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CONFORMALLY COVARIANT PARAMETERIZATIONS

FOR RELATIVISTIC INITIAL DATA

ERWANN DELAY

Abstract. We revisit the Lichnerowicz-York method, and an al-
ternative method of York, in order to obtain some conformally
covariant systems. This type of parameterization is certainly more
natural for non constant mean curvature initial data.
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1. Introduction

On a smooth manifoldM of dimension n, given a riemannian metric
g, we denote by Rg its scalar curvature and ∇ its Levi-Civita con-
nection. If h is a symmetric covariant two tensor field, we define its
divergence, as the 1-form given by

(divg h)i = −∇khki.

The vacuum initial data for the relativistic Einstein equations are given
by a riemannian metric ĝ and a symmetric two tensor field K̂, satisfying
the constraint equations

(C)

{
Rĝ − |K̂|2ĝ + (Trĝ K̂)2 = 0

divĝ K̂ + d(Trĝ K̂) = 0
.

This system is highly under-determined because it contains (n + 1)
equations for n(n + 1) unknowns . It is natural to fix some of the un-
knowns, and to look for the (n+ 1) remaining ones.

In the usual conformal parameterization, appears the 1944 Lich-
nerowicz equation [4] together with the 1973 York decomposition [9].
It was actively studied by many authors, on compact or non compact
manifolds (asymptotic to some models : euclidean, hyperbolic, cylin-
drical,...).

For a glimpse at the subject, we just mention the recent paper [8]
and its references. Otherwise, too many articles should be quoted.

Date: June 2, 2016.
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2 E. DELAY

We only recall that after the approaches realized for constant mean
curvature τ , like [3] for instance, several attempts were made in order
to allow for variable mean curvature.

The classical method (historically method A, see [1] section 4.1 for
instance, also called conformal TT method [2]) starts with a given
metric g, together with a trace free and divergence free symmetric two
tensor σ (a TT-tensor), and a function τ . One looks for the solutions
of (C) of the form

ĝ = φN−2g , K̂ =
τ

n
ĝ + φ−2(σ + L̊gW ), (P )

where N = 2n
n−2

, and the unknowns are a function φ > 0 and a one
form W and where

(L̊gW )ij = ∇iWj +∇jWi −
2

n
∇kWk gij.

Setting
w = |σ + L̊gW |g,

we infer from (C) and (P ) the coupled system

(S)

{
Pg,wφ := 4(n−1)

n−2
∇∗∇φ+Rgφ− w2φ−N−1 = 1−n

n
τ 2φN−1 (L)

divg L̊gW = 1−n
n
φNdτ (V )

The Lichnerowicz equation (L) has a covariant conformal property (see
section 7.2 for a precise definition). Indeed, if φ is a solution of (L),
and ϕ is any positive function, we may define

g̃ = ϕN−2g , w̃ = ϕ−Nw , φ̃ = ϕ−1φ.

Doing so, we find

Pg̃,w̃φ̃ = ϕ1−NPg,wφ =
1− n

n
τ 2φ̃N−1.

In contrast to (L), the vectorial equation (V ) does not possess such
a property. Moreover, the conformal transformation of w used here for
(L) does not correspond to a natural transformation of σ and W .

However we note that the operators appearing in (V ) are separately
conformally covariant. Specifically

divg̃ h = ϕ−N divg(ϕ
2h) , L̊g̃X = ϕN−2L̊g(ϕ

2−NX). (C)

But the vector Laplacian div ◦L̊ is not so.

Finally, we recall the York decomposition [9] valid for instance if M

is compact and g has no conformal Killing fields (i.e. ker L̊g is trivial).
Any covariant symmetric trace free two tensor field h splits in a unique
way as

h = σ + L̊gW, (Y )

where σ is a TT-tensor and W a 1-form.
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We define in the section 2 a parameterization (method B of York)
derived from the York decomposition relative to ĝ instead of g. This
parameterization gives rise to a conformally covariant system.

