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DETECTING AND ESTIMATING INTENSITY OF JUMPS FOR
DISCRETELY OBSERVED ARMAD(1,1) PROCESSES

DELPHINE BLANKE AND DENIS BOSQ

ABSTRACT. We consider n equidistributed random functions, defined on [0,1],
and admitting fixed or random jumps, the context being D0, 1]-valued ARMA
(1,1) processes. We begin with properties of ARMAD(1, 1) processes. Next,
different scenarios are considered: fixed instants with a given but unknown
probability of jumps (the deterministic case), random instants with ordered
intensities (the random case), and random instants with non ordered intensities
(the completely random case). By using discrete data and for each scenario,
we identify the instants of jumps, whose number is either random or fixed, and
then estimate their intensity.

1. INTRODUCTION

1.1. There is an abundant literature concerning functional data analysis (FDA)
and prediction of stochastic processes in infinite dimensional spaces. In particular,
wv_and Sil ): [Ferratv_and Vie _)_,_Ferraty
and Romain (M), Horva (@) and the recent book edited
by &ngmgﬁjﬂ ([ZQl_éﬂ) contaln 1nterest1ng theoretical and practical results.
See also Bosq (2000); Bosq and Blankd (2007). In general, X takes its value in
L? = L?([0, h]) or in C = C([0, h]), but, in some situations, one may consider that
a jump does exist if there is a large peak see, for example the annual sediment
&ngmgﬁjﬂ (lZQl_éﬂ p.8). Thus, it is perhaps more natural to consider the
space D = D([0, h]) which is cadlag and equipped with the Skorohod metric d°
(see [Billingsley, 1999, p.125) : with that metric, D becomes a separable complete
metric space. Note that this metric is not easy to compute. In this paper, we
consider cadlag processes from a functional point of view: by this way, we work in
the context of FDA with jumps.
1.2. Works dedicated to jumps in stochastic processes appear very often: actually,
there are more than 1200 papers concerning them. Thus, we may only give recent
and limited references. For example, processes with jumps are widely used in
finance: we may refer to (Cont and Tankovl (2004):
Jeanblanc et al! (2009, part 2), i (2012, ch.10); Privault
... ; but applications can also be found in fields as varied as the environment,
medicine, reliability, ... see e.g. [Guy et all (2015); Barndorfi-Nielsen et al! (2014);
@hmm_and_hmnmsl (2013); Borisov (2004), ... Many mathematical models have

been proposed and studied Qggt_azg i et all. 2011 |KQI£ﬂmk_and_mem§ 2009: Guyon

et al. m de Saporta_and Ya ..), and statistical estimation appears e.g.

IszLm_au (2014); Dlgmmmﬂ (IZD_léﬂ (ﬁm . Note that the pioneer
0]

paper concerning jumps appears in Paul ther references of interest
will appear below.

1.3. Now, here and in the books quoted in Section [T, our purpose is somewhat
different since we want to observe a process over a sequence of time intervals. More
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2 D. BLANKE AND D. BOSQ

precisely, let (&, t € R) be a real measurable continuous time process. We put
Xn(t) =Em-yhtts 0<t<h,nelZ (1.1)

where h > 0 is a time interval. The process may contain some jumps and we envis-
age to detect them and to estimate intensity of jumps, given the data X1,...,X,.

Another motivation should be prediction of X,,+1 over the time interval [nh, (n+
1)h]. One way to predict Xn+1 would be to treat continuous tzme and jumps

separately (see ); ALt );
(@), ...). As an example, consider the functional autoregressive process of order
1 (ARD(1)):

Xoq1(t) = p(Xn)() + Zpsa(t), 0<t<h, neZ,

where p is a continuous linear operator with respect to the sup-norm. Then,
in order to separate the continuous part from the jump’s part, we may suppose
that p(D) C C. That condition is satisfied by the Ornstein-Uhlenbeck process
driven by a Levy process, cf Example 21l Another classical example is given by:
pr(z)(t) = fnh r(s,t)x(s)ds, 0 <t < h, x € D where r satisfies Example 2.2] see
also (Crambes and Mas (2013); [Horvath and Kokoszkd (2012),... Thus, p,(z) € C.
Finally, the condition p(D) C C seems quite standard and characterlzes the un-
predictability of jumps by confining them in the innovation process. Now, the best
probabilistic predictor of X,,11 is p(X,,) and it can be approximated by using an
estimator of p. An exponential rate is obtained in @ (Im, p.222-235), when
the detector and intensity of jumps appear in the current paper. One direction
(currently under development) will consist in combining the two approaches to
improve the prediction.

1.4. A more general model should be the ARMAD(p, p) process defined by

Xo = pr(Xn-1) =+ = pp(Xnp) = Zn = p1(Zn-1) =+ = p(Zn—p), nEZL,

where X,, and Z,, are D-valued and where p;, p;-, 4,5 =1,...,p are continuous
linear operators with respect to the sup-norm. In order to study this process, it
should be possible to work in the space D([0, h)?) (cf Kurchenka, 2001). Note that
if pj, p}, J,j' =1,...,p are C-valued, X, and Z,, have again the same jumps.

Now, since this model is difficult to handle, and in order to simplify the exposi-
tion, we take p = 1 and write

Xn - p(anl) = Zn - p/(anl)a ne Za

note that, Z,_1 may be replaced with an exogenous variable (see for example m,
1.5. We now give some practical examples of jumps over time intervals:
- apatient’s electrocardiogram at each minute M,M;Mﬂﬂjﬂ,m;

Marion and Puma, 2004);
- the temperature day by day (Torgovitski, [2015);

- El Nino southern oscillation (ENSO): a prediction over one year shows a jump

in may
- wave amplitude

- pollution day by day dem&h.a.ndMszkd 2012);
- credit cards transaction and its prediction (Horvath and Kokoszka, [2019);

- another example is electricity consumption: it admits a jump early in the
morning and in the evening (see |Antoniadis et all, 2012; [E1 Hajj, 2013, 12111_4);
- administration of a drug treatment: each day produces a shock at time inter-

vals (see Kannan and Lakshmikantham, 2002);
- astronomical time series with 100000 data (see Preston et all, 2009);

- earthquake and explosion: Nason );
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- predicting \ : IDalk ia wnd Laksaci. [2012: Car-
dot et al., ;Da
- predlctlng the euro- dollar mte Kargm and Onatski, u)Dﬁ
- finally, the mistral gust during one day or one week is one of our objective
for prediction: 240000 data are at our disposal. Predicting the greatest jump
should be of interest, see lJacq et al! (2005).
1.6. In our considered framework preliminary results were first obtained by [Bosg
(@) and, the case of observations in continuous time also appears in Blanke
and Bosq dﬂ)ﬂ Here, we use high frequency data (HFD); this scheme appears
in many situations (see Bgllﬂﬂmndjbdm, ; - ,
2010; |Ait-Sahalia_and_Jacod, 2009, among others). Concerning prediction with
HFD, practical results will be studied later with combined predictors. In particular,
we will apply the results to the mistral gusts with big data.
1.7. In Section 2 we introduce the ARMAD(1,1) model which is connected with
FDA:

Xpn-—-m—p(Xp_1-m)=2Zy,—p(Zn_1), n€EZ (1.2)

where m is a trend and p(D) C C, p'(D) C C so that (X,,) and (Z,,) have the same
jumps. We give several properties of (2] as well as examples. In the following,
we study various types of jumps.

