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DETECTING AND ESTIMATING INTENSITY OF JUMPS FOR

DISCRETELY OBSERVED ARMAD(1, 1) PROCESSES

DELPHINE BLANKE AND DENIS BOSQ

Abstract. We consider n equidistributed random functions, defined on [0,1],
and admitting fixed or random jumps, the context being D[0, 1]-valued ARMA
(1,1) processes. We begin with properties of ARMAD(1, 1) processes. Next,
different scenarios are considered: fixed instants with a given but unknown
probability of jumps (the deterministic case), random instants with ordered
intensities (the random case), and random instants with non ordered intensities
(the completely random case). By using discrete data and for each scenario,
we identify the instants of jumps, whose number is either random or fixed, and
then estimate their intensity.

1. Introduction

1.1. There is an abundant literature concerning functional data analysis (FDA)
and prediction of stochastic processes in infinite dimensional spaces. In particular,
the books by Ramsay and Silverman (2005); Ferraty and Vieu (2006); Ferraty
and Romain (2011); Horváth and Kokoszka (2012) and the recent book edited
by Bongiorno et al. (2014) contain interesting theoretical and practical results.
See also Bosq (2000); Bosq and Blanke (2007). In general, X takes its value in
L2 = L2([0, h]) or in C = C([0, h]), but, in some situations, one may consider that
a jump does exist if there is a large peak: see, for example the annual sediment
in Bongiorno et al. (2014, p.8). Thus, it is perhaps more natural to consider the
space D = D([0, h]) which is càdlàg and equipped with the Skorohod metric d◦

(see Billingsley, 1999, p.125) : with that metric, D becomes a separable complete
metric space. Note that this metric is not easy to compute. In this paper, we
consider càdlàg processes from a functional point of view: by this way, we work in
the context of FDA with jumps.
1.2. Works dedicated to jumps in stochastic processes appear very often: actually,
there are more than 1200 papers concerning them. Thus, we may only give recent
and limited references. For example, processes with jumps are widely used in
finance: we may refer to Cont and Tankov (2004); Tankov and Voltchkova (2009);
Jeanblanc et al. (2009, part 2), El Karoui and Gobet (2012, ch.10); Privault (2014),
... ; but applications can also be found in fields as varied as the environment,
medicine, reliability, ... see e.g. Guy et al. (2015); Barndorff-Nielsen et al. (2014);
Chiquet and Limnios (2013); Borisov (2004), ... Many mathematical models have
been proposed and studied (Djebali et al., 2011; Koroliuk and Limnios, 2009; Guyon
et al., 2004; de Saporta and Yao, 2005, ...), and statistical estimation appears e.g.
in Comte et al. (2014); Clément et al. (2014); Duval (2013),... Note that the pioneer
paper concerning jumps appears in Paul Lévy (1956). Other references of interest
will appear below.
1.3. Now, here and in the books quoted in Section 1.1, our purpose is somewhat
different since we want to observe a process over a sequence of time intervals. More
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2 D. BLANKE AND D. BOSQ

precisely, let (ξt, t ∈ R) be a real measurable continuous time process. We put

Xn(t) = ξ(n−1)h+t, 0 ≤ t ≤ h, n ∈ Z (1.1)

where h > 0 is a time interval. The process may contain some jumps and we envis-
age to detect them and to estimate intensity of jumps, given the data X1, . . . , Xn.

Another motivation should be prediction of Xn+1 over the time interval [nh, (n+
1)h]. One way to predict Xn+1 would be to treat continuous time and jumps
separately (see Shimizu (2010); Aı̈t-Sahalia and Jacod (2008); Shimizu and Yoshida
(2006), ...). As an example, consider the functional autoregressive process of order
1 (ARD(1)):

Xn+1(t) = ρ(Xn)(t) + Zn+1(t), 0 ≤ t ≤ h, n ∈ Z,

where ρ is a continuous linear operator with respect to the sup-norm. Then,
in order to separate the continuous part from the jump’s part, we may suppose
that ρ(D) ⊂ C. That condition is satisfied by the Ornstein-Uhlenbeck process
driven by a Levy process, cf Example 2.1. Another classical example is given by:

ρr(x)(t) =
∫ h

0 r(s, t)x(s) ds, 0 ≤ t ≤ h, x ∈ D where r satisfies Example 2.2, see
also Crambes and Mas (2013); Horváth and Kokoszka (2012),... Thus, ρr(x) ∈ C.
Finally, the condition ρ(D) ⊂ C seems quite standard and characterizes the un-
predictability of jumps by confining them in the innovation process. Now, the best
probabilistic predictor of Xn+1 is ρ(Xn) and it can be approximated by using an
estimator of ρ. An exponential rate is obtained in Bosq (2000, p.222-235), when
the detector and intensity of jumps appear in the current paper. One direction
(currently under development) will consist in combining the two approaches to
improve the prediction.
1.4. A more general model should be the ARMAD(p, p) process defined by

Xn − ρ1(Xn−1)− · · · − ρp(Xn−p) = Zn − ρ′1(Zn−1)− · · · − ρ′p(Zn−p), n ∈ Z,

where Xn and Zn are D-valued and where ρj , ρ
′
j , j, j

′ = 1, . . . , p are continuous
linear operators with respect to the sup-norm. In order to study this process, it
should be possible to work in the space D([0, h]p) (cf Kurchenko, 2001). Note that
if ρj , ρ

′
j , j, j

′ = 1, . . . , p are C-valued, Xn and Zn have again the same jumps.
Now, since this model is difficult to handle, and in order to simplify the exposi-

tion, we take p = 1 and write

Xn − ρ(Xn−1) = Zn − ρ′(Zn−1), n ∈ Z,

note that, Zn−1 may be replaced with an exogenous variable (see for example Goia,
2012).
1.5. We now give some practical examples of jumps over time intervals :

- a patient’s electrocardiogram at each minute (Nason, 2013; Preston et al., 2009;
Marion and Pumo, 2004);

- the temperature day by day (Torgovitski, 2015);
- El Niño southern oscillation (ENSO): a prediction over one year shows a jump
in may (Besse et al., 2000);

- wave amplitude (Tanushev, 2008);
- pollution day by day (Horváth and Kokoszka, 2012);
- credit cards transaction and its prediction (Horváth and Kokoszka, 2012);
- another example is electricity consumption: it admits a jump early in the
morning and in the evening (see Antoniadis et al., 2012; El Hajj, 2013, 2014);

- administration of a drug treatment : each day produces a shock at time inter-
vals (see Kannan and Lakshmikantham, 2002);

- astronomical time series with 100000 data (see Preston et al., 2009);
- earthquake and explosion: Nason (2013);
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- predicting ozone (Ignaccolo et al., 2013; Dabo-Niang and Laksaci, 2012; Car-
dot et al., 2007; Damon and Guillas, 2005);

- predicting the euro-dollar rate (Kargin and Onatski, 2008);
- finally, the mistral gust during one day or one week is one of our objective
for prediction: 240000 data are at our disposal. Predicting the greatest jump
should be of interest, see Jacq et al. (2005).

1.6. In our considered framework, preliminary results were first obtained by Bosq
(2015) and, the case of observations in continuous time also appears in Blanke
and Bosq (2014). Here, we use high frequency data (HFD); this scheme appears
in many situations (see Bollerslev and Todorov, 2011; Comte and Genon-Catalot,
2010; Aı̈t-Sahalia and Jacod, 2009, among others). Concerning prediction with
HFD, practical results will be studied later with combined predictors. In particular,
we will apply the results to the mistral gusts with big data.
1.7. In Section 2, we introduce the ARMAD(1, 1) model which is connected with
FDA:

Xn −m− ρ(Xn−1 −m) = Zn − ρ′(Zn−1), n ∈ Z (1.2)

where m is a trend and ρ(D) ⊂ C, ρ′(D) ⊂ C so that (Xn) and (Zn) have the same
jumps. We give several properties of (1.2) as well as examples. In the following,
we study various types of jumps.

In Section 3, we consider data of the form Xi(
ℓ
qn
), ℓ = 0, . . . , qn, qn ≥ 1, i =

1, . . . , n; where ℓ and qn are integers and (X1, . . . , Xn) are D-valued realizations
of (1.2). We consider the case of fixed but unknown instants of jumps t1, . . . , tk,
where tj , denotes the j-th jump, j = 1, . . . , k and k is unknown too. In this part,
each jump may occur randomly at time tj with unknown probability pj ∈]0, 1],
j = 1, . . . , k, so the number of jumps is a random variable depending on i = 1, . . . , n.
We propose and study detectors of jumps and next, we derive estimators of each
intensity of jumps by estimating pj and plug-in the detectors.

Section 4 is devoted to the case of random instants of jumps: 0 < T1 < T2 <
· · · < TKi

< 1 with Ki a N-valued random variable. We consider the case where
intensities of jumps have the same ordering in each Xi. To estimate these intensi-
ties, we detect the k, k ≥ 1, first jumps by considering separately each Xi. Here,
as Ki is random, the difficulty is to select the sample paths with at least k jumps.
In this section, we also derive results for estimating the maximal jump.

In Section 5, we consider a final scheme, the completely random one where the
ordering of jumps varies from each sample Xi. Similarly as in the previous sec-
tion, we detect the jumps with each trajectories considered separately. To estimate
their intensities, their random ordering makes the problem intricate but we pro-
pose a method in the case where the number of jumps is fixed. It is based on a
trick, derived from Viète’s formula, that allows us to provide estimations (based
on numerical approximation for a number of jumps greater than 4).

2. ARMAD(1, 1) processes

2.1. Model and properties. In order to study the jumps of the real continuous
time process X = (Xt, 0 ≤ t ≤ h), h > 0, we consider the space D = D([0, h]) of
càdlàg real functions defined over [0, h]. The sup-norm ‖x‖ = sup0≤t≤h |x(t)| entails
non-separability of D. Thus, it is more convenient to use the modified Skorohod
metric d◦ (cf Billingsley, 1999, p.125) ; with that metric, D becomes a complete
separable space.

The process X being defined on the probability space (Ω,a, P ), we suppose that
it is a − D measurable where D is the σ-algebra generated by d◦. Concerning
measurability we refer to Janson and Kaijser (2012).



4 D. BLANKE AND D. BOSQ

Now, if ρ is a bounded linear operator, i.e. ‖ρ‖L = supx∈D,‖x‖≤h ‖ρ(x)‖ < ∞,

then, it is D-D measurable. Also if there is a jump at t0, x 7→ x(t0) − x(t−0 ) is a
continuous linear form on (D, ‖·‖), see Pestman (1995).

We consider the ARMAD(1,1) process defined as

Xn −m− ρ(Xn−1 −m) = Zn − ρ′(Zn−1), n ∈ Z, (2.1)

where ρ and ρ′ are bounded linear operators, m = E (Xn), and (Zn) is a strong

white noise i.e. the sequence (Zn) is i.i.d., and such that E ‖Zn‖
2
<∞, E (Zn) = 0.

Note also the presence of the trend m.
In order to show existence of the ARMAD process we make the following as-

sumption, weaker than those considered in Blanke and Bosq (2014):

Assumption 2.1 (A2.1). ∃ j0 ≥ 1 :
∥∥ρj0

∥∥
L
< 1 and ∃ j1 ≥ 1 :

∥∥ρ′j1
∥∥
L
< 1.

