈ T ∗M × T, ‖p‖ ≥ A⇒ H(q, p, t) ≥ B‖p‖.

Example. A Riemannian metric defined an autonomous Tonelli Hamiltonian.

Let us recall that we need to ask some topological condition on the invariant
Lagrangian submanifold to be able to prove that it is a graph. To explain that, we
need a definition.

1This will be defined in section 1.1.
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Definition. Two submanifolds L1 and L2 of T ∗M are Hamiltonianly isotopic if
there exists a time-dependent Hamiltonian H : T ∗M × R → R such that, if (φs,tH )
is the family of symplectic maps that is generated by the Hamiltonian vector field
of H , then

L2 = φ0,1H (L1).

Our main result is the following one.

Main Theorem. LetM be a closed manifold, let H : T ∗M×R/Z → R be a Tonelli
1-time periodic Hamiltonian, and let L ⊂ T ∗M be a C1 Lagrangian submanifold
Hamiltonianly isotopic to a Lagrangian graph. If L is invariant by the time one
map associated to H, then L is the Lagrangian graph of a C1 closed 1-form.

A submanifold L is Hamiltonianly isotopic to the zero-section if and only if
the two submanifolds are isotopic in some particular subset E of the set of La-
grangian submanifolds of T ∗M , the set of the so-called exact Lagrangian subman-
ifolds. Hence some related questions remain open.

Questions

• Is the same conclusion true if we replace “Hamiltonlianly isotopic” by ”
isotopic”?

• Is the same conclusion true if we replace “Hamiltonlianly isotopic” by ”
homotopic”?

Let us mention some related existing results.

• In [1], the first author proved that if a Lagrangian submanifold that is
Hamiltonianly isotopic to a Lagrangian graph is invariant by a autonomous
Tonelli Hamlitonian flow, then it has to be a graph. In next Corollary, we
will explain how our result improves this statement.

• In [4], P. Bernard and J. dos Santos extended this result in the autonomous
case to the case of Lipschitz Lagrangian submanifolds.

• In [5] and [6], for M = T
n, with a weaker topological assumption (they

assume that L is homologous to the zero-section) but a strong hypothesis
on the restricted Dynamics (it is assumed to be chain-recurrent), M. Bialy
and L. Polterovich obtain the same result.

• In [16], M. Herman proved a similar result for a submanifold that is:
– compact and Lagrangian;
– with a Maslov class equal to 0;
– invariant by an exact symplectic twist map of Tn×R

n that is C1-close
enough to a completely integrable symplectic twist map;

– such that the restricted dynamics is chain recurrent.

Our result is valuable on all cotangent bundles and doesn’t assume any dynam-
ical behaviour of the restriction to the invariant submanifold.
However, it cannot be extended to any twist map because we don’t know if a gen-
eral twist map (in any dimension) is the time 1 map of a Tonelli Hamiltonian (see
[14] for an interesting discussion on this subject).

Some arguments of our proof are common with the proof of the autonomous case
in [1], but not all. Moreover, even if some of our techniques come from weak KAM
theory, we tried to avoid to use the whole theory, as the Aubry set, the weak KAM
solutions . . . and to write a self-contained article.
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Corollary 1.1. Let M be a closed manifold, let H : T ∗M → R be an autonomous
Tonelli Hamiltonian, and let L ⊂ T ∗M be a C1 Lagrangian submanifold Hamil-
tonianly isotopic to a Lagrangian graph. If L is invariant by the time one map
associated to H, then L is the Lagrangian graph of a C1 closed 1-form and it is
invariant by all the time t maps φtH .

To any Tonelli Hamiltonian H : T ∗M × T → R, a Lagrangian function L :
TM × T → R can be associated via the Legendre duality.

∀(q, v, t) ∈ TM × T, L(q, v, t) = inf
p∈T∗

q M
(p.v −H(q, p, t)).

Definition. A continous and piecewise C1 arc γ0 : [a, b] → M is minimizing if
for every continous and piecewise C1 arc γ : [a, b] →M such that γ0(a) = γ(a) and
γ0(b) = γ(b), we have

∫ b

a

L(γ0(t), γ̇0(t), t)dt ≤

∫ b

a

L(γ(t), γ̇(t), t)dt.

Corollary 1.2. Let M be a closed connected manifiold, H : T ∗M × R/Z → R a
Tonelli 1-time periodic Hamiltonian, and L ⊂ T ∗M a C1 Lagrangian submanifold
Hamiltonianly isotopic to a Lagrangian graph. If L is invariant by the time one
map associated to H, then the orbit of every point of L is minimizing.

1.1. Notations.

• M is a closed Riemannian manifold, π : T ∗M →M is its cotangent bundle
and ZT∗M the zero section; if q = (q1, . . . , qn) are coordinates in a chart of
M , the dual coordinates p = (p1, . . . , pn) ∈ T ∗

qM are defined by pi(δqj) =
δi,j where δqi is the ith vector of the canonical basis and δi,j is the Kronecker
symbol;

• T ∗M is endowed with the Liouville 1-form that is defined by:

∀p ∈ T ∗M, ∀v ∈ Tp(T
∗M), λ(v) = p ◦Dπ(p)(v);

in a dual chart, we have λ =< p, dq >=
∑

pidqi;
• the canonical symplectic form on T ∗M is ω = −dλ; in a dual chart we have
ω = dq ∧ dp =

∑

dpi ∧ dqi;
• T = R/Z is the 1-dimensional torus with length 1 and T2 = R/2Z is the
1-dimensional torus with length 2; we denote by t ∈ R 7→ [t]1 ∈ T and
t ∈ R 7→ [t]2 ∈ T2 the corresponding covering maps;

• a complete C2 Hamiltonian H : T∗M × T → R being given, the Hamil-
tonian vector field XH is defined by ω(XH(x, s), δx) = dH(x, s)δx and
the corresponding Hamiltonian familly of diffeomorphisms is denoted by
(ϕs,t

H )s,t∈R.
• we choose coordinates (q, τ) in the closed manifold M2 = M × T2 and
denote the dual coordinates by (p,E); then the Liouville 1-form on T ∗M2

is Θ =< p, dq > +Edτ and the canonical symplectic form is Ω = −dΘ =
dq∧dp+dτ∧dE. We will often use the identification T ∗M2 = T ∗M×T2×R;

• we choose similarly coordinates (q, τ) in the closed manifold M1 =M × T

and denote the dual coordinates by (p,E); then the Liouville 1-form on
T ∗M1 is θ =< p, dq > +Edτ . We will often use the identification T ∗M1 =
T ∗M × T× R.
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1.2. A useful reduction. Let us explain why we will assume that L is Hamiltoni-
anly isotopic to the zero section (instead of “to a Lagrangian graph”) in the proof.
Assume that L is Hamiltonianly isototopic to the Lagrangian graph L0 and that L
is invariant by the time 1 map of the Tonelli Hamiltonian H : T ∗M × T → R.
Then L0 is the graph of some closed 1-form Λ of M . Changing L0 in a very close
other graph, we can even assume that Λ is smooth. Then F : T ∗M → T ∗M that
is defined by F (q, p) = (q, p+ Λ(q)) is a symplectic diffeomorphism so that

• F−1(L) is Hamiltonianly isotopic to the zero section F−1(L0) = ZT∗M ;

• F−1(L) is invariant by the time 1 map of the Tonelli Hamiltonian H̃(q, p, t) =
H(F (q, p), t).

Hence if we have proved the main theorem for the submanifolds that are Hamilto-
nianly isotopic to the zero section, we deduce that F−1(L) and then L is a graph.

1.3. Structure of the article.

• In the second section, we construct an extended autonomous Hamiltonian
and an extended Lagrangian submanifold in the extended phase space; we
then build a graph selector for the extended Lagrangian submanifold;

• in section 3, using the graph selector that was built in section 2, we build
a dominated function;

• in section 4, using the notion of calibrated curve, we prove the main theorem
and its corollaries.

2. Construction of a Lagrangian submanifold in the extended phase

space and its graph selector.

Standing hypotheses. From now, we assume that H : T ∗M × R/Z → R is
a Tonelli time 1-periodic Hamiltonian and that L ⊂ T ∗M is a C1 Lagrangian
submanifold Hamiltonianly isotopic to ZT∗M that is invariant by the time one map
associated to H .

The goal of this section is to build an extended autonomous Hamiltonian, an
extended Lagrangian submanifold and a so-called graph selector. Moreover, we
will prove some properties for these objects.

2.1. Extension of the Lagrangian submanifold. In this section, adding two
dimensions to the phase space, we will replace the non-autonomous Hamiltonian
flow by an autonomous one and extend the invariant submanifold in the new phase
space.

