A MULTIDIMENSIONAL BIRKHOFF THEOREM FOR TIME-DEPENDENT TONELLI HAMILTONIANS

Marie-Claude Arnaud, Andrea Venturelli

- To cite this version:

Marie-Claude Arnaud, Andrea Venturelli. A MULTIDIMENSIONAL BIRKHOFF THEOREM FOR
TIME-DEPENDENT TONELLI HAMILTONIANS: Birkhoff theorem. 2016. hal-01309652v1

HAL Id: hal-01309652

https://univ-avignon.hal.science/hal-01309652v1
Preprint submitted on 29 Apr 2016 (v1), last revised 16 Aug 2017 (v2)

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

A MULTIDIMENSIONAL BIRKHOFF THEOREM FOR TIME-DEPENDENT TONELLI HAMILTONIANS

MARIE-CLAUDE ARNAUD ${ }^{\dagger, \ddagger}$ AND ANDREA VENTURELLI ${ }^{\dagger}$

Abstract

Let M be a closed and connected manifold, $H: T^{*} M \times \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$ a Tonelli 1-periodic Hamiltonian and $\mathcal{L} \subset T^{*} M$ a Lagrangian submanifold Hamiltonianly isotopic to the zero section. We prove that if \mathcal{L} is invariant by the time-one map of H, then \mathcal{L} is a graph over M. An interesting consequence in the autonomous case is that in this case, \mathcal{L} is invariant by all the time t maps of the Hamiltonian flow of H.

1. Introduction and Main Results.

A lot of problems coming from the physics are conservative, as the N-body problem and other classical mechanical systems: in other words, they are symplectic. Close to the complectely elliptic periodic orbits of symplectic dynamics, it is in general possible to use some change of coordinates called normal form (see [20]) and thus to be led to study a local diffeomorphism

$$
\begin{equation*}
(\theta, r) \in \mathbb{T}^{n} \times \mathbb{R}^{n} \mapsto(\theta+\alpha+\beta . r, r)+\text { small } \tag{1}
\end{equation*}
$$

close to the zero section $\mathbb{T}^{n} \times\{0\}$ with β being a symmetric matrix. When β is a definite matrix, these diffeomorphisms are called twist maps and it can also be proved that they are the time 1 map of a so-called Tonelli Hamiltonian vector field. This kind of diffeomorphisms was introduced for example by Poincaré in the study of the circular restricted 3 -body problem. When $n=1$, they were intensively studied by G.D. Birkhoff. In [7], G.D. Birkhoff proved that if γ is an embedded circle of $\mathbb{T} \times \mathbb{R}$ that is not homotopic to a point and that is invariant by some conservative twist map, then γ is the graph of a Lipschitz map $\mathbb{T} \rightarrow \mathbb{R}$. A modern proof of this result can be find in [15].

Question: what happens in higher dimensions?
A natural extension of the 1-dimensional annulus $T^{*} \mathbb{T}=\mathbb{T} \times \mathbb{R}$ is the cotangent bundle $T^{*} M$ of a closed n-dimensional manifold M. We recall in section 1.1 that $T^{*} M$ can be endowed with a symplectic form.

If we want to obtain some submanifolds that are graphs (or more correctly sections) in $T^{*} M$, we are led to look at n-dimensional submanifolds. Moreover, we have to impose some topological conditions for these submanifolds. Indeed, there

[^0]are examples of conservative twist maps of $\mathbb{T} \times \mathbb{R}$ that have an invariant embedded circle that is homotopic to a point (and then this is not a graph): this happens for example for the time 1 map of the rigid pendulum close to the elliptic equilibrium.

But even if we ask that the invariant submanifold is homotopic to the zero-section of $T^{*} M$, it is easy to build examples of Tonelli Dynamics that have an invariant submanifold that is not a graph but is homotopic to the zero section. The first author gave in [2] an example of such a submanifold of $T^{*} \mathbb{T}^{3}=\mathbb{T}^{3} \times \mathbb{R}^{3}$ that is invariant by the Hamiltonian flow of $H(q, p)=\frac{1}{2}\|p\|^{2}=\frac{1}{2}\left(p_{1}^{2}+p_{2}^{2}+p_{3}^{2}\right)$, which is the geodesic flow for the flat metric on \mathbb{T}^{3}.

That is why we focus on the particular case of Lagrangian submanifolds.
Definition. A submanifold $\mathcal{L} \subset T^{*} M$ is Lagrangian if $\operatorname{dim} \mathcal{L}=n$ and $\omega_{\mid T \mathcal{L}}=0$.
Even if the set of Lagrangian submanifolds is very small in the set of all the n-dimensional submanifolds (more precisely it has no interior when endowed with the Hausdorff topology in $T\left(T^{*} M\right)$), there exist a lot of invariant Lagrangian submanifolds for the symplectic dynamics.
Examples.

- In $T^{*} \mathbb{T}$, a loop is always Lagrangian;
- a vertical fiber $T_{q}^{*} M$ is Lagrangian;
- the zero-section is Lagrangian;
- more generally, a C^{1} graph is Lagrangian iff it is the graph of a closed 1-form: for example, $\{(q, d S(q)) ; q \in M\}$ is a Lagrangian submanifold;
- the stable or unstable (immersed) submanifold at a hyperbolic equilibrium is Lagrangian;
- for the so-called completely integrable systems the phase space is foliated by invariant Lagrangian tori;
- some of these invariant tori remain after perturbation (K.A.M. theory).

Let us come back to the expression (1). When β is indefinite, M. Herman constructed in [17] some examples with an invariant Lagrangian torus that is isotopic to the zero section but not a graph. That is why we will assume that β is positive definite, i.e. we will work with Tonelli Hamlitonians.

Definition. A C^{2} function $H: T^{*} M \times \mathbb{T} \rightarrow \mathbb{R}$ is a Tonelli Hamiltonian if

- the Hamiltonian vector field ${ }^{1}$ associated to H is complete;
- H is C^{2}-convex in the fiber direction, i.e. has a positive definite Hessian in the fiber direction;
- H is superlinear in the fiber direction, i.e. for every $B>0$, there exists $A>0$ such that:

$$
\forall(q, p, t) \in T^{*} M \times \mathbb{T},\|p\| \geq A \Rightarrow H(q, p, t) \geq B\|p\|
$$

Example. A Riemannian metric defined an autonomous Tonelli Hamiltonian.
Let us recall that we need to ask some topological condition on the invariant Lagrangian submanifold to be able to prove that it is a graph. To explain that, we need a definition.

[^1]Definition. Two submanifolds \mathcal{L}_{1} and \mathcal{L}_{2} of $T^{*} M$ are Hamiltonianly isotopic if there exists a time-dependent Hamiltonian $H: T^{*} M \times \mathbb{R} \rightarrow \mathbb{R}$ such that, if $\left(\phi_{H}^{s, t}\right)$ is the family of symplectic maps that is generated by the Hamiltonian vector field of H, then

$$
\mathcal{L}_{2}=\phi_{H}^{0,1}\left(\mathcal{L}_{1}\right) .
$$

Our main result is the following one.
Main Theorem. Let M be a closed manifold, let $H: T^{*} M \times \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$ be a Tonelli 1-time periodic Hamiltonian, and let $\mathcal{L} \subset T^{*} M$ be a C^{1} Lagrangian submanifold Hamiltonianly isotopic to a Lagrangian graph. If \mathcal{L} is invariant by the time one map associated to H, then \mathcal{L} is the Lagrangian graph of a C^{1} closed 1-form.

A submanifold \mathcal{L} is Hamiltonianly isotopic to the zero-section if and only if the two submanifolds are isotopic in some particular subset \mathcal{E} of the set of Lagrangian submanifolds of $T^{*} M$, the set of the so-called exact Lagrangian submanifolds. Hence some related questions remain open.

Questions

- Is the same conclusion true if we replace "Hamiltonlianly isotopic" by " isotopic"?
- Is the same conclusion true if we replace "Hamiltonlianly isotopic" by " homotopic"?
Let us mention some related existing results.
- In [1], the first author proved that if a Lagrangian submanifold that is Hamiltonianly isotopic to a Lagrangian graph is invariant by a autonomous Tonelli Hamlitonian flow, then it has to be a graph. In next Corollary, we will explain how our result improves this statement.
- In [4], P. Bernard and J. dos Santos extended this result in the autonomous case to the case of Lipschitz Lagrangian submanifolds.
- In [5] and [6], for $M=\mathbb{T}^{n}$, with a weaker topological assumption (they assume that \mathcal{L} is homologous to the zero-section) but a strong hypothesis on the restricted Dynamics (it is assumed to be chain-recurrent), M. Bialy and L. Polterovich obtain the same result.
- In [16], M. Herman proved a similar result for a submanifold that is:
- compact and Lagrangian;
- with a Maslov class equal to 0;
- invariant by an exact symplectic twist map of $\mathbb{T}^{n} \times \mathbb{R}^{n}$ that is C^{1}-close enough to a completely integrable symplectic twist map;
- such that the restricted dynamics is chain recurrent.

Our result is valuable on all cotangent bundles and doesn't assume any dynamical behaviour of the restriction to the invariant submanifold.
However, it cannot be extended to any twist map because we don't know if a general twist map (in any dimension) is the time 1 map of a Tonelli Hamiltonian (see [14] for an interesting discussion on this subject).

Some arguments of our proof are common with the proof of the autonomous case in [1], but not all. Moreover, even if some of our techniques come from weak KAM theory, we tried to avoid to use the whole theory, as the Aubry set, the weak KAM solutions ... and to write a self-contained article.

Corollary 1.1. Let M be a closed manifold, let $H: T^{*} M \rightarrow \mathbb{R}$ be an autonomous Tonelli Hamiltonian, and let $\mathcal{L} \subset T^{*} M$ be a C^{1} Lagrangian submanifold Hamiltonianly isotopic to a Lagrangian graph. If \mathcal{L} is invariant by the time one map associated to H, then \mathcal{L} is the Lagrangian graph of a C^{1} closed 1-form and it is invariant by all the time t maps ϕ_{H}^{t}.

To any Tonelli Hamiltonian $H: T^{*} M \times \mathbb{T} \rightarrow \mathbb{R}$, a Lagrangian function L : $T M \times \mathbb{T} \rightarrow \mathbb{R}$ can be associated via the Legendre duality.

$$
\forall(q, v, t) \in T M \times \mathbb{T}, L(q, v, t)=\inf _{p \in T_{q}^{*} M}(p . v-H(q, p, t)) .
$$

Definition. A continous and piecewise C^{1} arc $\gamma_{0}:[a, b] \rightarrow M$ is minimizing if for every continous and piecewise C^{1} arc $\gamma:[a, b] \rightarrow M$ such that $\gamma_{0}(a)=\gamma(a)$ and $\gamma_{0}(b)=\gamma(b)$, we have

$$
\int_{a}^{b} L\left(\gamma_{0}(t), \dot{\gamma}_{0}(t), t\right) d t \leq \int_{a}^{b} L(\gamma(t), \dot{\gamma}(t), t) d t
$$

Corollary 1.2. Let M be a closed connected manifiold, $H: T^{*} M \times \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R} a$ Tonelli 1-time periodic Hamiltonian, and $\mathcal{L} \subset T^{*} M$ a C^{1} Lagrangian submanifold Hamiltonianly isotopic to a Lagrangian graph. If \mathcal{L} is invariant by the time one map associated to H, then the orbit of every point of \mathcal{L} is minimizing.

1.1. Notations.

- M is a closed Riemannian manifold, $\pi: T^{*} M \rightarrow M$ is its cotangent bundle and $\mathcal{Z}_{T^{*} M}$ the zero section; if $q=\left(q_{1}, \ldots, q_{n}\right)$ are coordinates in a chart of M, the dual coordinates $p=\left(p_{1}, \ldots, p_{n}\right) \in T_{q}^{*} M$ are defined by $p_{i}\left(\delta q_{j}\right)=$ $\delta_{i, j}$ where δq_{i} is the i th vector of the canonical basis and $\delta_{i, j}$ is the Kronecker symbol;
- $T^{*} M$ is endowed with the Liouville 1-form that is defined by:

$$
\forall p \in T^{*} M, \forall v \in T_{p}\left(T^{*} M\right), \lambda(v)=p \circ D \pi(p)(v)
$$

in a dual chart, we have $\lambda=<p, d q>=\sum p_{i} d q_{i}$;

- the canonical symplectic form on $T^{*} M$ is $\omega=-d \lambda$; in a dual chart we have $\omega=d q \wedge d p=\sum d p_{i} \wedge d q_{i} ;$
- $\mathbb{T}=\mathbb{R} / \mathbb{Z}$ is the 1 -dimensional torus with length 1 and $\mathbb{T}_{2}=\mathbb{R} / 2 \mathbb{Z}$ is the 1-dimensional torus with length 2 ; we denote by $t \in \mathbb{R} \mapsto[t]_{1} \in \mathbb{T}$ and $t \in \mathbb{R} \mapsto[t]_{2} \in \mathbb{T}_{2}$ the corresponding covering maps;
- a complete C^{2} Hamiltonian $H: \mathbb{T}^{*} M \times \mathbb{T} \rightarrow \mathbb{R}$ being given, the Hamiltonian vector field X_{H} is defined by $\omega\left(X_{H}(x, s), \delta x\right)=d H(x, s) \delta x$ and the corresponding Hamiltonian familly of diffeomorphisms is denoted by $\left(\varphi_{H}^{s, t}\right)_{s, t \in \mathbb{R}}$.
- we choose coordinates (q, τ) in the closed manifold $\mathcal{M}_{2}=M \times \mathbb{T}_{2}$ and denote the dual coordinates by (p, E); then the Liouville 1-form on $T^{*} \mathcal{M}_{2}$ is $\Theta=<p, d q>+E d \tau$ and the canonical symplectic form is $\Omega=-d \Theta=$ $d q \wedge d p+d \tau \wedge d E$. We will often use the identification $T^{*} \mathcal{M}_{2}=T^{*} M \times \mathbb{T}_{2} \times \mathbb{R}$;
- we choose similarly coordinates (q, τ) in the closed manifold $\mathcal{M}_{1}=M \times \mathbb{T}$ and denote the dual coordinates by (p, E); then the Liouville 1 -form on $T^{*} \mathcal{M}_{1}$ is $\theta=<p, d q>+E d \tau$. We will often use the identification $T^{*} \mathcal{M}_{1}=$ $T^{*} M \times \mathbb{T} \times \mathbb{R}$.
1.2. A useful reduction. Let us explain why we will assume that \mathcal{L} is Hamiltonianly isotopic to the zero section (instead of "to a Lagrangian graph") in the proof. Assume that \mathcal{L} is Hamiltonianly isototopic to the Lagrangian graph \mathcal{L}_{0} and that \mathcal{L} is invariant by the time 1 map of the Tonelli Hamiltonian $H: T^{*} M \times \mathbb{T} \rightarrow \mathbb{R}$.
Then \mathcal{L}_{0} is the graph of some closed 1 -form Λ of M. Changing \mathcal{L}_{0} in a very close other graph, we can even assume that Λ is smooth. Then $F: T^{*} M \rightarrow T^{*} M$ that is defined by $F(q, p)=(q, p+\Lambda(q))$ is a symplectic diffeomorphism so that
- $F^{-1}(\mathcal{L})$ is Hamiltonianly isotopic to the zero section $F^{-1}\left(\mathcal{L}_{0}\right)=\mathcal{Z}_{T^{*} M}$;
- $F^{-1}(\mathcal{L})$ is invariant by the time 1 map of the Tonelli Hamiltonian $\tilde{H}(q, p, t)=$ $H(F(q, p), t)$.
Hence if we have proved the main theorem for the submanifolds that are Hamiltonianly isotopic to the zero section, we deduce that $F^{-1}(\mathcal{L})$ and then \mathcal{L} is a graph.