Lemma 2.1. If Assumption 2.1 holds, we have

Xn −m =L2
D

∞∑

j=0

ρj
(
Zn−j − ρ′(Zn−1−j)

)
, n ∈ Z, (2.2)

so the process (Xn −m, n ∈ Z) is stationary and (Zn, n ∈ Z) is the innovation of
(Xn, n ∈ Z).

Proof. To simplify the exposition, let us assume that m = 0. We may write Yn =
Zn−ρ

′(Zn−1), n ∈ Z then, (Yn) is an equidistributed sequence and ‖Yn‖ ≤ ‖Zn‖+
‖ρ′‖L ‖Zn−1‖, thus

E ‖Yn‖
2
≤ 2E ‖Zn‖

2
+ 2 ‖ρ′‖

2
L E ‖Zn−1‖

2
≤ 2(1 + ‖ρ′‖

2
L)E ‖Z0‖

2
<∞.

Now, we study

E

∥∥∥
∑

j≥k+1

ρj(Yn−j)
∥∥∥
2

≤
∑

j,j′≥k+1

‖ρ‖
j
L ‖ρ‖

j′

L E (‖Yn−j‖ ‖Yn−j′‖) ≤ E (‖Y0‖
2
)(

∑

j≥k+1

‖ρ‖
j
L)

2

and A2.1 implies
∑

j≥k+1 ‖ρ‖
j
L −−−−→

k→∞
0 which gives (2.2). Finally, the condition

∃ j1 ≥ 1 :
∥∥ρ′j1

∥∥
L
< 1 gives invertibility and consequently, (Zn) is the innovation

of (Xn). �

We consider the following assumption:

Assumption 2.2 (A2.2). ρ(D) ⊂ C, ρ′(D) ⊂ C; also, m ∈ C.

From (2.1) and A2.2, one obtains for each time of jump t0 (fixed or random)

∆n(t0) := Xn(t0)−Xn(t
−
0 ) = Zn(t0)− Zn(t

−
0 ), n ∈ Z

which shows that Xn and Zn have the same jumps and that
(
∆n(t0)

)
is i.i.d..

This assumption is reasonable since we have the following examples. Here, we may
suppose that m = 0 in order to simplify the exposition.

Example 2.1. Consider the Ornstein-Uhlenbeck driven by a Levy process given by:

ξt =

∫ t

−∞

e−θ(t−s) dL(s), t ∈ R (θ > 0)

(Brockwell et al., 2007; Cont and Tankov, 2004) and observed over a sequence
of time intervals. By using (1.1), we obtain an ARD(1) process that satisfies
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Xn+1(t) = ρθ(Xn)(t) + Zn+1(t), 0 ≤ t ≤ h, n ∈ Z, where the linear operator
ρθ has the shape ρθ(x)(t) = e−θtx(h), 0 ≤ t ≤ h, x ∈ D and with

Zn+1(t) =

∫ nh+t

nh

e−θ(nh+t−s) dL(s), 0 ≤ t ≤ h, n ∈ Z.

Then (Zn) is a strong white noise which may contain jumps, and since ρθ(x) ∈ C,
Xn and Zn have the same jumps.

Example 2.2. Set ρr(x)(t) =
∫ h

0
r(s, t)x(s) ds, 0 ≤ t ≤ h, x ∈ D, with

|r(s, t)− r(s, t′)| ≤ c |t− t′|
α
, 0 < α ≤ 1, 0 ≤ t, t′ ≤ h, c > 0,

then

|ρr(x)(t
′)− ρr(x)(t)| ≤ c |t− t′|

α
∫ h

0

|x(s)| ds −−−−−−→
|t−t′|→0

0

since x is bounded (see Billingsley, 1999, p.122). Then, a classical example of
ARMAD(1, 1) may be derived with Xn−ρr(Xn−1) = Zn−ρr′(Zn−1), n ∈ Z where
ρr′ satisfies a similar condition as ρr.

Example 2.3. Put Xn+1 = ρ(Xn) + Zn+1, n ∈ Z, where
∥∥ρj0

∥∥
L
< 1 for some

j0 ≥ 1. Then, it is possible to predict Xn+1 by considering continuous time and
jumps separately (see Shimizu, 2010; Aı̈t-Sahalia and Jacod, 2008; Shimizu and
Yoshida, 2006). Thus, we may suppose that ρ(D) ⊂ C.

2.2. Discrete data. Here the data are supposed to be discrete. They take the
form Xi(

ℓ
qn
), ℓ = 0, . . . , qn, qn ≥ 1, i = 1, . . . , n, where ℓ and qn are integers and

qn → ∞ as n → ∞. Now, in all the following we set h = 1 so if (ξt, t ∈ R) is the
real measurable continuous time process such that Xi(t) = ξi−1+t, one observes ξt
at nqn + 1 discrete times 0, q−1

n , . . . , n− q−1
n , n.

The instants of jumps associated with Xi are denoted by Ti1, . . . , TiKi
, they

can be fixed or random, as well as Ki, and they satisfy 0 < Ti1 < · · ·TiKi
< 1,

i = 1, . . . , n, almost surely (a.s.). Next, in order to avoid local irregularity we need
the following hypothesis:

Assumption 2.3 (A2.3). For 0 < α ≤ 1, (s, t) ∈ [0, 1]2:

(i) For x ∈ D, the functions ρ(x), ρ′(x) and m are Hölderian:

|ρ(x)(t) − ρ(x)(s)| ≤ a(x) |t− s|
α

(a > 0),

|ρ′(x)(t) − ρ′(x)(s)| ≤ b(x) |t− s|
α

(b > 0),

|m(t)−m(s)| ≤ cm |t− s|
α

(cm > 0).

(ii) For i.i.d. and integrable Mi: |Zi(t)− Zi(s)| ≤ Mi |t− s|
α
, (s, t) ∈ IiKi

where IiKi
= [0, Ti1[

2∪ · · · ∪ [TiKi
, 1[2, i = 1, . . . , n.

Note that Example 2.2 satisfies A2.3-(i) with a(x) = c
∫ 1

0 |x(s)| ds and that the
Ornstein-Uhlenbeck process or the fractional Brownian motion with jumps satisfies
condition A2.3-(ii).

In the following, we will use repeatedly the following result since it gives a mea-
sure of proximity between increments of X and Z.

Lemma 2.2. Under the condition A2.3-(i), we have:
∣∣∣ |Xi(s)−Xi(t)| − |Zi(s)− Zi(t)|

∣∣∣ ≤ (a(Xi−1) + b(Zi−1) + cm ‖I − ρ‖L) |s− t|
α
,

i = 1, . . . , n, (s, t) ∈ [0, 1]2.
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Proof. The relation (2.1) gives

|Xi(s)−Xi(t)| ≤ |Zi(s)− Zi(t)|+ |ρ(Xi−1)(s) − ρ(Xi−1)(t)|

+ |ρ′(Zi−1)(s)− ρ′(Zi−1)(t)|+ ‖I − ρ‖L |m(s)−m(t)| (2.3)

next, A2.3-(i) implies |Xi(s)−Xi(t)| ≤ |Zi(s)− Zi(t)| + (a(Xi−1) + b(Zi−1) +
cm ‖I − ρ‖L) |s− t|α, and reversing the inequality, one obtains the result. �

Note that if m is constant, it disappears in (2.3) and the term cm ‖I − ρ‖L is no
longer relevant. One may handle this case with the choice cm = 0. The next result
shows that, excluding the jump’s times, Xi satisfies also a Hölder type condition.
It is a direct consequence of Lemma 2.2 and condition A2.3-(ii).

Corollary 2.1. Under Assumption A2.3, we have

|Xi(s)−Xi(t)| ≤ (a(Xi−1) + b(Zi−1) +Mi + cm ‖I − ρ‖L) |s− t|α , i = 1, . . . , n

provided (s, t) ∈ IiK = [0, Ti1[
2∪ · · · ∪ [TiK , 1[

2, i = 1, . . . , n.

Now, throughout the paper, we will suppose that Assumptions A2.1, A2.2 and
A2.3 hold.

3. Fixed jumps with k unknown

3.1. Framework. In this part, we consider the model (2.1). The (Zi) are i.i.d.
functional random variables such that each Zi, i = 1, . . . , n, has at most k distinct
jumps, with a fixed but unknown k ≥ 1. These jumps may occur randomly at fixed
times t1, . . . , tk with 0 = t0 < t1 < . . . < tk < tk+1 = 1 such that tj+1 − tj ≥ δ0 > 0
for all j = 1, . . . , k − 1. More precisely, we set:

∆ij =
∣∣Zi(tj)− Zi(t

−
j )

∣∣ =
∣∣Xi(tj)−Xi(t

−
j )

∣∣ = IijYij , i = 1, . . . , n

where Zi(t
−
j ) = limηց0 Zi(tj − η) and (Iij , j = 1, . . . , k) are positive random

variables that describe the jump amplitudes. Here, we suppose that P(Iij ≥ δ1) = 1
for some positive δ1 and, that (Yij , j = 1, . . . , k) are independent random variables
with Bernoulli distribution B(pj), pj ∈]0, 1], j = 1, . . . , k. Also, Yij and Iij are
independent, which means that E (∆ij) := E (∆j) = pjE (Ij) > 0, j = 1, . . . , k.
Hereafter, we present an example illustrating the considered framework.

Example 3.1 (Case k = 1). Consider n independent copies of Y1 with B(p1) distri-
bution, p1 ∈]0, 1] and (W1(t),W2(t), t ∈ [0, 1]) where W1 and W2 two independent
C-valued processes. We set

Zi(t) =Wi1(t)I[0,Ti1[(t) +Wi2(t)I[Ti1,1[(t), i = 1, . . . , n, t ∈ [0, 1[

with Ti1 = t1 ∈]0, 1[ if Yi1 = 1 and Ti1 = 1 otherwise. In this case, intensities
of jumps are given by

∣∣Zi(t1)− Zi(t
−
1 )

∣∣ = |Wi1(t1)−Wi2(t1)|Yi1 and each sample
path has at most one jump located at t1. Note that p1 = 1 gives a systematic jump
at t1. Such modeling refers to short-term perturbations that can be interpreted as
impulses: for example, we may think of treatments where impulses correspond to
the periodic administration of some drugs.

Finally for convenience, we suppose that E∆σ(1) > · · · > E∆σ(k) > 0 for some

given permutation
(
σ(1), . . . , σ(k)

)
of (1, . . . , k). By this way, we denote by tσ(j) the

jump time having the j-th intensity ∆σ(j), j = 1, . . . , k. Our aim is to estimate the
amplitudes E (Ij), j = 1, . . . , k, on the basis of the discretely observed X1, . . . , Xn

from the model (2.1): Xi

(
ℓ
qn

)
, ℓ = 0, . . . , qn, i = 1, . . . , n, where ℓ and qn ≥ 1
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are integers and lim
n→∞

qn = ∞. First, we will estimate the times tjn, j = 1, . . . , k

defined as:

0 <
ℓjn − 1

qn
< tj ≤

ℓjn
qn

:= tjn, j = 1, . . . , k.

Here and throughout this part, we consider qn sufficiently large to have ti 6= tj ⇒
ti,n 6= tj,n and we use notation ℓj , ℓσ(j) for ℓj,n, ℓσ(j),n. Also, we set

ζℓ,n =
1

n

n∑

i=1

∣∣Xi(
ℓ

qn
)−Xi(

ℓ− 1

qn
)
∣∣, ℓ = 1, . . . , qn

and make the assumption:

Assumption 3.1 (A3.1).