Let us comment on the choice of the new Hamiltonian and of the Lagrangian
submanifold. The method that gives an autonomous Hamiltonian is well-known
but the extended Hamiltonian is not Tonelli with respect to the new variables and
we cannot just apply the proof that the first author gave in [1] in the autonomous
case. The method to build an extended submanifold in the new phase-space is
well-known too, but:

• a priori, this new submanifold has a boundary; thus we would need to build
a theory of generating functions for manifolds with boundary to go on with
our proof and we prefer to avoid this. Moreover, we don’t know if this could
work;
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• an idea to remove the problem of boundary is to identify what happens
for the times t = 0 and t = 1. As the initial manifold is invariant, we can
glue the two ends of the extended submanifold in a smooth way and obtain
a closed manifold. Then a new problem appears: we cannot extend the
isotopy that joins the zero section to the initial manifold in a periodic way
because the submanifolds that appear in the isotopy are not invariant by
the initial flow and thus their extended submanifolds cannot be glued in a
continuous way.

To overcome these problems, we had the idea to extend the Hamiltonian flow in a
2-periodic one by symmetrizing the extended Hamiltonian and the extended sub-
manifold. Let us explain this now.

We use the following function.

Notation. Let η : R → R be a non-negative and C∞ fonction satisfying the
following properties

i) η(−t) = η(t) and η(1 − t) = η(1 + t) for every t ∈ R.
ii) η(0) = 0 and η(1) = 1.
iii) η̇(t) > 0 if t ∈ (0, 1).
iv) η̇(0) = η̈(0) = η̇(1) = η̈(1) = 0.

t

η(t)

0 1 2

1

Let us introduce a new time-dependent Hamiltonian K : T ∗M ×T2 → R defined
by K(q, p, t) = η̇(t)H(q, p, η(t)). A straightforward computation shows that every
integral curve of XK can be written as t 7→ (q, p)(t) = (Q,P )(η(t)), where s 7→
(Q,P )(s) is an integral curve of XH . This fact can be expressed as follows :

ϕs,t
K (q, p) = ϕ

η(s),η(t)
H (q, p).

Roughly speaking, integral curves of XK are reparametrizations of segments of
integral curves of XH , but they slow down and turn back at integer time. In
particular, integral curves of XK are all 2-periodic and satisfy (q, p)(−t) = (q, p)(t)
and (q, p)(1 − t) = (q, p)(1 + t).

Let now K : T ∗M×T2×R → R be the autonomous Hamiltonian on the extended
phase space T ∗M2 = T ∗M × T2 × R defined by

K(q, p, τ, E) = K(q, p, τ) + E.
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The Hamiltonian equations for K are given by

(2)

{

dq
dt

= ∂K
∂p

(q, p, τ), dτ
dt

= 1,
dp
dt

= −∂K
∂q

(q, p, τ), dE
dt

= −∂K
∂τ

(q, p, τ),

We can see that the evolution on T ∗M is the same as for the Hamiltonian K, while
the variable τ is essentially the time. If φtK denotes the Hamiltonian flow of K, by
(2), we easily get the relation

(3) φtK(q, p, τ, E) = (ϕτ,τ+t
K (q, p), τ + t, E +K(q, p, τ)−K(ϕτ,τ+t

K (q, p), τ + t)).

The evolution of the variable E can be obtained using the conservation of K by the
flow. Let G ⊂ T ∗M × T2 × R be the submanifold defined by

G = {φtK(q, p, 0,−K(q, p, 0)), (q, p) ∈ L, t ∈ [0, 2]}.

Since the flow φtK is 2-periodic in time, G is a closed submanifold diffeomorphic to
L × T2. If we cut G by a hypersurface τ = t and we forget the E variable, we get

the image of L by ϕ0,t
K = ϕ

0,η(t)
H .

Proposition 2.1. If L is Hamiltonianly isotopic to the zero section ZT∗M of T ∗M ,
then G is Hamiltonianly isotopic to the zero section ZT∗M2 of T ∗M2.

Proof. The proof is twofold. In the first part, we prove that G is isotopic to some
submanifold G0 by using the fact that L and ZT∗M are isotopic. In the second part,
we prove that G0 is isotopic to ZT∗M2 by using the time-dependent Hamiltonian
s 7→ sK.

Let (ψs) be a Hamiltonian isotopy of T ∗M such that ψ0 = IdT∗M and ψ1(ZT∗M ) =
L. We use the notation Ls = ψs(ZT∗M ). We denote by h(q, p, s) a Hamiltonian
associated to (ψs).
For every s ∈ [0, 1], we define the submanifold Gs of T ∗M2 = T ∗M × T2 × R by

Gs = {φtK(q, p, 0,−K(q, p, 0)), (q, p) ∈ Ls, t ∈ [0, 2]}.

Exactly for the same reason as G, Gs is a closed manifold that is diffeomorphic to
L× T2.

Because t 7→ ϕ0,t
K is 2-periodic, we can use this notation for t ∈ T2 too.

We define Fs : T
∗M2 → T ∗M2 by

Fs(q, p, τ, E) = (ϕ0,τ
K ◦ψs ◦ϕ

τ,0
K (q, p), τ, E +K(q, p, 0)−K(ϕ0,τ

K ◦ψs ◦ϕ
τ,0
K (q, p), τ)).

Note that F0 = IdT∗M2 and that (Fs) is the Hamiltonian isotopy associated to the

Hamiltonian (q, p, τ, E) 7→ h(ϕτ,0
K (q, p), s).

As Fs(G0) = Gs and G1 = G, G is Hamiltonianly isotopic to G0.
Let us now prove that G0 is Hamiltonianly isotopic to the zero section ZT∗M2 of

T ∗M2.

Definition. A diffeomorphism G : T ∗M → T ∗M is exact symplectic if G∗λ − λ
is exact as a 1-form.
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Lemma 2.1. Let (Gs) be an isotopy of exact symplectic diffeomorphisms. Then it
is a Hamiltonian isotopy.

Proof. If we denote the Liouville 1-form on T ∗M2 by Θ, we have: G∗
sΘ − Θ =

dSs and then if Xs is the vector field associated to (Gs): G
∗
s(LXs

Θ) = dṠs, i.e.

G∗
s(iXs

dΘ)+G∗
s(d(iXs

Θ)) = dṠs. We finally obtain G∗
x(iXs

Ω) = d(G∗
s(iXs

Θ)− Ṡs).

Hence (Gs) is Hamiltonian and the associated Hamiltonian is iXs
Θ− Ṡs ◦G

−1
s . �

In order to use Lemma 2.1, we define Gs : T
∗M2 → T ∗M2 by:

Gs(q, p, τ, E) = (ϕ0,τ
sK(q, p), τ, E + s(K(q, p, 0)−K(ϕ0,τ

sK(q, p), τ))).

Then G0 = IdT∗M2 and G1(ZT∗M2) = G0. If we succeed in proving that every Gs

is exact symplectic, we can deduce that G0 is Hamiltonianly isotopic to the zero
section and hence that G is isotopic to the zero section. We prove that only for
s = 1 (we can replace K by sK). We use the notations G = G1, ϕτ = ϕ0,τ

K and
Kτ (q, p) = K(q, p, τ).

As (ϕτ ) is a Hamiltonian isotopy, every ϕτ is exact symplectic. We write: ϕ∗
τλ−

λ = dSτ . We saw in the proof of Lemma 2.1 that d(iXK
λ−Kτ ) = d(Ṡτ ◦ϕ

−1
τ ) and

thus we have iXK
λ−Kτ = Ṡτ ◦ ϕ−1

τ .
Now we compute

G∗Θ−Θ = ϕ∗
τ (pdq) + ϕ∗

τ (iXK
λ)dτ − pdq + (K(q, p, 0)−K(ϕτ (q, p), τ))dτ.

Note that K(q, p, 0) = 0. We obtain then

G∗Θ−Θ = dSτ + ϕ∗
τ (iXK

λ)dτ −K(ϕτ (q, p), τ)dτ,

i.e. G∗Θ−Θ = dSτ + Ṡτdτ , then G is exact symplectic. �

2.2. The generating function. There is a classical way of quantifying the La-
grangian submanifolds of a cotangent bundle that are Hamiltonianly isotopic to the
zero section. This is by using the so-called generating functions.

The facts that we recall here come from different articles; more precisely, the
existence theorem can be found in [23] and [8] and the unicity theorem is proved
in [25] and [24].

Definitions.

• Let p : E → M2 be a finite-dimensional vector bundle overM2. A C2 func-
tion S : E → R is a generating function if its differential dS is transversal
to the manifold W = {ξ ∈ T ∗

eE; e ∈ E and ξ = 0 on Te(p
−1(p(e)))}.