1.3. Structure of the article.

- In the second section, we construct an extended autonomous Hamiltonian and an extended Lagrangian submanifold in the extended phase space; we then build a graph selector for the extended Lagrangian submanifold;
- in section 3, using the graph selector that was built in section 2, we build a dominated function;
- in section 4, using the notion of calibrated curve, we prove the main theorem and its corollaries.

2. Construction of a Lagrangian submanifold in the extended phase SPACE AND ITS GRAPH SELECTOR.

Standing hypotheses. From now, we assume that $H: T^{*} M \times \mathbb{R} / \mathbb{Z} \rightarrow \mathbb{R}$ is a Tonelli time 1-periodic Hamiltonian and that $\mathcal{L} \subset T^{*} M$ is a C^{1} Lagrangian submanifold Hamiltonianly isotopic to $\mathcal{Z}_{T^{*} M}$ that is invariant by the time one map associated to H.

The goal of this section is to build an extended autonomous Hamiltonian, an extended Lagrangian submanifold and a so-called graph selector. Moreover, we will prove some properties for these objects.
2.1. Extension of the Lagrangian submanifold. In this section, adding two dimensions to the phase space, we will replace the non-autonomous Hamiltonian flow by an autonomous one and extend the invariant submanifold in the new phase space.

Let us comment on the choice of the new Hamiltonian and of the Lagrangian submanifold. The method that gives an autonomous Hamiltonian is well-known but the extended Hamiltonian is not Tonelli with respect to the new variables and we cannot just apply the proof that the first author gave in [1] in the autonomous case. The method to build an extended submanifold in the new phase-space is well-known too, but:

- a priori, this new submanifold has a boundary; thus we would need to build a theory of generating functions for manifolds with boundary to go on with our proof and we prefer to avoid this. Moreover, we don't know if this could work;
- an idea to remove the problem of boundary is to identify what happens for the times $t=0$ and $t=1$. As the initial manifold is invariant, we can glue the two ends of the extended submanifold in a smooth way and obtain a closed manifold. Then a new problem appears: we cannot extend the isotopy that joins the zero section to the initial manifold in a periodic way because the submanifolds that appear in the isotopy are not invariant by the initial flow and thus their extended submanifolds cannot be glued in a continuous way.
To overcome these problems, we had the idea to extend the Hamiltonian flow in a 2-periodic one by symmetrizing the extended Hamiltonian and the extended submanifold. Let us explain this now.

We use the following function.
Notation. Let $\eta: \mathbb{R} \rightarrow \mathbb{R}$ be a non-negative and \mathcal{C}^{∞} fonction satisfying the following properties
i) $\eta(-t)=\eta(t)$ and $\eta(1-t)=\eta(1+t)$ for every $t \in \mathbb{R}$.
ii) $\eta(0)=0$ and $\eta(1)=1$.
iii) $\dot{\eta}(t)>0$ if $t \in(0,1)$.
iv) $\dot{\eta}(0)=\ddot{\eta}(0)=\dot{\eta}(1)=\ddot{\eta}(1)=0$.

$$
\eta(t)
$$

Let us introduce a new time-dependent Hamiltonian $K: T^{*} M \times \mathbb{T}_{2} \rightarrow \mathbb{R}$ defined by $K(q, p, t)=\dot{\eta}(t) H(q, p, \eta(t))$. A straightforward computation shows that every integral curve of X_{K} can be written as $t \mapsto(q, p)(t)=(Q, P)(\eta(t))$, where $s \mapsto$ $(Q, P)(s)$ is an integral curve of X_{H}. This fact can be expressed as follows :

$$
\varphi_{K}^{s, t}(q, p)=\varphi_{H}^{\eta(s), \eta(t)}(q, p) .
$$

Roughly speaking, integral curves of X_{K} are reparametrizations of segments of integral curves of X_{H}, but they slow down and turn back at integer time. In particular, integral curves of X_{K} are all 2-periodic and satisfy $(q, p)(-t)=(q, p)(t)$ and $(q, p)(1-t)=(q, p)(1+t)$.

Let now $\mathcal{K}: T^{*} M \times \mathbb{T}_{2} \times \mathbb{R} \rightarrow \mathbb{R}$ be the autonomous Hamiltonian on the extended phase space $T^{*} \mathcal{M}_{2}=T^{*} M \times \mathbb{T}_{2} \times \mathbb{R}$ defined by

$$
\mathcal{K}(q, p, \tau, E)=K(q, p, \tau)+E .
$$

The Hamiltonian equations for \mathcal{K} are given by

$$
\left\{\begin{align*}
\frac{d q}{d t} & =\frac{\partial K}{\partial p}(q, p, \tau), & \frac{d \tau}{d t} & =1 \tag{2}\\
\frac{d p}{d t} & =-\frac{\partial K}{\partial q}(q, p, \tau), & \frac{d E}{d t} & =-\frac{\partial K}{\partial \tau}(q, p, \tau)
\end{align*}\right.
$$

We can see that the evolution on $T^{*} M$ is the same as for the Hamiltonian K, while the variable τ is essentially the time. If $\phi_{\mathcal{K}}^{t}$ denotes the Hamiltonian flow of \mathcal{K}, by (2), we easily get the relation

$$
\begin{equation*}
\phi_{\mathcal{K}}^{t}(q, p, \tau, E)=\left(\varphi_{K}^{\tau, \tau+t}(q, p), \tau+t, E+K(q, p, \tau)-K\left(\varphi_{K}^{\tau, \tau+t}(q, p), \tau+t\right)\right) \tag{3}
\end{equation*}
$$

The evolution of the variable E can be obtained using the conservation of \mathcal{K} by the flow. Let $\mathcal{G} \subset T^{*} M \times \mathbb{T}_{2} \times \mathbb{R}$ be the submanifold defined by

$$
\mathcal{G}=\left\{\phi_{\mathcal{K}}^{t}(q, p, 0,-K(q, p, 0)),(q, p) \in \mathcal{L}, t \in[0,2]\right\}
$$

Since the flow $\phi_{\mathcal{K}}^{t}$ is 2 -periodic in time, \mathcal{G} is a closed submanifold diffeomorphic to $\mathcal{L} \times \mathbb{T}_{2}$. If we cut \mathcal{G} by a hypersurface $\tau=t$ and we forget the E variable, we get the image of \mathcal{L} by $\varphi_{K}^{0, t}=\varphi_{H}^{0, \eta(t)}$.

Proposition 2.1. If \mathcal{L} is Hamiltonianly isotopic to the zero section $\mathcal{Z}_{T^{*} M}$ of $T^{*} M$, then \mathcal{G} is Hamiltonianly isotopic to the zero section $\mathcal{Z}_{T^{*} \mathcal{M}_{2}}$ of $T^{*} \mathcal{M}_{2}$.

Proof. The proof is twofold. In the first part, we prove that \mathcal{G} is isotopic to some submanifold \mathcal{G}_{0} by using the fact that \mathcal{L} and $\mathcal{Z}_{T^{*} M}$ are isotopic. In the second part, we prove that \mathcal{G}_{0} is isotopic to $\mathcal{Z}_{T^{*} \mathcal{M}_{2}}$ by using the time-dependent Hamiltonian $s \mapsto s K$.

Let $\left(\psi_{s}\right)$ be a Hamiltonian isotopy of $T^{*} M$ such that $\psi_{0}=\operatorname{Id}_{T^{*} M}$ and $\psi_{1}\left(\mathcal{Z}_{T^{*} M}\right)=$ \mathcal{L}. We use the notation $\mathcal{L}_{s}=\psi_{s}\left(\mathcal{Z}_{T^{*} M}\right)$. We denote by $h(q, p, s)$ a Hamiltonian associated to $\left(\psi_{s}\right)$.
For every $s \in[0,1]$, we define the submanifold \mathcal{G}_{s} of $T^{*} \mathcal{M}_{2}=T^{*} M \times \mathbb{T}_{2} \times \mathbb{R}$ by

$$
\mathcal{G}_{s}=\left\{\phi_{\mathcal{K}}^{t}(q, p, 0,-K(q, p, 0)),(q, p) \in \mathcal{L}_{s}, t \in[0,2]\right\} .
$$

Exactly for the same reason as $\mathcal{G}, \mathcal{G}_{s}$ is a closed manifold that is diffeomorphic to $\mathcal{L} \times \mathbb{T}_{2}$.

Because $t \mapsto \varphi_{K}^{0, t}$ is 2-periodic, we can use this notation for $t \in \mathbb{T}_{2}$ too.
We define $F_{s}: T^{*} \mathcal{M}_{2} \rightarrow T^{*} \mathcal{M}_{2}$ by

$$
F_{s}(q, p, \tau, E)=\left(\varphi_{K}^{0, \tau} \circ \psi_{s} \circ \varphi_{K}^{\tau, 0}(q, p), \tau, E+K(q, p, 0)-K\left(\varphi_{K}^{0, \tau} \circ \psi_{s} \circ \varphi_{K}^{\tau, 0}(q, p), \tau\right)\right) .
$$

Note that $F_{0}=\operatorname{Id}_{T^{*} \mathcal{M}_{2}}$ and that $\left(F_{s}\right)$ is the Hamiltonian isotopy associated to the Hamiltonian $(q, p, \tau, E) \mapsto h\left(\varphi_{K}^{\tau, 0}(q, p), s\right)$.

As $F_{s}\left(\mathcal{G}_{0}\right)=\mathcal{G}_{s}$ and $\mathcal{G}_{1}=\mathcal{G}, \mathcal{G}$ is Hamiltonianly isotopic to \mathcal{G}_{0}.
Let us now prove that \mathcal{G}_{0} is Hamiltonianly isotopic to the zero section $\mathcal{Z}_{T^{*} \mathcal{M}_{2}}$ of $T^{*} \mathcal{M}_{2}$.

Definition. A diffeomorphism $G: T^{*} M \rightarrow T^{*} M$ is exact symplectic if $G^{*} \lambda-\lambda$ is exact as a 1 -form.

Lemma 2.1. Let $\left(G_{s}\right)$ be an isotopy of exact symplectic diffeomorphisms. Then it is a Hamiltonian isotopy.

Proof. If we denote the Liouville 1-form on $T^{*} \mathcal{M}_{2}$ by Θ, we have: $G_{s}^{*} \Theta-\Theta=$ $d S_{s}$ and then if X_{s} is the vector field associated to $\left(G_{s}\right): G_{s}^{*}\left(L_{X_{s}} \Theta\right)=d \dot{S}_{s}$, i.e. $G_{s}^{*}\left(i_{X_{s}} d \Theta\right)+G_{s}^{*}\left(d\left(i_{X_{s}} \Theta\right)\right)=d \dot{S}_{s}$. We finally obtain $G_{x}^{*}\left(i_{X_{s}} \Omega\right)=d\left(G_{s}^{*}\left(i_{X_{s}} \Theta\right)-\dot{S}_{s}\right)$. Hence $\left(G_{s}\right)$ is Hamiltonian and the associated Hamiltonian is $i_{X_{s}} \Theta-\dot{S}_{s} \circ G_{s}^{-1}$.

In order to use Lemma 2.1, we define $G_{s}: T^{*} \mathcal{M}_{2} \rightarrow T^{*} \mathcal{M}_{2}$ by:

$$
G_{s}(q, p, \tau, E)=\left(\varphi_{s K}^{0, \tau}(q, p), \tau, E+s\left(K(q, p, 0)-K\left(\varphi_{s K}^{0, \tau}(q, p), \tau\right)\right)\right)
$$

Then $G_{0}=I d_{T^{*} \mathcal{M}_{2}}$ and $G_{1}\left(\mathcal{Z}_{T^{*} \mathcal{M}_{2}}\right)=\mathcal{G}_{0}$. If we succeed in proving that every G_{s} is exact symplectic, we can deduce that \mathcal{G}_{0} is Hamiltonianly isotopic to the zero section and hence that \mathcal{G} is isotopic to the zero section. We prove that only for $s=1$ (we can replace K by $s K$). We use the notations $G=G_{1}, \varphi_{\tau}=\varphi_{K}^{0, \tau}$ and $K_{\tau}(q, p)=K(q, p, \tau)$.

As $\left(\varphi_{\tau}\right)$ is a Hamiltonian isotopy, every φ_{τ} is exact symplectic. We write: $\varphi_{\tau}^{*} \lambda-$ $\lambda=d S_{\tau}$. We saw in the proof of Lemma 2.1 that $d\left(i_{X_{K}} \lambda-K_{\tau}\right)=d\left(\dot{S}_{\tau} \circ \varphi_{\tau}^{-1}\right)$ and thus we have $i_{X_{K}} \lambda-K_{\tau}=\dot{S}_{\tau} \circ \varphi_{\tau}^{-1}$.

Now we compute

$$
G^{*} \Theta-\Theta=\varphi_{\tau}^{*}(p d q)+\varphi_{\tau}^{*}\left(i_{X_{K}} \lambda\right) d \tau-p d q+\left(K(q, p, 0)-K\left(\varphi_{\tau}(q, p), \tau\right)\right) d \tau
$$

Note that $K(q, p, 0)=0$. We obtain then

$$
G^{*} \Theta-\Theta=d S_{\tau}+\varphi_{\tau}^{*}\left(i_{X_{K}} \lambda\right) d \tau-K\left(\varphi_{\tau}(q, p), \tau\right) d \tau
$$

i.e. $G^{*} \Theta-\Theta=d S_{\tau}+\dot{S}_{\tau} d \tau$, then G is exact symplectic.
2.2. The generating function. There is a classical way of quantifying the Lagrangian submanifolds of a cotangent bundle that are Hamiltonianly isotopic to the zero section. This is by using the so-called generating functions.

The facts that we recall here come from different articles; more precisely, the existence theorem can be found in [23] and [8] and the unicity theorem is proved in [25] and [24].

Definitions.