(i) The distribution of ζℓ,n, ℓ = 1, . . . , qn is continuous.
(ii) Iij ≥ δ1 > 0 (a.s.), j = 1, . . . , k, i = 1, . . . , n where δ1 is fixed.

Finally for j = 1, . . . , k, or ℓ = 1, . . . , qn, we set:

∆j,n =
1

n

n∑

i=1

∣∣Xi(tj)−Xi(t
−
j )

∣∣ and ζ
(Z)

ℓ,n =
1

n

n∑

i=1

∣∣Zi

( ℓ
qn

)
− Zi

(ℓ− 1

qn

)∣∣.

We begin with a result giving the proximity between ζ
(Z)

ℓj ,n
and ∆j,n.

Lemma 3.1. For all j = 1, . . . , k, A2.3-(ii) implies that
∣∣∣ζ(Z)

ℓj ,n
−∆j,n

∣∣∣ ≤ 2Mq−α
n

with M = 1
n

∑n
i=1Mi.

Proof. First, note that we have the simple inequality
∣∣ |u− v| − |x− y|

∣∣ ≤ |u− x|+ |v − y| , u, v, x, y ∈ R. (3.1)

Since ∆j,n = 1
n

∑n
i=1

∣∣Xi(tj)−Xi(t
−
j )

∣∣ = 1
n

∑n
i=1

∣∣Zi(tj)− Zi(t
−
j )

∣∣, this implies

∣∣∣ζ(Z)

ℓj ,n
−∆j,n

∣∣∣ ≤ 1

n

n∑

i=1

∣∣∣∣
∣∣Zi

( ℓj
qn

)
− Zi

(ℓj − 1

qn

)∣∣ −
∣∣Zi(tj)− Zi(t

−
j )

∣∣
∣∣∣∣

≤
1

n

n∑

i=1

∣∣Zi

( ℓj
qn

)
− Zi(tj)

∣∣+
∣∣Zi(t

−
j )− Zi

(ℓj − 1

qn

)∣∣ ≤ 2Mq−α
n

from the condition A2.3-(ii) and the properties
ℓj
qn

∈ [tj ,
ℓj+1
qn

[ and t−j ∈ [
ℓj−1
qn

, tj [.

�

3.2. Detection of jumps. Since k and δ1 are unknown, we consider two sequences:
kn → ∞ and un → 0 such that unq

α
n → ∞, for α ∈]0, 1] defined in Assumption

A2.3. For example, if qn ≃ nβ , β > 0, an omnibus choice for un is un ≃ (logn)−1.
In order to detect the jumps, we need the following assumption.

Assumption 3.2 (A3.2). Suppose that one of the following two conditions holds
true:

(i) - E (a(X1)) <∞, E (b(Z1)) <∞, E (M1) <∞,

- E (
∣∣Z1(tj)− Z1(t

−
j )

∣∣4) <∞, j = 1, . . . , k,

-
∑
n≥1

u−1
n q−α

n <∞.

(ii) - a(X1) ≤ a∞ <∞, E (exp(c1b(Z1))) <∞, E (exp(c2M1)) <∞, (a∞ >
0, c1 > 0, c2 > 0),

- E (exp(c3
∣∣Z1(tj)− Z1(t

−
j )

∣∣)) <∞, j = 1, . . . , k, (c3 > 0).
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Considering Example 2.2, A3.2(i) holds as soon as E (
∫ 1

0 |X1(s)| ds) <∞ but the
condition imposed on qn implies that sample paths should be observed with high
frequency, especially when α is small. Condition A3.2(ii) is more stringent since
a(X1) is supposed to be bounded, but in this case, the only requirement qn → ∞
is sufficient to derive exponential rates of convergence.

Now, the jumps detection is carried as follows. We set ℓ̃1,n = ℓ̃1 = arg max
ℓ=1,...,qn

ζℓ,n

and as ζ
ℓ̃j−1

> un:

ℓ̃j = arg max
ℓ=1,...,qn

ℓ 6=ℓ̃1,...,ℓ 6=ℓ̃j−1

ζℓ,n, j = 2, . . . , kn.

The number of detected jumps is then given by

k̂ := k̂n = min
{
j = 1, . . . , kn : ζ

ℓ̃j
≤ un

}
− 1.

Remark that the unique restriction on kn is that k belongs to {1, . . . , kn} for n
large enough: kn → ∞ is a sufficient condition. Hence if the above set is empty,
it means that there exists at least kn jumps: in this case, from a practical point
of view, one has to replace kn by k′n with k′n > kn. Finally, detectors of jumps

locations are given by (t̂1,n, . . . , t̂k̂,n) = (t̃∗1,n, . . . , t̃
∗
k̂,n

) where t̃∗j,n is the j-th order

statistic associated with (t̃1,n, . . . , t̃k̂,n) := ( ℓ̃1
qn
, . . . ,

ℓ̃
k̂

qn
). Note that (a.s.) uniqueness

of t̂1,n, . . . , t̂k̂,n is guaranteed by Assumption A3.1 and the next theorem shows that

the times of jumps are detected with probability 1.

Theorem 3.1. Suppose that Assumption A3.1 holds, then the condition A3.2-(i)
implies:

P

( k̂⋃

j=1

{t̂j,n 6= tj,n}
)
= P

( k̂⋃

j=1

{t̃j,n 6= tσ(j),n}
)
= O

(
n−2

)
+O

(
u−1
n q−α

n

)
; (3.2)

while A3.2-(ii) gives:

P

( k̂⋃

j=1

{t̂j,n 6= tj,n}
)
= P

( k̂⋃

j=1

{t̃j,n 6= tσ(j),n}
)
= O

(
exp(−c n)

)
, c > 0. (3.3)

The same bounds hold for P(k̂ 6= k) so in both cases, we obtain that a.s. for n large

enough, k̂ = k and for j = 1, . . . , k: t̃j,n = tσ(j),n.

Proof. We may write P(
⋃k̂

j=1{ℓ̃j 6= ℓσ(j)}) ≤ P(
⋃k

j=1{ℓ̃j 6= ℓσ(j)}) + P(k̂ 6= k).
First, we have

P(k̂ 6= k) ≤ P(

k⋃

j=1

{ζ
ℓ̃j ,n

≤ un}) + P(ζ
ℓ̃k+1,n

> un)

where P(
⋃k

j=1{ζ ℓ̃j,n ≤ un}) ≤ P(
⋃k

j=1{ζℓσ(j),n
≤ un}) + P(

⋃k
j=1{ℓ̃j 6= ℓσ(j)}) and

P(ζ
ℓ̃k+1,n

> un) ≤ P(ζ
l̃k+1,n

> un,∩
k
j=1{ℓ̃j = ℓσ(j)}) + P(

k⋃

j=1

{ℓ̃j 6= ℓσ(j)}).
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Hence,

P(

k̂⋃

j=1

{ℓ̃j 6= ℓσ(j)}) ≤

k∑

j=1

P(ζℓσ(j),n
≤ un)

+ P(ζ
l̃k+1,n

> un,∩
k
j=1{ℓ̃j = ℓσ(j)}) + 3P(

k⋃

j=1

{ℓ̃j 6= ℓσ(j)}). (3.4)

For the first term, we get from Lemma 2.2 and 3.1 that for j = 1, . . . , k

ζℓσ(j),n
≥ ∆σ(j),n − q−α

n (2M + aX + bZ + cm ‖I − ρ‖L), (3.5)

where aX = 1
n

∑n
i=1 a(Xi), bZ = 1

n

∑n
i=1 b(Zi) and M = 1

n

∑n
i=1Mi. Now, we set

in all the following Λn = 2M + aX + bZ + cm ‖I − ρ‖L for obtaining

P(ζℓσ(j),n
≤ un) ≤ P(∆σ(j),n ≤ un + q−α

n Λn)

≤ P(
∣∣∆σ(j),n − E (∆σ(j))

∣∣ ≥
E (∆σ(j))

2
) + P(Λn ≥ (

E (∆σ(j))

2
− un)q

α
n).

These terms are controlled by the following lemma whose proof is postponed to the
appendix.

Lemma 3.2. 1) Under the conditions A3.2-(i), we get for j = 1, . . . , k:

P

( ∣∣∆σ(j),n − E (∆σ(j))
∣∣ ≥

E (∆σ(j))

2

)
= O

(
n−2

)

and

P
(
Λn > (

E (∆σ(j))

2
− un)q

α
n

)
= O

(
q−α
n

)
.

2) If the conditions A3.2-(ii) hold, then for j = 1, . . . , k:

P

( ∣∣∆σ(j),n − E (∆σ(j))
∣∣ ≥ E (∆σ(j))

2

)
= O

(
e−cn

)
,

for some c > 0 and,

P
(
Λn > (

E (∆σ(j))

2
− un)q

α
n

)
= O

(
e−c nqαn

)
.

Concerning again (3.4), the term P(ζ
l̃k+1

> un,∩
k
j=1{ℓ̃j = ℓσ(j)}) is controlled

with
{
ζ
l̃k+1,n

> un,∩
k
j=1{ℓ̃j = ℓσ(j)}

}
⇒

{ ⋃

ℓ 6∈{ℓσ(1),...,ℓσ(k)}

{ζℓ,n > un}
}

and Corollary 2.1 implies that, for all ℓ 6∈ {ℓσ(1), . . . , ℓσ(k)}:

{ζℓ,n > un} ⇒ {q−α
n (aX + bZ +M + cm ‖I − ρ‖L) > un}.

This last event does not depend on ℓ, so

P(ζ
l̃k+1,n

,∩k
j=1{ℓ̃j = ℓσ(j)}) ≤ P(aX + bZ +M > unq

α
n − cm ‖I − ρ‖L).

For this term, we obtain the bound O(u−1
n q−α

n ) under the condition A2.3-(i) while
A2.3-(ii) gives a O(e−cnunq

α
n ).

For the last term in (3.4), observe that the property P(A∪B) = P(Ac∩B)+P(A)

implies for k = 2 the relation: P(ℓ̃1 6= ℓσ(1) ∪ ℓ̃2 6= ℓσ(2)) = P(ℓ̃1 = ℓσ(1), ℓ̃2 6=
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ℓσ(2)) + P(ℓ̃1 6= ℓσ(1)). Next by induction and using the convention
∑0

1· · · = 0, we
obtain

P
( k⋃

j=1

{ℓ̃j 6= ℓσ(j)}
)
= P(ℓ̃1 6= ℓσ(1))

+

k−1∑

j=1

P(ℓ̃1 = ℓσ(1), . . . , ℓ̃j = ℓσ(j), ℓ̃j+1 6= ℓσ(j+1)).

First part: Study of P(ℓ̃1 6= ℓσ(1)). Clearly, the relation ζℓσ(1),n
> max

ℓ=1,...,qn
ℓ 6=ℓσ(1)

ζℓ,n ⇒

ℓ̃1 = ℓσ(1) gives P(ℓ̃1 6= ℓσ(1)) ≤ P

(
ζℓσ(1),n

≤ max
ℓ=1,...,qn
ℓ 6=ℓσ(1)

ζℓ,n

)
.