• Then the critical locus ΣS of S is the set ΣS = dS−1(W).
• The map iS : ΣS → T ∗M2 is defined by iS(e) : T ∗

p(e)M2 → T ∗M2,

iS(e)δx = dS(e).δe where δe ∈ TeE is any vector so that dp(e).δe = δx.
• If G is a Lagrangian submanifold of T ∗M , S : E → R generates G if iS is a
diffeomorphism from ΣS onto G.

• When the bundle E = M2×R
k is trivial and there exists a non-degenerate

quadratic form Q : Rk → R such that S = Q outside a compact subset, we
say that S is special. The index of S is then the index of Q
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Sikorav’s existence theorem. Let G be a Lagrangian submanifold of T ∗M2 that
is Hamiltonianly isotopic to the zero section. Then G admits a special generating
function.

Notation. We denote a special generating function of G by S(q, τ ; ξ) with ξ ∈ R
k.

Remarks. When S : M2 × R
k → R is special, we have:

ΣS = {(q, ξ) ∈ M2 × R
k;
∂S

∂ξ
(q, ξ) = 0};

and

∀(q, ξ) ∈ ΣS , iS(q, ξ) = (q,
∂S

∂q
(q, ξ)).

Observe that the condition that S is a generating function means that the map
∂S
∂ξ

is a submersion at every point of ΣS .

Proposition 2.2. The special functions S0 : (q, ξ) ∈ M × R
k → S(q, 0; ξ) and

S1 : (q, ξ) → S(q, 1; ξ) generate the Lagrangian submanifold L ⊂ T ∗M .

Proof. The only non trivial thing to prove is that the functions Si are generating
function. Then the fact that they are special and that they generate L is straight-
forward.
We recall that

G = {φtK(q, p, 0, 0), (q, p) ∈ L, t ∈ [0, 2]}.

Hence if (q, p) ∈ L, we have the equalities XK(q, p, 0, 0) = (0, 0, 1, 0) ∈ T(q,p,0,0)G

and XK(ϕ
0,1
K (q, p), 1, 0) = (0, 0, 1, 0) ∈ Tφ1

K
(q,p,0,0)G because η̇(0) = η̈(0) = η̇(1) =

η̈(1) = 0.
Let us recall that iS(q, τ, ξ) = (q, ∂S

∂q
(q, τ, ξ), τ, ∂S

∂τ
(q, τ, ξ)). Then, for j = 0, 1, we

have (DiS(q, p, j, 0))
−1(0, 0, 1, 0) = (0, 1, δξj) ∈ Ti−1

S
(q,p,j,0)ΣS .

As the equation of ΣS is ∂S
∂ξ

(q, τ, ξ) = 0, we deduce that

∂2S

∂τ∂ξ
(i−1

S (q, p, j)) = −
∂2S

∂ξ2
(i−1

S (q, p, j))δξj .

This equality implies that for every (q, p) ∈ L and j = 0, 1, we have

ImD

(

∂S

∂ξ

)

(i−1
S (q, p, j)) = ImD

(

∂S

∂ξ

)

(i−1
S (q, p, j))|δτ=0 = R

k,

i.e. that Sj is a generating function. �

In the next subsection, we will build what is called a graph selector and we will
prove that it doesn’t depend on the generating function that we choose. To do that,
we need a unicity result for the generating functions that is due to C. Viterbo. Let
us explain this.

Definitions. Let p : E → M2 be a finite dimensional vector bundle and let
S : E → R be a generating function. Let us define the basic operations on generating
functions:

• Translation. If c ∈ R, then S′ = S + c : E → R.
• Diffeomorphism. If p′ : E → M2 is another vector bundle and F : E′ → E
is a diffeomorphism such that p ◦ F = p′, then S′ = S ◦ F : E′ → R.
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• Stabilization. If p′ : E′ → M2 is another finite dimensional vector bundle
endowed with a function Q′ : E′ → R that is quadratic non-degenerate
when restricted to the fibers of p′, then S′ = S ⊕Q′ : E ⊕ E′ → R.

Then, two generating functions are equivalent if they can be made equal after a
succession of basic operations.

Viterbo’s unicity theorem. Two special functions that generate the same La-
grangian submanifold are equivalent.

Remark. The property of being special is not preserved by the basic operations.

2.3. Graph selector. Using the generating function S, we will construct a graph
selector u : M2 → R. Such a graph selector was introduced by M. Chaperon
in [9] (see [21] and [22] too) by using the homology. Here we prefer to use the
cohomological approach. We now explain this.

Notations. Let p : E → M2 be a finite dimensional vector bundle. If S : E → R

is a function that generates a Lagrangian submanifold, q ∈ M2 and a ∈ R is a real
number, we denote the sublevel with height a at q by

Sa
q = {e ∈ E; p(e) = q and S(e) ≤ a}

and we use the notation Sq = S|Eq
.

When S is special with index m, there exists N ≥ 0 such that all the critical
values are in (−N,N). Then the De Rham relative cohomology space with compact
support H∗(Eq , S

−N
q ) is isomorphic to R for ∗ = m and trivial if ∗ 6= m. We denote

by αq a closed m-form with compact support on Eq such that αq|S−N
q

= 0 and

0 6= [αq] ∈ Hm(Eq, S
−N
q ).

If a ∈ (−N,N), we use the notation ia : (Sa
q , S

−N
q ) → (Eq, S

−N
q ) for the inclusion

and then i∗a : Hm(Eq, S
−N
q ) → Hm(Sa

q , S
−N
q ). The graph selector u : M2 → R is

then defined by:

u(q) = sup{a ∈ R; [i∗aαq] = 0} = inf{a ∈ R; [i∗aαq] 6= 0}.

Proposition 2.3. Let p : E → M2 be a finite dimensional vector bundle, let
S : E → R be a special generating function with index m and let σ : F → R be a
generating function that is got from S after a succession of basic operations. If there
are exactly k stabilizations among these basic operations (with indices m1, . . . ,mk),

the sum of all the indices is denoted by ℓ = m+
k

∑

j=1

mj.

Then, for N positive large enough, Hℓ(Fq, σ
−N
q ) = R[Aq] is isomorphic to R and

we can define a graph selector by

U(q) = sup{a ∈ R; [i∗aAq] = 0} = inf{a ∈ R; [i∗aAq] 6= 0}.

This graph selector is equal to the one associated to S plus a constant.

Proof. If the basic operation that we use is a translation or a diffeomorphism,
the proposition is straighforward. The only non trivial case concerns stabilization.
From now, we forget the translations and the constants and we can assume that we
are in the following case.
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Assume that S : E → R is a generating function such that after a fiber diffeo-
morphism ψ : E → E, S ◦ ψ is non-degenerate quadratic in every fiber outside
some compact subset, the quadratic form being denoted by Q0 and having index
m0. Then Hm0(Eq, S

−N
q ) is isomorphic to R and H∗(Eq , S

−N
q ) = {0} if ∗ 6= m0.

For such a function we can define a graph selector u as before (even if this function
is not special).
Assume that Q : F → R is a non-degenerate quadratic form with index m when
restricted to the fibers of p′ : F → M2 and let us use the notation S = (S ◦ψ)⊕Q :
E ⊕ F → R.

Dimension of H∗(Eq ⊕ Fq,S
−N−C
q )

Observe that |S −Q0 ⊕Q| is bounded by some constant C. Hence we have:

{Q0 ⊕Q ≤ a− C} ⊂ {S ≤ a} ⊂ {Q0 ⊕Q ≤ a+ C}.

Then we choose N ≥ 0 such that all the critical values of S (and then of S) are in
(−N,N). Then the inclusion maps induce the following homomorphisms

H∗(Eq ⊕ Fq, Q0 ⊕Q ≤ −N)
j∗3
−→H∗(Eq ⊕ Fq,S

−N−C
q )

j∗2
−→

H∗(Eq ⊕ Fq, Q0 ⊕Q ≤ −N − 2C)
j∗1
−→H∗(Eq ⊕ Fq,S

−N−3C
q ).

As the pairs (Eq ⊕ Fq, Q0 ⊕Q ≤ −N) and (Eq ⊕ Fq, Q0 ⊕Q ≤ −N − 2C) are ho-
motopically equivalent and as the pairs (Eq ⊕Fq,S

−N−C
q ) and (Eq ⊕Fq,S

−N−3C
q )

are homotopically equivalent, the maps j∗1 ◦ j∗2 and j∗2 ◦ j∗3 are isomorphisms, and
then j∗2 is an isomorphism too. We deduce that H∗(Eq⊕Fq,S

−N−C
q ) is isomorphic

to R if ∗ = m0 +m and {0} if ∗ 6= m0 +m.
The same is true if we replace S by the function σ = S ⊕ Q that will be denoted
by σ from now.