The latter one leads to a new vectorial laplacian, which is self adjoint
for a weighted measure. This laplacian will be studied in section 3.

In section 4 we further discuss some aspects of the method B. Amaz-
ingly, this method seems widely ignored in the literature neither pure
nor numerical (see however [2]).

In section 5 we propose further parameterizations (including confor-
mally covariant ones) and compare them.

Finally, in section 6, we give some comments related to the continu-
ation of this work.

Acknowledgements: I am grateful to Ph. Delanoë for his multiples
comments and to J. Isenberg for pointing out to me that J. York [9]
had already discovered the method B, as independently proposed in the
earlier version of this paper. I also thank P. Chruściel and R. Gicquaud
for their comments.

2. A first conformally covariant parameterization

We recall here the method B of York (see section 4.1 of [1] or the
original paper [9] page 461), also called physical TT method (see [2] for
instance). Getting back to (C) and now using the York decomposition
relative to ĝ, namely

K̂ −
τ

n
ĝ = σ̂ + L̊ĝŴ ,

we find that (C) is equivalent to

(C ′)





Rĝ − |σ̂ + L̊ĝŴ |2ĝ =
1− n

n
τ 2

divĝ L̊ĝŴ =
1− n

n
dτ

divĝ σ̂ = 0

If we are looking for a solution in a conformal class ĝ = φN−2g, from
(C), it is natural to introduce σ̂ = φ−2σ, where σ is a TT-tensor.
The third equation is then automatically satisfied. Still using (C), and
expressing its second equation in terms of g = φ2−N ĝ, we are prompted

to set Ŵ := φN−2W .
Sticking to the same fixed g, σ, τ , we can thus parametrize the solu-

tions of the constraint (C) by

(P ′)

{
ĝ = φN−2g ,

K̂ = τ
n
ĝ + φ−2(σ + φN L̊gW )

With this parameterization in (C), setting

ω = ω(σ, φ,W, g) := |σ + φN L̊gW |g,
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we obtain the new system

(S ′)

{
Pg,ωφ = 1−n

n
τ 2φN−1 (L′)

∆g,φW := φ−N divg(φ
N L̊gW ) = 1−n

n
dτ. (V ′)

We now make the conformal changes:

g̃ = ϕN−2g , φ̃ = ϕ−1φ , σ̃ = ϕ−2σ , W̃ = ϕN−2W.

Note that by (C), the tensor σ̃ is still TT for g̃. Now, we further have :

ω̃ := ω(σ̃, φ̃, W̃ , g̃) = ϕ−Nω

so the scalar equation (L′) behaves like (L) as explained above. As for
the corresponding vectorial equation (V ′), we now have :

∆g̃,φ̃W̃ = ∆g,φW,

due to (C). In other words, this equation is now conformally covariant.

Remarks :
• When ϕ = φ we find ∆g,φW = ∆ĝ,1Ŵ .

• Since ω depends on φ, let us give the more explicit form of (L′),
namely :

4(n− 1)

n− 2
∇∗∇φ+Rgφ− |σ|2φ−N−1 − 2〈σ, L̊gW 〉φ−1 − |L̊gW |2gφ

N−1

=
1− n

n
τ 2φN−1. (L′)

• Let us consider the operator given by

Pg




φ

W

σ


 :=




φ1−NPg,ωφ

∆g,φW

φ−N divg σ


 .

This operator is conformally covariant :

Pg̃




φ̃

W̃

σ̃


 = Pg




φ

W

σ


 .

The system (S ′) (modulo the third equation added) simply reads :

Pg




φ

W

σ


 =

1− n

n




τ 2

dτ

0


 .

• There has been other attempts to modify the Lichnerowicz-York
method, like the “Conformal Thin-Sandwich”(see for instance [8] for a
comparison, see also [7]). In particular, there exists already parame-
terizations where

K̂ =
τ

n
ĝ + φ−2(σ + f L̊gW )
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but so far the function f would usually be given and would not depend
on φ, whereas f = φN is the simplest one to make the system confor-
mally covariant. We will see in section 5 further possibilities, including
conformally covariant ones.