Setting j = 1 in (3.5), we obtain P(ℓ̃1 6= ℓσ(1)) ≤ P
(
∆σ(1),n ≤ max

ℓ=1,...,qn
ℓ 6=ℓσ(1)

ζℓ,n +

q−α
n Λn

)
. Next, we get

max
ℓ=1,...,qn
ℓ 6=ℓσ(1)

ζℓ,n = max
(

max
ℓ=1,...,qn

ℓ 6=ℓσ(1),...,ℓ 6=ℓσ(k)

ζℓ,n, ζℓσ(2),n
, . . . , ζℓσ(k),n

)

≤ max
(
q−α
n (aX + bZ +M + cm ‖I − ρ‖L), ζℓσ(2),n

, . . . , ζℓσ(k),n

)
. (3.6)

On the other hand, from Lemma 2.2 and Lemma 3.1, we get for all j ≥ 2,

ζℓσ(j),n
≤ ∆σ(j),n + q−α

n (2M + aX + bZ + cm ‖I − ρ‖L). (3.7)

We may deduce that max
ℓ=1,...,qn
ℓ 6=ℓσ(1)

ζℓ,n ≤ max
j=2,...,k

∆σ(j),n + q−α
n Λn and, finally, we obtain

that

P(ℓ̃1 6= ℓσ(1)) ≤ P(∆σ(1),n ≤ max
j=2,...,k

∆σ(j),n + 2q−α
n Λn) (3.8)

and

P(ℓ̃1 6= ℓσ(1)) ≤ P(∆σ(1),n ≤ ∆σ(2),n + 2q−α
n Λn) + P(∆σ(2),n < max

j=3,...,k
∆σ(j),n).

Note that (3.8) reduces to P(∆σ(1),n ≤ 2q−α
n Λn) if k = 1: this particular case will

be handled in the second part of the proof. Here, since ∆σ(2),n < max
j=3,...,k

∆σ(j),n ⇔

∃ j = 3, . . . , k,∆σ(j),n > ∆σ(2),n, we get

P(ℓ̃1 6= ℓσ(1))

≤ P
(
∆σ(2),n −∆σ(1),n − E (∆σ(2) −∆σ(1)) ≥ E (∆σ(1) −∆σ(2))− 2q−α

n Λn

)

+

k∑

j=3

P
(
∆σ(j),n −∆σ(2),n − E (∆σ(j) −∆σ(2)) ≥ E (∆σ(2) −∆σ(j))

)
. (3.9)

By considering the event {E (∆σ(1) −∆σ(2))− 2q−α
n Λn ≥ 1

2E (∆σ(1) −∆σ(2))}, we

may bound the first term of (3.9) by P
(
∆σ(2),n − ∆σ(1),n − E (∆σ(2) − ∆σ(1)) ≥

E (∆σ(1)−∆σ(2))

2

)
+ P

(
Λn >

E (∆σ(1)−∆σ(2))

4 qαn
)
. These probabilities are controlled by

the following lemma whose proof is postponed to the Appendix.

Lemma 3.3. For all j = 2, . . . , k, j′ = 1, . . . , j−1 and η > 0, the following bounds
hold.
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1) If the conditions given in A3.2-(i) are fulfilled, P
(
Λn > ηqαn

)
= O

(
q−α
n

)

and

P
(
∆σ(j),n −∆σ(j′),n − E (∆σ(j) −∆σ(j′)) ≥ η

)
= O

(
n−2

)
.

2) If the conditions A3.2-(ii) hold, P
(
Λn > ηqαn

)
= O

(
e−cnqαn

)
and for some

c > 0:

P
(
∆σ(j),n −∆σ(j′),n − E (∆σ(j) −∆σ(j′)) ≥ η

)
= O

(
e−c n

)
.

Finally, the last term of (3.9) (which exists only for k ≥ 3) is also derived from

Lemma 3.3. Consequently, the control of P(ℓ̃1 6= ℓσ(1)) is achieved by collecting
all the previous results and Borel-Cantelli’s lemma implies that a.s. for n large

enough, ℓ̃1 = ℓσ(1).

Second part: Study of
∑k−1

j=1 P(∩
j
m=1{ℓ̃m = ℓσ(m)} ∩ {ℓ̃j+1 6= ℓσ(j+1)}) for k ≥ 2.

For this term, we have

∩j
m=1 {ℓ̃m = ℓσ(m)} ∩ {ℓ̃j+1 6= ℓσ(j+1)}

= ∩j
m=1{ℓ̃m = ℓσ(m)} ∩ {arg max

ℓ=1,...,qn
ℓ 6=ℓσ(1),...,ℓ 6=ℓσ(j)

ζℓ,n 6= ℓσ(j+1)}.

As {ζℓσ(j+1),n
> max

ℓ=1,...,qn
ℓ 6=ℓσ(1),...,ℓ 6=ℓσ(j+1)

ζℓ,n} ⇒ {arg max
ℓ=1,...,qn

ℓ 6=ℓσ(1),...,ℓ 6=ℓσ(j)

ζℓ,n = ℓσ(j+1)}, we

deduce that the probability of interest is bounded by

P
(
ζℓσ(j+1),n

≤ max
ℓ=1,...,qn

ℓ 6=ℓσ(1),...,ℓ 6=ℓσ(j+1)

ζℓ,n
)
.

Then, using the convention
∑0

1· · · = 0, it is sufficient to control the terms

k−2∑

j=1

P

(
ζℓσ(j+1),n

≤ max
(

max
ℓ=1,...,qn

ℓ 6=ℓσ(1),...,ℓ 6=ℓσ(k)

ζℓ,n, ζℓσ(j+2),n
, . . . , ζℓσ(k),n

))

+ P

(
ζℓσ(k),n

≤ max
ℓ=1,...,qn

ℓ 6=ℓσ(1),...,ℓ 6=ℓσ(k)

ζℓ,n

)
.

Using the bounds established in (3.5)-(3.7), we arrive at

k−2∑

j=1

P

(
∆σ(j+1),n ≤ max

m=j+2,...,k
∆σ(m),n + 2q−α

n Λn

)

+ P

(
E∆σ(k) −∆σ(k),n ≥ E∆σ(k) − 2q−α

n Λn

)

where again Λn = 2M +aX + bZ + cm ‖I − ρ‖L. The study of the first term is anal-
ogous to that performed for the term given in (3.8). Details are left to the reader.
The second one is handled similarly to (3.9) for obtaining: P

( ∣∣∆σ(k),n − E∆σ(k)

∣∣ ≥
E∆σ(k)

2

)
+ P

(
Λn ≥

E∆σ(k)

4 qαn
)
and the upper bounds are the same as those estab-

lished in Lemma 3.3. Collecting all the results, Borel Cantelli’s lemma applied to

(3.4) implies that
∑

n P(k̂ 6= k) < ∞ and
∑

n P

(⋃k̂
j=1{ℓ̃j 6= ℓσ(j)}

)
< ∞ leading

to the final result. �



12 D. BLANKE AND D. BOSQ

3.3. Estimation of intensity. Since a.s. for n large enough, k̂ = k and consecu-

tive times of jumps are detected with (ℓ̂1, . . . , ℓ̂k̂) = (ℓ̃∗1, . . . , ℓ̃
∗
k̂
) the associated order

statistic, we may evaluate their corresponding intensities E (Ij), j = 1, . . . , k. We
start by estimating E (∆j) with

∆̂j =
1

n

n∑

i=1

∣∣Xi

( ℓ̂j
qn

)
−Xi

( ℓ̂j − 1

qn

)∣∣, j = 1, . . . , k̂.

Since E (∆j) = pjE (Ij), estimators of E (Ij) are given by

Îj =
∆̂j

p̂j
where p̂j =

1

n

n∑

i=1

I{
|Xi(

ℓ̂j
qn

)−Xi(
ℓ̂j−1

qn
)|>un

}, j = 1, . . . , k̂

with the same un as in Section 3.2, satisfying again the condition: un → 0 such that

unq
α
n → ∞. Note that p̂j

a.s.
−−−−→
n→∞

pj so, a.s. for n large enough, the denominator is

not zero.
For the almost sure behavior, we study the quantity

Îj − E (Ij) =
(∆̂j − E (∆j))− (p̂j − pj)E (Ij)

p̂j
, j = 1, . . . , k̂,

and for ε > 0, we get

P(

k̂⋃

j=1

∣∣Îj − E (Ij)
∣∣ ≥ ε) ≤ P(k̂ 6= k) +

k∑

j=1

P(
∣∣∣Îj − E (Ij)

∣∣∣ ≥ ε)

≤ P(k̂ 6= k) +

k∑

j=1

P(
∣∣∣∆̂j − E (∆j)

∣∣∣ ≥ εp̂j
2

) + P(|p̂j − pj| ≥
εp̂j

2E (Ij)
)

and for all η ∈]0, pj [, we have

≤ P(k̂ 6= k) +

k∑

j=1

P(
∣∣∣∆̂j − E (∆j)

∣∣∣ ≥ ε(pj − η)

2
)

+ P(|p̂j − pj | ≥
ε(pj − η)

2E (Ij)
) + 2P(|p̂j − pj | ≥ η)

(3.10)

where the latter term doest not depend on ε. Then we may derive the following
result whose proof is postponed to the Appendix.

Theorem 3.2. Under the Assumption A3.1, we obtain

1) if the condition A3.2-(i) holds, and un = (logn)−1, qn = nβ with β > 5
4α ,

then almost surely for n large enough
∣∣∣Îj − E (Ij)

∣∣∣ = O
( (logn)c

n
1
4

)
, c >

1

4
, j = 1, . . . , k;

2) if the condition A3.2-(ii) holds, and unq
α
n → ∞, then almost surely for n

large enough

∣∣∣Îj − E (Ij)
∣∣∣ = O

(√ logn

n

)
, j = 1, . . . , k.

We conclude that, under the mild conditions A3.2-(i), one needs to observe each
sample path with high frequency to estimate the intensities of jumps with some
given accuracy. Recall that α is linked with regularity of the process between two
jumps. Looking at the condition β > 5

4α , it appears, as expected, that more α is
small, more the estimation will be difficult without a high sampling rate. Under
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A3.2-(ii) with the boundedness of a(X1), we are close to the classical root-n rate of
convergence. Finally by examining the proof of Theorem 3.2, it appears that the

strong consistency of Îj holds in both cases as soon as qn → ∞.

4. Random jumps

4.1. Detection of jumps. Now, we suppose that Zi, i = 1, . . . , n, has Ki jumps
at random instants, with Ki a nonnegative integer-valued random variable and
0 < Ti,1 < · · · < Ti,Ki

< 1 almost surely if Ki ≥ 1. Here the sequence
(
(
∣∣Zi(Tij)− Zi(T

−
ij )

∣∣ ,Ki) i = 1, . . . , n
)
,

with Z(T−
i,j) = limηց0 Z(Ti,j − η), is i.i.d.. We set pk = P(Ki = k) for k ≥ 0,

p0 6= 1, and also, we suppose that Ki is independent from
∣∣Zi(Tij)− Zi(T

−
ij )

∣∣,
j = 1, . . . ,Ki, i = 1, . . . , n. Assumptions A2.1-A2.2 lead to

∣∣Zi(Tij)− Zi(T
−
ij )

∣∣ =∣∣Xi(Tij)−Xi(T
−
ij )

∣∣. Recall that the trajectories satisfy a Hölder condition between
two consecutive jumps. The main difference with the previous section is that times
of jumps differ from one sample path to the other. By this way, we have to con-
sider separately the Xi’s for their detection. Finally, we associate to each Ti,j an
integrable intensity of jump:

∆ij =
∣∣Xi(Ti,j)−Xi(T

−
i,j)

∣∣ =
∣∣Zi(Ti,j)− Zi(T

−
i,j)

∣∣ , j = 1, . . . ,Ki; i = 1, . . . , n

with P(∆1j > δ1) = 1 for some δ1 > 0.