A first inequality between the two graph selectors
Let ε be a positive number. We will prove that U(q) ≤ u(q) + ε =: a+ ε

2 .

Let α be a closed m0-form that vanishes on S−N
q and is such that 0 6= [i∗aα] ∈

Hm0(Sa
q , S

−N
q ) and let β be a closed m-form that vanishes on Qε

q and such that

0 6= [i∗ε
2
β] ∈ Hm(Q

ε
2
q , Q−ε

q ). We denote by A (resp. B) a m0-cycle of Sa
q with

boundary in S−N
q (resp. m-cycle of Q

ε
2
q with boundary in Q−ε) such that α(A) 6= 0

(resp. such that β(B) 6= 0). We use the notation µA = supQ|A and µB = supS|B.

Using the gradient flow of Q0 on S−N
q to push A or the gradient flow of Q on Q−ε

to push B, we can asssume that S|∂A ≤ −ε− N − µA and Q|∂B ≤ −ε−N − µB;

observe that this implies that ∂(A×B) = (∂A× B) ∪ (A× ∂B) ⊂ σ−ε−N .
Then the cup product α∨β is a closed (m+m0)-form that vanishes in (Q−ε

q ×Fq)∪

(Eq ×S
−N
q ) and such that (α∨β)(A×B) 6= 0. As the set (Q−ε

q ×Fq)∪ (Eq ×S
−N
q )

contains σ−ε−N and as the support of A × B is in Sa
q × Q

ε
2
q ⊂ σa+ ε

2 , we deduce

that 0 6= [i∗a+ ε
2
(α∨ β)] ∈ Hm+m0(σa+ ε

2 , σ−ε−N ) and thus U(q) ≤ a+ ε
2 = u(q) + ε.

Hence we have U(q) ≤ u(q).
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The reverse inequality between the two graph selectors
Let us now prove that for ε > 0, we have U(q) ≥ u(q)− ε = a− ε

2 . We use the

notation j : σ
a− ε

2
q → Eq ⊕ Fq, j1 : Sa

q → Eq and j2 : Q−ε
q → Fq for the inclusion

maps.

As H∗(Sa
q , S

−N
q ) and H∗(Q

− ε
2

q , Q−ε
q ) are trivial, there exists a (m0 − 1)-form α1 on

Sa
q such that α1|S≤−N = 0 and j∗1α = dα1 and a (m−1)-form β1 on Q− ε

2 such that
β1|Q≤−ε = 0 and j∗2β = dβ1.

Observe that (Sa
q ×Q−ε

q , S−N
q ×Q

− ε
2

q ) is an excisive couple (see [18]), hence all
the following cohomology spaces vanish because they can be expressed with the

trivial spaces H∗(Sa
q , S

−N
q ) and H∗(Q

− ε
2

q , Q−ε)

H∗
(

Sa
q ×Q

− ε
2

q ,
(

Sa
q ×Q−ε

q

)

∪
(

S−N
q ×Q

− ε
2

q

))

= {0}.

We have d(α1 ∨ β) = d((−1)m0α ∨ β1) = α ∨ β. We deduce that there exists a

(m0+m−2)-form µ on Sa
q ×Q

− ε
2

q that vanishes on (Sa
q ×Q

−ε
q )∪ (S−N

q ×Q
− ε

2
q ) and

is such that α1 ∨ β− (−1)m0α∨ β1 = dµ. We can extend µ in a (m0 +m− 2)-form
that is defined on Eq ⊕ Fq and vanishes on (Eq × Q−ε

q ) ∪ (S−N
q × Fq). Then the

(m0+m−1)-form α1∨β that is defined on Sa
q×Fq coincides on the intersection of the

two sets with the (m0+m−1)-form (−1)m0α×β1+dµ that is defined on Eq×Q
− ε

2 .

Together, they define a (m0 +m− 1)-form µ1 on (Sa
q × Fq) ∪ (Eq ×Q− ε

2 ) ⊃ σ
a− ε

2
q

such that

• µ1 vanishes on (Eq ×Q−ε) ∪ (S−N × Fq) ⊃ σ−N−ε;
• dµ1 = α ∨ β.

We deduce that 0 = j∗(α ∨ β) ∈ Hm+m0(σ
u(q)−ε
q , σ−N−ε

q ) and then that U(q) ≥
u(q)− ε. Hence U(q) ≥ u(q) and finally u(q) = U(q).

�

Notations. From now we denote by S : (q, τ, ξ) ∈ E → S(q, τ, ξ) a special
generating function for G. The critical locus is denoted by Σ and the associated
embedding is i = iS : Σ → T ∗M2. We denote by u : (q, τ) ∈ T ∗M2 → u(q, τ) the
graph selector associated to S.

Following the proofs that are contained in [21] or [22] for the homology, we will
prove

Proposition 2.4. Let u : M2 → R be a graph selector for the special generating
function S : M× R

k → R. Then u is a Lipschitz function that is C1 on an open
subset U0 ⊂ M2 with full Lebesgue measure, and for every z ∈ U0, the following
properties hold

(4) (z, du(z)) ∈ G, and u(z) = S ◦ i−1(z, du(z)),

with the usual identification T ∗(M × T2) = T ∗M × T2 × R.

Proof. We assume that S = Q on all the levels that are not in (−N,N) and we
denote the index of Q by m. Let us fix z ∈ M. We denote by α a m-form on R

k

that vanishes on Q−N and is such that 0 6= [α] ∈ Hm(Rk, Q−N ). Because there is
a change in the topology of the sublevel with height u(z), u(z) is a critical value of
Sz.
Let us prove that u is Lipschitz. Observe that the function V : M×M×R

k → R
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that is defined by V(z, z′, ξ) = S(z′, ξ) − S(z, ξ) is C1 and has compact support.
Hence there exists a constant L > 0 such that

∀z, z′ ∈ M, ∀ξ ∈ R
k, |S(z, ξ)− S(z′, ξ)| ≤ L.d(z, z′).

We deduce that for every a ∈ R, Sa
z ⊂ S

a+L.d(z,z′)
z′ . Then the inclusion maps induce

the following maps (note that S−N
z = S−N

z′ ):

Hm(Rk, S−N
z )

j∗2
−→Hm(S

u(z)+L.d(z,z′)+ε

z′ , S−N
z′ )

j∗1
−→Hm(Su(z)+ε

z , S−N
z ).

We know that 0 6= (j2 ◦ j1)
∗α ∈ Hm(S

u(z)+ε
z , S−N

z ). This implies that j∗2α 6= 0 and
then that u(z′) ≤ u(z) + ε + Ld(z, z′). This is valuable too when we exchange z
and z′ and when ε tends to zero. Finally, we have:

|u(z)− u(z′)| ≤ L.d(z, z′).

Let us now prove that there exists an open subset U0 of M with full Lebesgue
measure on which u is C1. Observe that the set U1 of the z ∈ M where Sz is Morse
is exactly the set of regular values of the restriction to ΣS of the first projection
(z, v) ∈ M × R

k 7→ z and then has full Lebesgue measure by Sard’s theorem. It
is open. We denote by U0 the set of the z ∈ U1 such that the critical points of
Sz have pairwise distinct critical values. Let us prove that U1\U0 has only iso-
lated points: this will imply that U0 is open and has full Lebesgue measure. Let
us consider z ∈ U1\U0. As Sz is Morse, ΣS is transverse to {z} × R

k and then
above a neighbourhood Vz of z in M, ΣS is the union of j graphs, the graphs of
η1, . . . , ηj : Vz → R

k. If we use the notation ψj(z
′) = ∂S

∂q
(z′, ηj(z

′)), then G is the

union of the disjoints graphs of ψ1, . . . , ψj above Vz. For z′ ∈ Vz, u(z
′) is a criti-

cal value of Sz′ and then is one of the real numbers S(z′, η1(z
′)), . . . , S(z′, ηj(z

′)).

Note that every S(, ηi(.)) is C
1 and that ∂S(,ηi(.))

∂z
= ψi. As the ψi(z

′) are pairwise
distinct, for i 6= j, {S(, ηi(.)) = S(, ηj(.))} has only isolated points.
Let us now consider z ∈ U0. We can define a connected neighbourhood Vz, η1, . . . , ηj
and ψ1, . . . , ψj exactly as before. Then every u(z′) is one of the S(z′, ηi(z

′)). Be-
cause Vz is a connected part of U0, there exists exactly one i such that ∀z′ ∈
Vz, u(z

′) = S(z′, ηi(z
′)). Then we have du(z′) = ∂S

∂z
(z′, ηi(z

′)) = ψi(z
′) and we

deduce that u(z′) = S ◦ i−1
S (z′, du(z′)) and du(z′) ∈ G. �

Proposition 2.5. There exist a real constant c such that the following identity
holds

(5) ∀q ∈M, u(q, 1) = u(q, 0)− c

Proof. We proved in Proposition 2.2 that S(q, 0; ξ) and S(q, 1, ; ξ) are two generating
functions for L. We deduce from Proposition 2.3 the wanted result. �

Corollary 2.1. For the same constant c that is defined in Proposition 2.5, the
function S ◦ i−1

S satisfies the identity

(6) S ◦ i−1
S (q, p, 1, 0) = S ◦ i−1

S (q, p, 0, 0)− c, (q, p) ∈ L.