- Let $p: E \rightarrow \mathcal{M}_{2}$ be a finite-dimensional vector bundle over \mathcal{M}_{2}. A C^{2} function $S: E \rightarrow \mathbb{R}$ is a generating function if its differential $d S$ is transversal to the manifold $\mathcal{W}=\left\{\xi \in T_{e}^{*} E ; e \in E \quad\right.$ and $\quad \xi=0 \quad$ on $\left.\quad T_{e}\left(p^{-1}(p(e))\right)\right\}$.
- Then the critical locus Σ_{S} of S is the set $\Sigma_{S}=d S^{-1}(\mathcal{W})$.
- The map $i_{S}: \Sigma_{S} \rightarrow T^{*} \mathcal{M}_{2}$ is defined by $i_{S}(e): T_{p(e)}^{*} \mathcal{M}_{2} \rightarrow T^{*} \mathcal{M}_{2}$, $i_{S}(e) \delta x=d S(e) \cdot \delta e$ where $\delta e \in T_{e} E$ is any vector so that $d p(e) \cdot \delta e=\delta x$.
- If \mathcal{G} is a Lagrangian submanifold of $T^{*} M, S: E \rightarrow \mathbb{R}$ generates \mathcal{G} if i_{S} is a diffeomorphism from Σ_{S} onto \mathcal{G}.
- When the bundle $E=\mathcal{M}_{2} \times \mathbb{R}^{k}$ is trivial and there exists a non-degenerate quadratic form $Q: \mathbb{R}^{k} \rightarrow \mathbb{R}$ such that $S=Q$ outside a compact subset, we say that S is special. The index of S is then the index of Q

Sikorav's existence theorem. Let \mathcal{G} be a Lagrangian submanifold of $T^{*} \mathcal{M}_{2}$ that is Hamiltonianly isotopic to the zero section. Then \mathcal{G} admits a special generating function.

Notation. We denote a special generating function of \mathcal{G} by $S(q, \tau ; \xi)$ with $\xi \in \mathbb{R}^{k}$.
Remarks. When $S: \mathcal{M}_{2} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$ is special, we have:

$$
\Sigma_{S}=\left\{(q, \xi) \in \mathcal{M}_{2} \times \mathbb{R}^{k} ; \frac{\partial S}{\partial \xi}(q, \xi)=0\right\} ;
$$

and

$$
\forall(q, \xi) \in \Sigma_{S}, i_{S}(q, \xi)=\left(q, \frac{\partial S}{\partial q}(q, \xi)\right)
$$

Observe that the condition that S is a generating function means that the map $\frac{\partial S}{\partial \xi}$ is a submersion at every point of Σ_{S}.

Proposition 2.2. The special functions $S_{0}:(q, \xi) \in M \times \mathbb{R}^{k} \rightarrow S(q, 0 ; \xi)$ and $S_{1}:(q, \xi) \rightarrow S(q, 1 ; \xi)$ generate the Lagrangian submanifold $\mathcal{L} \subset T^{*} M$.
Proof. The only non trivial thing to prove is that the functions S_{i} are generating function. Then the fact that they are special and that they generate \mathcal{L} is straightforward.
We recall that

$$
\mathcal{G}=\left\{\phi_{\mathcal{K}}^{t}(q, p, 0,0),(q, p) \in \mathcal{L}, t \in[0,2]\right\} .
$$

Hence if $(q, p) \in \mathcal{L}$, we have the equalities $X_{\mathcal{K}}(q, p, 0,0)=(0,0,1,0) \in T_{(q, p, 0,0)} \mathcal{G}$ and $X_{\mathcal{K}}\left(\varphi_{\mathcal{K}}^{0,1}(q, p), 1,0\right)=(0,0,1,0) \in T_{\phi_{\mathcal{K}}^{1}(q, p, 0,0)} \mathcal{G}$ because $\dot{\eta}(0)=\ddot{\eta}(0)=\dot{\eta}(1)=$ $\ddot{\eta}(1)=0$.
Let us recall that $i_{S}(q, \tau, \xi)=\left(q, \frac{\partial S}{\partial q}(q, \tau, \xi), \tau, \frac{\partial S}{\partial \tau}(q, \tau, \xi)\right)$. Then, for $j=0,1$, we have $\left(D i_{S}(q, p, j, 0)\right)^{-1}(0,0,1,0)=\left(0,1, \delta \xi_{j}\right) \in T_{i_{S}^{-1}(q, p, j, 0)} \Sigma_{S}$.
As the equation of Σ_{S} is $\frac{\partial S}{\partial \xi}(q, \tau, \xi)=0$, we deduce that

$$
\frac{\partial^{2} S}{\partial \tau \partial \xi}\left(i_{S}^{-1}(q, p, j)\right)=-\frac{\partial^{2} S}{\partial \xi^{2}}\left(i_{S}^{-1}(q, p, j)\right) \delta \xi_{j}
$$

This equality implies that for every $(q, p) \in \mathcal{L}$ and $j=0,1$, we have

$$
\operatorname{Im} D\left(\frac{\partial S}{\partial \xi}\right)\left(i_{S}^{-1}(q, p, j)\right)=\operatorname{Im} D\left(\frac{\partial S}{\partial \xi}\right)\left(i_{S}^{-1}(q, p, j)\right)_{\mid \delta \tau=0}=\mathbb{R}^{k}
$$

i.e. that S_{j} is a generating function.

In the next subsection, we will build what is called a graph selector and we will prove that it doesn't depend on the generating function that we choose. To do that, we need a unicity result for the generating functions that is due to C. Viterbo. Let us explain this.
Definitions. Let $p: E \rightarrow \mathcal{M}_{2}$ be a finite dimensional vector bundle and let $S: E \rightarrow \mathbb{R}$ be a generating function. Let us define the basic operations on generating functions:

- Translation. If $c \in \mathbb{R}$, then $S^{\prime}=S+c: E \rightarrow \mathbb{R}$.
- Diffeomorphism. If $p^{\prime}: E \rightarrow \mathcal{M}_{2}$ is another vector bundle and $F: E^{\prime} \rightarrow E$ is a diffeomorphism such that $p \circ F=p^{\prime}$, then $S^{\prime}=S \circ F: E^{\prime} \rightarrow \mathbb{R}$.
- Stabilization. If $p^{\prime}: E^{\prime} \rightarrow \mathcal{M}_{2}$ is another finite dimensional vector bundle endowed with a function $Q^{\prime}: E^{\prime} \rightarrow \mathbb{R}$ that is quadratic non-degenerate when restricted to the fibers of p^{\prime}, then $S^{\prime}=S \oplus Q^{\prime}: E \oplus E^{\prime} \rightarrow \mathbb{R}$.
Then, two generating functions are equivalent if they can be made equal after a succession of basic operations.

Viterbo's unicity theorem. Two special functions that generate the same Lagrangian submanifold are equivalent.

Remark. The property of being special is not preserved by the basic operations.
2.3. Graph selector. Using the generating function S, we will construct a graph selector $u: \mathcal{M}_{2} \rightarrow \mathbb{R}$. Such a graph selector was introduced by M. Chaperon in [9] (see [21] and [22] too) by using the homology. Here we prefer to use the cohomological approach. We now explain this.
Notations. Let $p: E \rightarrow \mathcal{M}_{2}$ be a finite dimensional vector bundle. If $S: E \rightarrow \mathbb{R}$ is a function that generates a Lagrangian submanifold, $q \in \mathcal{M}_{2}$ and $a \in \mathbb{R}$ is a real number, we denote the sublevel with height a at q by

$$
S_{q}^{a}=\{e \in E ; \quad p(e)=q \quad \text { and } \quad S(e) \leq a\}
$$

and we use the notation $S_{q}=S_{\mid E_{q}}$.
When S is special with index m, there exists $N \geq 0$ such that all the critical values are in $(-N, N)$. Then the De Rham relative cohomology space with compact support $H^{*}\left(E_{q}, S_{q}^{-N}\right)$ is isomorphic to \mathbb{R} for $*=m$ and trivial if $* \neq m$. We denote by α_{q} a closed m-form with compact support on E_{q} such that $\alpha_{q \mid S_{q}^{-N}}=0$ and $0 \neq\left[\alpha_{q}\right] \in H^{m}\left(E_{q}, S_{q}^{-N}\right)$.

If $a \in(-N, N)$, we use the notation $i_{a}:\left(S_{q}^{a}, S_{q}^{-N}\right) \rightarrow\left(E_{q}, S_{q}^{-N}\right)$ for the inclusion and then $i_{a}^{*}: H^{m}\left(E_{q}, S_{q}^{-N}\right) \rightarrow H^{m}\left(S_{q}^{a}, S_{q}^{-N}\right)$. The graph selector $u: \mathcal{M}_{2} \rightarrow \mathbb{R}$ is then defined by:

$$
u(q)=\sup \left\{a \in \mathbb{R} ;\left[i_{a}^{*} \alpha_{q}\right]=0\right\}=\inf \left\{a \in \mathbb{R} ;\left[i_{a}^{*} \alpha_{q}\right] \neq 0\right\}
$$

Proposition 2.3. Let $p: E \rightarrow \mathcal{M}_{2}$ be a finite dimensional vector bundle, let $S: E \rightarrow \mathbb{R}$ be a special generating function with index m and let $\sigma: F \rightarrow \mathbb{R}$ be a generating function that is got from S after a succession of basic operations. If there are exactly k stabilizations among these basic operations (with indices m_{1}, \ldots, m_{k}), the sum of all the indices is denoted by $\ell=m+\sum_{j=1}^{k} m_{j}$.
Then, for N positive large enough, $H^{\ell}\left(F_{q}, \sigma_{q}^{-N}\right)=\mathbb{R}\left[\mathrm{A}_{q}\right]$ is isomorphic to \mathbb{R} and we can define a graph selector by

$$
U(q)=\sup \left\{a \in \mathbb{R} ;\left[i_{a}^{*} \mathrm{~A}_{q}\right]=0\right\}=\inf \left\{a \in \mathbb{R} ;\left[i_{a}^{*} \mathrm{~A}_{q}\right] \neq 0\right\}
$$

This graph selector is equal to the one associated to S plus a constant.
Proof. If the basic operation that we use is a translation or a diffeomorphism, the proposition is straighforward. The only non trivial case concerns stabilization. From now, we forget the translations and the constants and we can assume that we are in the following case.

Assume that $S: E \rightarrow \mathbb{R}$ is a generating function such that after a fiber diffeomorphism $\psi: E \rightarrow E, S \circ \psi$ is non-degenerate quadratic in every fiber outside some compact subset, the quadratic form being denoted by Q_{0} and having index m_{0}. Then $H^{m_{0}}\left(E_{q}, S_{q}^{-N}\right)$ is isomorphic to \mathbb{R} and $H^{*}\left(E_{q}, S_{q}^{-N}\right)=\{0\}$ if $* \neq m_{0}$. For such a function we can define a graph selector u as before (even if this function is not special).
Assume that $Q: F \rightarrow \mathbb{R}$ is a non-degenerate quadratic form with index m when restricted to the fibers of $p^{\prime}: F \rightarrow \mathcal{M}_{2}$ and let us use the notation $\mathcal{S}=(S \circ \psi) \oplus Q$: $E \oplus F \rightarrow \mathbb{R}$.

Dimension of $H^{*}\left(E_{q} \oplus F_{q}, \mathcal{S}_{q}^{-N-C}\right)$
Observe that $\left|\mathcal{S}-Q_{0} \oplus Q\right|$ is bounded by some constant C. Hence we have:

$$
\left\{Q_{0} \oplus Q \leq a-C\right\} \subset\{\mathcal{S} \leq a\} \subset\left\{Q_{0} \oplus Q \leq a+C\right\}
$$

Then we choose $N \geq 0$ such that all the critical values of S (and then of \mathcal{S}) are in $(-N, N)$. Then the inclusion maps induce the following homomorphisms

$$
\begin{gathered}
H^{*}\left(E_{q} \oplus F_{q}, Q_{0} \oplus Q \leq-N\right) \xrightarrow{j_{3}^{*}} H^{*}\left(E_{q} \oplus F_{q}, \mathcal{S}_{q}^{-N-C}\right) \xrightarrow{j_{2}^{*}} \\
H^{*}\left(E_{q} \oplus F_{q}, Q_{0} \oplus Q \leq-N-2 C\right) \xrightarrow{j_{1}^{*}} H^{*}\left(E_{q} \oplus F_{q}, \mathcal{S}_{q}^{-N-3 C}\right) .
\end{gathered}
$$

As the pairs $\left(E_{q} \oplus F_{q}, Q_{0} \oplus Q \leq-N\right)$ and $\left(E_{q} \oplus F_{q}, Q_{0} \oplus Q \leq-N-2 C\right)$ are homotopically equivalent and as the pairs $\left(E_{q} \oplus F_{q}, \mathcal{S}_{q}^{-N-C}\right)$ and $\left(E_{q} \oplus F_{q}, \mathcal{S}_{q}^{-N-3 C}\right)$ are homotopically equivalent, the maps $j_{1}^{*} \circ j_{2}^{*}$ and $j_{2}^{*} \circ j_{3}^{*}$ are isomorphisms, and then j_{2}^{*} is an isomorphism too. We deduce that $H^{*}\left(E_{q} \oplus F_{q}, \mathcal{S}_{q}^{-N-C}\right)$ is isomorphic to \mathbb{R} if $*=m_{0}+m$ and $\{0\}$ if $* \neq m_{0}+m$.
The same is true if we replace \mathcal{S} by the function $\sigma=S \oplus Q$ that will be denoted by σ from now.

A first inequality between the two graph selectors

Let ε be a positive number. We will prove that $U(q) \leq u(q)+\varepsilon=: a+\frac{\varepsilon}{2}$.
Let α be a closed m_{0}-form that vanishes on S_{q}^{-N} and is such that $0 \neq\left[i_{a}^{*} \alpha\right] \in$ $H^{m_{0}}\left(S_{q}^{a}, S_{q}^{-N}\right)$ and let β be a closed m-form that vanishes on Q_{q}^{ε} and such that $0 \neq\left[i_{\frac{⿺}{2}}^{*} \beta\right] \in H^{m}\left(Q_{q}^{\frac{\varepsilon}{2}}, Q_{q}^{-\varepsilon}\right)$. We denote by A (resp. B) a m_{0}-cycle of S_{q}^{a} with boundary in S_{q}^{-N} (resp. m-cycle of $Q_{q}^{\frac{\varepsilon}{2}}$ with boundary in $Q^{-\varepsilon}$) such that $\alpha(A) \neq 0$ (resp. such that $\beta(B) \neq 0$). We use the notation $\mu_{A}=\sup Q_{\mid A}$ and $\mu_{B}=\sup S_{\mid B}$. Using the gradient flow of Q_{0} on S_{q}^{-N} to push A or the gradient flow of Q on $Q^{-\varepsilon}$ to push B, we can asssume that $S_{\mid \partial A} \leq-\varepsilon-N-\mu_{A}$ and $Q_{\mid \partial B} \leq-\varepsilon-N-\mu_{B}$; observe that this implies that $\partial(A \times B)=(\partial A \times B) \cup(A \times \partial B) \subset \sigma^{-\varepsilon-N}$. Then the cup product $\alpha \vee \beta$ is a closed $\left(m+m_{0}\right)$-form that vanishes in $\left(Q_{q}^{-\varepsilon} \times F_{q}\right) \cup$ $\left(E_{q} \times S_{q}^{-N}\right)$ and such that $(\alpha \vee \beta)(A \times B) \neq 0$. As the set $\left(Q_{q}^{-\varepsilon} \times F_{q}\right) \cup\left(E_{q} \times S_{q}^{-N}\right)$ contains $\sigma^{-\varepsilon-N}$ and as the support of $A \times B$ is in $S_{q}^{a} \times Q_{q}^{\frac{\varepsilon}{2}} \subset \sigma^{a+\frac{\varepsilon}{2}}$, we deduce that $0 \neq\left[i_{a+\frac{\varepsilon}{2}}^{*}(\alpha \vee \beta)\right] \in H^{m+m_{0}}\left(\sigma^{a+\frac{\varepsilon}{2}}, \sigma^{-\varepsilon-N}\right)$ and thus $U(q) \leq a+\frac{\varepsilon}{2}=u(q)+\varepsilon$. Hence we have $U(q) \leq u(q)$.