Example 4.1. Let 0 = Ti0 < Ti1 < · · · be a strictly increasing sequence of random

variables (a.s.). Let us set Ki =
∑∞

j=1 ITij≤1 and Zi(t) =
∑k+1

j=1 Yi,j−1I[Ti,j−1,Tij [(t)
if Ki = k with Ti,k+1 = 1, 0 ≤ t ≤ 1, where Yij is A−BR measurable and for each
j = 1, . . . , k, Y1j , . . . , Ynj are i.i.d.. Note that an example of such a model is the
compound Poisson process.

Now, for ℓ = 1, . . . , qn, j = 1, . . . ,Ki and i = 1, . . . , n, we set:

ζiℓn =
∣∣Xi

( ℓ
qn

)
−Xi

(ℓ− 1

qn

)∣∣, ζ(Z)

iℓn =
∣∣Zi

( ℓ
qn

)
− Zi

(ℓ− 1

qn

)∣∣

and we consider the integer-valued variables Lijn defined as:

Lijn − 1

qn
< Ti,j ≤

Lijn

qn
, j = 1, . . . ,Ki, i = 1, . . . , n. (4.1)

We associate them with the increments ζiLjn =
∣∣Xi

(Lijn

qn

)
− Xi

(Lijn−1
qn

)∣∣ and

ζ
(Z)

iLjn
=

∣∣Zi

(Lijn

qn

)
− Zi

(Lijn−1
qn

)∣∣. Thus, these variables correspond to the incre-

ments including a jump. To detect these jumps, the following conditions will be
useful instead of Assumption A3.1 and A3.2.

Assumption 4.1 (A4.1).

(i) Wij = Ti,j −Ti,j−1 ≥ δ0, j = 1, . . . ,Ki+1, where Ti,0 = 0, Ti,Ki+1 = 1 and
δ0 is a positive constant.

(ii) ∆ij ≥ δ1 > 0 (a.s.), j = 1, . . . ,Ki, i = 1, . . . , n where δ1 is fixed.

Assumption A4.1 means that Wij and ∆ij are not too small. Here and through-
out this section, we take n large enough (namely such that 1

qn
< δ1) to make

sure that all intervals [ ℓ−1
qn
, ℓ
qn
], ℓ = 1, . . . , qn include at most one jump. The first

condition can be relaxed as shown by the following remark.

Remark 4.1. The condition A4.1-(i) excludes in particular gamma-distributed inter-
arrival times. By adding the condition

∑
n≥1 nq

−1
n <∞, observe that all subsequent

results of this part hold true as soon as P(Ti,j+1 − Ti,j < q−1
n | Ki = k) ≤ ψ(k)q−1

n
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with ψ such that E (K1Ψ(K1)) < ∞. A compound Poisson process satisfies this
condition since we have P(Ti,j+1 − Ti,j < q−1

n | Ki = k) = 1 − (1 − q−1
n )k ≤ kq−1

n

and E (K2
1 ) <∞.

Assumption 4.2 (A4.2). Suppose that for some p ≥ 1:

(i) E
(
a(X1)

)p
<∞, E

(
b(Z1)

)p
<∞, E

(
M1

)p
<∞,

(ii)
∑
n≥1

nq−αp
n u−p

n <∞.

The condition A4.2-(ii) implies that more α is small (more the sample paths are
irregular), more p should be chosen large enough.

Now, to detect the jumps we consider the random set Lin defined by Lin ={
Lijn, j = 1, . . . ,Ki, Ki ≥ 1

}
, i = 1, . . . , n and we predict this set with

L̂in =
{
ℓ ∈ {1, . . . , qn} :

∣∣Xi(
ℓ

qn
)−Xi(

ℓ − 1

qn
)
∣∣ > un

}

still with un → 0 such that unq
α
n → ∞ for α ∈]0, 1] defined in Assumption A2.3.

Again an omnibus choice is un = (log n)−1 for qn = nβ , β > 0. Moreover we denote

by K̂i the cardinal of the set L̂in and {L̂i1, . . . , L̂iK̂i
} its elements. We begin with

a result enlightening the fact that for each sample path and n large enough, one
may identify the Ki jumps with probability 1.

Theorem 4.1. If Assumptions A4.1 and A4.2-(i) hold, P

(⋃n
i=1 L̂in 6≡ Lin

)
=

O(nq−αp
n u−p

n ).

Proof. We have

L̂in ≡ Lin ⇔ (a) ∀ j = 1, . . . ,Ki, Lijn ∈ L̂in (Ki ≥ 1)

(b) ∀ ℓ 6∈ Lin, ℓ 6∈ L̂in.

We may deduce that

n⋃

i=1

{
L̂in 6≡ Lin

}
=

n⋃

i=1

{ Ki⋃

j=1

{Lijn 6∈ L̂in} ∪
{ qn⋃

ℓ=1,ℓ 6∈Lin

{ℓ ∈ L̂in}
}}
.

Moreover
Ki⋃
j=1

{Lijn 6∈ L̂in} ⇔
{ Ki⋃

j=1

∣∣Xi(
Lijn

qn
)−Xi(

Lijn−1
qn

)
∣∣ ≤ un

}
and

qn⋃

ℓ=1
ℓ 6∈Lin

{ℓ ∈ L̂in} ⇔
{ qn⋃

ℓ=1
ℓ 6∈Lin

{
∣∣Xi(

ℓ

qn
)−Xi(

ℓ− 1

qn
)
∣∣ > un}

}
.

Hence P(
⋃n

i=1{L̂in 6≡ Lin}) ≤
∑n

i=1 pi1n + pi2n with

pi1n := P(

Ki⋃

j=1

{
∣∣Xi(

Lijn

qn
)−Xi(

Lijn − 1

qn
)
∣∣ ≤ un})

and

pi2n := P(

qn⋃

ℓ=1,ℓ 6∈Lin

{
∣∣Xi(

ℓ

qn
)−Xi(

ℓ − 1

qn
)
∣∣ > un}).
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Let us begin by pi1n: from Lemma 2.2, we have:

− (a(Xi−1) + b(Zi−1) + cm ‖I − ρ‖L)q
−α
n +

∣∣Zi(
Lijn

qn
)− Zi(

Lijn − 1

qn
)
∣∣

≤
∣∣Xi(

Lijn

qn
)−Xi(

Lijn − 1

qn
)
∣∣

≤ (a(Xi−1) + b(Zi−1) + cm ‖I − ρ‖L)q
−α
n +

∣∣Zi(
Lijn

qn
)− Zi(

Lijn − 1

qn
)
∣∣.

Moreover similarly to Lemma 3.1 we may deduce from (3.1) that

∣∣∣
∣∣Zi(

Lijn

qn
)− Zi(

Lijn − 1

qn
)
∣∣ −

∣∣Zi(Tij)− Zi(T
−
ij )

∣∣
∣∣∣ ≤ 2Miq

−α
n . (4.2)

Setting Λi = a(Xi−1) + b(Zi−1) + 2Mi + cm ‖I − ρ‖L, we get

− Λiq
−α
n +

∣∣Zi(Tij)− Zi(T
−
ij )

∣∣ ≤
∣∣Xi(

Lijn

qn
)−Xi(

Lijn − 1

qn
)
∣∣

≤ Λiq
−α
n +

∣∣Zi(Tij)− Zi(T
−
ij )

∣∣ (4.3)

and pi1n is bounded as follows:

pi1n ≤ P(

Ki⋃

j=1

{∣∣Zi(Tij)− Zi(T
−
ij )

∣∣ ≤ un + Λiq
−α
n

}
)

≤ P(

Ki⋃

j=1

{
∣∣Zi(Tij)− Zi(T

−
ij )

∣∣ ≤ 2un}) + P(Λi > qαnun)

≤

∞∑

k=0

P(

k⋃

j=1

{
∣∣Zi(Tij)− Zi(T

−
ij )

∣∣ ≤ 2un} | Ki = k)P(Ki = k) + P(Λi > qαnun)

≤

∞∑

k=1

k∑

j=1

P(∆ij ≤ 2un)P(Ki = k) + P(Λi > qαnun).

because Ki is independent from ∆ij . Next Assumption A4.1-(ii) implies the nullity
of the first term for n large enough (namely such that 2un ≤ δ1) and the second
term is controlled by Markov’s inequality and Assumption A4.2-(i). Hence, we
arrive at pi1n = O(q−αp

n u−p
n ) uniformly in i.

Now, we turn to pi2n. From Corollary 2.1, we know that

∣∣Xi(
ℓ

qn
)−Xi(

ℓ− 1

qn
)
∣∣ ≤ (a(Xi−1) + b(Zi−1) +Mi + cm ‖I − ρ‖L)q

−α
n

so

qn⋃

ℓ=1,ℓ 6∈Lin

{∣∣Xi(
ℓ

qn
)−Xi(

ℓ− 1

qn
)
∣∣ > un

}

⇒
{
a(Xi−1) + b(Zi−1) +Mi + cm ‖I − ρ‖L > qαnun

}

and,

pi2n ≤ P(a(Xi−1) > vn) + P(b(Zi−1) > vn) + P(Mi > vn)

with vn =
unq

α
n−cm‖I−ρ‖L

3 and Markov’s inequality gives that pi2n has a similar
order as pi1n. �
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4.2. Estimation of intensity. As
(
(∆ij ,Ki), i = 1, . . . , n

)
is supposed to be

i.i.d., we have

E (∆ij) = E
∣∣Xi(Tij)−Xi(T

−
ij )

∣∣ ≡ E (∆1j), j = 1, . . . ,Ki, i = 1, . . . , n.

So, the ordering of jumps’ intensities is the same for each sample path; but con-
trary to the deterministic case, two distinct jumps may have the same inten-
sity. Again Assumptions A2.1 and A2.2 guarantee that for each j = 1, . . . ,Ki,∣∣Xi(Tij)−Xi(T

−
ij )

∣∣ =
∣∣Zi(Tij)− Zi(T

−
ij )

∣∣ are independent variables. For some fixed

k ≥ 1, it is possible to construct an estimator of the k-first jumps E (∆1), . . . ,E (∆k)
by selecting the Xi’s having at least k jumps. To this end, we set for j = 1, . . . , k:

∆̂j := ∆̂jn =





∑n
i=1

∣∣∣Xi

( L̂ij

qn

)
−Xi

( L̂ij−1
qn

)∣∣∣I{K̂i≥j}∑n
i=1 I{K̂i≥j}

, if
∑n

i=1 I{K̂i≥j} > 0,

0, if
∑n

i=1 I{K̂i≥j} = 0,

still with K̂i =
∣∣∣L̂in

∣∣∣ and L̂in =
{
L̂i1, . . . , L̂iK̂i

}
, i = 1, . . . , n. The strong consis-

tency and rates of convergence are given in the following theorem.