• More generally, for each conformally covariant differential linear op-
erator of order k, we would interpose a function between the operator
and its formal adjoint, in order to produce an operator of order 2k,
conformally covariant positive and self adjoint for a weighted measure.

3. The vectorial equation

Let us consider the vectorial laplacian, of Witten type, obtained
previously :

∆g,φW = φ−N divg φ
N L̊gW = divg L̊gW −NL̊gW (∇ lnφ, .).

We choose to work here on a compact manifold. Since 2 divg is the

formal L2(dµg) adjoint of L̊g, we have
∫

M

〈∆g,φW,V 〉gφ
Ndµg =

1

2

∫

M

〈L̊gW, L̊gV 〉gφ
Ndµg

Our Laplacian is then L2(φNdµg) self adjoint and its kernel is reduced
to conformal killing 1-forms.

We want to solve for W the equation

∆g,φW =
1− n

n
dτ , (V ′)

with g, φ, τ smooth for simplicity (we could also choose φ ∈ L∞). By
the Fredholm alternative, a necessary and sufficient condition for solv-
ing (V ′) is orthogonality of the right-hand side dτ to the kernel:

∫

M

〈X, dτ〉gφ
Ndµg = 0, (⊥)

for all X in ker L̊g. Uniqueness of W occurs up to the addition of an

element of ker L̊g. Note that if X̃ = ϕN−2X ,

〈X̃, Y 〉g̃φ̃
Ndµg̃ = 〈X, Y 〉gφ

Ndµg.

Hence the condition (⊥) is conformally covariant due to (C). It can be
written ∫

M

τd∗g(φ
NX)dµg = 0. (⊥∗)

Of course, if the metric g does not possess some conformal Killing field,
the equation (V ′) always has a unique solution whatever the (positive)
function φ is.



6 E. DELAY

If K = ker L̊ is not trivial, we may define Πg,φ the orthogonal pro-
jection on K for the weighted scalar product :

(X, Y )g,φ =

∫

M

〈X, Y 〉gφ
Ndµg.

We can then solve

∆g,φW =
1− n

n
(Id−Πg,φ)dτ, (V ′

Π)

W being unique if it is chosen orthogonal to K (for the weighted scalar
product).

Remark : By analogy with the Witten laplacian, we could consider

the similar laplacian φ−N
2 div(φ

N
2 φ

N
2 L̊φ−N

2 ).

4. Further versions of the method B

We develop some variants of the method B.

4.1. A linear version. Let us linearise the operator Pg introduced in
section 2. We denote by (ψ, V, h) the variations of (φ,W, σ), υ the vari-
ation of τ , we keep here the metric g fixed. Because of the conformally
covariant properties of Pg, the computation of the linearisation can be
done at φ = 1. We find

DP(1,W,σ)
g




ψ

V

h


 =




Pg,σ,W −2〈K̊, L̊.〉, −2〈K̊, .〉

−NL̊gW (∇g., .) divg L̊g 0
0 0 divg







ψ

V

h




where

K̊ = σ + L̊gW,

and

Pg,σ,W =
4

n− 2

(
(n− 1)∇∗∇− Rg + n|σ|2 + n〈σ, L̊gW 〉

)

=
4

n− 2

(
(n− 1)∇∗∇− Rg +

n

2

(
|σ|2 + |K̊|2 − |L̊gW |2

))
.

The latter operator, evaluated at a solution of (S ′), can be written
using the Yamabe laplacian, because

Rg = |K̊|2 +
1− n

n
τ 2.

The linear version of the system becomes

DP(1,W,σ)
g




ψ

V

h


 =

1− n

n




2τυ
dυ

0


 .