The reverse inequality between the two graph selectors
Let us now prove that for $\varepsilon>0$, we have $U(q) \geq u(q)-\varepsilon=a-\frac{\varepsilon}{2}$. We use the notation $j: \sigma_{q}^{a-\frac{\varepsilon}{2}} \rightarrow E_{q} \oplus F_{q}, j_{1}: S_{q}^{a} \rightarrow E_{q}$ and $j_{2}: Q_{q}^{-\varepsilon} \rightarrow F_{q}$ for the inclusion maps.
As $H^{*}\left(S_{q}^{a}, S_{q}^{-N}\right)$ and $H^{*}\left(Q_{q}^{-\frac{\varepsilon}{2}}, Q_{q}^{-\varepsilon}\right)$ are trivial, there exists a $\left(m_{0}-1\right)$-form α_{1} on S_{q}^{a} such that $\alpha_{1 \mid S \leq-N}=0$ and $j_{1}^{*} \alpha=d \alpha_{1}$ and a $(m-1)$-form β_{1} on $Q^{-\frac{\varepsilon}{2}}$ such that $\beta_{1 \mid Q \leq-\varepsilon}=0$ and $j_{2}^{*} \beta=d \beta_{1}$.

Observe that $\left(S_{q}^{a} \times Q_{q}^{-\varepsilon}, S_{q}^{-N} \times Q_{q}^{-\frac{\varepsilon}{2}}\right.$) is an excisive couple (see [18]), hence all the following cohomology spaces vanish because they can be expressed with the trivial spaces $H^{*}\left(S_{q}^{a}, S_{q}^{-N}\right)$ and $H^{*}\left(Q_{q}^{-\frac{\varepsilon}{2}}, Q^{-\varepsilon}\right)$

$$
H^{*}\left(S_{q}^{a} \times Q_{q}^{-\frac{\varepsilon}{2}},\left(S_{q}^{a} \times Q_{q}^{-\varepsilon}\right) \cup\left(S_{q}^{-N} \times Q_{q}^{-\frac{\varepsilon}{2}}\right)\right)=\{0\}
$$

We have $d\left(\alpha_{1} \vee \beta\right)=d\left((-1)^{m_{0}} \alpha \vee \beta_{1}\right)=\alpha \vee \beta$. We deduce that there exists a $\left(m_{0}+m-2\right)$-form μ on $S_{q}^{a} \times Q_{q}^{-\frac{\varepsilon}{2}}$ that vanishes on $\left(S_{q}^{a} \times Q_{q}^{-\varepsilon}\right) \cup\left(S_{q}^{-N} \times Q_{q}^{-\frac{\varepsilon}{2}}\right)$ and is such that $\alpha_{1} \vee \beta-(-1)^{m_{0}} \alpha \vee \beta_{1}=d \mu$. We can extend μ in a ($m_{0}+m-2$)-form that is defined on $E_{q} \oplus F_{q}$ and vanishes on $\left(E_{q} \times Q_{q}^{-\varepsilon}\right) \cup\left(S_{q}^{-N} \times F_{q}\right)$. Then the ($m_{0}+m-1$)-form $\alpha_{1} \vee \beta$ that is defined on $S_{q}^{a} \times F_{q}$ coincides on the intersection of the two sets with the $\left(m_{0}+m-1\right)$-form $(-1)^{m_{0}} \alpha \times \beta_{1}+d \mu$ that is defined on $E_{q} \times Q^{-\frac{\varepsilon}{2}}$. Together, they define a $\left(m_{0}+m-1\right)$-form μ_{1} on $\left(S_{q}^{a} \times F_{q}\right) \cup\left(E_{q} \times Q^{-\frac{\varepsilon}{2}}\right) \supset \sigma_{q}^{a-\frac{\varepsilon}{2}}$ such that

- μ_{1} vanishes on $\left(E_{q} \times Q^{-\varepsilon}\right) \cup\left(S^{-N} \times F_{q}\right) \supset \sigma^{-N-\varepsilon}$;
- $d \mu_{1}=\alpha \vee \beta$.

We deduce that $0=j^{*}(\alpha \vee \beta) \in H^{m+m_{0}}\left(\sigma_{q}^{u(q)-\varepsilon}, \sigma_{q}^{-N-\varepsilon}\right)$ and then that $U(q) \geq$ $u(q)-\varepsilon$. Hence $U(q) \geq u(q)$ and finally $u(q)=U(q)$.

Notations. From now we denote by $S:(q, \tau, \xi) \in E \rightarrow S(q, \tau, \xi)$ a special generating function for \mathcal{G}. The critical locus is denoted by Σ and the associated embedding is $i=i_{S}: \Sigma \rightarrow T^{*} \mathcal{M}_{2}$. We denote by $u:(q, \tau) \in T^{*} \mathcal{M}_{2} \rightarrow u(q, \tau)$ the graph selector associated to S.

Following the proofs that are contained in [21] or [22] for the homology, we will prove
Proposition 2.4. Let $u: \mathcal{M}_{2} \rightarrow \mathbb{R}$ be a graph selector for the special generating function $S: \mathcal{M} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$. Then u is a Lipschitz function that is C^{1} on an open subset $U_{0} \subset \mathcal{M}_{2}$ with full Lebesgue measure, and for every $z \in U_{0}$, the following properties hold

$$
\begin{equation*}
(z, d u(z)) \in \mathcal{G}, \quad \text { and } \quad u(z)=S \circ i^{-1}(z, d u(z)) \tag{4}
\end{equation*}
$$

with the usual identification $T^{*}\left(M \times \mathbb{T}_{2}\right)=T^{*} M \times \mathbb{T}_{2} \times \mathbb{R}$.
Proof. We assume that $S=Q$ on all the levels that are not in $(-N, N)$ and we denote the index of Q by m. Let us fix $z \in \mathcal{M}$. We denote by α a m-form on \mathbb{R}^{k} that vanishes on Q^{-N} and is such that $0 \neq[\alpha] \in H^{m}\left(\mathbb{R}^{k}, Q^{-N}\right)$. Because there is a change in the topology of the sublevel with height $u(z), u(z)$ is a critical value of S_{z}.
Let us prove that u is Lipschitz. Observe that the function $\mathcal{V}: \mathcal{M} \times \mathcal{M} \times \mathbb{R}^{k} \rightarrow \mathbb{R}$
that is defined by $\mathcal{V}\left(z, z^{\prime}, \xi\right)=S\left(z^{\prime}, \xi\right)-S(z, \xi)$ is C^{1} and has compact support. Hence there exists a constant $L>0$ such that

$$
\forall z, z^{\prime} \in \mathcal{M}, \forall \xi \in \mathbb{R}^{k},\left|S(z, \xi)-S\left(z^{\prime}, \xi\right)\right| \leq L . d\left(z, z^{\prime}\right)
$$

We deduce that for every $a \in \mathbb{R}, S_{z}^{a} \subset S_{z^{\prime}}^{a+L \cdot d\left(z, z^{\prime}\right)}$. Then the inclusion maps induce the following maps (note that $S_{z}^{-N}=S_{z^{\prime}}^{-N}$):

$$
H^{m}\left(\mathbb{R}^{k}, S_{z}^{-N}\right) \xrightarrow{j_{2}^{*}} H^{m}\left(S_{z^{\prime}}^{u(z)+L \cdot d\left(z, z^{\prime}\right)+\varepsilon}, S_{z^{\prime}}^{-N}\right) \xrightarrow{j_{1}^{*}} H^{m}\left(S_{z}^{u(z)+\varepsilon}, S_{z}^{-N}\right) .
$$

We know that $0 \neq\left(j_{2} \circ j_{1}\right)^{*} \alpha \in H^{m}\left(S_{z}^{u(z)+\varepsilon}, S_{z}^{-N}\right)$. This implies that $j_{2}^{*} \alpha \neq 0$ and then that $u\left(z^{\prime}\right) \leq u(z)+\varepsilon+L d\left(z, z^{\prime}\right)$. This is valuable too when we exchange z and z^{\prime} and when ε tends to zero. Finally, we have:

$$
\left|u(z)-u\left(z^{\prime}\right)\right| \leq L . d\left(z, z^{\prime}\right)
$$

Let us now prove that there exists an open subset U_{0} of \mathcal{M} with full Lebesgue measure on which u is C^{1}. Observe that the set U_{1} of the $z \in \mathcal{M}$ where S_{z} is Morse is exactly the set of regular values of the restriction to Σ_{S} of the first projection $(z, v) \in \mathcal{M} \times \mathbb{R}^{k} \mapsto z$ and then has full Lebesgue measure by Sard's theorem. It is open. We denote by U_{0} the set of the $z \in U_{1}$ such that the critical points of S_{z} have pairwise distinct critical values. Let us prove that $U_{1} \backslash U_{0}$ has only isolated points: this will imply that U_{0} is open and has full Lebesgue measure. Let us consider $z \in U_{1} \backslash U_{0}$. As S_{z} is Morse, Σ_{S} is transverse to $\{z\} \times \mathbb{R}^{k}$ and then above a neighbourhood V_{z} of z in \mathcal{M}, Σ_{S} is the union of j graphs, the graphs of $\eta_{1}, \ldots, \eta_{j}: V_{z} \rightarrow \mathbb{R}^{k}$. If we use the notation $\psi_{j}\left(z^{\prime}\right)=\frac{\partial S}{\partial q}\left(z^{\prime}, \eta_{j}\left(z^{\prime}\right)\right)$, then \mathcal{G} is the union of the disjoints graphs of $\psi_{1}, \ldots, \psi_{j}$ above V_{z}. For $z^{\prime} \in V_{z}, u\left(z^{\prime}\right)$ is a critical value of $S_{z^{\prime}}$ and then is one of the real numbers $S\left(z^{\prime}, \eta_{1}\left(z^{\prime}\right)\right), \ldots, S\left(z^{\prime}, \eta_{j}\left(z^{\prime}\right)\right)$. Note that every $S\left(, \eta_{i}().\right)$ is C^{1} and that $\frac{\partial S\left(, \eta_{i}(.)\right)}{\partial z}=\psi_{i}$. As the $\psi_{i}\left(z^{\prime}\right)$ are pairwise distinct, for $i \neq j,\left\{S\left(, \eta_{i}().\right)=S\left(, \eta_{j}().\right)\right\}$ has only isolated points.
Let us now consider $z \in U_{0}$. We can define a connected neighbourhood $V_{z}, \eta_{1}, \ldots, \eta_{j}$ and $\psi_{1}, \ldots, \psi_{j}$ exactly as before. Then every $u\left(z^{\prime}\right)$ is one of the $S\left(z^{\prime}, \eta_{i}\left(z^{\prime}\right)\right)$. Because V_{z} is a connected part of U_{0}, there exists exactly one i such that $\forall z^{\prime} \in$ $V_{z}, u\left(z^{\prime}\right)=S\left(z^{\prime}, \eta_{i}\left(z^{\prime}\right)\right)$. Then we have $d u\left(z^{\prime}\right)=\frac{\partial S}{\partial z}\left(z^{\prime}, \eta_{i}\left(z^{\prime}\right)\right)=\psi_{i}\left(z^{\prime}\right)$ and we deduce that $u\left(z^{\prime}\right)=S \circ i_{S}^{-1}\left(z^{\prime}, d u\left(z^{\prime}\right)\right)$ and $d u\left(z^{\prime}\right) \in \mathcal{G}$.

Proposition 2.5. There exist a real constant c such that the following identity holds

$$
\begin{equation*}
\forall q \in M, \quad u(q, 1)=u(q, 0)-c \tag{5}
\end{equation*}
$$

Proof. We proved in Proposition 2.2 that $S(q, 0 ; \xi)$ and $S(q, 1, ; \xi)$ are two generating functions for \mathcal{L}. We deduce from Proposition 2.3 the wanted result.

Corollary 2.1. For the same constant c that is defined in Proposition 2.5, the function $S \circ i_{S}^{-1}$ satisfies the identity

$$
\begin{equation*}
S \circ i_{S}^{-1}(q, p, 1,0)=S \circ i_{S}^{-1}(q, p, 0,0)-c, \quad(q, p) \in \mathcal{L} . \tag{6}
\end{equation*}
$$

Proof. As $S(q, 0 ; \xi)$ and $S(q, 1 ; \xi)$ are two generating functions for \mathcal{L}, the functions $(q, p) \in \mathcal{L} \mapsto S \circ i^{-1}(q, p, 1,0)$ and $(q, p) \in \mathcal{L} \mapsto S \circ i^{-1}(q, p, 0,0)$ are two primitive on \mathcal{L} of the Liouville 1 -form λ. Hence their difference is a constant.
Moreover, $u(., 0)$ and $u(., 1)$ are two graph selectors for \mathcal{L} so that $u(., 0)-u(., 1)=c$.