Theorem 4.2. Suppose that Assumptions A4.1 and A4.2 (with p = 1) are fulfilled,
and that for j = 1, . . . , k E (exp(c0 ∆1j)) <∞ with c0 > 0. We have for all ε > 0;

P
( ∣∣∣∆̂j − E (∆1j)

∣∣∣ ≥ ε
)
= O(nq−α

n u−1
n ) +O(exp(−c1 nε

2)) +O(
n logn

qαnε
), c1 > 0.

Proof.

We have to study P
(∣∣∆̂j − E (∆1j)

∣∣ ≥ ε
)
, j = 1, . . . , k, k ≥ 1, ε > 0. First, this

term is equal to

P
(∣∣∆̂j − E (∆1j)

∣∣ ≥ ε,
n⋃

i=1

{
L̂i 6≡ Lin

})
+ P

(∣∣∆̂j − E (∆1j)
∣∣ ≥ ε,

n⋂

i=1

{
L̂i ≡ Lin

})

so it may be bounded with P(
⋃n

i=1

{
L̂i 6≡ Lin

}
) +P(

∣∣∆̃j −E (∆1j) ≥ ε
∣∣) where we

have set

∆̃j =

∑n
i=1

∣∣Xi(
Lij

qn
)−Xi(

Lij−1
qn

)
∣∣I{Ki≥j}∑n

i=1 I{Ki≥j}

I{∑
n
i=1 I{Ki≥j}>0

}

using the convention 0
0 = 0. The first term is controlled with Theorem 4.1 and

gives a O(nq−α
n u−1

n ). Next from (4.3) and after some derivations, we may write

P(
∣∣∆̃j − E (∆1j)

∣∣ ≥ ε) ≤ p1n + p2n with

p1n := P(
∣∣∣
∑n

i=1 ∆ijI{Ki≥j}∑n
i=1 I{Ki≥j}

I{∑
n
i=1 I{Ki≥j}>0

} − E (∆1j)
∣∣∣ ≥ ε

2
)

p2n := P(

∑n
i=1 ΛiI{Ki≥j}∑n
i=1 I{Ki≥j}

I{∑
n
i=1 I{Ki≥j}>0

} ≥ qαn
ε

2
).

Concerning the first term p1n, we have

p1n =

n∑

m=0

P

(∣∣∣
∑n

i=1 ∆i,jI{Ki≥j}

m
Im>0 − E (∆1j)

∣∣∣ ≥ ε

2
|

n∑

i=1

I{Ki≥j} = m
)

× P(
n∑

i=1

I{Ki≥j} = m).
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As
∑n

i=1 I{Ki≥j} ∼ B(n,
∑

i≥j pi) and, since
{∑n

i=1 I{Ki≥j} = m
}

is equivalent
to have exactly m indicators equal to 1, the i.i.d assumption on the ∆i,j ’s and
independence from Ki give

p1n = I{ε≤2E (∆1j)}P(

n∑

i=1

I{Ki≥j} = 0
)
+

n∑

m=1

P(
∣∣
∑m

i=1 ∆i,j

m
− E (∆1j)

∣∣ ≥ ε

2
)

× P(

n∑

i=1

I{Ki≥j} = m).

Now, one may use Bernstein’s inequality, stated as in e.g. Bosq and Blanke (2007,
p.297), to obtain:

p1n ≤ (1−
∑

i≥j

pi)
n + 2

n∑

m=1

(n
m

)
(1−

∑

i≥j

pi)
n−m(

∑

i≥j

pi)
m exp

(
−

mε2

8σ2
j + 4Hjε

)

with σ2
j = Var (∆1j) and Hj a constant linked to the central moments of ∆1j . The

last expression is bounded by 2
(
1−

∑
i≥j pi +

∑
i≥j pi exp

(
− ε2

8σ2
j
+4Hjε

))n

. Since

ln(1 − a) ≤ −a for 0 < a < 1 and 1 − e−a ≥ a − a2

2 for all a ≥ 0, we successively
obtain for all j such that

∑
i≥j pi > 0:

p1n ≤ 2 exp
(
− n

∑

i≥j

pi
(
1− exp(−

ε2

8σ2
j + 4Hjε

)
))

≤ 2 exp
(
−
n
∑

i≥j piε
2

8σ2
j + 4Hjε

(
1−

ε2

16σ2
j + 8Hjε

))
.

Next, there exists 0 < c2 < 1 such that p1n ≤ 2 exp
(
− c2n(

∑
i≥j pi)

ε2

8σ2
j
+4Hjε

)
.

Finally, for the term p2n we may write:

p2n =

n∑

m=1

P(

∑n
i=1 ΛiI{Ki≥j}

m
≥ qαn

ε

2
,

n∑

i=1

I{Ki≥j} = m)

≤
n∑

m=1

P(
n∑

i=1

ΛiI{Ki≥j} ≥
m

2
qαnε).

We conclude with Markov’s inequality and the condition A4.2-(i), p = 1, to get the

bound O(n logn
qαnε

). �

Remark 4.2. We may observe that the choices un = (logn)−1, qn = nβ, ε =

ε0n
− 1

2 (logn)γ (ε0 > 0), with γ > 2, β ≥ 5
2α entail

∑
n P

( ∣∣∣∆̂j − E (∆1j)
∣∣∣ ≥

ε0n
− 1

2 (logn)γ
)
< ∞ . So in Theorem 4.2, an expected rate of convergence to

estimate the jumps’ intensities is O
(
(log n)γ n− 1

2

)
.

4.3. Estimation of the maximal jump. Suppose that there exists a unique
integer kmax such that E (∆1kmax) > max

j=1,...,k
j 6=kmax

E (∆1j). Then, an estimator of the

maximal intensity of jump is ∆̂max = max
j=1,...,kn

∆̂j with kn → ∞ as n → ∞. From

max
j=1,...,kn

∣∣∆̂j − E (∆1j)
∣∣ ≥

∣∣ max
j=1,...,kn

|∆̂j | − max
j=1,...,kn

|E (∆1j)|
∣∣, we get that for all

ε > 0:

P(
∣∣∆̂max − E (∆1kmax)

∣∣ ≥ ε) ≤

kn∑

j=1

P(
∣∣∆̂j − E (∆1j)

∣∣ ≥ ε).
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Now, for Ki with a finite support {0, . . . , k0} and unknown k0 ≥ 1, we clearly have

∆̂max = max
j=1,...,k0

∆̂j almost surely for n large enough (as a consequence of K̂i = Ki

giving in turn that ∆̂j = 0 for n large enough and j ≥ k0 + 1). Also, remark that
max

j=1,...,kn

E (∆1j) = max
j=1,...,k0

E (∆1j) and E (∆1j) = 0 for j ≥ k0 + 1. Hence the

summation ranges over [[0, k0]] and one may obtain a similar rate of convergence as
in Remark 4.2 for the estimation of the maximal jump. If Ki is a N-valued random
variable, we can also derive a rate of convergence with the same methodology as in
Blanke and Bosq (2014) and with sequences kn increasing slowly to infinity. Finally,

it can also be shown that k̂max = arg max
j=1,...,kn

∆̂j is a consistent estimator of kmax.

5. The completely random case

5.1. The considered framework. In this part, for a fixed k ≥ 1, we denote
by (∆σ(1), . . . ,∆σ(k)), k independent intensities of jumps which are ordered in
decreasing average: E∆σ(1) > · · · > E∆σ(k). We associate them to k inde-
pendent continuous variables (Tσ(1), . . . , Tσ(k)): by this way, Tσ(j) corresponds to
the jump with highest j-th average intensity. Next, with the ordered statistics
(T1, . . . , Tk) = (T ∗

σ(1), . . . , T
∗
σ(k)), T

∗
σ(1) < · · · < T ∗

σ(k), we consider a sample path

Z with jumps at times (T1, . . . , Tk). Then, we work with n i.i.d copies of Z, say
Z1, . . . , Zn. Here, the key difference with the random case is that intensities of
jumps have not the same order from one sample path to the other and the diffi-
culty is to estimate them. The latter construction is resumed with the following
hypothesis.

Assumption 5.1 (A5.1). For each i = 1, . . . , n, there exists a permutation denoted
by

(
σi(1), . . . , σi(k)

)
of (1, . . . , k) such that E∆iσi(j) = E∆σ(j) with E∆σ(1) >

· · · > E∆σ(k). Moreover (∆iσi(j), j = 1, . . . , k, i = 1, . . . , n) is a collection of
independent random variables and, for each j = 1, . . . , k, the (∆iσi(j), i = 1, . . . , n)
are identically distributed.

We make use of the Lijn’s defined in equation (4.1), linked with the arrival times
of jumps (in chronological order) and, we consider their independent counterparts

Liσi(j)n with
Liσi(j)n

−1

qn
< Tiσi(j) ≤

Liσi(j)n

qn
, i = 1, . . . , n, j = 1, . . . , k (associated

with jumps ordered by intensities). Now, we suppose that

Assumption 5.2 (A5.2).

(i) (Tiσi(j), i = 1, . . . , n, j = 1, . . . , k) are globally independent with respective
bounded densities f1, . . . , fk on [0,1].

(ii)
∑

n≥1 nq
−1
n <∞.

(iii) ∆ij ≥ δ1, j = 1, . . . , k, i = 1, . . . , n where δ1 is a positive constant.

The next lemma establishes that with probability one, two consecutive instants
are not in the same interval.

Lemma 5.1. If the conditions (i)-(ii) of Assumption A5.2 hold, for all i = 1, . . . , n,
the (Tij , j = 1, . . . , k) do not belong to the same interval a.s. for n large enough:

P
(⋃n

i=1

⋃k
j=1{Ti,j+1 − Tij ≤

1
qn
}
)
= O(nq−1

n ).

Proof. Note that
{ n⋃

i=1

k⋃
j=1

Ti,j+1−Tij ≤
1
qn

}
⇒

{ n⋃
i=1

k⋃
j,j′=1
j′ 6=j

qn⋃
ℓ=1

{Tiσi(j) ∈ [ ℓ−1
qn
, ℓ
qn
]∩

Tiσi(j′) ∈ [ ℓ−1
qn
, ℓ
qn
]}
}
. Using independence and boundedness of the densities of
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Tiσ(j)’s, we get that
∑n

i=1

∑
j 6=j′

∑qn
ℓ=1 P(Tiσi(j) ∈ [ ℓ−1

qn
, ℓ
qn
]∩Tiσi(j′) ∈ [ ℓ−1

qn
, ℓ
qn
]) =

O(nq−1
n ). �

5.2. Detection of jumps. We begin with a result enlightening the fact that for
each sample path, one may identify the k jumps with probability 1 for n large
enough. Again in this part, the set Lin is defined by Lin =

{
Lijn, j = 1, . . . , k

}
, i =

1, . . . , n, ζiℓn =
∣∣Xi(

ℓ
qn
)−Xi(

ℓ−1
qn

)
∣∣ and we note ζiLjn := ζi,Lijn,n.

Theorem 5.1. Suppose that Assumptions A4.2, A5.1 and A5.2 are fulfilled, then
a.s. for n large enough, we get that ζiℓn < ζiLjn, j = 1, . . . , k, i = 1, . . . , n,
ℓ = 1, . . . , qn with ℓ 6∈ Lin. More precisely,

P

( n⋃

i=1

qn⋃

ℓ=1
ℓ 6∈Lin

k⋃

j=1

{
ζiℓn ≥ ζiLjn

})
= O(nq−αp

n ) +O(nq−1
n ).