In Section Bl we consider data of the form Xi(qin), £=0,....qn, gn > 1,1 =
1,...,n; where ¢ and ¢, are integers and (Xi,...,X,,) are D-valued realizations
of (L2). We consider the case of fixed but unknown instants of jumps t1,...,,
where t;, denotes the j-th jump, j = 1,...,k and k is unknown too. In this part,
each jump may occur randomly at time ¢; with unknown probability p,; €]0,1],
7 =1,...,k, so the number of jumps is a random variable dependingon¢ =1, ..., n.
We propose and study detectors of jumps and next, we derive estimators of each
intensity of jumps by estimating p; and plug-in the detectors.

Section Ml is devoted to the case of random instants of jumps: 0 < 77 < Ty <

- < Tk, < 1 with K; a IN-valued random variable. We consider the case where
intensities of jumps have the same ordering in each X;. To estimate these intensi-
ties, we detect the k, k > 1, first jumps by considering separately each X;. Here,
as K; is random, the difficulty is to select the sample paths with at least k& jumps.
In this section, we also derive results for estimating the maximal jump.

In Section Bl we consider a final scheme, the completely random one where the
ordering of jumps varies from each sample X;. Similarly as in the previous sec-
tion, we detect the jumps with each trajectories considered separately. To estimate
their intensities, their random ordering makes the problem intricate but we pro-
pose a method in the case where the number of jumps is fixed. It is based on a
trick, derived from Viete’s formula, that allows us to provide estimations (based
on numerical approximation for a number of jumps greater than 4).

2. ARMAD(1,1) PROCESSES

2.1. Model and properties. In order to study the jumps of the real continuous
time process X = (X, 0 <t < h), h > 0, we consider the space D = D([0, h]) of
cadlag real functions defined over [0, h]. The sup-norm ||z|| = supg<;<j, |2(t)] entails
non-separability of D. Thus, it is more convenient to use the modified Skorohod
metric d° (cf Billingsley, 1999, p.125) ; with that metric, D becomes a complete
separable space.

The process X being defined on the probability space ({2, a, P), we suppose that
it is @ — D measurable where D is the o-algebra generated by d°. Concerning

measurability we refer to .Janson and Kaijser (2012).
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Now, if p is a bounded linear operator, i.e. ||pl|, = sup,cp jz<n [2(2)]| < oo,

then, it is D-D measurable. Also if there is a jump at to, z — x(to) — z(ty ) is a
continuous linear form on (D, |]|), see [Pestman (1995).
We consider the ARMAD(1,1) process defined as

Xp—m—p(Xp_1—m)=2Z,—p(Zn-1), n €7, (2.1)

where p and p’ are bounded linear operators, m = E(X,,), and (Z,,) is a strong
white noise i.e. the sequence (Z,) is i.i.d., and such that B || Z,||> < oo, E (Z,) = 0.
Note also the presence of the trend m.

In order to show existence of the ARMAD process we make the following as-
sumption, weaker than those considered in [Blanke and Bosq (2014):

Assumption 2.1 (AZI). Jjo > 1 : ||p7°HL <landdj >1 : Hp'ﬁHL <1.
Lemma 2.1. If Assumption[21] holds, we have

oo
Xy—m=p2 3 p/ (Zn_j _ p/(Zn_l_j)), nez, (2.2)
3=0
so the process (X, —m, n € Z) is stationary and (Z,, n € Z.) is the innovation of

(Xn, n€Z).

Proof. To simplify the exposition, let us assume that m = 0. We may write Y,, =
Zn—p'(Zn-1), n € Z then, (Y,,) is an equidistributed sequence and ||Y,| < || Z.| +
0"l 2 1 Zn 1], thus

2 2 2 2 2 2
E|Yo|” < 2B Za)” + 21/ I El Zn-1l” < 201+ P 1I)E [ Zo]” < oo
Now, we study

E| Y /(¥

j>k+1

’ 2

S , ,
< D el el EQYagll 1Yoy D) < EAYI)C D lIoll2)?

33’ Zk+1 J2k+1

and AZT] implies 7oy ||p||2 - 0 which gives ([Z2]). Finally, the condition
Jdj1>1: || P || . < 1 gives invertibility and consequently, (Z,) is the innovation
of (X,). O

We consider the following assumption:
Assumption 2.2 (AZ2). p(D) C C, p'(D) C C; also, m € C.

From (Z1]) and AZ2] one obtains for each time of jump ty (fixed or random)

An(to) = Xn(to) = Xn(tg) = Zn(to) — Zn(ty), n€Z

which shows that X,, and Z, have the same jumps and that (An(to)) is ii.d..
This assumption is reasonable since we have the following examples. Here, we may
suppose that m = 0 in order to simplify the exposition.

Ezxample 2.1. Consider the Ornstein- Uhlenbeck driven by a Levy process given by:

t
& = / e 0= dL(s), teR (0>0)

— 00

(Brockwell et_all, [2007; |Cont._and Tankowv, 2004) and observed over a sequence
of time intervals. By using (LI), we obtain an ARD(1) process that satisfies
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Xnt1(t) = po(Xn)(t) + Znt1(t), 0 < t < h, n € Z, where the linear operator
pe has the shape pg(z)(t) = e~ %z(h), 0 <t < h, x € D and with

nh-+t
Znia(t) = / e 0hHt=9)qL(s), 0<t<h, neZ.
nh

Then (Z,,) is a strong white noise which may contain jumps, and since py(x) € C,
X,, and Z, have the same jumps.

Ezample 2.2. Set p,(x)(t) = fohr(s,t)x(s) ds, 0 <t < h, z € D, with

Ir(s,t) —r(s,t")| <clt—t|", 0<a<1,0<t,t' <h, c>0,

then e
lpr (@)() = pr(@)(B)] < e [t — 1] / (@)l ds T ©

since z is bounded (see Billingsley, (1999, p.122). Then, a classical example of
ARMAD(1,1) may be derived with X,, — p,-(X—1) = Zpn — pr'(Zn—1), n € Z where
pr satisfies a similar condition as p,..

Ezample 2.3. Put X, 11 = p(X,) + Zny1, n € Z, where HpjoHﬁ < 1 for some
jo > 1. Then, it is possible to predict X,, 11 by considering continuous time and
Jumps separately (see |Shimizu, [2010; |Ait-Sahalia_and Jacod, [2008; Shimizu and
Yoshida, 2006). Thus, we may suppose that p(D) C C.

2.2. Discrete data. Here the data are supposed to be discrete. They take the
form Xi(qi), £=0,...,qn, go > 1,4 =1,...,n, where £ and ¢, are integers and
gn — 00 as n — co. Now, in all the following we set h = 1 so if (&, t € R) is the
real measurable continuous time process such that X;(t) = &_14¢, one observes &
at ng, + 1 discrete times 0,¢,!,...,n —q, ', n.