Hence there exists a dense open subset V_{0} of M with full Lebesgue measure such that for $i=1,2$
$\forall q \in V_{0},\left(q, d_{q} u(q, 0)\right)=\left(q, d_{q} u(q, 1)\right) \in \mathcal{L} \quad$ and $\quad u(q, i)=S \circ i_{S}^{-1}\left(q, d_{q} u(q, i), i, 0\right)$.
Take $q \in V_{0}$. By Proposition 2.4, we have for $(q, p)=\left(q, d_{q} u(q, 0)\right)=\left(q, d_{q} u(q, 1)\right) \in$ \mathcal{L} that

$$
S \circ i_{S}^{-1}(q, p, 1,0)=u(q, 1)=u(q, 0)-c=S \circ i_{S}^{-1}(q, p, 0,0)-c .
$$

3. Construction of a dominated function.

In this section, we come back to the original problem, and construct what is called a dominated function for the Lagrangian L that is associated to H, where we recall the definition of the Lagrangian that we gave in the introduction.
Notation. The Lagrangian $L: T M \times \mathbb{T} \rightarrow \mathbb{R}$ is the function that is associated to H via the Legendre duality.

$$
\forall(q, v, t) \in T M \times \mathbb{T}, L(q, v, t)=\inf _{p \in T_{q}^{*} M}(p \cdot v-H(q, p, t)) .
$$

We recall that L is as regular as H is, C^{2}-convex in the fiber direction and superlinear in the fiber direction (see e.g. [12]).
Definition. A function $U: \mathcal{M}_{1}=M \times \mathbb{T} \rightarrow \mathbb{R}$ is dominated by $L+c$ if it is Lipschitz and if for every continuous and piecewise $C^{1} \operatorname{arc} \gamma:[a, b] \rightarrow M$, we have

$$
U(\gamma(b), b)-U(\gamma(b), b) \leq \int_{a}^{b}(L(\gamma(t), \dot{\gamma}(t), t)+c) d t
$$

The goal of this section is to build a function \mathfrak{u} that is dominated by $L+c$ and to prove some properties for this function.

Then, in the last section, we will prove that \mathfrak{u} is everywhere differentiable and that \mathcal{L} is contained in the graph of $q \mapsto d \mathfrak{u}(q, 0)$. After that, we will prove that $d \mathfrak{u}$ is C^{1}.
3.1. Construction of a dominated function. Let us introduce a notation.

Notation. We define $\mathfrak{u}: M \times[0,1] \rightarrow \mathbb{R}$ by $\mathfrak{u}(q, t)=u\left(q, \eta^{-1}(t)\right)+c t$.
Observe that a consequence of Proposition 2.5 is that $\mathfrak{u}(., 0)=\mathfrak{u}(., 1)$. Hence we can consider \mathfrak{u} as a function defined on $\mathcal{M}_{1}=M \times \mathbb{T}$.

Proposition 3.1. The function \mathfrak{u} is Lipschitz and dominated by $L+c$.
Proof. We postpone the proof that \mathfrak{u} is Lipschitz after the proof of the domination property, but we use the fact that \mathfrak{u} is Lipschitz in the first part of our proof.

The domination property
Let $\gamma:[a, b] \rightarrow M$ be a C^{1} arc with $[a, b] \subset(0,1)$ and assume that the image of $t \in[a, b] \mapsto(\gamma \circ \eta(t), t) \in \mathcal{M}_{1}$ is Lebesgue almost everywhere in U_{0} (U_{0} was defined in Proposition 2.4). Then

$$
\mathfrak{u}(\gamma(b), b)-\mathfrak{u}(\gamma(a), a)=u\left(\gamma(b), \eta^{-1}(b)\right)-u\left(\gamma(a), \eta^{-1}(a)\right)+c(b-a),
$$

and if we use the notation $\delta=u\left(\gamma(b), \eta^{-1}(b)\right)-u\left(\gamma(a), \eta^{-1}(a)\right)$

$$
\delta=\int_{\eta^{-1}(a)}^{\eta^{-1}(b)}\left(d_{q} u(\gamma(\eta(t)), t) \dot{\gamma}(\eta(t)) \dot{\eta}(t)+\frac{\partial u}{\partial t}(\gamma \circ \eta(t), t)\right) d t
$$

Young inequality for dual convex functions tells us that

$$
\forall p \in T_{q}^{*} M, \forall v \in T_{q} M, \forall t \in \mathbb{T}, p \cdot v \leq H(q, p, t)+L(q, v, t)
$$

Hence, if we use the notation $\delta=u\left(\gamma(b), \eta^{-1}(b)\right)-u\left(\gamma(a), \eta^{-1}(a)\right)$, we have $\delta \leq$

$$
\int_{\eta^{-1}(a)}^{\eta^{-1}(b)}\left(\dot{\eta}(t)\left(H\left(\gamma(\eta(t)), d_{q} u(\gamma(\eta(t), t), \eta(t))+L(\gamma(\eta(t)), \dot{\gamma}(\eta(t)), \eta(t))\right)+\frac{\partial u}{\partial t}(\gamma \circ \eta(t), t)\right) d t\right.
$$

Proposition 2.4 tells us that u is a graph selector for \mathcal{G} above U_{0}. We can therefore replace in the integral $\frac{\partial u}{\partial t}(\gamma \circ \eta(t), t)$ by $-K(q, p, t)=-\dot{\eta}(t) H(q, p, \eta(t))$ and we obtain by using a change of variable $s=\eta(t)$

$$
\delta \leq \int_{\eta^{-1}(a)}^{\eta^{-1}(b)} \dot{\eta}(t) L(\gamma(\eta(t)), \dot{\gamma}(\eta(t)), \eta(t)) d t=\int_{a}^{b} L(\gamma(s), \dot{\gamma}(s), s) d s
$$

This gives the domination property

$$
\begin{equation*}
\mathfrak{u}(\gamma(b), b)-\mathfrak{u}(\gamma(a), a) \leq \int_{a}^{b}(L(\gamma(s), \dot{\gamma}(s), s)+c) d s \tag{7}
\end{equation*}
$$

How can we conclude for general $\gamma:[a, b] \rightarrow M$ that are continuous and piecewise C^{1} ?

- if $[a, b] \subset(0,1)$ and γ is C^{1}, by Lemma 3.1 applied to $\gamma \circ \eta$, we can approximate γ in topology C^{1} by a sequence $\left(\gamma_{n}\right)_{n}$ such that $\left(\gamma_{n} \circ \eta(t), t\right) \in U_{0}$ for almost every $t \in\left[\eta^{-1}(a), \eta^{-1}(b)\right]$, hence the domination inequality holds for every γ_{n}. Taking now the limit $n \rightarrow+\infty$, we find that inequality (7) holds for our curve γ.
- if $[a, b] \subset[0,1]$ and γ is C^{1}, we can find a decreasing sequence $\left(a_{n}\right)$ and an increasing sequence $\left(b_{n}\right)$ so that $(a, b)=\bigcup_{n \in \mathbb{N}}\left[a_{n}, b_{n}\right]$; then every $\gamma_{\mid\left[a_{n}, b_{n}\right]}$ is dominated and by taking a limit γ is dominated;
- for general γ, we can cut γ in sub-arcs $\gamma_{1}, \ldots, \gamma_{n}$ that are C^{1} and defined on some intervals I_{k} that are contained in some intervals $\left[n_{k}, n_{k}+1\right]$ with $n_{n} \in \mathbb{Z}$; then we have the domination property for every γ_{j} and hence for their concatenation $\gamma=\gamma_{1} * \cdots * \gamma_{n}$.

Lemma 3.1. Given an interval $[\alpha, \beta] \subset(0,1)$, a set of full measure $U_{0} \subset \mathcal{M}_{1}$ and a \mathcal{C}^{1} curve $\tau:[\alpha, \beta] \rightarrow M$, there exists a sequence of \mathcal{C}^{1} curves $\tau_{n}:[\alpha, \beta] \rightarrow M$, $n \in \mathbb{N}$ such that $\left(\tau_{n}\right)_{n \in \mathbb{N}}$ converges to τ in the \mathcal{C}^{1}-topology, and for every $n \in \mathbb{N}$, $\left(\tau_{n}(t), t\right) \in U_{0}$ for almost every $t \in[\alpha, \beta]$.
Proof. Without loss of generality, we can assume that τ is defined in a slightly bigger interval $\left[\alpha^{\prime}, \beta^{\prime}\right] \subset(0,1)$ such that $[\alpha, \beta] \subset\left(\alpha^{\prime}, \beta^{\prime}\right)$. The curve $\sigma:\left[\alpha^{\prime}, \beta^{\prime}\right] \rightarrow$ $\mathcal{M}_{1}, \sigma(t)=(\tau(t), t)$ is a \mathcal{C}^{1}-embedding, and it can be embedded in a tubular neighbourhood, that is to say, there exist a \mathcal{C}^{1}-embedding $\Lambda:\left[\alpha^{\prime}, \beta^{\prime}\right] \times \mathcal{O} \rightarrow \mathcal{M}_{1}$, $\Lambda(t, \xi)=(\Gamma(t, \xi), T(t, \xi))$ such that $\Gamma(t, 0)=\tau(t)$ and $T(t, 0)=t$, where \mathcal{O} is
on open neighbourhood of 0 in \mathbb{R}^{n}. By implicit function theorem we know we can solve locally the equation $T(s, \xi)=t$, then by compactness of $[a, b]$ and by shrinking the neighbourhood \mathcal{O}, we can always assume that $T(t, \xi)=t$ as $t \in[a, b]$, hence $\Lambda(t, \xi)=(\Gamma(t, \xi), t)$. Since Λ is a \mathcal{C}^{1}-diffeomorphism, the set $V_{0}=\Lambda^{-1}\left(U_{0} \cap\right.$ $\Lambda([a, b] \times \mathcal{O}))$ has full measure in $[a, b] \times \mathcal{O}$, and by Fubini Theorem, for almost every $\xi \in \mathcal{O}$, the set of $t \in[a, b]$ such that $(t, \xi) \in V_{0}$ has full measure in $[a, b]$, therefore, we can find a sequence $\left(\xi_{n}\right)_{n}$ in \mathcal{O} such that $\xi_{n} \rightarrow 0$ and for almost every $t \in[a, b]$ we have $\left(\Gamma\left(t, \xi_{n}\right), t\right) \in U_{0}$. By defining $\tau_{n}(t)=\Gamma\left(t, \xi_{n}\right)$ we have the desired property.

The Lipschitz property

Let us remark that $\eta^{-1}:[0,1] \rightarrow[0,1]$ is an absolutely continuous function. Indeed, it is a \mathcal{C}^{∞} function on the open interval $(0,1)$, and if we set $g(t)=\left(\eta^{-1}\right)^{\prime}(t)$ for $t \in(0,1)$, for every segment $[a, b] \subset(0,1)$ we have

$$
\begin{equation*}
\eta^{-1}(b)-\eta^{-1}(a)=\int_{a}^{b} g(t) d t \tag{8}
\end{equation*}
$$

and by construction of η we know that $g(t)>0$ for $t \in(0,1)$. By continuity of η^{-1}, if we take the limits $a \rightarrow 0$ and $b \rightarrow 1$, we find that g is absolutely integrable on (0,1), and identity (8) holds for every $[a, b] \subset[0,1]$, hence η^{-1} is absolutely continuous. As u is Lipschitz, the function \mathfrak{u} that we defined by $\mathfrak{u}(q, t)=u\left(q, \eta^{-1}(t)\right)+c t$ is (uniformly) absolutely continuous in the t-direction and (uniformly) Lipschitz in the q direction. Hence, to prove that \mathfrak{u} is Lipschitz, we just have to prove that its derivative, which is defined Lebesgue almost everywhere, is bounded on a set with full Lebesgue measure.

Observe that η restricted to every segment $[a, b] \subset(0,1)$ is Lipschitz; we deduce that the set $\left.\mathcal{U}_{0}=\{(q, \eta(t))) ;(q, t) \in U_{0} \cap(M \times(0,1))\right\}$ has full Lebesgue measure in $\mathcal{M}_{1}=M \times \mathbb{T}$.

For $(q, t) \in \mathcal{U}_{0}$, we have $\left(q, \eta^{-1}(t)\right) \in U_{0}$ and then $\left(q, \eta^{-1}(t), d u\left(q, \eta^{-1}(t)\right)\right) \in \mathcal{G}$. This implies that $d_{q} u\left(q, \eta^{-1}(t)\right)$ is (uniformly) bounded on \mathcal{U}_{0} and $\frac{\partial u}{\partial t}\left(q, \eta^{-1}(t)\right)=$ $-K\left(q, d_{q} u\left(q, \eta^{-1}(t)\right), t\right)=-\dot{\eta}\left(\eta^{-1}(t)\right) H\left(q, d_{q} u\left(q, \eta^{-1}(t)\right), t\right)$.
We deduce that

$$
\begin{equation*}
d \mathfrak{u}(q, t)(\delta q, \delta t)=d_{q} u\left(q, \eta^{-1}(t)\right) \delta q+\frac{1}{\dot{\eta}\left(\eta^{-1}(t)\right)} \frac{\partial u}{\partial t}\left(q, \eta^{-1}(t)\right) \delta t \tag{9}
\end{equation*}
$$

is equal to

$$
d \mathfrak{u}(q, t)(\delta q, \delta t)=d_{q} u\left(q, \eta^{-1}(t)\right) \delta q-H\left(q, d_{q} u\left(q, \eta^{-1}(t)\right), t\right) \delta t
$$

and thus $d \mathfrak{u}$ is bounded above \mathcal{U}_{0}.
Let us now conclude. Given now two points (q, t) and $\left(q^{\prime}, t^{\prime}\right) \in \mathcal{M}_{1}$, we have

$$
\begin{align*}
\left|\mathfrak{u}\left(q^{\prime}, t^{\prime}\right)-\mathfrak{u}(q, t)\right| \leq \mid & \mathfrak{u}\left(q^{\prime}, t^{\prime}\right)-\mathfrak{u}\left(q, t^{\prime}\right)\left|+\left|\mathfrak{u}\left(q, t^{\prime}\right)-\mathfrak{u}(q, t)\right|\right. \\
& \leq \operatorname{Adist}\left(q^{\prime}, q\right)+\left|\mathfrak{u}\left(q, t^{\prime}\right)-\mathfrak{u}(q, t)\right| \tag{10}
\end{align*}
$$

where $\operatorname{dist}($,$) is a Riemannian distance on M, A$ is a positive constant independent from (q, t) and $\left(q^{\prime}, t^{\prime}\right)$. By an argument similar to the one given in proof of Lemma 3.1, and eventually cutting the segment $s \mapsto(q, s)$ in a finite number of pieces, we can find a sequence of points $\left(q_{n}\right)_{n}$ in M converging to q and such that for every
$n \in \mathbb{N}$, the point $\left(q_{n}, s\right)$ is in \mathcal{U}_{0} for almost every $s \in\left[t, t^{\prime}\right]$ (without loss of generality we assume $t<t^{\prime}$). Since we know that $d \mathfrak{u}$ is bounded above \mathcal{U}_{0} we find

$$
\left|\mathfrak{u}\left(q_{n}, t^{\prime}\right)-\mathfrak{u}\left(q_{n}, t\right)\right| \leq \int_{t}^{t^{\prime}}\left|\frac{\partial \mathfrak{u}}{\partial t}\left(q_{n}, s\right)\right| d s \leq B\left|t^{\prime}-t\right|
$$

for some constant $B>0$. Taking now the limit $n \rightarrow+\infty$ and replacing in (10) we achieve the proof.
3.2. The dominated function \mathfrak{u} can be seen as a kind of graph selector. In this part, we construct an extended Hamiltonian of H and an extended Lagrangian submanifold \mathcal{Y} of \mathcal{L} by using H. We will prove that in some sense, \mathfrak{u} is a graph selector for \mathcal{Y}.