If σ is fixed, it forces h = 0, if not, the global form of the system
suggests to look at other possibilities.
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4.2. Another conformally covariant parameterization. In the
parameterization of the section 2, we fixed a TT -tensor σ and defined
σ̂ = φ−2σ in order to verify immediately the last equation of the sys-
tem (C ′). Without this particular choice , (C ′) has 2n + 1 equations.
Alternatively, we can fix instead a trace free tensor σ̊ and look for the
unique TT-tensor σ̂ for ĝ, such that

φ−2σ̊ = σ̂ − L̊ĝŶ .

Doing so we should define

σ̂ = φ−2(̊σ + φN L̊gY ), ̟ = |̊σ + φN L̊gY + φN L̊gW |.

It yields the conformally covariant system

(S ′′)





φ1−NPg,̟φ = 1−n
n
τ 2 (L′′)

∆g,φW = 1−n
n
dτ (V ′′

1 )

∆g,φY = −φ−N divg σ̊. (V ′′
2 )

The matching linear operator has the form :



φ1−NPg,̟φ

∆g,φ

∆g,φ




′

=




Pg,̊σ,W,Y −2〈K̊, L̊.〉, −2〈K̊, L̊.〉

−NL̊gW (∇g., .) ∆g,1 0

−NL̊gY (∇g., .) 0 ∆g,1




where
K̊ = σ̊ + L̊gY + L̊gW,

and

Pg,̊σ,W,Y =
4

n− 2

(
(n− 1)∇∗∇−Rg + n|̊σ|2 + n〈̊σ, L̊g(W + Y )〉

)

=
4

n− 2

(
(n− 1)∇∗∇−Rg +

n

2

(
|̊σ|2 + |K̊|2 − |L̊g(W + Y )|2

))
.

This operator evaluated at a solution of (S ′′), can again be written with
the Yamabe laplacian, because

Rg = |K̊|2 +
1− n

n
τ 2.

Getting back to (S ′′), we realize that X = Y +W is the only important
variable and a natural system to solve is

(S ′′′)

{
φ1−NPg,̟φ = 1−n

n
τ 2 (L′′′)

∆g,φX = 1−n
n
dτ − φ−N divg σ̊ (V ′′′)

where the function τ and the trace free symmetric two tensor σ̊ are
given. The parameterization for the solutions of (C) will then be

ĝ = φN−2g , K̂ = φ−2(̊σ + φN L̊gX) . (P ′′′)

Remark : We recover the system (S ′) if we choose σ̊ divergence free.
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5. Further parameterizations and matching

Let us propose a general parameterization, from which the confor-
mal methods A and B, and the conformal thin sandwich method are
particular cases.

Let g̃ = ϕN−2g be another conformal metric. The York decomposi-
tion (Y ), related to g̃, of the tensor

φ2ϕ−2(K̂ −
τ

n
ĝ),

leads to the parameterization

(Pϕ)

{
ĝ = φN−2g ,

K̂ = τ
n
ĝ + φ−2(σ + ϕN L̊gW ).

Using this parameterization in (C), and setting

ωϕ = ω(σ, ϕ,W, g) := |σ + ϕN L̊gW |g,

we obtain the new system

(Sϕ)

{
Pg,ωϕ

φ = 1−n
n
τ 2φN−1 (Lϕ)

φ−N divg(ϕ
N L̊gW ) = 1−n

n
dτ (Vϕ).

If g has no conformal Killing field, we infer from (Y) that, for each one
form W and each positive function ϕ, there exists a unique 1-form V

and a TT-tensor σ′ such that

σ′ + L̊gV = ϕN L̊gW.

It follows that the solutions of the systems (Sϕ) match, but for different
σ.

Explicitly, (Lϕ) reads in the following way

4(n− 1)

n− 2
∇∗∇φ+Rgφ− |σ|2φ−N−1 − 2〈σ, L̊gW 〉ϕNφ−N−1

−|L̊gW |2gϕ
2Nφ−N−1 =

1− n

n
τ 2φN−1 (Lϕ).