The instants of jumps associated with X; are denoted by Tj1,...,Tix,, they
can be fixed or random, as well as K;, and they satisfy 0 < Tj; < - Tk, < 1,
t=1,...,n, almost surely (a.s.). Next, in order to avoid local irregularity we need
the following hypothesis:

Assumption 2.3 (AZ3). For 0 <a <1, (s,t) € [0,1]2:
(i) For x € D, the functions p(z), p'(x) and m are Holderian:
lp(x)(t) — p(z)(s)] < a(2) [t — s|* (a>0),
0/ (@)(t) = ¢ (2)(s)] < b(@) [t — 5" (b>0),
Im(t) —m(s)| < cm |t — s|” (em > 0).
(i1) For i.i.d. and integrable M;: |Z;(t) — Z;(s)| < M;|t —s|*, (s,t) € Lk,
where Ly, = [0, Ti[?U- - U[Tig,, 1% =1,...,n.

Note that Example 22 satisfies A23}(i) with a(z) = cfol |z(s)| ds and that the
Ornstein-Uhlenbeck process or the fractional Brownian motion with jumps satisfies

condition AR3}(ii).

In the following, we will use repeatedly the following result since it gives a mea-
sure of proximity between increments of X and Z.

Lemma 2.2. Under the condition AZ.3(i), we have:
| Xi(s) = Xi(®)| = 1Zi(s) = Zi(®)| | < (a(Xi1) +0(Zia) +em T = plig) s =t

i=1,...,n, (s,t) €[0,1]2.
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Proof. The relation [2.I)) gives
[ Xi(s) = Xi(0)| < 1Zi(s) = Zi(8)] + |p(Xi-1)(s) — p(Xi1)(D)]
+10'(Zie1)(s) = p'(Zie) O + T = pll 2 Im(s) —m(t)]  (2.3)

next, AZ3L(i) implies |X;(s) — X;(t)] < |Zi(s) — Zi(t)| + (a(Xi—1) + b(Zi—1) +
cm I = pllz)|s —t|”, and reversing the inequality, one obtains the result. O

Note that if m is constant, it disappears in ([2.3) and the term ¢, || — pl|; is no
longer relevant. One may handle this case with the choice ¢,, = 0. The next result
shows that, excluding the jump’s times, X; satisfies also a Holder type condition.
It is a direct consequence of Lemma 22 and condition AR3}(ii).

Corollary 2.1. Under Assumption AZ.3, we have
1Xi(s) — Xi(t)| < (a(Xiz1) +b(Zic1) + Mi+cn [T = pllo)[s —t]%, i=1,...,n
provided (s,t) € Lix = [0, Tn[?U---U [Tix,1[%i=1,...,n.
Now, throughout the paper, we will suppose that Assumptions ARl A2.2] and
AZ3 hold.

3. FIXED JUMPS WITH £ UNKNOWN

3.1. Framework. In this part, we consider the model [2I). The (Z;) are i.i.d.

functional random variables such that each Z;, i = 1,...,n, has at most k distinct
jumps, with a fixzed but unknown k > 1. These jumps may occur randomly at fixed
times t1,. .., with0=tg <t1 <...<tp < tht1 = 1 such that thrl*tj > 50 >0

forall j =1,...,k — 1. More precisely, we set:
Ny =1Zity) — Zi(t7)] = [ Xi(ty) = Xa(t])| = 1Yy, i=1,....n

where Z;(t;) = lim,\0Zi(t; —n) and (L;;, j = 1,...,k) are positive random
variables that describe the jump amplitudes. Here, we suppose that P(I;; > 61) =1
for some positive §; and, that (Y;;, j =1,...,k) are independent random variables
with Bernoulli distribution B(p;), p; €]0,1], j = 1,...,k. Also, Y;; and I;; are
independent, which means that E (A;;) := E(A;) = p,;E(L;) >0, j =1,...,k.
Hereafter, we present an example illustrating the considered framework.

Ezample 3.1 (Case k = 1). Consider n independent copies of Y7 with B(p;) distri-
bution, p; €]0, 1] and (W1 (t), Wa(t), ¢ € [0, 1]) where Wy and W5 two independent
C-valued processes. We set

Zi(t) =W; (t)H{O,Til[(t) + WiQ(t)]I[Til,l[(t)a i=1,...,n, t€[0,1]

with T;p = t1 €]0,1[ if Y;3 = 1 and T;; = 1 otherwise. In this case, intensities
of jumps are given by |Z;(t1) — Zi(t7)| = [Wi1(t1) — Wia(t1)| Yi1 and each sample
path has at most one jump located at ¢;. Note that p; = 1 gives a systematic jump
at t1. Such modeling refers to short-term perturbations that can be interpreted as
impulses: for example, we may think of treatments where impulses correspond to
the periodic administration of some drugs.

Finally for convenience, we suppose that IE A,y > -+ > EAg4) > 0 for some
given permutation (0(1), cel o(k)) of (1,..., k). By this way, we denote by t, ;) the
jump time having the j-th intensity Ag(j), j = 1,..., k. Our aim is to estimate the
amplitudes E (I;), j = 1,...,k, on the basis of the discretely observed X,..., X,

from the model (Z1)): Xi(qi), £=0,....,qn,7=1,...,n, where £ and ¢, > 1
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are integers and lim ¢, = oo. First, we will estimate the times ¢;,, j = 1,...,k
n—oo

defined as:

3

0< fin—1 <tj§fﬂ;:tjn,j:1,...,k.
qn 4n

Here and throughout this part, we consider ¢, sufficiently large to have t; # ¢; =
tin # tjn and we use notation ¢;, Ea(j) for £j n, Ls(j)m- Also, we set

f—l

and make the assumption:

Assumption 3.1 (AB.J]).
(i) The distribution of Ee s £=1,...,qn is continuous.
(it) Iij > 01 >0 (a.s.), j fl Lk, i=1,...,n where &y is fized.

Finally for j =1,...,k,or £ =1,...,qn, we set:

_ 1 n z /(-1
i =+ D |Xilty) = Xult7)| and T, = Eyz Z;(—)|.
i=1

an
We begin with a result giving the proximity between Z;fn and A ,,.

Lemma 3.1. For all j = 1,...,k, AZ3(ii) implies that ‘C(Z) —Aj,| <2Mg;

with M = 257" | M;.

Proof. First, note that we have the simple inequality
||u7v|f|:c—y||§|ufsc|+|v—y|,u,v,z,yER (31)
Since Aj, = = 30 | Xi(ty) — Xa(t] )| = £ X0 | Zi(ty) — Za(ty)],

this implies

z 1 < 0 0. —1 B
o <o 2|14 - Z(E )| = 17 - Zuty)|
i=1 n
L~ b . G-y o
< SN — 2|+ |2tt) - 2(F =) | < 2N,
i=1 n n

from the condition AZ3}(ii) and the properties % € [tj, e]-: [and t; € [[—1 t[
([

3.2. Detection of jumps. Since k£ and §; are unknown, we consider two sequences:
kn — oo and u, — 0 such that u,q% — oo, for a €]0, 1] defined in Assumption
AZ3l For example, if ¢, ~ n®, 3 > 0, an omnibus choice for u, is u, ~ (logn)~!.
In order to detect the jumps, we need the following assumption.