Notation. We introduce the autonomous Hamiltonian \mathcal{H} on $T^{*} \mathcal{M}_{1}=T^{*} M \times$ $\mathbb{T}_{1} \times \mathbb{R}$ that is defined by

$$
\mathcal{H}(q, p, \tau, e)=H(q, p, \tau)+e .
$$

The Hamiltonian equations for \mathcal{H} are

$$
\begin{cases}\frac{d q}{d t}=\frac{\partial H}{\partial p}(q, p, \tau), & \tag{11}\\ \frac{d \tau}{d t}=1 \\ \frac{d p}{d t}=-\frac{\partial H}{\partial q}(q, p, \tau), & \frac{d e}{d t}=-\frac{\partial H}{\partial \tau}(q, p, \tau)\end{cases}
$$

and the flow of (11) is given by

$$
\begin{equation*}
\phi_{\mathcal{H}}^{t}(q, p, \tau, e)=\left(\varphi_{H}^{\tau, \tau+t}(q, p), \tau+t, e+H(q, p, \tau)-H\left(\varphi_{H}^{\tau, \tau+t}(q, p), \tau+t\right)\right) . \tag{12}
\end{equation*}
$$

If we denote by $F_{E}(q, p, \tau, e)=(q, p, \tau, e+E)$ the translation in the energy direction E, observe that $F_{E} \circ \phi_{\mathcal{H}}^{t}=\phi_{\mathcal{H}}^{t} \circ F_{E}$. Hence the restriction of $\left(\phi_{\mathcal{H}}^{t}\right)$ to every level $\{\mathcal{H}=E\}$ is conjugated (via F_{E}) to the restriction of $\left(\phi_{\mathcal{H}}^{t}\right)$ to the zero level $\{\mathcal{H}=0\}$.

Similarly to what we did in the previous section for the construction of \mathcal{G}, we now extend \mathcal{L} to a Lagrangian submanifold \mathcal{Y} of $T^{*} \mathcal{M}_{1}$ invariant by the flow $\left(\phi_{\mathcal{H}}^{t}\right)$. The only change is that we choose the lift in such a way that $\mathcal{Y} \subset\{\mathcal{H}=c\}$ for the constant c that we introduced in Proposition 2.5 and Corollary 2.1.

$$
\mathcal{Y}=\left\{\phi_{\mathcal{H}}^{t}(q, p, 0,-H(q, p, 0)+c) ;(q, p) \in \mathcal{L}, t \in[0,1]\right\}
$$

Since \mathcal{L} is invariant by $\varphi_{H}^{0,1}, \mathcal{Y}$ is a closed submanifold of $T^{*} \mathcal{M}_{1}$. Observe that \mathcal{Y} is contained in the energy level $\{\mathcal{H}=c\}$.
Proposition 3.2. The manifold \mathcal{Y} is exact Lagrangian, i.e. the Liouville 1-form $\theta=<p, d q>+E d \tau$ has a primitive \mathcal{S} along \mathcal{Y}.
Proof. Let $\tilde{\mathcal{Y}}$ be the set $\tilde{\mathcal{Y}}=\left\{(q, p, t, e) \in T^{*} M \times[0,1] \times \mathbb{R} ;\left(q, p,[t]_{1}, e\right) \in \mathcal{Y}\right\}$.
We define on $\tilde{\mathcal{Y}}$ the map $\psi: \tilde{\mathcal{Y}} \rightarrow T^{*} \mathcal{M}_{2}$ by

$$
\begin{equation*}
\psi(q, p, t, e)=\left(q, p, \eta^{-1}(t), \dot{\eta}\left(\eta^{-1}(t)\right)(e-c)\right) . \tag{13}
\end{equation*}
$$

Lemma 3.2. ψ is an homeomorphism from $\tilde{\mathcal{Y}}$ onto $\mathcal{G} \cap(T M \times[0,1] \times \mathbb{R})$.
Proof. Let $(q, p, t, e) \in \tilde{\mathcal{Y}}$. This means that $e=c-H(q, p, t)$ and $\phi_{H_{H}^{t, 0}}^{t}(q, p) \in \mathcal{L}$. Then $\psi(q, p, t, c-H(q, p, t))=\left(q, p, \eta^{-1}(t),-K\left(q, p, \eta^{-1}(t)\right)\right)$ with $\phi_{K}^{\eta^{-1}(t), 0}(q, p) \in$ \mathcal{L}. Hence $\psi(\tilde{\mathcal{Y}})$ is $\mathcal{G} \cap(T M \times[0,1] \times \mathbb{R})$.
The continuity and injectivity are straightforward.

We define then s_{0} by

$$
s_{0}(q, p, t, e)=S \circ i_{S}^{-1} \circ \psi(q, p, t, e)+c t .
$$

Because of equality (6), we have

$$
s_{0}(q, p, 1, e)=S \circ i_{S}^{-1}(q, p, 1,0)+c=S \circ i_{S}^{-1}(q, p, 0,0)=s_{0}(q, p, 0, e) .
$$

Hence we can define $\mathcal{S}: \mathcal{Y} \rightarrow \mathbb{R}$ by $\mathcal{S}\left(q, p,[t]_{1}, e\right)=s_{0}(q, p, t, e)$.
This function \mathcal{S} is continuous on \mathcal{Y} and is differentiable except on the slice $\mathcal{Y} \cap\{t=0\}$. We have $d \mathcal{S}(q, p, t, e)(\delta q, \delta p, \delta t, \delta e)=$

$$
d\left(S \circ i_{S}^{-1}\right)\left(q, p, \eta^{-1}(t), \dot{\eta}\left(\eta^{-1}(t)\right)(e-c)\right)\left(\delta q, \delta p, \frac{1}{\dot{\eta}\left(\eta^{-1}(t)\right)} \delta t, \delta E\right)+c \delta t
$$

with $\delta E=\dot{\eta}\left(\eta^{-1}(t)\right) \delta e+(e-c) \frac{\ddot{\eta}\left(\eta^{-1}(t)\right)}{\dot{\eta}\left(\eta^{-1}(t)\right)} \delta t$.
As $d\left(S \circ i_{S}^{-1}\right)$ is a primitive of the Liouville 1-form $\Theta=<p, d q>+E d \tau$, we deduce that
$d \mathcal{S}(q, p, t, e)(\delta q, \delta p, \delta t, \delta e)=<p, \delta q>+\dot{\eta}\left(\eta^{-1}(t)\right)(e-c) \frac{\delta t}{\dot{\eta}\left(\eta^{-1}(t)\right)}+c \delta t=<p, \delta q>+e \delta t$.
Hence \mathcal{S} is continuous on \mathcal{Y} and is a primitive of θ on $\mathcal{Y} \backslash\{t=0\}$.
As \mathcal{Y} is Lagrangian, a primitive of θ along \mathcal{Y} exists always locally and is C^{1}. Then for every point in \mathcal{Y}, there exists a connected neighborhood \mathcal{V} on which θ has a C^{1} primitive s. Then on this neighbourhood the differentials of $\mathcal{S}-s$ is continous and is differentiable with a diffrential equal to 0 on $\mathcal{V} \backslash\{t=0\}$.

This implies that $\mathcal{S}-s$ is constant on \mathcal{V}. Hence \mathcal{S} is C^{1} everywhere and is a primitive of the Liouville 1-form θ.

As the exact Lagrangian \mathcal{G} has a graph selector, the same is true for \mathcal{Y}.
Proposition 3.3. The function \mathfrak{u} is differentiable at every $z \in \mathcal{U}_{0}$ and

$$
\begin{equation*}
\forall z \in \mathcal{U}_{0},(z, d \mathfrak{u}(z)) \in \mathcal{Y} \quad \text { and } \quad \mathfrak{u}(z)=\mathcal{S}(z, d \mathfrak{u}(z)) . \tag{14}
\end{equation*}
$$

Identity (14) holds for every $z \in \mathcal{M}_{1}$ where \mathfrak{u} is differentiable and where $\mathcal{H}(z, d \mathfrak{u}(z))=$ c.

Proof. Proof that \mathfrak{u} is a graph selector.

Notation. Let $h: \mathcal{M}_{1} \rightarrow \mathcal{M}_{1}$ be defined by $h(q, t)=\left(q, \eta^{-1}(t)\right)$.
Observe that h is an homeomorphism and that $h_{\mid M \times(0,1)}$ is a diffeomorphism onto $M \times(0,1)$. We have

$$
\forall(q, t, p, e) \in \tilde{\mathcal{Y}}, \psi(q, t, p, e)=\left(h(q, t),{ }^{t} D h(q, t)^{-1}(p, e-c)\right)
$$

and

$$
\forall(q, t) \in \mathcal{M}_{1}, \mathfrak{u}(q, t)=u(h(q, t))+c t .
$$

As u is a graph selector for \mathcal{G}, we deduce that if $z \in \mathcal{U}_{0}$, we have

$$
\psi(z, d \mathfrak{u}(z))=\psi\left(z,^{t} D h(z) d u(h(z))+c\right)=(h(z), d u(h(z)) \in \mathcal{G},
$$

and then $(z, d \mathfrak{u}(z)) \in \psi^{-1}(\mathcal{G})=\mathcal{Y}$.
Moreover, if $z=(q, t)$, we have
$\mathfrak{u}(z)=u(h(z))+c t=S \circ i_{S}^{-1}\left(h(z), d u(h(z))+c t=S \circ i_{S}^{-1} \circ \psi(z, d \mathfrak{u}(z))+c t=\mathcal{S}(z, d \mathfrak{u}(z))\right.$.

Proof that Identity (14) holds for every $z \in \mathcal{M}_{1}$ where \mathfrak{u} is differentiable and where $\mathcal{H}(z, d \mathfrak{u}(z))=c$.

Let $z=(q, t) \in \mathcal{M}_{1}$ be a point where \mathfrak{u} is differentiable and $\mathcal{H}(z, d \mathfrak{u}(z))=c$. We follow the same step as in [1], and we introduce two subsets of $T_{z}^{*} \mathcal{M}_{1}=T_{q}^{*} M \times \mathbb{R}$. Let $K_{\mathfrak{u}}(z)$ be the set of all limit points of sequences $\left(d \mathfrak{u}\left(z_{n}\right)\right)_{n \in \mathbb{N}}$ where $z_{n} \in \mathcal{U}_{0}$ and $\lim _{n \rightarrow+\infty} z_{n}=z$, and let $C_{\mathfrak{u}}(z)$ be the convex hull of $K_{\mathfrak{u}}(z)$. Let us give result due to F. Clarke (see [13] for a proof of [10] for a more general result).

Lemma 3.3. Let $f: U \rightarrow \mathbb{R}$ be a Lipschitz function defined on a open subset U of \mathbb{R}^{d} and let $U_{0} \subset U$ be a subset with full Lebesgue measure such that f is differentiable at every point of U_{0}. We introduce a notation. If $q \in U, K_{f}(q)$ is the set of all the limits $\lim _{n \rightarrow \infty} d f\left(q_{n}\right)$ where $q_{n} \in U_{0}, \lim _{n \rightarrow \infty} q_{n}=q$ and $C_{f}(q)$ is the convex hull of $K_{f}(q)$. Then, at every point $q \in U$ where f is differentiable, we have : $d f(q) \in C_{f}(q)$.

By hypothesis the function $p \mapsto H(q, p, t)$ is strictly convex, therefore the energy sublevel

$$
\mathcal{H}_{(q, t)}^{-1}((-\infty, c])=\left\{(q, p, t, e) \in T_{(q, t)}^{*}\left(M \times \mathbb{T}_{1}\right), \quad H(q, p, t)+e \leq c\right\}
$$

is also strictly convex (up to the symmetry $e \mapsto-e$, it is the epigraph of the function $p \mapsto H(q, p, t)-c)$, and in particular, every point (q, p, t, e) in the energy level $\mathcal{H}_{(q, t)}^{-1}(c)$ is extremal for $\mathcal{H}_{(q, t)}^{-1}((-\infty, c])$. By hypothesis, $(z, d \mathfrak{u}(z))$ is in the energy level $\mathcal{H}_{z}^{-1}(c)$, therefore it is an extremal point of $C_{\mathfrak{u}}(z)$, hence a point of $K_{\mathfrak{u}}(z)$, and by definition of $K_{\mathfrak{u}}(z)$ there exist a sequence $\left(z_{n}\right)_{n \in \mathbb{N}}$ of points of \mathcal{U}_{0} such that $\left(z_{n}, d \mathfrak{u}\left(z_{n}\right)\right)_{n \in \mathbb{N}}$ converges to $(z, d \mathfrak{u}(z))$, but every point $\left(z_{n}, d \mathfrak{u}\left(z_{n}\right)\right)$ lies in \mathcal{Y} and satisfies the identity $\mathfrak{u}\left(z_{n}\right)=\mathcal{S}\left(z_{n}, d \mathfrak{u}\left(z_{n}\right)\right)$. Taking the limit $n \rightarrow+\infty$ we get (14).

4. Calibration and conclusion

In this section, we will prove that \mathcal{Y} is contained in the graph of $d \mathfrak{u}$. This implies of course that \mathcal{Y} is a graph above the whole \mathcal{M}_{1} and that \mathfrak{u} is everywhere differentiable: the projection of \mathcal{Y} is compact and dense in \mathcal{M}_{1}, hence equal to \mathcal{M}_{1}. Morever, we will also prove that \mathcal{Y} is a Lipschitz graph in $T^{*} \mathcal{M}_{1}$. This will imply that \mathcal{Y} is the graph of a C^{1} closed 1-form. The main tool that we will use is the notion of calibrated curve.
4.1. Calibration. We will explain what happens along the curves that satisfy the equality in the inequality of domination (7). The proof is an analogue of the proof given by A. Fathi in [12] in the autonomous case.
Definition. If $\gamma:[a, b] \rightarrow M$ is a C^{1} arc, its defect of calibration is

$$
\delta(\gamma)=\int_{a}^{b}(L(\gamma(t), \dot{\gamma}(t), t)+c)-(\mathfrak{u}(\gamma(b), b)-\mathfrak{u}(\gamma(a), a)) .
$$

Then

- δ is always non-negative;
- if $\left(\gamma_{n}\right) C^{1}$-converges to γ, then $\lim _{n \rightarrow \infty} \delta\left(\gamma_{n}\right)=\delta(\gamma)$;
- if $I \subset J$, then $\delta\left(\gamma_{\mid I}\right) \leq \delta\left(\gamma_{\mid J}\right)$.

Definition. A C^{1} curve $\gamma: I \rightarrow M$ is (\mathfrak{u}, L, c)-calibrated if $\forall[a, b] \subset I, \delta\left(\gamma_{\mid[a, b]}\right)=$ 0 .