Proof. As S(q, 0; ξ) and S(q, 1; ξ) are two generating functions for L, the functions
(q, p) ∈ L 7→ S ◦ i−1(q, p, 1, 0) and (q, p) ∈ L 7→ S ◦ i−1(q, p, 0, 0) are two primitive
on L of the Liouville 1-form λ. Hence their difference is a constant.
Moreover, u(., 0) and u(., 1) are two graph selectors for L so that u(., 0)−u(., 1) = c.
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Hence there exists a dense open subset V0 of M with full Lebesgue measure such
that for i = 1, 2

∀q ∈ V0, (q, dqu(q, 0)) = (q, dqu(q, 1)) ∈ L and u(q, i) = S ◦ i−1
S (q, dqu(q, i), i, 0).

Take q ∈ V0. By Proposition 2.4, we have for (q, p) = (q, dqu(q, 0)) = (q, dqu(q, 1)) ∈
L that

S ◦ i−1
S (q, p, 1, 0) = u(q, 1) = u(q, 0)− c = S ◦ i−1

S (q, p, 0, 0)− c.

�

3. Construction of a dominated function.

In this section, we come back to the original problem, and construct what is
called a dominated function for the Lagrangian L that is associated to H , where
we recall the definition of the Lagrangian that we gave in the introduction.

Notation. The Lagrangian L : TM × T → R is the function that is associated to
H via the Legendre duality.

∀(q, v, t) ∈ TM × T, L(q, v, t) = inf
p∈T∗

q M
(p.v −H(q, p, t)).

We recall that L is as regular as H is, C2-convex in the fiber direction and
superlinear in the fiber direction (see e.g. [12]).

Definition. A function U : M1 = M × T → R is dominated by L + c if it is
Lipschitz and if for every continuous and piecewise C1 arc γ : [a, b] →M , we have

U(γ(b), b)− U(γ(b), b) ≤

∫ b

a

(L(γ(t), γ̇(t), t) + c)dt.

The goal of this section is to build a function u that is dominated by L+ c and
to prove some properties for this function.

Then, in the last section, we will prove that u is everywhere differentiable and
that L is contained in the graph of q 7→ du(q, 0). After that, we will prove that du
is C1.

3.1. Construction of a dominated function. Let us introduce a notation.

Notation. We define u : M × [0, 1] → R by u(q, t) = u(q, η−1(t)) + ct.

Observe that a consequence of Proposition 2.5 is that u(., 0) = u(., 1). Hence we
can consider u as a function defined on M1 =M × T.

Proposition 3.1. The function u is Lipschitz and dominated by L+ c.

Proof. We postpone the proof that u is Lipschitz after the proof of the domination
property, but we use the fact that u is Lipschitz in the first part of our proof.

The domination property
Let γ : [a, b] → M be a C1 arc with [a, b] ⊂ (0, 1) and assume that the image of
t ∈ [a, b] 7→ (γ ◦ η(t), t) ∈ M1 is Lebesgue almost everywhere in U0 (U0 was defined
in Proposition 2.4). Then
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u(γ(b), b)− u(γ(a), a) = u(γ(b), η−1(b))− u(γ(a), η−1(a)) + c(b− a),

and if we use the notation δ = u(γ(b), η−1(b))− u(γ(a), η−1(a))

δ =

∫ η−1(b)

η−1(a)

(

dqu(γ(η(t)), t)γ̇(η(t))η̇(t) +
∂u

∂t
(γ ◦ η(t), t)

)

dt.

Young inequality for dual convex functions tells us that

∀p ∈ T ∗
qM, ∀v ∈ TqM, ∀t ∈ T, p.v ≤ H(q, p, t) + L(q, v, t).

Hence, if we use the notation δ = u(γ(b), η−1(b))− u(γ(a), η−1(a)), we have δ ≤

∫ η−1(b)

η−1(a)

(

η̇(t) (H(γ(η(t)), dqu(γ(η(t), t), η(t)) + L(γ(η(t)), γ̇(η(t)), η(t))) +
∂u

∂t
(γ ◦ η(t), t)

)

dt.

Proposition 2.4 tells us that u is a graph selector for G above U0. We can therefore
replace in the integral ∂u

∂t
(γ ◦ η(t), t) by −K(q, p, t) = −η̇(t)H(q, p, η(t)) and we

obtain by using a change of variable s = η(t)

δ ≤

∫ η−1(b)

η−1(a)

η̇(t)L(γ(η(t)), γ̇(η(t)), η(t))dt =

∫ b

a

L(γ(s), γ̇(s), s)ds.

This gives the domination property

(7) u(γ(b), b)− u(γ(a), a) ≤

∫ b

a

(L(γ(s), γ̇(s), s) + c)ds.

How can we conclude for general γ : [a, b] → M that are continuous and piecewise
C1?

• if [a, b] ⊂ (0, 1) and γ is C1, by Lemma 3.1 applied to γ ◦ η, we can approx-
imate γ in topology C1 by a sequence (γn)n such that (γn ◦ η(t), t) ∈ U0 for
almost every t ∈ [η−1(a), η−1(b)], hence the domination inequality holds for
every γn. Taking now the limit n→ +∞, we find that inequality (7) holds
for our curve γ.

• if [a, b] ⊂ [0, 1] and γ is C1, we can find a decreasing sequence (an) and an
increasing sequence (bn) so that (a, b) =

⋃

n∈N
[an, bn]; then every γ|[an,bn]

is dominated and by taking a limit γ is dominated;
• for general γ, we can cut γ in sub-arcs γ1, . . . , γn that are C1 and defined
on some intervals Ik that are contained in some intervals [nk, nk + 1] with
nn ∈ Z; then we have the domination property for every γj and hence for
their concatenation γ = γ1 ∗ · · · ∗ γn.

Lemma 3.1. Given an interval [α, β] ⊂ (0, 1), a set of full measure U0 ⊂ M1 and
a C1 curve τ : [α, β] → M , there exists a sequence of C1 curves τn : [α, β] → M ,
n ∈ N such that (τn)n∈N converges to τ in the C1-topology, and for every n ∈ N,
(τn(t), t) ∈ U0 for almost every t ∈ [α, β].

Proof. Without loss of generality, we can assume that τ is defined in a slightly
bigger interval [α′, β′] ⊂ (0, 1) such that [α, β] ⊂ (α′, β′). The curve σ : [α′, β′] →
M1, σ(t) = (τ(t), t) is a C1-embedding, and it can be embedded in a tubular
neighbourhood, that is to say, there exist a C1-embedding Λ : [α′, β′] × O → M1,
Λ(t, ξ) = (Γ(t, ξ), T (t, ξ)) such that Γ(t, 0) = τ(t) and T (t, 0) = t, where O is
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on open neighbourhood of 0 in R
n. By implicit function theorem we know we

can solve locally the equation T (s, ξ) = t, then by compactness of [a, b] and by
shrinking the neighbourhood O, we can always assume that T (t, ξ) = t as t ∈ [a, b],
hence Λ(t, ξ) = (Γ(t, ξ), t). Since Λ is a C1-diffeomorphism, the set V0 = Λ−1(U0 ∩
Λ([a, b] × O)) has full measure in [a, b] × O, and by Fubini Theorem, for almost
every ξ ∈ O, the set of t ∈ [a, b] such that (t, ξ) ∈ V0 has full measure in [a, b],
therefore, we can find a sequence (ξn)n in O such that ξn → 0 and for almost every
t ∈ [a, b] we have (Γ(t, ξn), t) ∈ U0. By defining τn(t) = Γ(t, ξn) we have the desired
property. �

The Lipschitz property

Let us remark that η−1 : [0, 1] → [0, 1] is an absolutely continuous function.
Indeed, it is a C∞ function on the open interval (0, 1), and if we set g(t) = (η−1)′(t)
for t ∈ (0, 1), for every segment [a, b] ⊂ (0, 1) we have

(8) η−1(b)− η−1(a) =

∫ b

a

g(t) dt,

and by construction of η we know that g(t) > 0 for t ∈ (0, 1). By continuity of η−1, if
we take the limits a→ 0 and b→ 1, we find that g is absolutely integrable on (0, 1),
and identity (8) holds for every [a, b] ⊂ [0, 1], hence η−1 is absolutely continuous.
As u is Lipschitz, the function u that we defined by u(q, t) = u(q, η−1(t)) + ct is
(uniformly) absolutely continuous in the t-direction and (uniformly) Lipschitz in
the q direction. Hence, to prove that u is Lipschitz, we just have to prove that its
derivative, which is defined Lebesgue almost everywhere, is bounded on a set with
full Lebesgue measure.