Assumption 3.2 (AB.2)). Suppose that one of the following two conditions holds
true:
(i) - ]E(a(Xl)) < o0, E(b(Z1)) < o0, E (M) < o0
4 .
- ‘Zl Zl( >|)<OO,]:1,...,]€,
- ufl oY < 0.
n>1
(i) - a(X7) € a0 < 00, E (exp(c1b(Z71))) < 00, E (exp(caMi)) < 00, (a0 >
0,c1 >0, co> 0),
- E(exp(cs | Z1(t)) — Z1(t)])) <00, 5 =1,...,k, (e3> 0).
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Considering Example2:2] AB2{i) holds as soon as E ( fo | X1(s)| ds) < oo but the
condition imposed on g, implies that sample paths should be observed with high
frequency, especially when « is small. Condition AB.2(ii) is more stringent since
a(X1) is supposed to be bounded, but in this case, the only requirement ¢, — oo
is sufficient to derive exponential rates of convergence.

Now, the jumps detection is carried as follows. We set /1 n= =l =arg ,nax Com

and as CZ | > Ut
I

l; = arg max Eé,nv i=2,...ky.

CAO,. AL

The number of detected jumps is then given by

~

k::En:min{jzl,...,kn : ZZJ §un}—1

Remark that the unique restriction on k,, is that k belongs to {1,...,k,} for n
large enough: k, — oo is a sufficient condition. Hence if the above set is empty,
it means that there exists at least k, jumps: in this case, from a practical point
of view, one has to replace kn by k!, with kI, > k,. Finally, detectors of jumps

locations are given by (t1 Ny ’tE W) = (t* P e n) where %v;‘n is the j-th order
statistic associated with (£ ,, . . %VA ) = (s—l, ce Zi) Note that (a.s.) uniqueness

of tim, ... ,?A is guaranteed by Assumptlon ABTland the next theorem shows that
the times of jumps are detected with probability 1.

Theorem 3.1. Suppose that Assumption AZ1 holds, then the condition AZ3Z-(i)
implies:

C?r)

(Ut # 1001) — B

Jj=1 J

{tjn # ta(j),n}) = O(exp(—cn)),c>0. (3.3)

1

The same bounds hold for ]P(E % k) so in both cases, we obtain that a.s. for n large
enough, k =k and for j =1,...,k: ’tvjn =to()n-

Proof. We may write P(UJ_,{(; # lo(}) < P(Us_ {6 # loi)}) + Pk # k).
First, we have

k
Pk # k) <]PU w S+ PG, > un)
where P(US_{C7, ,, < un}) < PUj_i{Co, )i < tnd) + PU_i {0 # Loy }) and

k
PG, > un) SPG >t M {0 = Lo}) + P(| {4 # o })-

j=1
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Hence,

k k
IP(U{ZJ # KU(j)} Z Clg(]) n < Un)
j=1 =1

k

P > tin o {0 = Lo }) + 3P G # Loy ). (3.4)

Jj=1

For the first term, we get from Lemma 2.2 and B that for j =1,...,k
Ctpiym 2 By = 6, (2M +ax +bz + e 1= pl ), (3.5)

where @y = 3" a(X;), by = 230 b(Z;) and M = 137" | M;. Now, we set
in all the following A,, = 2M + @x + b, + ¢ ||T — pll . for obtaining

P(Elaum <up) < P(Za(j),n <y + g, "Ay)
E (Do)
—

These terms are controlled by the following lemma whose proof is postponed to the
appendix.

E (Aa(j))

<P([As(yn — E(Ag())| > )+ PRy > (75— un)ap).

Lemma 3.2. 1) Under the conditions AZ3-(i), we get for j =1,... k:
A E(Aa j ) _
P([Boyn = E (Do) 2 —22) = 0(n7?)
and
— E(Ag; .
IP(An > (% _ un)qf{) _ O(qn )

2) If the conditions AlZ2-(ii) hold, then for j =1,... k:

A ]E AU ] —Ccn
]P( [Aotyn = B (o) = %) =0(e™"),

for some ¢ > 0 and,

E(Asp)

P(A, > ( 5

) = Ofe).
Concerning again ([34]), the term ]P(ka+1 > Up, ﬂ?zl{?j = Ly(j)}) is controlled
with
{Efk+1,n > un,ﬁﬁzl{gj = ga(j)}} = { U {Zl,n > Un}}
LZ{lo(1)sLo(k) }

and Corollary 2Tl implies that, for all £ & {£5(1),. .., Lo(x)}:
{Com > un} = {a @ +bz + M +cm |1 = pllg) > un}.
This last event does not depend on ¢, so
PG, el = log}) < P(@x +5, + T > g — e 1 = pll)-

For this term, we obtain the bound O(u,, g, ) under the condition AZ.3}(i) while
AZ3H(ii) gives a O(e™"undn).

For the last term in ([B4]), observe that the property P(AUB) = P(A°NB)+P(A)
implies for k = 2 the relation: P(f; # €,y Ul # loa) = P(l1 = Loy, la #
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lo2)) + P({; # 5(1)). Next by induction and using the convention ch) =0, we
obtain

k
U {6 # Loiy}) =Py # L))
k—1 _ _ _
+ Y Pl = Loy, by = Loy L1 # Logisn)-
j=1

First part: Study of IP(Zl # L5(1)). Clearly, the relation ¢, sy > ,nax (én
3o dn

57545(1)
Uy = Uy gives P(l # Logry) < IP(QU(I) W < max gén)
575%5(,1)71
Setting j = 1 in BX), we obtain P({1 # ly1)) < P(Ay1), < | tnax Com +
oy
qg”‘An). Next, we get
, H}a),(qn Ce , = Max ( | max Cooms Céa(%n, e Céa(k)v")

=1,...,qn
Lo (1) Ly (1) 50 AF Lo (k)
< max (q;a(ax by + M+ cpm || T - p||£),zéa(2),n, . ’Zﬂg(k),n)' (3.6)
On the other hand, from Lemma 2.2 and Lemma B.1] we get for all j > 2,

Copipyimn S Bo(ym + " (2M +ax + by +cm [T = pll)- (3.7)
We may deduce that , ax Ce < gakag(J—)yn +q,*A,, and, finally, we obtain
é?éég(;zn J=4y.0uy
that
P01 # lo1y) < P(Ap(ry,n < jgaxkza(j),n +2¢,“Ay) (3.8)
and

.....