Proof. The desired probability is clearly bounded by

n∑

i=1

k∑

j=1

P
(

max
ℓ=1,...,qn
ℓ 6∈Lin

ζiℓn ≥ ζiLjn,
n⋂

i=1

k⋂

j=1

{Ti,j+1 − Tij >
1

qn
}
)

+ P
( n⋃

i=1

k⋃

j=1

{Ti,j+1 − Tij ≤
1

qn
}
)
.

Next, from Lemma 2.2, we may write for all ℓ = 1, . . . , qn, and i = 1, . . . , n:

{
max

ℓ=1,...,qn
ℓ 6∈Lin

ζiℓn ≥ ζiLjn

}
⇒

{
max

ℓ=1,...,qn
ℓ 6∈Lin

ζ
(Z)

iℓn

+ q−α
n (a(Xi−1) + b(Zi−1) + cm ‖I − ρ‖L) ≥ ζiLjn

}
.

As for ℓ 6∈ Lin, there is no jump in [ ℓ−1
qn

; ℓ
qn
], the condition A2.3-(ii) gives

max
ℓ=1,...,qn
ℓ 6∈Lin

ζ
(Z)

iℓn ≤Miq
−α
n ,

so
{

max
ℓ=1,...,qn
ℓ 6∈Lin

ζiℓn ≥ ζiLjn

}
⇒

{
q−α
n (Mi + a(Xi−1) + b(Zi−1) + cm ‖I − ρ‖L) ≥ ζiLjn

}
.

(5.1)

Next we may use (4.2) (since
⋂n

i=1

⋂k
j=1{Ti,j+1 − Tij >

1
qn
} implies that two con-

secutive jumps cannot belong to the same interval) and deduce with Lemma 2.2
that ζiLjn ≥ ∆ij − q−α

n (2Mi+ a(Xi−1)+ b(Zi−1)+ cm ‖I − ρ‖L). Hence, (5.1) may
be rewritten as
{

max
ℓ=1,...,qn
ℓ 6∈Lin

ζiℓn ≥ ζiLjn

}
⇒

{
q−α
n (3Mi+2a(Xi−1)+2b(Zi−1)+2cm ‖I − ρ‖L) ≥ ∆ij

}
.

Finally the condition A5.2-(iii) gives that P
(

max
ℓ=1,...,qn
ℓ 6∈Lin

ζiℓn ≥ ζiLjn

)
is bounded with

P(Mi ≥
δ1q

α
n − 6cm ‖I − ρ‖L

9
) + P(a(Xi−1) ≥

δ1q
α
n − 2cm ‖I − ρ‖L

6
)

+ P(b(Zi−1) ≥
δ1q

α
n − 2cm ‖I − ρ‖L

6
).

The result follows with Markov’s inequality, the condition A4.2-(i) and the conclu-
sion is a straightforward consequence of Borel Cantelli’s lemma with A4.2-(ii). �
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Remark 5.1. Theorem 5.1 implies that almost surely for n large enough, ζiℓn <
ζiLjn for all ℓ 6∈ Lin, i = 1, . . . , n, j = 1, . . . , k. Hence for each sample path,
the jumps are almost surely identified and we have at our disposal n sets of k

values: {L̃i1, . . . , L̃ik}. Here, note that the L̃ij are not ordered either with respect
to jumps intensities or arrival times. By considering the associated order statistics:

(L̂i1, . . . , L̂ik) := (L̃∗
i1, . . . , L̃

∗
ik), the set L̂in := {L̂i1, . . . , L̂ik} represents the arrival

times of jumps and one gets L̂in ≡ Lin, i = 1, . . . , n a.s. for n large enough.

5.3. Estimation of the jumps’ intensities. Since we may identify a.s. for n
large enough the k jumps of each Xi, we are in position to estimate the intensities
E (∆σ(j)), j = 1, . . . , k. We begin with the estimation of coefficients a0, . . . , ak,
ak = 1, of the polynomial of degree k with the distinct roots E (∆σ(j)):

k∏

j=1

(x− E∆σ(j)) =
k∑

j=0

ak−jx
k−j = 0.

Using Viète’s formula and independence of the jumps, we get for j = 1, . . . , k:

ak−j = (−1)j
∑

1≤ℓ1<···<ℓj≤k

E (∆σ(ℓ1)) · · ·E (∆σ(ℓj))

= (−1)j
∑

1≤ℓ1<···<ℓj≤k

E (∆σ(ℓ1) · · ·∆σ(ℓj)).

Here, the key point is that we have to consider the sum of k jumps, the sum of
their product in pairs, ..., and finally their products. All these sums are exhaustive,
hence we observe that we may use the jumps estimated by chronological order to
estimate each term. The next example illustrates this fact for k = 2 and k = 3.

Example 5.1.

- For k = 2, we get a0 = E (∆σ(1)∆σ(2)) = E (∆1∆2), a1 = E (∆σ(1) +
∆σ(2)) = E (∆1 +∆2), a2 = 1;

- for k = 3, a0 = E (∆σ(1)∆σ(2)∆σ(3)) = E (∆1∆2∆3), a1 = E (∆σ(1)∆σ(2) +
∆σ(1)∆σ(3) + ∆σ(2)∆σ(3)) = E (∆1∆2 + ∆1∆3 + ∆2∆3), a2 = E (∆σ(1) +
∆σ(2) +∆σ(3)) = E (∆1 +∆2 +∆3), a3 = 1.

Hence, we compute the k estimators of ak−j , j = 1, . . . , k by setting âk−j equal
to

∑

1≤ℓ1<···<ℓj≤k

(−1)j

n

n∑

i=1

∣∣Xi(
L̂iℓ1n

qn
)−Xi(

L̂iℓ1n − 1

qn
)
∣∣ · · ·

∣∣Xi(
L̂iℓjn

qn
)−Xi(

L̂iℓjn − 1

qn
)
∣∣.

To study their behavior, we use the Remark 5.1 and the property that summations
are exhaustive to obtain below the strong consistency of these estimators as well as
their rates of convergence.

5.3.1. Convergence of the âk−j , j = 1, . . . , k. For âk−1 defined by

âk−1 = −
1

n

n∑

i=1

k∑

j=1

∣∣Xi(
L̂ijn

qn
)−Xi(

L̂ijn − 1

qn
)
∣∣

and ak−1 = −E (
∑k

j=1 ∆σ(j)) = −E (
∑k

j=1 ∆j), we obtain the following result
proved in the Appendix.

Proposition 5.1. Suppose that Assumptions A4.2, A5.1, and A5.2 are fulfilled,
then

1) âk−1
a.s.

−−−−→
n→∞

ak−1 if either a(·) is bounded or
∑

n q
−α
n <∞;
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2)
∣∣∣âk−1 − ak−1

∣∣∣ = O
(
(logn)c n− 1

4

)
, c > 1

4 a.s. if

E
∣∣Z1(T1σ1(j)) − Z1(T

−
1σ1(j)

)
∣∣4 < ∞, j = 1, . . . , k and qn = nβ with β >

max( 5
4α ,

2
min(1,αp) ).

Note that if Assumption A4.2-(i) is fulfilled with p ≥ 2, the condition β >
max( 5

4α ,
2

min(1,αp) ) may be reduced to β > max( 5
4α ,

5
2 ). Finally to simplify the

study of our estimators, we add an assumption of boundedness and derive the
following result for the coefficients ak−j , j = 2, . . . , k.

Proposition 5.2. Under the hypotheses of Proposition 5.1, we suppose in addition
that ‖X‖ ≤ C and that functions a, b and Mi are bounded. Then, for j = 2, . . . , k
and εn > 0 such that qαnεn → ∞

P
(∣∣âk−j − ak−j

∣∣ > εn
)
= O(nq−min(1,αp)

n ) +O(exp(−ncε2n)), c > 0.

5.3.2. The special case of k = 2 and conclusion. Collecting the previous results,

we obtain that âk−j
a.s.

−−−−→
n→∞

ak−j for each j = 1, . . . , k. Now the problem con-

sists in solving the equation
∑k

j=0 âk−j,nx
j = 0 (with âk,n ≡ 1) to recover the

roots E (∆σ(j)), j = 1, . . . , k. For k = 2, the resolution is straightforward and

gives the solutions1: ∆̃σ(1)n = 1
2 (Ŝ +

√
Ŝ2 − 4P̂ ) and ∆̃σ(2)n = 1

2 (Ŝ −
√
Ŝ2 − 4P̂ )

with Ŝ := â1 = 1
n

∑n
i=1

∣∣Xi

(
L̂i1n

qn

)
− Xi

(
L̂i1n−1

qn

)∣∣ +
∣∣Xi

(
L̂i2n

qn

)
− Xi

(
L̂i2n−1

qn

)∣∣ and
P̂ := â0 = 1

n

∑n
i=1

∣∣Xi

(
L̂i1n

qn

)
− Xi

(
L̂i1n−1

qn

)∣∣∣∣Xi

(
L̂i2n

qn

)
− Xi

(
L̂i2n−1

qn

)∣∣. We easily

derive the strong consistency of these estimators with the help of the propositions
5.1 and 5.2. The cases k = 3 and k = 4 are again rather easy to handle but for
k > 4, the use of numerically approximated solutions should be considered. Simu-
lations should be carried out to see how estimation is involved in the accuracy of
this approximation.

Acknowledgments. We want to thank the Reviewers and the Managing Guest
Editor for improving the first version of this paper.

Appendix A. Auxiliary proofs

The proofs of Lemmas 3.2 and 3.3 being similar, we only give the derivation of
the latter one.

Proof of Lemma 3.3.
1) Suppose that the conditions given in A3.2-(i) are fulfilled. Similarly to the

proof of Theorem 1 p. 388-389 in Shiryaev (1996), we get that

P (
∣∣ 1
n

n∑

i=1

Yi,n
∣∣ ≥ η) ≤

3c

n2η4
, η > 0, n ≥ 1, (A.1)

for independent and centered random variables Yi,n, i = 1, . . . , n such that E (Y 4
in) ≤

c with some finite constant c not depending on n. Next, as
∣∣X1(tj)−X1(t

−
j )

∣∣ =∣∣Z1(tj)− Z1(t
−
j )

∣∣, j = 1, . . . , k, the variables |Xi(tσ(j)) −Xi(t
−
σ(j))| − |Xi(tσ(j′)) −

Xi(t
−
σ(j′))| are independent with finite fourth moment thanks to the condition A3.2-

(i). For the term P
(
Λn > ηqαn

)
, we apply the Markov’s inequality and get for n

large enough that this term is a O(q−α
n ).

1Note that concerning the continuous framework, this case appears in Blanke and Bosq (2014)
with a slight misstatement since it is necessary to assume independence between the two jumps
for K = 2.
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2) If the conditions A3.2-(ii) are fulfilled, exponential moments do exist and we
have a(X1) < a∞, so we may use Bernstein inequality to get the claimed exponential
bound. Concerning the term involving Λn: we first bound it with

P
( n∑

i=1

b(Zi) >
η

2
nqαn −

n

2
(cm ‖I − ρ‖L + a∞)

)

+ P
( n∑

i=1

Mi >
η

4
nqαn −

n

4
(cm ‖I − ρ‖L + a∞)

)
.