Proposition 4.1. If $\gamma: I \rightarrow M$ is (\mathfrak{u}, L, c)-calibrated, then

- \mathfrak{u} is differentiable at every $(\gamma(t), t)$ with t in the interior of I;
- for all t in the interior of I, we have $d_{q} \mathfrak{u}(\gamma(t), t)=\frac{\partial L}{\partial v}(\gamma(t), \dot{\gamma}(t), t)$ and $\mathcal{H}(\gamma(t), t, d \mathfrak{u}(\gamma(t), t))=c$.

Proof. We assume that γ is C^{1} and calibrated.
Value of $d \mathfrak{u}(\gamma(),.$.$) if \mathfrak{u}$ is differentiable along $t \mapsto(\gamma(t), t)$.
Let us assume that u is differentiable at every point of $\{(\gamma(t), t) ; t \in(a, b)\}$.
We have

$$
\forall t \in(a, b), \mathfrak{u}(\gamma(t), t)-\mathfrak{u}(\gamma(a), a))=\int_{a}^{t}(L(\gamma(s), \dot{\gamma}(s), s)+c) d s
$$

Differentiating with respect to $t \in(a, b)$, we obtain

$$
d_{q} \mathfrak{u}(\gamma(t), t) \cdot \dot{\gamma}(t)+\frac{\partial \mathfrak{u}}{\partial t}(\gamma(t), t)=L(\gamma(t), \dot{\gamma}(t), t)+c .
$$

Using Young inequality, we deduce

$$
\begin{align*}
c & =d_{q} \mathfrak{u}(\gamma(t), t) \cdot \dot{\gamma}(t)+\frac{\partial \mathfrak{u}}{\partial t}(\gamma(t), t)-L(\gamma(t), \dot{\gamma}(t), t) \\
& \leq \frac{\partial \mathfrak{u}}{\partial t}(\gamma(t), t)+H\left(\gamma(t), d_{q} \mathfrak{u}(\gamma(t), t), t\right)=\mathcal{H}(\gamma(t), t, d \mathfrak{u}(\gamma(t), t)) . \tag{15}
\end{align*}
$$

But Lemma 3.3 implies that $\mathcal{H}(\gamma(t), t, d \mathfrak{u}(\gamma(t), t)) \leq c$. Hence Inequality (15) is in fact an equality. Il particular we have equality in Young inequality

$$
d_{q} \mathfrak{u}(\gamma(t), t) \cdot \dot{\gamma}(t)=L(\gamma(t), \dot{\gamma}(t), t)+H\left(\gamma(t), d_{q} \mathfrak{u}(\gamma(t), t), t\right)
$$

then $d_{q} u(\gamma(t), t)=\frac{\partial L}{\partial v}(\gamma(t), \dot{\gamma}(t), t)$ and so $\frac{\partial u}{\partial t}(\gamma(t), t)=c-H\left(\gamma(t), d_{q} \mathfrak{u}(\gamma(t), t), t\right)$. This can be written $\mathcal{H}(\gamma(t), t, d \mathfrak{u}(\gamma(t), t))=c$.

Proof that \mathfrak{u} is differentiable at every $(\gamma(t)$, $t)$ with t in the interior of I
Let us fix $t_{0} \in(a, b)$. We work in a chart around $\gamma\left(t_{0}\right)=x$. Then for every $t \in(a, b)$ and y close to ξ, we consider the arc $\gamma_{t, y}:[a, t] \rightarrow M$ that is defined by $\gamma_{t, y}(s)=\gamma(s)+\frac{s-a}{t-a}(y-\gamma(t))$. The domination proprety implies that

$$
\mathfrak{u}(y, t) \leq \psi_{+}(y, t)=\mathfrak{u}(\gamma(a), a)+\int_{a}^{t}\left(L\left(\gamma_{t, y}(s), \dot{\gamma}_{t, y}(s), s\right)+c\right) d s
$$

Observe that $\mathfrak{u}\left(x, t_{0}\right)=\mathfrak{u}(\gamma(a), a)+\int_{a}^{t_{0}}(L(\gamma(s), \dot{\gamma}(s), s)+c) d s=\psi_{+}\left(x, t_{0}\right)$ because γ is calibrated. Observe to that
$\psi_{+}(y, t)=\mathfrak{u}(\gamma(a), a)+\int_{a}^{t}\left(L\left(\gamma(s)+\frac{s-a}{t-a}(y-\gamma(t)), \dot{\gamma}(s)+\frac{1}{t-a}(y-\gamma(t)), s\right)+c\right) d s$ and thus ψ_{+}is C^{1}.

Let us now consider the arc $\eta_{y, t}:[t, b] \rightarrow M$ that is defined by $\eta_{t, y}(s)=\gamma(s)+$ $\frac{b-s}{b-t}(y-\gamma(t))$. Then

$$
\psi_{-}(y, t)=\mathfrak{u}(\gamma(b), b)-\int_{t}^{b}\left(L\left(\eta_{y, t}(s), \dot{\eta}_{y, t}(s), s\right)+c\right) d s \leq \mathfrak{u}(y, t)
$$

ψ_{-}is C^{1} and because γ is calibrated we have $\psi_{-}\left(x, t_{0}\right)=\mathfrak{u}\left(x, t_{0}\right)$.
Finally, we have found two C^{1} function ψ_{-}and ψ_{+}such that $\psi_{-} \leq \mathfrak{u} \leq \psi_{+}$and $\psi_{-}\left(x, t_{0}\right)=\mathfrak{u}\left(x, t_{0}\right)=\psi_{+}\left(x, t_{0}\right)$. This implies that \mathfrak{u} is differentiable at $\left(x, t_{0}\right)$.
4.2. Study along the Ω-limit set of $\phi_{1 \mid \mathcal{L}}^{H}$.

Proposition 4.2. Let $(q, p) \in \Omega\left(\phi_{H \mid \mathcal{L}}^{1}\right)$ be a point of the Ω-limit set of $\phi_{H \mid \mathcal{L}}^{1}$ and let $(q, 0, p, c-H(q, p, 0))$ be the corresponding point in \mathcal{Y}. Then the projection of the \mathcal{H} orbit of $(q, 0, p, c-H(q, p, 0))$ on M is (\mathfrak{u}, c, L)-calibrated.
Proof. Let us fix $[a, b] \subset \mathbb{R}$ and let us consider the piece of orbit

$$
t \in[a, b] \mapsto \zeta(t)=\phi_{\mathcal{H}}^{t}(q, 0, p, c-H(q, p, 0))=(q(t), t, p(t), c-H(q(t), p(t), t)) .
$$

Because $(q, p) \in \Omega\left(\phi_{H \mid \mathcal{L}}^{1}\right)$, we can find a sequence of pieces of \mathcal{H} orbits

$$
t \in\left[a, b_{n}\right] \mapsto \zeta_{n}(t)=\left(q_{n}(t), t, p_{n}(t), c-H\left(q_{n}(t), p_{n}(t), t\right)\right)
$$

in \mathcal{Y} such that $b_{n}-a \in \mathbb{N}, \lim _{n \rightarrow \infty} b_{n}=+\infty, \lim _{n \rightarrow \infty}\left(q_{n}(a), p_{n}(a)\right)=(q(a), p(a))$ and $\lim _{n \rightarrow \infty}\left(q_{n}\left(b_{n}\right), p_{n}\left(b_{n}\right)\right)=(q(a), p(a))$.
Because of the properties of the defect of calibration δ, we have

$$
0 \leq \delta\left(q_{\mid[a, b]}\right)=\lim _{n \rightarrow \infty} \delta\left(q_{n \mid[a, b]}\right) \leq \liminf _{n \rightarrow \infty} \delta\left(q_{n \mid\left[a, b_{n}\right]}\right) .
$$

We have

$$
\delta\left(q_{n \mid\left[a, b_{n}\right]}\right)=\mathfrak{u}\left(q_{n}\left(b_{n}\right), b_{n}\right)-\mathfrak{u}\left(q_{n}(a), a\right)-\int_{a}^{b_{n}}\left(L\left(q_{n}(t), \dot{q}_{n}(t), t\right)+c\right) d t
$$

We prove now the following lemma.
Lemma 4.1. If $t \in \mathbb{R} \mapsto \zeta(t)=(q(t), t, p(t), c-H(q(t), p(t), t))$ is an orbit for \mathcal{H} on \mathcal{Y}, then we have

$$
\begin{equation*}
\int_{a}^{b}(L(q(t), \dot{q}(t), t)+c)=\mathcal{S}(\zeta(b))-\mathcal{S}(\zeta(a)) \tag{16}
\end{equation*}
$$

Because of Proposition 3.2, we know that \mathcal{S} is a primitive of θ along \mathcal{Y} and so we have

$$
\mathcal{S}(\zeta(b))-\mathcal{S}(\zeta(a))=\int_{\left.\zeta\right|_{[a, b]}} \theta=\int_{a}^{b}(p(t) \cdot \dot{q}(t)-H(q(t), p(t), t)+c) d t
$$

and along every orbit we have $p(t) \cdot \dot{q}(t)-H(q(t), p(t), t)=L(q(t), \dot{q}(t), t)$. This proves the lemma.

Applying Lemma 4.1, we obtain:

$$
\delta\left(q_{n \mid\left[a, b_{n}\right]}\right)=\mathfrak{u}\left(q_{n}\left(b_{n}\right), b_{n}\right)-\mathfrak{u}\left(q_{n}(a), a\right)-\left(\mathcal{S}\left(\zeta_{n}\left(b_{n}\right)\right)-\mathcal{S}\left(\zeta_{n}(a)\right)\right) .
$$

Using the continuity of \mathfrak{u} and \mathcal{S} and the fact that $\lim _{n \rightarrow \infty} \zeta_{n}(a)=\zeta(a)$ and $\lim _{n \rightarrow \infty} \zeta_{n}\left(b_{n}\right)=\zeta(b)$, we deduce that

$$
\lim _{n \rightarrow \infty} \delta\left(q_{n \mid\left[a, b_{n}\right]}\right)=u(q(a), a)-u(q(a), a)-(\mathcal{S}(\zeta(a))-\mathcal{S}(\zeta(a))=0
$$

and thus q is calibrated.

4.3. Every orbit in \mathcal{Y} is in the graph of $d \mathfrak{u}$.

Proposition 4.3. Let $t \mapsto \zeta(t)=\phi_{\mathcal{H}}^{t}(q, 0, p, c-H(q, p, 0))=(q(t), t, p(t), c-$ $H(q(t), p(t), t))$ be an orbit for \mathcal{H} on \mathcal{Y}. Then the curve $q(t)$ is (\mathfrak{u}, c, L)-calibrated and we have

$$
\forall t \in \mathbb{R}, p(t)=d \mathfrak{u}(q(t), t)
$$

Proof. We choose $\left(q_{+}, p_{+}\right) \in \omega\left((q(0), p(0)), \phi_{H}^{1}\right)$ and $\left(q_{-}, p_{-}\right) \in \alpha\left((q(0), p(0)), \phi_{H}^{1}\right)$ and we denote by $\zeta_{ \pm}(t)=\left(q_{ \pm}(t), t, p_{ \pm}(t), c-H\left(q_{ \pm}(t), p_{ \pm}(t), t\right)\right)$ the corresponding \mathcal{H} orbits in \mathcal{Y}.
Then there exists two increasing sequences $\left(n_{n}\right)$ and $\left(m_{n}\right)$ of positive integers so that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \zeta\left(-m_{n}\right)=\zeta_{-}(0) \quad \text { and } \quad \lim _{n \rightarrow \infty} \zeta\left(n_{n}\right)=\zeta_{+}(0) \tag{17}
\end{equation*}
$$

If $[a, b] \subset \mathbb{R}$, we have

$$
0 \leq \delta\left(q_{[[a, b]}\right) \leq \liminf _{n \rightarrow \infty} \delta\left(q_{\left[-m_{n}, n_{n}\right]}\right)
$$

hence we will prove that this last limit is zero.
Using Lemma 4.1, we obtain

$$
\begin{aligned}
\delta\left(q_{\left[-m_{n}, n_{n}\right]}\right) & =\int_{-m_{n}}^{n_{n}}(L(q(t), \dot{q}(t), t)+c) d t-\left(\mathfrak{u}\left(q\left(n_{n}\right), n_{n}\right)-\mathfrak{u}\left(q\left(-m_{n}\right),-m_{n}\right)\right) \\
& =\mathcal{S}\left(\zeta\left(n_{n}\right)\right)-\mathfrak{u}\left(q\left(n_{n}\right), n_{n}\right)-\left(\mathcal{S}\left(\zeta\left(-m_{n}\right)\right)-\mathfrak{u}\left(q\left(-m_{n}\right),-m_{n}\right)\right)
\end{aligned}
$$

Because of (17) and of the continuity of \mathfrak{u} and \mathcal{S}, we obtain

$$
\lim _{n \rightarrow \infty} \delta\left(q_{\left[-m_{n}, n_{n}\right]}\right)=\mathcal{S}\left(\zeta_{+}(0)\right)-\mathfrak{u}\left(q_{+}(0), 0\right)-\left(\mathcal{S}\left(\zeta_{-}(0)\right)-\mathfrak{u}\left(q_{-}(0), 0\right)\right)
$$

We deduce from Proposition 4.2 and Proposition 4.1 that \mathfrak{u} is differentiable at every $\left(q_{ \pm}(t), t\right)$ and that

$$
d_{q} \mathfrak{u}\left(q_{ \pm}(t), t\right)=\frac{\partial L}{\partial v}\left(q_{ \pm}(t), \dot{q}_{ \pm}(t), t\right) \quad \text { and } \quad \mathcal{H}\left(q_{ \pm}(t), t, d \mathfrak{u}\left(q_{ \pm}(t), t\right)\right)=c
$$

This implies that $d \mathfrak{u}\left(q_{ \pm}(t), t\right)=\left(p_{ \pm}(t), c-H\left(q_{ \pm}(t), p_{ \pm}(t), t\right)\right)$ and then that $\zeta_{ \pm}(t)=$ $\left(q_{ \pm}(t), t, d \mathfrak{u}\left(q_{ \pm}(t), t\right)\right)$. This gives

$$
\lim _{n \rightarrow \infty} \delta\left(q_{\left[-m_{n}, n_{n}\right]}\right)=\mathcal{S}\left(\zeta\left(q_{+}(0), 0, d \mathfrak{u}\left(q_{+}(0), 0\right)\right)\right)-\mathfrak{u}\left(q_{+}(0), 0\right)-\left(\mathcal{S}\left(\zeta\left(q_{-}(0), 0, d \mathfrak{u}\left(q_{-}(0), 0\right)\right)\right)-\mathfrak{u}\left(q_{-}(0),-0\right)\right)
$$

Proposition 3.3 tells us that

$$
\forall t \in \mathbb{R},\left(q_{ \pm}(t), t, d \mathfrak{u}\left(q_{ \pm}(t), t\right)\right) \in \mathcal{Y} \quad \text { and } \quad \mathfrak{u}\left(q_{ \pm}(t), t\right)=\mathcal{S}\left(q_{ \pm}(t), t, d \mathfrak{u}\left(q_{ \pm}(t), t\right)\right)
$$

We finally deduce that

$$
\lim _{n \rightarrow \infty} \delta\left(q_{\left[-m_{n}, n_{n}\right]}\right)=0
$$

and that q is (u, L, c)-calibrated.
We deduce from Proposition 4.1 that \mathfrak{u} is differentiable at every $(q(t), t)$ and that

$$
d_{q} \mathfrak{u}(q(t), t)=\frac{\partial L}{\partial v}(q(t), \dot{q}(t), t) \quad \text { and } \quad \mathcal{H}(q(t), t, d \mathfrak{u}(q(t), t))=c .
$$

This implies that $\zeta(t)=(q(t), t, d \mathfrak{u}((q(t), t))$.
4.4. The Lipschitz property of \mathcal{Y}. We know now that \mathcal{Y} is a graph over \mathcal{M}_{1}, that is to say, the map $\operatorname{pr} \mid \mathcal{Y}: \mathcal{Y} \rightarrow \mathcal{M}_{1}$ is one-to-one, where $p r: T^{*} \mathcal{M}_{1} \rightarrow \mathcal{M}_{1}$ is the natural projection. We wish to show now that $(p r \mid \mathcal{Y})^{-1}$ is Lipschitz. Then we will deduce that \mathcal{L}, which is a C^{1} Lagrangian submanifold and a Lipschitz graph if the graph of a $C^{1} 1$-form.
The fact that $(p r \mid \mathcal{Y})^{-1}$ is Lipschitz is in fact a consequence of a more general result about weak KAM solutions for non autonomous Hamiltonians, the proof can be find in [11], but to help the reader we write again the proof of this property in our particular case. It is based on the following Lemma, due to J. Mather, where we use the following definition.