Note that B8) reduces to P(Ay(1),, < 2q,, “Ay) if k = 1: this particular case will
be handled in the second part of the proof. Here, since Za(g), < n;ax Aa(j)m =

.....

dj=3,..., /C,Zg(j)ﬁn > Zg(g)ﬁn, we get

P(ly # Ly1))
<P(As@)n — Doiyn — E(As2) — A1) = E(As) — As2)) — 24, % An)

+Y P(Aoyn — Doy — E(As) — Aoz) = E(As2) — Ag(p)).  (3.9)

By considering the event {IE (A1) — Ag(2)) — 2q, %N, > %]E (As) — Ao(2))}, we
may bound the first term of ([339) by (Za@) "= Za(l) —E(Ay2) — Asq)) =

M) +P(An > M q%). These probabilities are controlled by

the following lemma whose proof is postponed to the Appendix.

Lemma 3.3. Forallj=2,...,k,j'=1,...,5—1 and n > 0, the following bounds
hold.
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1) If the conditions given in AZZ-(i) are fulfilled, IP(Kn > nq,ol‘) = O(q;o‘)
and

P(As(jyn = Boginm — B(Ag() — Agiry) 2 10) = O(n72).

2) If the conditions AZZ-(ii) hold, P(A,, > ng%) = O(e=°"%) and for some
c>0:
]P(Z — Zo(j’),n -k (Aa(j) — Aa(j’)) > 77) = O(eicn).

Finally, the last term of (39) (which exists only for k£ > 3) is also derived from
Lemma B3l Consequently, the control of P(¢; # £,(1)) is achieved by collecting
all the previous results and Borel-Cantelli’s lemma implies that a.s. for n large
enough, 1 = l;(1).

o(j)mn

Second part: Study of Z;:ll IP(ﬂfnzl{l?m = Loy} N {EEH # Loiy1)}) for k > 2.
For this term, we have
M=t {lm = Loomy} N {11 # Lo+ }

= M1 {lm = Lo} N {arg | max Com # Lo }-
47550(1),?--7,47520(]')

As {Ced(j+1),n > e:f{l_?}_an Ce,n} = {arg ' qlann Ce,n = fa(jﬂ)}a we
LFly (1)l F Lo (1) LFELs (1) 5 AF Lo ()
deduce that the probability of interest is bounded by
P(Céa(j+l)7" < o I{lax Cé,n)'
3o dn
575@0(1), é?“o(ﬁrl)

Then, using the convention Z? -+ =0, it is sufficient to control the terms

k-2

P(Cla(]+1) n = < max ( gfqlax Cl,nv Cla(j+2),nﬂ ceey Céa(k),n))
J=l1 LAy (1) 50 l#fa(k)
+ ]P( < max ¢ )
Cﬂg(k) n =1, Cé,n

LAl (1) s LF L o (k)

Using the bounds established in (B.5)-(B31), we arrive at

k—2
Zl H)(Aa(jJrl),n < m:Ierlraé),(,k A(r(7n),n + QQJQAn)
j=

+P (E Asiky = Doy > EAGg — QQEO‘Kn)

where again A,, = 2M +@x +b, + ¢ [|[I — p|| .. The study of the first term is anal-
ogous to that performed for the term given in (B.8]). Details are left to the reader.
']gl;e second one is ha}giled similarly to (3.9]) for obtaining: IP( |Aa(k)7n —E Aa(k)‘ >
%) +P(A, > —=*2¢2) and the upper bounds are the same as those estab-
lished in Lemma B3] Collectmg all the results, Borel Cantelli’s lemma applied to
@) implies that 3", P(k # k) < 0o and 3, P(Ule{'[j v e,,(j)}) < o0 leading
to the final result. (|
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3.3. Estimation of intensity. Since a.s. for n large enough, k = k and consecu-
tive times of jumps are detected with (61, e ,Ek) (e, .. EE) the associated order

statistic, we may evaluate their corresponding intensities E (I;), j = 1,...,k. We
start by estimating IE (A;) with

7. l; —
Z [X(GH) = Xi(=
an
Since E (A,) = p;E (I;), estimators of E (I;) are given by

4,

pj

Woi=1,... k

~

I = where p; = — , j=1,...k
J J Z {1x: (=X, () > un )

with the same u,, as in SectionIBZL satlsfymg again the condition: u, — 0 such that

~ a.s. . .
ungqy — 0o. Note that p; ——— p; so, a.s. for n large enough, the denominator is
n—o0
not zero.
For the almost sure behavior, we study the quantity

TJ_E(I]):(AJ_E(AJ))];(I/)\]_])J)E(IJ)’ jzl,...,/];,
j
and for € > 0, we get
k
U >e) <Ph#R) + Y P(L—E(I)| >¢)
- j=1
(e # 1)+ P8, ~E(A)| 2 5 + R8s — il 2 55 )

and for all n €]0, p;[, we have

Y]

k
B(E£ )+ Y PR, - E(a,)| > B0,

PU; — 2l > S + 2205~y 2 )
(3.10)

where the latter term doest not depend on €. Then we may derive the following
result whose proof is postponed to the Appendix.

Theorem 3.2. Under the Assumption AZ, we obtain
1) if the condition AZZ(i) holds, and u, = (logn)™!, g, = n” with g > 2,
then almost surely for n large enough

_ (1 1
‘ij ’7 ( og 1) ),c>1, =1,k

2) if the condition AZT2(ii) holds, and upq% — 00, then almost surely for n
large enough

‘ ‘— (wlog"), i=1,.. .k

We conclude that, under the mild conditions AB2}H(i), one needs to observe each
sample path with high frequency to estimate the intensities of jumps with some
given accuracy. Recall that « is linked With regularity of the process between two
jumps. Looking at the condition 8 > 2=, it appears, as expected, that more « is
small, more the estimation will be dlfﬁcult without a high sampling rate. Under
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AB2L(ii) with the boundedness of a(X7), we are close to the classical root-n rate of
convergence. Finally by examining the proof of Theorem B.2] it appears that the
strong consistency of I; holds in both cases as soon as g, — 0.

4. RANDOM JUMPS

4.1. Detection of jumps. Now, we suppose that Z;, i = 1,...,n, has K; jumps
at random instants, with K; a nonnegative integer-valued random variable and
0<Ti1 <.+ <Tjx, <1 almost surely if K; > 1. Here the sequence

((’Zz(Tz]) - ZZ(TZ;)’ ;Ki) 1= 1, ‘e ,n),

with Z(T; ) = lim,o0 Z(T;; — n), is i.id.. We set py = P(K; = k) for k > 0,
po # 1, and also, we suppose that K; is independent from |ZZ-(Tij) — ZZ(TZ;)|,
j=1,...,Ki,i=1,...,n. Assumptions AZTFAZZ lead to |Zi(T;;) — Zi(T};)| =
’Xi(Tij) - Xi(T3;) ’ Recall that the trajectories satisfy a Holder condition between
two consecutive jumps. The main difference with the previous section is that times
of jumps differ from one sample path to the other. By this way, we have to con-
sider separately the X;’s for their detection. Finally, we associate to each T; ; an
integrable intensity of jump:

Aij = |Xi(Tij) — Xi(T;;)| = |Zi(Ty5) — Zi(T7

i,j)|7 j=1...,Ki;i=1,...,n
with P(Aq; > 61) =1 for some d; > 0.