Here, it is important to note that we could let ϕ depend on φ and
possibly on some other parameters in the (then abusively denoted)
system (Pϕ).

The conformal method A consists in choosing ϕ = 1, the conformal
method B arises when ϕ = φ, and for ϕ a fixed positive function, we
obtain the conformal thin sandwich method.

But many other choices can be made. For instance ϕN = φNF 2(|L̊W |g),
for a given function F , will provide again a conformally covariant sys-
tem of order of derivation 2. When possible, the parameterizations

ϕN = c|τ |φN or ϕN = c
|τ |

|L̊W |g
φN seem also to yield interesting systems.
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6. Comments and prospects

We give here some comments and hints at a future study of confor-
mally covariant systems, starting with the case of compact manifolds.
• Other York decompositions : Conformally covariant or not, in
section 5, some other choices of ϕ = ϕ(φ,W, σ, τ, t, f, ...) in (Sϕ) may
be judicious.

• Constraints with right-hand side : The parameterizations works
for some other stress energy tensors like a scalar field for instance.

• Matching of parameterizations : Due to the matching between
the differents parameterizations, already existing solutions of (S) pro-
vide solutions of (S ′), using a change of parameters. If we view the
solutions set of (C) as a manifold, we expect the conformal method to
give a local chart, whereas a conformally covariant method would give
a larger chart and allow for a larger choice of (τ, σ) (or (τ, σ̊) for (S ′′′)).

• Variational study : The systems we obtained are not triangular
like for the classical conformal method. However, a variational study
seems well suited.

• fixed point : As in many previous studies of (S), a classical method
can be used to solve a system like (S ′), namely by considering a map
T : E → E, with an appropriate function space E, defined as fol-
lows. If there is no conformal Killing fields, given ψ in E, we con-
sider the solution W of (V’) with φ replaced by ψ. We then define
ω := ω(σ, ψ,W, g) and solve (L′) (see for instance [6]). The solution
defines the map T (ψ) := φ. Now, we look for a fixed point φ > 0 of T .
If necessary, here, one could insert some φ fitting some ψ in the choice
of ω (and/or in (L′)) then solve another scalar equation, similar to (L′)
on φ, for example linear with respect to φ. If there exists a conformal
Killing field, we can replace in the above process, the solution of (V ′)
by that of (V ′

Π). The projection disappears in the limit under appro-
priate conditions.

• The limit equation : In [5] a (family of) limit equation(s) is proposed
for (S). If the limit equation admits only the zero solution, it has the
striking property to guarantee the existence of solutions of (S). We
will have to check if the limit equation measures the asymmetry of the
usual parameterization (method A) or if a similar equation exists for
the system (S ′′′) (method B). Depending of the choice of ϕ in section
5, an associated limit equation may also appear.
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7. Appendix

7.1. Vector laplacian.

divg L̊g = ∇∗
g∇g − Ricg +

n−2
2
dd∗g

= ∆Hodge − 2Ricg +
n− 2

2
dd∗g

= d∗gd+
n

2
dd∗g − 2Ricg.

7.2. Conformal covariance. Let us consider three products of tensor
bundles over M ,

E = E1 × ...×Ek, F = F1 × ...× Fl, G = G1 × ...×Gm,

and a differential operator acting on the sections :

Pg : Γ(E) −→ Γ(F ),

with coefficients determined by g = (g1, ..., gm) ∈ G. We will say
that Pg is conformally covariant if there exist a = (a1, .., ak) ∈ R

k,
b = (b1, .., bl) ∈ R

l and c = (c1, .., cm) ∈ R
m such that for each smooth

section e of E, and every smooth function ϕ on M , we have

ϕb ⊙ Pϕc⊙g(ϕ
a ⊙ e) = Pg(e),

where

ϕa ⊙ e = (ϕa1e1, ..., ϕ
akek).

A differential system will be said conformally covariant if it can be
written in the form Pg(e) = f , for a conformally covariant operator Pg.
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