Observe that η restricted to every segment [a, b] ⊂ (0, 1) is Lipschitz; we deduce
that the set U0 = {(q, η(t))); (q, t) ∈ U0 ∩ (M × (0, 1))} has full Lebesgue measure
in M1 =M × T.

For (q, t) ∈ U0, we have (q, η−1(t)) ∈ U0 and then (q, η−1(t), du(q, η−1(t))) ∈ G.
This implies that dqu(q, η

−1(t)) is (uniformly) bounded on U0 and ∂u
∂t
(q, η−1(t)) =

−K(q, dqu(q, η
−1(t)), t) = −η̇(η−1(t))H(q, dqu(q, η

−1(t)), t).
We deduce that

(9) du(q, t)(δq, δt) = dqu(q, η
−1(t))δq +

1

η̇(η−1(t))

∂u

∂t
(q, η−1(t))δt

is equal to

du(q, t)(δq, δt) = dqu(q, η
−1(t))δq −H(q, dqu(q, η

−1(t)), t)δt

and thus du is bounded above U0.
Let us now conclude. Given now two points (q, t) and (q′, t′) ∈ M1, we have

(10)
|u(q′, t′)− u(q, t)| ≤ | u(q′, t′)− u(q, t′)|+ |u(q, t′)− u(q, t)|

≤ Adist(q′, q) + |u(q, t′)− u(q, t)|

where dist( , ) is a Riemannian distance onM , A is a positive constant independent
from (q, t) and (q′, t′). By an argument similar to the one given in proof of Lemma
3.1, and eventually cutting the segment s 7→ (q, s) in a finite number of pieces, we
can find a sequence of points (qn)n in M converging to q and such that for every
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n ∈ N, the point (qn, s) is in U0 for almost every s ∈ [t, t′] (without loss of generality
we assume t < t′). Since we know that du is bounded above U0 we find

|u(qn, t
′)− u(qn, t)| ≤

∫ t′

t

∣

∣

∣

∣

∂u

∂t
(qn, s)

∣

∣

∣

∣

ds ≤ B |t′ − t|,

for some constant B > 0. Taking now the limit n→ +∞ and replacing in (10) we
achieve the proof. �

3.2. The dominated function u can be seen as a kind of graph selector. In
this part, we construct an extended Hamiltonian of H and an extended Lagrangian
submanifold Y of L by using H . We will prove that in some sense, u is a graph
selector for Y.

Notation. We introduce the autonomous Hamiltonian H on T ∗M1 = T ∗M ×
T1 × R that is defined by

H(q, p, τ, e) = H(q, p, τ) + e.

The Hamiltonian equations for H are

(11)

{

dq
dt

= ∂H
∂p

(q, p, τ), dτ
dt

= 1,
dp
dt

= −∂H
∂q

(q, p, τ), de
dt

= −∂H
∂τ

(q, p, τ),

and the flow of (11) is given by

(12) φtH(q, p, τ, e) = (ϕτ,τ+t
H (q, p), τ + t, e+H(q, p, τ)−H(ϕτ,τ+t

H (q, p), τ + t)).

If we denote by FE(q, p, τ, e) = (q, p, τ, e+E) the translation in the energy direction
E, observe that FE ◦ φtH = φtH ◦ FE . Hence the restriction of (φtH) to every level
{H = E} is conjugated (via FE) to the restriction of (φtH) to the zero level {H = 0}.

Similarly to what we did in the previous section for the construction of G, we
now extend L to a Lagrangian submanifold Y of T ∗M1 invariant by the flow (φtH).
The only change is that we choose the lift in such a way that Y ⊂ {H = c} for the
constant c that we introduced in Proposition 2.5 and Corollary 2.1.

Y = {φtH(q, p, 0,−H(q, p, 0) + c); (q, p) ∈ L, t ∈ [0, 1]}.

Since L is invariant by ϕ0,1
H , Y is a closed submanifold of T ∗M1. Observe that Y

is contained in the energy level {H = c}.

Proposition 3.2. The manifold Y is exact Lagrangian, i.e. the Liouville 1-form
θ =< p, dq > +Edτ has a primitive S along Y.

Proof. Let Ỹ be the set Ỹ = {(q, p, t, e) ∈ T ∗M × [0, 1]× R; (q, p, [t]1, e) ∈ Y}.

We define on Ỹ the map ψ : Ỹ → T ∗M2 by

(13) ψ(q, p, t, e) = (q, p, η−1(t), η̇(η−1(t))(e − c)).

Lemma 3.2. ψ is an homeomorphism from Ỹ onto G ∩ (TM × [0, 1]× R).

Proof. Let (q, p, t, e) ∈ Ỹ. This means that e = c − H(q, p, t) and φt,0H (q, p) ∈ L.

Then ψ(q, p, t, c−H(q, p, t)) = (q, p, η−1(t),−K(q, p, η−1(t))) with φ
η−1(t),0
K (q, p) ∈

L. Hence ψ(Ỹ) is G ∩ (TM × [0, 1]× R).
The continuity and injectivity are straightforward. �
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We define then s0 by

s0(q, p, t, e) = S ◦ i−1
S ◦ ψ(q, p, t, e) + ct.

Because of equality (6), we have

s0(q, p, 1, e) = S ◦ i−1
S (q, p, 1, 0) + c = S ◦ i−1

S (q, p, 0, 0) = s0(q, p, 0, e).

Hence we can define S : Y → R by S(q, p, [t]1, e) = s0(q, p, t, e).
This function S is continuous on Y and is differentiable except on the slice

Y ∩ {t = 0}. We have dS(q, p, t, e)(δq, δp, δt, δe) =

d(S ◦ i−1
S )(q, p, η−1(t), η̇(η−1(t))(e − c))(δq, δp,

1

η̇(η−1(t))
δt, δE) + cδt,

with δE = η̇(η−1(t))δe + (e − c) η̈(η
−1(t))

η̇(η−1(t))δt.

As d(S ◦ i−1
S ) is a primitive of the Liouville 1-form Θ =< p, dq > +Edτ , we deduce

that

dS(q, p, t, e)(δq, δp, δt, δe) =< p, δq > +η̇(η−1(t))(e−c)
δt

η̇(η−1(t))
+cδt =< p, δq > +eδt.

Hence S is continuous on Y and is a primitive of θ on Y\{t = 0}.
As Y is Lagrangian, a primitive of θ along Y exists always locally and is C1.

Then for every point in Y, there exists a connected neighborhood V on which θ has
a C1 primitive s. Then on this neighbourhood the differentials of S−s is continous
and is differentiable with a diffrential equal to 0 on V\{t = 0}.

This implies that S − s is constant on V . Hence S is C1 everywhere and is a
primitive of the Liouville 1-form θ.

�

As the exact Lagrangian G has a graph selector, the same is true for Y.

Proposition 3.3. The function u is differentiable at every z ∈ U0 and

(14) ∀z ∈ U0, (z, du(z)) ∈ Y and u(z) = S(z, du(z)).

Identity (14) holds for every z ∈ M1 where u is differentiable and where H(z, du(z)) =
c.

Proof. Proof that u is a graph selector.

Notation. Let h : M1 → M1 be defined by h(q, t) = (q, η−1(t)).

Observe that h is an homeomorphism and that h|M×(0,1) is a diffeomorphism
onto M × (0, 1). We have

∀(q, t, p, e) ∈ Ỹ, ψ(q, t, p, e) = (h(q, t), tDh(q, t)−1(p, e− c))

and
∀(q, t) ∈ M1, u(q, t) = u(h(q, t)) + ct.

As u is a graph selector for G, we deduce that if z ∈ U0, we have

ψ(z, du(z)) = ψ(z, tDh(z)du(h(z)) + c) = (h(z), du(h(z)) ∈ G,

and then (z, du(z)) ∈ ψ−1(G) = Y.
Moreover, if z = (q, t), we have

u(z) = u(h(z))+ct = S◦i−1
S (h(z), du(h(z))+ct = S◦i−1

S ◦ψ(z, du(z))+ct = S(z, du(z)).
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Proof that Identity (14) holds for every z ∈ M1 where u is differentiable and
where H(z, du(z)) = c.

Let z = (q, t) ∈ M1 be a point where u is differentiable and H(z, du(z)) = c. We
follow the same step as in [1], and we introduce two subsets of T ∗

zM1 = T ∗
qM ×R.