Example 4.1. Let 0 = T;o < T31 < --- be a strictly increasing sequence of random
variables (a.s.). Let us set K; = 3 77 Iy, <1 and Z;(t) = Zf;l Yij—1lir, ;. 1,0(t)

it K; =k with T; 41 =1, 0 <t <1, where Y;; is A — Br measurable and for each
j=1,...,k Yi;,...,Y,; are i.i.d.. Note that an example of such a model is the
compound Poisson process.

Now, for £ =1,....¢qn,j=1,...,K;andi=1,...,n, we set:

¢ =1, (s ¢ 0-1
itn = | Xi(—) = Xi(—)|, ¢2) = |Zi(—) - Zi(—
Gitn = [Xi (=) = Xi(— =) Gl = |2:(~) = Zi(——)

and we consider the integer-valued variables L;;, defined as:

Lijn —1 L;;
= T =1, K=, (4.1)
dn dn
. . . Lijn Lijn—1
We associate them with the increments Q—L].n = ‘Xz(q—ﬂ) — XZ(]q—)’ and
QZ(LZJ)H = ‘Zl(%) — Zi(%ﬂ. Thus, these variables correspond to the incre-

ments including a jump. To detect these jumps, the following conditions will be
useful instead of Assumption AB.Jland AB.2

Assumption 4.1 (AFLT).
(’L) Wij == Ti,j *Ti,jfl Z 50, ] = 1, . .,Ki+1, where Ti,O = 0, Ti7KiJr1 =1 and
do 18 a positive constant.
(i) Aj > 61 >0 (as.), j=1,...,K;,i=1,...,n where §; is fized.

Assumption A Tlmeans that W;; and A;; are not too small. Here and through-

out this section, we take n large enough (namely such that qi < 601) to make

sure that all intervals [{;—1, qL], =1,...,q, include at most one jump. The first

condition can be relaxed as shown by the following remark.
Remark 4.1. The condition AET}(i) excludes in particular gamma-distributed inter-
arrival times. By adding the condition ), -, ng; 1 < o0, observe that all subsequent

results of this part hold true as soon as P(T} j11 — T < ¢, ' | K; = k) < (k)g,*
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with ¢ such that E (K;U(K;)) < co. A compound Poisson process satisfies this
condition since we have P(T; ;41 —T;; < g5t | Ki = k) =1— (1 —q;1)* < kg, ?
and E (K3) < oo.

Assumption 4.2 (AL2). Suppose that for some p > 1:
(i) E(a(X1))" < o0, E (b(21))" < 00, E (M) < oo,
(i1) > ng, *Pu,P < oo.

n>1

The condition AE2}(ii) implies that more « is small (more the sample paths are
irregular), more p should be chosen large enough.

Now, to detect the jumps we consider the random set L;, defined by L;, =
{Lijn, i=1,....K;, K; > 1}, i=1,...,n and we predict this set with

~ 14 l—1
‘Cin:{ge{la---aQn} : |X1(q_)_Xl(q—)|>un}

still with w,, — 0 such that u,¢% — oo for a €]0, 1] defined in Assumption AR3]
Again an omnibus choice is u,, = (logn)~! for ¢, = nP, B> 0. Moreover we denote

o~

by IAQ the cardinal of the set Em and {Eil, ..., Lz, } its elements. We begin with
a result enlightening the fact that for each sample path and n large enough, one
may identify the K; jumps with probability 1.

Theorem 4.1. If Assumptions AZ.1] and AZ.2-(i) hold, ]P(U?:1 Lin # Em) =
O(ng, *Puy,”).

Proof. We have

-~

Lin =Lin & (a) V] = 1,...,Ki, Lijn GEin (KZ > 1)
(b)Y VE & Lin, £ & Lin.
We may deduce that

=1 L=1L&Lin

=

7

Xi(Him) - XLl <, | and

J

K; —~
Moreover |J {Lijn & Lin} < {
=1

ic

U {Eefm}@{ U {|Xi(q£n)in(€q_—nl)| >un}}.

{=1 =1
egl:-;n €§Z£in

Hence IP(U?:l{Em £ Lin}) < 30 Ditn + Dizn with

R
dn dn

Piln i= ]P(U{|Xz‘(

Jj=1

)| < un})

and

" ¢ (-1
pon =P U {I%(0) = X > wa).
(=1L Lin n n
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Let us begin by p;1,: from Lemma 2.2] we have:

(L Lim—1
—(a(Xiz1) +0(Ziz1) +em 1T = pll£)an . )—Zi(JT)\
< | Xa(—2) - X(—E—)|
dn dn

Lij Lijm —1

< (a(Xim1) +0(Zi1) + e [T = pll £)an® ( qzin) — Zi(

Moreover similarly to Lemma Bl we may deduce from (B.1)) that

(4.2)

n

Li‘n Li‘n -1

“Zz( J )_Zi( J )’—’ZZ(TU)—Z ’ <2 lq
qn qn

Setting Az = a(Xifl) + b(szl) + 2Mz “+ Cm ||I — p”[,’ we get

Lijn Lij, — 1
SmLYALY SV gy Qi LU
0 ) ( o )|
<Nig,“ +|Zi(Ty) — Zi(T;)|  (4.3)

—Nig, " + |Zi(Tij) - ZZ-(TT)|

IN

X

and pj;1, is bounded as follows:

K;
Pitn < lP(U {|1Z:(T3;) — Z{(T};)| < un + Nig,*})
U{‘Z i) Zy(T, )’ < 2up}) + P(A; > qpun)
gz U{|Z ) — Zi(T5)| < 2un} | K = k)P(K; = k) + P(A; > qSuy)

J=1
oo k
< ZZ (Aij < 2un)P(K; = k) + P(A; > ¢%uy).

because K; is independent from A;;. Next Assumption AELT}(ii) implies the nullity
of the first term for n large enough (namely such that 2u,, < §1) and the second
term is controlled by Markov’s inequality and Assumption AZ2}(i). Hence, we
arrive at pj1, = O(g;, *Pu,,?) uniformly in 1.
Now, we turn to p;o,,. From Corollary BTl we know that
i) — Xi(
qn qn

)| < (a(Xiz1) +b(Zi1) + M + com [T = pll 2)a,

SO

U (1560 - X > )

0=1,&Lin in
= {a(Xiz1) +b(Zio1) + M; + o [T = pll o > qSun}
and,
pion < P(a(Xi—1) > vp) + P(0(Zi—1) > vy) + P(M; > vy,)
Ungy

with v, = M and Markov’s inequality gives that p;2, has a similar
order as p;in. O
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4.2. Estimation of intensity. As ((A”,K) 1= 1,...,n) is supposed to be
i.i.d., we have

E(Aij) =E ‘XZ(E]) _Xz(n;)‘ EE(AU), j = 1;---7Ki; 1= 1,...,77,.