Definition. An Euler-Lagrange extremal is the projection on M of an arc of solution of the Hamilton equations.

Lemma 4.2. Given $A>0$ there exists $K>0, \epsilon_{1}>0$ and $\delta>0$ with the following property: if $\left|v_{i}\right|<A,\left(q_{i}, v_{i}, t_{i}\right) \in T M \times \mathbb{T}, i=1,2$ satisfy $d_{\mathcal{M}_{1}}\left(\left(q_{1}, t_{1}\right),\left(q_{2}, t_{2}\right)\right)<\delta$ and $d_{T M \times \mathbb{T}}\left(\left(q_{1}, v_{1}, t_{1}\right),\left(q_{2}, v_{2}, t_{2}\right)\right) \geq K^{-1} d_{\mathcal{M}_{1}}\left(\left(q_{1}, t_{1}\right),\left(q_{2}, t_{2}\right)\right)$ then, if $\gamma_{i}: \mathbb{R} \rightarrow M$, $i=1,2$ are Euler-Lagrange extremals satisfying $\gamma_{i}\left(t_{i}\right)=q_{i}, \dot{\gamma}_{i}\left(t_{i}\right)=v_{i}$, there exist two Euler-Lagrange extremals $\sigma_{i}:\left[t_{i}-\epsilon, t_{i}+\epsilon\right] \rightarrow M$ with $0<\epsilon<\epsilon_{1}$, satisfying

$$
\begin{array}{ll}
\sigma_{1}\left(t_{1}-\epsilon\right)=\gamma_{1}\left(t_{1}-\epsilon\right), & \sigma_{1}\left(t_{1}+\epsilon\right)=\gamma_{2}\left(t_{2}+\epsilon\right), \\
\sigma_{2}\left(t_{2}-\epsilon\right)=\gamma_{2}\left(t_{2}-\epsilon\right), & \sigma_{2}\left(t_{2}+\epsilon\right)=\gamma_{1}\left(t_{1}+\epsilon\right) .
\end{array}
$$

and moreover

$$
A_{L+c}\left(\left.\gamma_{1}\right|_{\left.t_{1}-\epsilon, t_{2}+\epsilon\right]}\right)+A_{L+c}\left(\left.\gamma_{2}\right|_{\left.t_{2}-\epsilon, t_{1}+\epsilon\right]}\right)>A_{L+c}\left(\sigma_{1}\right)+A_{L+c}\left(\sigma_{2}\right)
$$

The proof of this Lemma is in [19]. Here M is endowed by a Riemannian metric. $d_{\mathcal{M}_{1}}$ is a distance in \mathcal{M}_{1}, defined as the product between the Riemannian distance in M and the flat distance in \mathbb{T}, and $d_{T M \times \mathbb{T}}$ is a distance on $T M \times \mathbb{T}$, defined as the product between the Riemannian distance in $T M$ and the flat distance in \mathbb{T}.
Proposition 4.4. $\operatorname{pr}(\mathcal{Y})=\mathcal{M}_{1}$, and the $\operatorname{map}(p r \mid \mathcal{Y})^{-1}: \mathcal{M}_{1} \rightarrow \mathcal{Y}$ is Lipschitz.
Proof. We know that \mathfrak{u} is everywhere differentiable on \mathcal{M}_{1}, and

$$
\left.\left(\left.p r\right|_{\mathcal{Y}}\right)^{-1}(q, t)=\left(q, d_{q} \mathfrak{u}(q, t), t, c-H\left(q, d_{q} \mathfrak{u}(q, t), t\right)\right)\right)
$$

Since H is \mathcal{C}^{2}, in order to prove that $(p r \mid \mathcal{Y})^{-1}$ is Lipschitz it is sufficient to show that the following map

$$
i: \mathcal{M}_{1} \rightarrow T^{*} M \times \mathbb{T}, \quad i(q, t)=\left(q, d_{q} \mathfrak{u}(q, t), t\right)
$$

is Lipschitz. Let us introduce the Legendre map :

$$
\mathcal{L} e g: T M \times \mathbb{T} \rightarrow T^{*} M \times \mathbb{T}, \quad \mathcal{L} e g(q, v, t)=\left(q, \frac{\partial L}{\partial v}(q, v, t), t\right)
$$

It is a \mathcal{C}^{1} diffeomorphism and it maps fibers to fibers. Let us prove that $j=$ $\mathcal{L} e g^{-1} \circ i$ is locally Lipschitz, and therefore Lipschitz by compactness of \mathcal{M}_{1}. As a consequence we get that $i=\mathcal{L} e g \circ j$ is Lipschitz too. Let

$$
A>\max _{(q, v, t) \in j\left(\mathcal{M}_{1}\right)}|v|,
$$

and let K, δ and ϵ_{1} be the constants given by Lemma 4.2. Given two points $\left(q_{i}, t_{i}\right), i=1,2$ in \mathcal{M}_{1} such that $d_{\mathcal{M}_{1}}\left(\left(q_{1}, t_{1}\right),\left(q_{2}, t_{2}\right)\right)<\delta$, let us set $j\left(q_{i}, t_{i}\right)=$
$\left(q_{i}, v_{i}, t_{i}\right), i=1,2$ and assume, for the sake of contradiction that the following inequality holds

$$
d_{T M \times \mathbb{T}}\left(\left(q_{1}, v_{1}, t_{1}\right),\left(q_{2}, v_{2}, t_{2}\right)\right) \geq K^{-1} d_{\mathcal{M}_{1}}\left(\left(q_{1}, t_{1}\right),\left(q_{2}, t_{2}\right)\right) .
$$

Let now $\gamma_{i}: \mathbb{R} \rightarrow M i=1,2$ be the two Euler-Lagrange extremals satisfying $\left(\gamma_{i}\left(t_{i}\right), \dot{\gamma}_{i}\left(t_{i}\right), t_{i}\right)=\left(q_{i}, v_{i}, t_{i}\right)$, and let $\sigma_{i}:\left[t_{i}-\epsilon, t_{i}+\epsilon\right] \rightarrow M, i=1,2$ be the curves given by Lemma 4.2. By Proposition 4.3 we know that γ_{i} are calibrated curves for \mathfrak{u}. Let us set

$$
\Delta \mathfrak{u}_{i}=\mathfrak{u}\left(\gamma_{i}\left(t_{i}+\epsilon\right), t_{i}+\epsilon\right)-\mathfrak{u}\left(\gamma_{i}\left(t_{i}-\epsilon\right), t_{i}-\epsilon\right), \quad i=1,2 .
$$

Since \mathfrak{u} is dominated by $L+c$, by Lemma 4.2 we get

$$
\begin{aligned}
\Delta \mathfrak{u}_{1}+\Delta \mathfrak{u}_{2} & \leq A_{L+c}\left(\sigma_{1}\right)+A_{L+c}\left(\sigma_{2}\right) \\
& <A_{L+c}\left(\left.\gamma_{1}\right|_{\left[t_{1}-\epsilon, t_{1}+\epsilon\right]}\right)+A_{L+c}\left(\left.\gamma_{2}\right|_{\left[t_{2}-\epsilon, t_{2}+\epsilon\right]}\right) \\
& =\Delta \mathfrak{u}_{1}+\Delta \mathfrak{u}_{2},
\end{aligned}
$$

which gives a contradiction. We have proved that j is K^{-1}-Lipschitz, hence $(p r \mid \mathcal{Y})^{-1}$ is Lipschitz too.
4.5. Proof of the corollaries. We prove the corollaries that were given in the introduction.

Proof or Corollary 1.1 With the hypothesis of the corollary, we obtain that \mathcal{L} is a graph. We then use Theorem 6.4.1 of [12], which is a corollary of the convergence of the Lax-Oleinik semi-group in weak KAM theory, to conclude.

Proof or Corollary 1.2 We proved that the \mathcal{H} orbit of every point in \mathcal{Y} is (u, L, c)-calibrated. This implies (see for example [3]) that every orbit is minimizing.

References

1. M.-C. Arnaud, On a Theorem due to Birkhoff, Geom. Funct. Anal. Vol. 20, 1307-1316 (2010).
2. M.-C. Arnaud, When are the invariant submanifolds of symplectic dynamics Lagrangian? Discrete Contin. Dyn. Syst. 34, no. 5, 18111827 (2014)
3. P. Bernard. The dynamics of pseudographs in convex Hamiltonian systems. J. Amer. Math. Soc. 21 (2008), no. 3, 615-669.
4. P. Bernard, J. O. Santos A geometric definition of the Mañé-Mather set and a Theorem of Marie-Claude Arnaud. Math. Proc. Cambridge Philos. Soc. 152 (2012), no. 1, 167-178.
5. M. Bialy \& L. Polterovich. Hamiltonian diffeomorphisms and Lagrangian distributions, Geom. Funct. Anal. 2, 173-210 (1992)
6. M. Bialy \& L. Polterovich. Hamiltonian systems, Lagrangian tori and Birkhoff's theorem. Math. Ann. 292 (1992), no. 4, 619-627.
7. G. D. Birkhoff. Surface transformations and their dynamical application. Acta Math. 43 (1920) 1-119.
8. M. Brunella, On a theorem of Sikorav, Enseign. Math. (2) 37 (1991), no. 1-2, 83-87
9. M. Chaperon, Lois de conservation et géométrie symplectique, C.R. Acad. Sci. 312 (1991), 345-348.
10. F. Clarke, Optimization and Nonsmooth Analysis, Canadian Mathematical Society Series of Monographs and Avanced Texts, John Wiley \& Sons, New York, 1983.
11. G. Contreras, \& R. Iturriaga, \& H. Sánchez-Morgado, Weak Solutions of the Hamilton-Jacobi equation for time periodic Lagrangians, preprint, (2002).
12. A. Fathi, Weak KAM theorems in Lagrangian dynamics, book in preparation.
13. A. Fathi, \& E. Maderna, Weak KAM theorem on non compact manifolds, NoDEA Nonlinear Differential Equations Appl. 14 (2007), no. 1-2, 1-27.
14. C. Golé, Symplectic twist maps. Global variational techniques. Advanced Series in Nonlinear Dynamics, 18. World Scientific Publishing Co., Inc., River Edge, NJ, 2001. xviii+305 pp
15. M. Herman, Sur les courbes invariantes par les difféomorphismes de l'anneau, Vol. 1, Asterisque 103-104 (1983).
16. M. Herman, Inégalités "a priori" pour des tores lagrangiens invariants par des difféomorphismes symplectiques. , vol. I, Inst. Hautes Études Sci. Publ. Math. No. 70, 47-101 (1989)
17. M. Herman, Dynamics connected with indefinite normal torsion. Twist mappings and their applications, 153182, IMA Vol. Math. Appl., 44, Springer, New York, 1992
18. W. S. Massey, A basic course in algebraic topology, Graduate Texts in Mathematics, 127 Springer-Verlag, New York, (1991). xvi+428 pp
19. J. Mather, Action minimizing measures for positive definite Lagangian systems., Math. Z. 207, 169-207 (1991).
20. J. Moser, Proof of a generalized form of a fixed point theorem due to G. D. Birkhoff, Geometry and topology (Proc. III Latin Amer. School of Math., Inst. Mat. Pura Aplicada CNPq, Rio de Janeiro, 1976), pp. 464-494. Lecture Notes in Math., Vol. 597, Springer, Berlin, 1977.
21. G. P. Paternain, L. Polterovich, K. F. Siburg, Boundary rigidity for Lagrangian submanifolds, non-removable intersections, and Aubry-Mather theory, Dedicated to Vladimir I. Arnold on the occasion of his 65 th birthday. Mosc. Math. J. 3 (2003), no. 2, 593-619
22. K. F. Siburg, The principle of least action in geometry and dynamics, Lecture Notes in Mathematics, 1844 (2004) Springer-Verlag, Berlin, xii+128 pp.
23. J.-C. Sikorav, Problèmes d'intersections et de points fixes en géométrie hamiltonienne, Comment. Math. Helv. 62 (1987), no. 1, 62-73.
24. D. Théret, A complete proof of Viterbo's uniqueness theorem on generating functions, Topology Appl. 96 (1999), no. 3, 249-266.
25. C. Viterbo, Symplectic topology as the geometry of generating functions, Math. Ann. 292 (1992), no. 4, 685-710.

E-mail address: Marie-Claude.Arnaud@univ-avignon.fr
E-mail address: Andrea.Venturelli@univ-avignon.fr

[^0]: 2010 Mathematics Subject Classification. 37J50, 70H20, 53D12.
 Key words and phrases. Lagrangian Dynamics, Weak KAM Theory, Lagrangian submanifolds, generating functions.
 \dagger Avignon Université, Laboratoire de Mathématiques d'Avignon (EA 2151)
 F-84018 Avignon .
 \ddagger member of the Institut universitaire de France.
 supported by ANR-12-BLAN-WKBHJ.

[^1]: ${ }^{1}$ This will be defined in section 1.1.