Let Ku(z) be the set of all limit points of sequences (du(zn))n∈N where zn ∈ U0 and
lim

n→+∞
zn = z, and let Cu(z) be the convex hull of Ku(z). Let us give result due to

F. Clarke (see [13] for a proof of [10] for a more general result).

Lemma 3.3. Let f : U → R be a Lipschitz function defined on a open subset
U of R

d and let U0 ⊂ U be a subset with full Lebesgue measure such that f is
differentiable at every point of U0. We introduce a notation. If q ∈ U , Kf (q) is
the set of all the limits lim

n→∞
df(qn) where qn ∈ U0, lim

n→∞
qn = q and Cf (q) is the

convex hull of Kf (q). Then, at every point q ∈ U where f is differentiable, we
have : df(q) ∈ Cf (q).

By hypothesis the function p 7→ H(q, p, t) is strictly convex, therefore the energy
sublevel

H−1
(q,t)((−∞, c]) =

{

(q, p, t, e) ∈ T ∗
(q,t)(M × T1), H(q, p, t) + e ≤ c

}

is also strictly convex (up to the symmetry e 7→ −e, it is the epigraph of the
function p 7→ H(q, p, t)− c), and in particular, every point (q, p, t, e) in the energy
level H−1

(q,t)(c) is extremal for H−1
(q,t)((−∞, c]). By hypothesis, (z, du(z)) is in the

energy level H−1
z (c), therefore it is an extremal point of Cu(z), hence a point of

Ku(z), and by definition of Ku(z) there exist a sequence (zn)n∈N of points of U0

such that (zn, du(zn))n∈N converges to (z, du(z)), but every point (zn, du(zn)) lies
in Y and satisfies the identity u(zn) = S(zn, du(zn)). Taking the limit n→ +∞ we
get (14). �

4. Calibration and conclusion

In this section, we will prove that Y is contained in the graph of du. This
implies of course that Y is a graph above the whole M1 and that u is everywhere
differentiable: the projection of Y is compact and dense in M1, hence equal to M1.
Morever, we will also prove that Y is a Lipschitz graph in T ∗M1. This will imply
that Y is the graph of a C1 closed 1-form. The main tool that we will use is the
notion of calibrated curve.

4.1. Calibration. We will explain what happens along the curves that satisfy the
equality in the inequality of domination (7). The proof is an analogue of the proof
given by A. Fathi in [12] in the autonomous case.

Definition. If γ : [a, b] → M is a C1 arc, its defect of calibration is

δ(γ) =

∫ b

a

(L(γ(t), γ̇(t), t) + c)− (u(γ(b), b)− u(γ(a), a)).
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Then

• δ is always non-negative;
• if (γn) C

1-converges to γ, then lim
n→∞

δ(γn) = δ(γ);

• if I ⊂ J , then δ(γ|I) ≤ δ(γ|J ).

Definition. A C1 curve γ : I →M is (u, L, c)-calibrated if ∀[a, b] ⊂ I, δ(γ|[a,b]) =
0.

Proposition 4.1. If γ : I →M is (u, L, c)-calibrated, then

• u is differentiable at every (γ(t), t) with t in the interior of I;
• for all t in the interior of I, we have dqu(γ(t), t) = ∂L

∂v
(γ(t), γ̇(t), t) and

H(γ(t), t, du(γ(t), t)) = c.

Proof. We assume that γ is C1 and calibrated.

Value of du(γ(.), .) if u is differentiable along t 7→ (γ(t), t).
Let us assume that u is differentiable at every point of {(γ(t), t); t ∈ (a, b)}.
We have

∀t ∈ (a, b), u(γ(t), t)− u(γ(a), a)) =

∫ t

a

(L(γ(s), γ̇(s), s) + c)ds.

Differentiating with respect to t ∈ (a, b), we obtain

dqu(γ(t), t).γ̇(t) +
∂u

∂t
(γ(t), t) = L(γ(t), γ̇(t), t) + c.

Using Young inequality, we deduce

(15)
c = dqu(γ(t), t).γ̇(t) +

∂u
∂t
(γ(t), t) − L(γ(t), γ̇(t), t)

≤ ∂u
∂t
(γ(t), t) +H(γ(t), dqu(γ(t), t), t) = H(γ(t), t, du(γ(t), t)).

But Lemma 3.3 implies that H(γ(t), t, du(γ(t), t)) ≤ c. Hence Inequality (15) is in
fact an equality. Il particular we have equality in Young inequality

dqu(γ(t), t).γ̇(t) = L(γ(t), γ̇(t), t) +H(γ(t), dqu(γ(t), t), t)

then dqu(γ(t), t) =
∂L
∂v

(γ(t), γ̇(t), t) and so ∂u
∂t
(γ(t), t) = c −H(γ(t), dqu(γ(t), t), t).

This can be written H(γ(t), t, du(γ(t), t)) = c.

Proof that u is differentiable at every (γ(t), t) with t in the interior of I
Let us fix t0 ∈ (a, b). We work in a chart around γ(t0) = x. Then for every
t ∈ (a, b) and y close to ξ, we consider the arc γt,y : [a, t] → M that is defined by
γt,y(s) = γ(s) + s−a

t−a
(y − γ(t)). The domination proprety implies that

u(y, t) ≤ ψ+(y, t) = u(γ(a), a) +

∫ t

a

(L(γt,y(s), γ̇t,y(s), s) + c)ds.

Observe that u(x, t0) = u(γ(a), a) +
∫ t0

a
(L(γ(s), γ̇(s), s) + c)ds = ψ+(x, t0) because

γ is calibrated. Observe to that

ψ+(y, t) = u(γ(a), a)+

∫ t

a

(L(γ(s)+
s− a

t− a
(y−γ(t)), γ̇(s)+

1

t− a
(y−γ(t)), s)+ c)ds

and thus ψ+ is C1.
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Let us now consider the arc ηy,t : [t, b] → M that is defined by ηt,y(s) = γ(s) +
b−s
b−t

(y − γ(t)). Then

ψ−(y, t) = u(γ(b), b)−

∫ b

t

(L(ηy,t(s), η̇y,t(s), s) + c)ds ≤ u(y, t).

ψ− is C1 and because γ is calibrated we have ψ−(x, t0) = u(x, t0).
Finally, we have found two C1 function ψ− and ψ+ such that ψ− ≤ u ≤ ψ+ and

ψ−(x, t0) = u(x, t0) = ψ+(x, t0). This implies that u is differentiable at (x, t0). �

4.2. Study along the Ω-limit set of φH1|L.

Proposition 4.2. Let (q, p) ∈ Ω(φ1
H|L) be a point of the Ω-limit set of φ1

H|L and

let (q, 0, p, c − H(q, p, 0)) be the corresponding point in Y. Then the projection of
the H orbit of (q, 0, p, c−H(q, p, 0)) on M is (u, c, L)-calibrated.

Proof. Let us fix [a, b] ⊂ R and let us consider the piece of orbit

t ∈ [a, b] 7→ ζ(t) = φtH(q, 0, p, c−H(q, p, 0)) = (q(t), t, p(t), c−H(q(t), p(t), t)).

Because (q, p) ∈ Ω(φ1
H|L), we can find a sequence of pieces of H orbits

t ∈ [a, bn] 7→ ζn(t) = (qn(t), t, pn(t), c−H(qn(t), pn(t), t))

in Y such that bn − a ∈ N, lim
n→∞

bn = +∞, lim
n→∞

(qn(a), pn(a)) = (q(a), p(a)) and

lim
n→∞

(qn(bn), pn(bn)) = (q(a), p(a)).

Because of the properties of the defect of calibration δ, we have

0 ≤ δ(q|[a,b]) = lim
n→∞

δ(qn|[a,b]) ≤ lim inf
n→∞

δ(qn|[a,bn]).

We have

δ(qn|[a,bn]) = u(qn(bn), bn)− u(qn(a), a)−

∫ bn

a

(L(qn(t), q̇n(t), t) + c)dt.

We prove now the following lemma.

Lemma 4.1. If t ∈ R 7→ ζ(t) = (q(t), t, p(t), c −H(q(t), p(t), t)) is an orbit for H
on Y, then we have

(16)

∫ b

a

(L(q(t), q̇(t), t) + c) = S(ζ(b)) − S(ζ(a)).

Because of Proposition 3.2, we know that S is a primitive of θ along Y and so
we have

S(ζ(b)) − S(ζ(a)) =

∫

ζ|[a,b]

θ =

∫ b

a

(p(t).q̇(t)−H(q(t), p(t), t) + c) dt

and along every orbit we have p(t).q̇(t) − H(q(t), p(t), t) = L(q(t), q̇(t), t). This
proves the lemma.