So, the ordering of jumps’ intensities is the same for each sample path; but con-
trary to the deterministic case, two distinct jumps may have the same inten-
sity. Again Assumptions ATl and AZZ guarantee that for each j = 1,..., K,
| Xi(Ty5) — XZ(TZ;)| =|Z;(T;;) — Zz(Tl;)| are independent variables. For some fixed
k > 1, it is possible to construct an estimator of the k-first jumps E (Aq), ..., E (Ag)
by selecting the X;’s having at least k jumps. To this end, we set for j =1,... k:

S [xa(R2) - (B

an K;>j}

n R if Z?: I,5_.,> 0,
Zi:l ]I{I?sz} 1H{K;>j}
0, if i Lg,zyy =0

still with K; = ‘Em

tency and rates of convergence are given in the following theorem.

and Em = {Eil,...,fik}, 1 =1,...,n. The strong consis-

Theorem 4.2. Suppose that Assumptions A1 and A3 (with p = 1) are fulfilled,
and that for j =1,...,k E (exp(co A1j)) < 0o with cg > 0. We have for all € > 0;

nlogn

]P(‘Aj —E(Ay)| 2

g) = O(ng, “u, ') + O(exp(—cy ne?)) + O( ), c1 > 0.

’fl

Proof.
We have to study IP(|Aj — ]E(Alj)‘ > 5), j=1,....k, k>1,e>0. First, this
term is equal to

P(|A; —E(Ay)| >, U{,c #Lin}) +P(|A; ~E(Ayy)| > € ﬂ (L,

=1

Lin})

so it may be bounded with P({J;-, {EAZ % Lin}) +]P(‘£j —E(Ayj) > ¢|) where we
have set

A = — X L”_l ‘]I{K >j}
T 2ict ]I{KiZJ} (S Tz o0}

using the convention % = 0. The first term is controlled with Theorem [£.1] and
gives a O(ng, “u;'). Next from (£3) and after some derivations, we may write

P(|A; — E(A1))| > €) < pin + pan with

‘Zz A3 25} TR f)
D e k> {El 1k, >]}>o} =9
Z'—l AzH{K>]} £
n -— ]P % > ZL_ .
P ( Zi:l ]I{Kizj} {Z?:lﬂwiznw} =4 2)

Concerning the first term py,,, we have

P(‘ D i1 Di gl >4 Lo

m

E (Ay))

>

| ™

Pin =

m=0

Z {Kizj} = m)
]P(Z Lk, >3 =m
i=1
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As o ik, >4y ~ B(n, 3,5, pi) and, since { 377 Iix,>;3 = m} is equivalent
to have exactly m indicators equal to 1, the ii.d assumption on the A, ;’s and
independence from K; give

n - A
pin = Lpe<oma,n PQ Tik,2y = 0) + D P(’% ~E(Ay)| =

i=1 m=1

)

| ™

xPOY Tk, =m).
=1

Now, one may use Bernstein’s inequality, stated as in e.g. [Bosq and Blanke (2007,
p-297), to obtain:

n 2
S RS WIS WC) WA G
i>j m=1 i>j i>j J
with o7 = Var (Ay;) and H; a constant linked to the central moments of Aj;. The
. . 2 n .
last expression is bounded by 2(1 =D isjPit D5 Piexp (- m)) . Since

Inl—a)<-afor0<a<landl—e*>a-— “—22 for all a > 0, we successively
obtain for all j such that 3, p; > 0:

2

Pin < 2exp ( —ny pi(l- eXp(*Ei)))

2 .
= 805 +4H e
< ex (7 nziszz'€2( B = ))
=P\ T BT FaHe Y 1607 + 8He )

Next, there exists 0 < co < 1 such that p1, < 2exp ( — C2”(Z¢>j pi)wf_ﬁ).
- J J

Finally, for the term po,, we may write:

& Z;n: Az]I K;>j aE -
P2n = Z P(% > qng, Z]I{Kizj} = m)

m=1 i=1
n

< 30 PO Az 2 305e)
We conclude with Markov’s inequality and the condition AL2}H(i), p = 1, to get the
bound (’)("ql%%). O
Remark 4.2. We may observe that the choices u, = (logn)~!, ¢, = n?, ¢
gon~z(logn)? (g9 > 0), with v > 2, 3 > 2 entail ZnP(lﬁj*E(Au) >

20
Eon_%(log n)”) < o0 . So in Theorem A2 an expected rate of convergence to
estimate the jumps’ intensities is O((logn)? n*%).
4.3. Estimation of the maximal jump. Suppose that there exists a unique
integer kmax such that E(Aqg,, ) > ‘H%anE (A1;). Then, an estimator of the
J=1,...,

JF#kmax
maximal intensity of jump is Apax =  max A, with k, — co as n — co. From
j=1,....k

dyeeey n

max ‘ﬁj - ]E(Alj)‘ > ‘ max |3J| — max |E(Ay;)||, we get that for all
j=1,....kn j=1,....kn J=1,....kn
e > 0:
kn
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Now, for K; with a finite support {0, ..., ko} and unknown kg > 1, we clearly have

Amax = I{lan A almost surely for n large enough (as a consequence of K K;
J=1..,Fko

giving in turn that Aj = 0 for n large enough and j > kg 4+ 1). Also, remark that
; qlaxk E(Ay) = j—qlanOE(Alj) and E (Aq;) = 0 for j > ko + 1. Hence the
summation ranges over [[0, ko]] and one may obtain a similar rate of convergence as
in Remark 2] for the estimation of the maximal jump. If K; is a IN-valued random
variable, we can also derive a rate of convergence with the same methodology as in
Blanke and Bosq (2014) and with sequences k,, increasing slowly to infinity. Finally,

it can also be shown that ky.x = arg maxk A; is a consistent estimator of kmax.
J=1,....kn

5. THE COMPLETELY RANDOM CASE

5.1. The considered framework. In this part, for a fixed k¥ > 1, we denote
by (As1)--+sDo(k)), k independent intensities of jumps which are ordered in
decreasing average: EA,q) > -+ > EAg ;). We associate them to k inde-
pendent continuous variables (T, (1), ..., Tyx)): by this way, T ;) corresponds to
the jump with highest j-th average intensity. Next, with the ordered statistics
(Th,...,Ty) = (T:(l), .. .,T;(k)), T:(1) < - < T:(k), we consider a sample path
Z with jumps at times (71,...,Tx). Then, we work with n i.i.d copies of Z, say
Ziy...,Zn. Here, the key difference with the random case is that intensities of
jumps have not the same order from one sample path to the other and the diffi-
culty is to estimate them. The latter construction is resumed with the following
hypothesis.

Assumption 5.1 (ABT)). For eachi=1,...,n, there exists a permutation denoted
by (O’i(l), . .,O’i(k)) of (1,...,k) such that E A, ;) = EAy with EAGqy >
- > EAy ). Moreover (Aig,(jy, j = 1,...,k, i = 1,...,n) is a collection of
independent random variables and, for each j =1,....k, the (A5, (), i=1,...,n)
are identically distributed.