Next, since the b(Zi) and Mi are independent random variables with exponen-
tial moment, we obtain by Markov’s inequality that these two terms are of order
O
(
e−c nqαn

)
for some c > 0. �

Proof of Theorem 3.2.

We start from the relation (3.10) with three terms to study. The first one, P(k̂ 6= k),
is controlled in Theorem 3.1. For the second term, we set η =

pj

2 and ε1 =
εpj

4 , so
for j = 1, . . . , k

P(
∣∣∣∆̂j − E (∆j)

∣∣∣ ≥ ε1) ≤ P(
∣∣∣ 1
n

n∑

i=1

∣∣Xi(
ℓj
qn

)−Xi(
ℓj − 1

qn
)
∣∣− E (∆j)

∣∣∣ ≥ ε1)

+ P(ℓ̂j 6= ℓj).

The term P(ℓ̂j 6= ℓj) is also controlled with Theorem 3.1. Next, from a similar
bound as in (3.7), the first probability is bounded by

P
( ∣∣∆j,n − E∆j

∣∣ > ε1
2

)
+ P (Λn ≥

qαnε1
2

) (A.2)

with again Λ = aX + bZ + 2M + cm ‖I − ρ‖L.

Following the beginning of the proof of Lemma 3.3, the condition A3.2-(i) gives

the bounds O
(
n−2ε−4

1

)
+O

(
ε−1
1 q−α

n

)
prevailing those obtained in (3.2) for P(ℓ̂j 6=

ℓj) and P(k̂ 6= k) as soon as ε1u
−1
n → 0. On the other hand, under A3.2-(ii) and

following the second part of Lemma 3.3, the obtained bounds are O
(
e−c nε21

)
+

O
(
e−c nqαnε1

)
for some c > 0. Again, the bound obtained in the relation (3.3) is

negligible when ε1 → 0.

Finally, for the two last terms of (3.10), the choice η = p1

2 gives that P(|p̂j − pj | ≥
pj

2 ) is negligible with respect to P(|p̂j − pj | ≥
ε1

E (Ij)
) as soon as ε1 → 0. This latter

term is bounded with

P(
∣∣ 1
n

n∑

i=1

I{
|Xi(

ℓj

qn
)−Xi(

ℓj−1

qn
)|>un

} − pj | ≥
ε1

E (Ij)
) + P(ℓ̂j 6= ℓj). (A.3)

From the relation IA = IB + IA∩Bc − IAc∩B, we may write that

I{
|Xi(

ℓj
qn

)−Xi(
ℓj−1

qn
)|>un

} = I{
Yij=1

} + I{
|Xi(

ℓj
qn

)−Xi(
ℓj−1

qn
)|>un,Yij=0

}

− I{
|Xi(

ℓj

qn
)−Xi(

ℓj−1

qn
)|≤un,Yij=1

}.
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Then, the left probability of (A.3) is bounded with

P(
∣∣ 1
n

n∑

i=1

I{Yij=1} − pj
∣∣ > ε1

3E (I1j)
)

+ P(
1

n

n∑

i=1

I{
|Xi(

ℓj
qn

)−Xi(
ℓj−1

qn
)|>un,|Zi(tj)−Zi(t

−
j
)|=0

} > ε1
3E (I1j)

)

+ P(
1

n

n∑

i=1

I{
|Xi(

ℓj
qn

)−Xi(
ℓj−1

qn
)|≤un,|Zi(tj)−Zi(t

−
j
)|=Iij

} > ε1
3E (I1j)

).

The first term is a O(exp(−2n
ε21

9E (I1j)2
)) by Hoeffding’s inequality. For the others,

we have for Λi = a(Xi−1) + b(Zi−1) + 2Mi + cm ‖I − ρ‖L:

∣∣Zi(tj)− Zi(t
−
j )

∣∣− Λiq
−α
n ≤

∣∣Xi(
ℓj
qn

)−Xi(
ℓj − 1

qn
)
∣∣ ≤

∣∣Zi(tj)− Zi(t
−
j )

∣∣+ Λiq
−α
n

so we get the two implications:

{{
|Xi(

ℓj
qn

)−Xi(
ℓj − 1

qn
)| > un

}
,
{ ∣∣Zi(tj)− Zi(t

−
j )

∣∣ = 0
}}

⇒
{
Λi > unq

α
n

}

{{
|Xi(

ℓj
qn

)−Xi(
ℓj − 1

qn
)| ≤ un

}
,
{ ∣∣Zi(tj)− Zi(t

−
j )

∣∣ = Iij
}}

⇒
{
Λi ≥ qαn (Iij − un)

}
⇒
{
Λi ≥ qαn (δ1 − un)

}

since P(Iij > δ1) = 1. Under the condition A3.2-(i), we arrive at a bound of

order O(u−1
n q−α

n ε−1
1 )) +O(exp(−cnε21)) +O(u−1

n q−α
n ) +O(n−2) for the term given

in (A.3). Finally, collecting all the results, the predominant bounds are of order

O(u−1
n q−α

n ε−1
1 ) + O(n−2ε−4

1 ). Next setting ε1 = (log n)c n− 1
4 , c > 1

4 , and qn = nβ

with β > 5
4α , un = (logn)−1, we may apply Borel-Cantelli’s lemma to derive the

claimed result. If the condition A3.2-(ii) is fulfilled, the predominant bound is now
transformed in O(exp(−cnε21), so we may derive the rate of convergence with the

choice ε1 = ε0

√
logn
n

for a sufficiently large enough ε0 and all qn → ∞ (since

nε21 = o(nqαnε1)).
�

Proof of Proposition 5.1.
1) To get the strong consistency, we notice that a.s. for n large enough

âk−1 = −
1

n

n∑

i=1

k∑

j=1

ζiLjn := −

k∑

j=1

ζLjn

as all possible summations in j are considered. From Lemma 2.2 and Lemma 3.1
(whose proof is exactly the same for random instants of jumps), we obtain the same
bound for each j = 1, . . . , k:

∣∣∣
∣∣ζLjn

− E∆j

∣∣−
∣∣∆j − E∆j

∣∣
∣∣∣ ≤ 2Λnq

−α
n (A.4)

with again Λn = 2M + aX + bZ + cm ‖I − ρ‖L. We conclude with the law of large
numbers (applying Markov’s inequality to control aX in the case where a(·) is not
bounded.
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2) We have

P
(
|âk−1 − ak−1| ≥ ε

)
= P

(
|âk−1 − ak−1| ≥ ε,

n⋂

i=1

{
L̂in ≡ Lin

})

+ P
(
|âk−1 − ak−1| ≥ ε,

n⋃

i=1

{
L̂in 6≡ Lin

})
(A.5)

that can be bounded by

P
(
∣∣∣∣∣∣

k∑

j=1

ζLjn
−

k∑

j=1

E∆j

∣∣∣∣∣∣
≥ ε

)
+ P

( n⋃

i=1

qn⋃

ℓ=1
ℓ 6∈Lin

k⋃

j=1

{
ζiℓn ≥ ζiLjn

})
.

First, the second term does not depend on ε and it is a O(nq−αp
n ) + O(nq−1

n ) by
Theorem 5.1. Next from (A.4), we may derive analogously to the equation (A.2):

P
(∣∣

k∑

j=1

ζLjn
−

k∑

j=1

E∆j

∣∣ ≥ ε
)
≤

k∑

j=1

P
( ∣∣∆jn − E∆j

∣∣ ≥ ε

2k

)
+ P(Λn ≥

qαn
2k
ε).

The first term is handled with the help of the relation (A.1), it yields to aO(n−2ε−4).
For the second term, Markov’s inequality and the condition A4.1-(i) applied with
p = 1 give the bound O(q−α

n ε−1). Finally, we obtain a bound of order O(n−2ε−4)+

O(ε−1q−α
n ) + O(nq

−min(1,αp)
n ). The rate is obtained for εn = (logn)cn− 1

4 , c > 1
4 ,

qn = n−β with β > max( 5
4α ,

2
min(1,αp) ) and Borel Cantelli’s lemma. �

Proof of Proposition 5.2. First, we state the following property.

Property A.1. Let (uj, j = 1, . . . , p) and (vj , j = 1, . . . , p) be positive numbers
such that max

j=1,...,p
(uj ∨ vj) ≤ d, then

∣∣∣
p∏

j=1

uj −

p∏

j=1

vj

∣∣∣ ≤ dp−1

p∑

j=1

|uj − vj | , p ≥ 2.

Proof of Property A.1. If p = 2,

|u1u2 − v1v2| = |u1(u2 − v2) + v2(u1 − v1)| ≤ d
[
|u1 − v1|+ |u2 − v2|

]
. (A.6)

Now, set αp−1 = u1 · · ·up−1 and βp−1 = v1 · · · vp−1, then from (A.6) and by induc-
tion

|αp−1up − βp−1vp| ≤ αp−1 |up − vp|+ vp |αp−1 − βp−1|

≤ dp−1 |up − vp|+ d(dp−2

p−1∑

j=1

|uj − vj |) ≤ dp−1

p∑

j=1

|uj − vj | .

Hence the result. �

Next for proving Proposition 5.2, we begin as in the proof of Proposition 5.1-(2).

Setting ζijn =
∣∣Xi

(Lijn

qn

)
− Xi

(Lijn−1
qn

)∣∣ and since ‖X‖ is bounded, we obtain by

Lemma A.1:∣∣∣∣∣

j∏

p=1

ζiσi(ℓp)n −

j∏

p=1

E∆σ(ℓp)

∣∣∣∣∣ ≤ (2C)j−1

j∑

p=1

∣∣ζiσi(ℓp)n − E∆σ(ℓp)

∣∣ .

The proof is concluded with the classical approximations ofXi by Zi and Liσi(j)n/qn
by Tiσi(j). Here, all the quantities are a.s. bounded so we may make use of the
Hoeffding’s inequality to derive the claimed exponential bounds. Details are left to
the reader. �
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Borisov, A. V., 2004. Analysis and estimation of the states of special Markov jump
processes. II. Optimal filtering in the presence of Wiener noise. Avtomat. i Tele-
mekh. (5), 61–76.

Bosq, D., 2000. Linear processes in function spaces. Lecture Notes in Statistics,
149. Springer-Verlag, New-York.

Bosq, D., 2015. Estimating and detecting jumps. Applications to D[0,1]-valued lin-
ear processes. Eds M. Hallin, D.M. Mason, D. Pfeifer, J.G. Steinebach; Springer,
Ch. 4, pp. 41–66, Festschrift in honour of Paul Deheuvels.

Bosq, D., Blanke, D., 2007. Prediction and inference in large dimensions. Wiley
series in probability and statistics. John Wiley & Sons, Ltd., Chichester; Dunod,
Paris.

Brockwell, P. J., Davis, R. A., Yang, Y., 2007. Estimation for nonnegative Lévy-
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Éditions de l’École Polytechnique, Palaiseau.

Ferraty, F., Romain, Y. (Eds.), 2011. The Oxford handbook of functional data
analysis. Oxford University Press, Oxford.

Ferraty, F., Vieu, P., 2006. Nonparametric functional data analysis. Springer Series
in Statistics. Springer, New York, theory and practice.

Goia, A., 2012. A functional linear model for time series prediction with exogenous
variables. Statist. Probab. Lett. 82 (5), 1005–1011.
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Torgovitski, L., 2015. A Darling-Erdős-type CUSUM-procedure for functional data.
Metrika 78 (1), 1–27.
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