Applying Lemma 4.1, we obtain:

δ(qn|[a,bn]) = u(qn(bn), bn)− u(qn(a), a)− (S(ζn(bn))− S(ζn(a))).

Using the continuity of u and S and the fact that lim
n→∞

ζn(a) = ζ(a) and lim
n→∞

ζn(bn) = ζ(b),

we deduce that

lim
n→∞

δ(qn|[a,bn]) = u(q(a), a)− u(q(a), a)− (S(ζ(a)) − S(ζ(a)) = 0

and thus q is calibrated. �
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4.3. Every orbit in Y is in the graph of du.

Proposition 4.3. Let t 7→ ζ(t) = φtH(q, 0, p, c − H(q, p, 0)) = (q(t), t, p(t), c −
H(q(t), p(t), t)) be an orbit for H on Y. Then the curve q(t) is (u, c, L)-calibrated
and we have

∀t ∈ R, p(t) = du(q(t), t).

Proof. We choose (q+, p+) ∈ ω((q(0), p(0)), φ1H) and (q−, p−) ∈ α((q(0), p(0)), φ1H)
and we denote by ζ±(t) = (q±(t), t, p±(t), c−H(q±(t), p±(t), t)) the corresponding
H orbits in Y.
Then there exists two increasing sequences (nn) and (mn) of positive integers so
that

(17) lim
n→∞

ζ(−mn) = ζ−(0) and lim
n→∞

ζ(nn) = ζ+(0).

If [a, b] ⊂ R, we have

0 ≤ δ(q|[a,b]) ≤ lim inf
n→∞

δ(q[−mn,nn]),

hence we will prove that this last limit is zero.
Using Lemma 4.1, we obtain

δ(q[−mn,nn]) =
∫ nn

−mn
(L(q(t), q̇(t), t) + c)dt− (u(q(nn), nn)− u(q(−mn),−mn))

= S(ζ(nn))− u(q(nn), nn)− (S(ζ(−mn))− u(q(−mn),−mn))

Because of (17) and of the continuity of u and S, we obtain

lim
n→∞

δ(q[−mn,nn]) = S(ζ+(0))− u(q+(0), 0)− (S(ζ−(0))− u(q−(0), 0)).

We deduce from Proposition 4.2 and Proposition 4.1 that u is differentiable at every
(q±(t), t) and that

dqu(q±(t), t) =
∂L

∂v
(q±(t), q̇±(t), t) and H(q±(t), t, du(q±(t), t)) = c.

This implies that du(q±(t), t) = (p±(t), c−H(q±(t), p±(t), t)) and then that ζ±(t) =
(q±(t), t, du(q±(t), t)). This gives

lim
n→∞

δ(q[−mn,nn]) = S(ζ(q+(0), 0, du(q+(0), 0)))−u(q+(0), 0)−(S(ζ(q−(0), 0, du(q−(0), 0)))−u(q−(0),−0)).

Proposition 3.3 tells us that

∀t ∈ R, (q±(t), t, du(q±(t), t)) ∈ Y and u(q±(t), t) = S(q±(t), t, du(q±(t), t)).

We finally deduce that

lim
n→∞

δ(q[−mn,nn]) = 0

and that q is (u, L, c)-calibrated.
We deduce from Proposition 4.1 that u is differentiable at every (q(t), t) and that

dqu(q(t), t) =
∂L

∂v
(q(t), q̇(t), t) and H(q(t), t, du(q(t), t)) = c.

This implies that ζ(t) = (q(t), t, du((q(t), t)). �
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4.4. The Lipschitz property of Y. We know now that Y is a graph over M1,
that is to say, the map pr |Y : Y → M1 is one-to-one, where pr : T ∗M1 → M1 is
the natural projection. We wish to show now that (pr |Y )−1 is Lipschitz. Then we
will deduce that L, which is a C1 Lagrangian submanifold and a Lipschitz graph if
the graph of a C1 1-form.
The fact that (pr |Y )−1 is Lipschitz is in fact a consequence of a more general
result about weak KAM solutions for non autonomous Hamiltonians, the proof can
be find in [11], but to help the reader we write again the proof of this property in
our particular case. It is based on the following Lemma, due to J. Mather, where
we use the following definition.

Definition. An Euler-Lagrange extremal is the projection on M of an arc of
solution of the Hamilton equations.

Lemma 4.2. Given A > 0 there exists K > 0, ǫ1 > 0 and δ > 0 with the following
property : if |vi| < A, (qi, vi, ti) ∈ TM×T, i = 1, 2 satisfy dM1((q1, t1), (q2, t2)) < δ
and dTM×T((q1, v1, t1), (q2, v2, t2)) ≥ K−1dM1((q1, t1), (q2, t2)) then, if γi : R →M ,
i = 1, 2 are Euler-Lagrange extremals satisfying γi(ti) = qi, γ̇i(ti) = vi, there exist
two Euler-Lagrange extremals σi : [ti − ǫ, ti + ǫ] →M with 0 < ǫ < ǫ1, satisfying

σ1(t1 − ǫ) = γ1(t1 − ǫ), σ1(t1 + ǫ) = γ2(t2 + ǫ),
σ2(t2 − ǫ) = γ2(t2 − ǫ), σ2(t2 + ǫ) = γ1(t1 + ǫ).

and moreover

AL+c(γ1
∣

∣

t1−ǫ,t2+ǫ] ) +AL+c(γ2
∣

∣

t2−ǫ,t1+ǫ] ) > AL+c(σ1) +AL+c(σ2).

The proof of this Lemma is in [19]. HereM is endowed by a Riemannian metric.
dM1 is a distance in M1, defined as the product between the Riemannian distance
in M and the flat distance in T, and dTM×T is a distance on TM × T, defined as
the product between the Riemannian distance in TM and the flat distance in T.

Proposition 4.4. pr(Y) = M1, and the map (pr |Y)
−1 : M1 → Y is Lipschitz.

Proof. We know that u is everywhere differentiable on M1, and

(pr |Y )−1(q, t) = (q, dqu(q, t), t, c−H(q, dqu(q, t), t)))

Since H is C2, in order to prove that (pr |Y )−1 is Lipschitz it is sufficient to show
that the following map

i : M1 → T ∗M × T, i(q, t) = (q, dqu(q, t), t),

is Lipschitz. Let us introduce the Legendre map :

Leg : TM × T → T ∗M × T, Leg(q, v, t) = (q,
∂L

∂v
(q, v, t), t).

It is a C1 diffeomorphism and it maps fibers to fibers. Let us prove that j =
Leg−1 ◦ i is locally Lipschitz, and therefore Lipschitz by compactness of M1. As a
consequence we get that i = Leg ◦ j is Lipschitz too. Let

A > max
(q,v,t)∈j(M1)

|v|,

and let K, δ and ǫ1 be the constants given by Lemma 4.2. Given two points
(qi, ti), i = 1, 2 in M1 such that dM1((q1, t1), (q2, t2)) < δ, let us set j(qi, ti) =
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(qi, vi, ti), i = 1, 2 and assume, for the sake of contradiction that the following
inequality holds

dTM×T((q1, v1, t1), (q2, v2, t2)) ≥ K−1dM1((q1, t1), (q2, t2)).

Let now γi : R → M i = 1, 2 be the two Euler-Lagrange extremals satisfying
(γi(ti), γ̇i(ti), ti) = (qi, vi, ti), and let σi : [ti − ǫ, ti + ǫ] →M, i = 1, 2 be the curves
given by Lemma 4.2. By Proposition 4.3 we know that γi are calibrated curves for
u. Let us set

∆ui = u(γi(ti + ǫ), ti + ǫ)− u(γi(ti − ǫ), ti − ǫ), i = 1, 2.

Since u is dominated by L+ c, by Lemma 4.2 we get

∆u1 +∆u2 ≤ AL+c(σ1) +AL+c(σ2)
< AL+c(γ1

∣

∣

[t1−ǫ,t1+ǫ] ) +AL+c(γ2
∣

∣

[t2−ǫ,t2+ǫ] )
= ∆u1 +∆u2,

which gives a contradiction. We have proved that j isK−1-Lipschitz, hence (pr |Y)
−1

is Lipschitz too.
�

4.5. Proof of the corollaries. We prove the corollaries that were given in the
introduction.

Proof or Corollary 1.1 With the hypothesis of the corollary, we obtain that
L is a graph. We then use Theorem 6.4.1 of [12], which is a corollary of the
convergence of the Lax-Oleinik semi-group in weak KAM theory, to conclude.

Proof or Corollary 1.2 We proved that the H orbit of every point in Y is
(u, L, c)-calibrated. This implies (see for example [3]) that every orbit is minimizing.
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isque 103-104 (1983).

16. M. Herman, Inégalités “a priori” pour des tores lagrangiens invariants par des
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