We make use of the L;;,,’s defined in equation (£1), linked with the arrival times
of jumps (in chronolog‘ical order) and, we consider their independent counterparts
Lis,(jyn With % < Tigy(j) < m, i=1,...,n,j=1,...,k (associated
with jumps ordered by intensities). Now we suppose that

Assumption 5.2 (AG.2).
(1) (Tig,(jy, ©=1,...,m, 5 =1,...,k) are globally independent with respective
bounded densities f1,..., fr on [0,1].

(i) anlnqgl < 00.
(1it) Nij > 61, 5=1,...,k, i =1,...,n where § is a positive constant.

The next lemma establishes that with probability one, two consecutive instants
are not in the same interval.

Lemma 5.1. If the conditions (i)-(ii) of Assumption AL hold, for alli=1,... n,

the (Ti;, j = 1,...,k) do not belong to the same interval a.s. for n large enough:

P(UZ 1U] 1{T7]+1 Ty < ql }) = O(ng; ).

Proof. Note that { U U Ty~ Ty < 23 = { U U U Ty €52 £]0

i=1j=1 =154/ =14=1
J'#3
T,y € [Z;—nl, qin]}} Using independence and boundedness of the densities of
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T;0(j)’s, we get that Y 1" | D izt Y P(Tio, ) € [Zq__nla qin] NTis, ) € [Zq__nla qin]) =
O(ng;h). O

5.2. Detection of jumps. We begin with a result enlightening the fact that for
each sample path, one may identify the k£ jumps with probability 1 for n large
enough. Again in this part, the set L;, is defined by £;, = {Lijn, ji=1,..., kz}, 7=
1, ey Cién = ’Xl(q%) — Xz(e;—nl)} and we note CiLjn = Ci,Lijn,,n‘

Theorem 5.1. Suppose that Assumptions AZ.2, AL and AL are fulfilled, then

a.s. for n large enough, we get that Cun < Grn, J = 1,...,k, ¢ = 1,...,n
£=1,...,q, with £ & L;,. More precisely,

]P(O '

=

{Citn > CiLjn}) = O(ng;, “?) + O(ng;,").

o~

RS

ol ¢ 2
3

Proof. The desired probability is clearly bounded by

n k
ZZ maX Czén > GiLyn; m ﬂ{T,J-‘rl Ti; > _})
i=1 j=1 4 L

i=1j=1

n k
1
P(|J U{Tijs - T < q—})-
i=1j=1 "

Next, from Lemma 221 we may write for all £ =1,...,¢qn, and i =1,...,n

{ maX Czén > CzL n} = { maX Cl@n

..........

+ a4, (a(Xi1) + 0(Zi1) + em |1 = pll2) = Gy }-
As for £ & L;,, there is no jump in [£ _’ L], the condition AZ3}(ii) gives

»»»»»»
SO

{ ma'X Cl@n > CIL]’VL} = {qn M + a(Xi—l) + b(Zi—l) + cm ||I - pHL) > CiLjn}-

féﬁm
(5.1)

Next we may use (L2) (since (-, ﬂ?:l{Ti,jH — T > q%} implies that two con-

secutive jumps cannot belong to the same interval) and deduce with Lemma

that Giz,n > Aij — g, “(2M; +a(Xi—1) +0(Zi—1) + cm ||[I — pl| ;). Hence, (5.1]) may

be rewritten as

{ (Jpax Cien = Cinyn ) = {47 *(BMi+2a(Xi—1)+2b(Zi—1)+2cm |1 — pll ;) = Aij }
“fﬁm

Finally the condition AB2}(iii) gives that ]P(e max  Cion > Ljn) is bounded with

=1,....qn

in

(51(]" _607” ||I p”L)

0195 — 2¢m ||I —
: 1) > 149 I P||z:)

+ P(a(X;— 5

019% — 2¢m |1 —
FPOB(Ziy) > 19y, . I P||£).

The result follows with Markov’s inequality, the condition AL2}(i) and the conclu-
sion is a straightforward consequence of Borel Cantelli’s lemma with AL2L(ii). O

P(M; >
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Remark 5.1. Theorem [E.J] implies that almost surely for n large enough, (o, <
QLJn forall ¢ & L;, i = 1,...,n, j = 1,...,k. Hence for each sample path,
the jumps are almost surely 1dent1ﬁed and we have at our disposal n sets of k
values: {Lzl, e zk} Here, note that the sz are not ordered either with respect
to jumps 1ntens1t1es or arrival times. By cons1der1ng the assomated order statistics:
(Ln, . le) (L .. L* ) the set Em = {Lll, . zk} represents the arrival

times of jumps and one gets Em =Lin,t=1,...,n as. for n large enough.

5.3. Estimation of the jumps’ intensities. Since we may identify a.s. for n
large enough the k jumps of each X, we are in position to estimate the intensities
E(Ayy), 5 = 1,...,k. We begin with the estimation of coefficients ao, ..., ax,
ar = 1, of the polynomial of degree k with the distinct roots It (A, (j)):

k
[[@—EA ) Zak jat =
j=1
Using Viete’s formula and independence of the jumps, we get for j =1,..., k:

ar; =17 Y B(Ase) E(Asq,))
1§€1<"'<lj§k
= (—1) Z E(Ac) - Do)

1< <<l <k

Here, the key point is that we have to consider the sum of k£ jumps, the sum of
their product in pairs, ..., and finally their products. All these sums are exhaustive,
hence we observe that we may use the jumps estimated by chronological order to
estimate each term. The next example illustrates this fact for k = 2 and k = 3.

Ezxample 5.1.
- For k = 2, we get a9 = E(Ag(l)AU(Q)) = E(AlAg), a; = E(Ag(l) +
As2) = E(A1 +Ag), as = 1;
-fork=3,a0=E (Aa(l)Ao@)Aa(S)) =K (A1A2A3), ap =E (Ag(l)Ag(g) +
A 1)Ao3) + As2)A0(3)) = E(A1A2 + A1Az + ArA3), az = B (A +
A(7(2) + A(J'(B)) = E(Al + Ag + A3)a az = 1.

Hence, we compute the k estimators of ay—;, j = 1,...,k by setting a;_; equal
to

,\ ~ o~ o~

z B (BOEZ)] ()

>

1S21<"'<e]‘ <k

)|

To study their behavior, we use the Remark [5.J]and the property that summations
are exhaustive to obtain below the strong consistency of these estimators as well as
their rates of convergence.

5.3.1. Convergence of the ax—;, j =1,...,k. For ax_1 defined by
n k

G = = 30 S|

i=1 j=1
and ap—1 = —E (Z?Zl Asijy) = —E (Z?Zl Aj), we obtain the following result
proved in the Appendix.
Proposition 5.1. Suppose that Assumptions AZ.2, A5, and ALZ are fulfilled,
then
1) Gx—1 —=— a1 if either a(-) is bounded or 3" g% < o0;
n—oo

3 Ty
z]n)_Xi( wjn

n dn

&~

)
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2) ‘ak 1— Qp— 1‘ (9( logn)© n’%), c> i a.s. if
4 . .
IE|Z1 To,(j)) — Z1( 101(]))| <00, j=1,....,k and ¢, = n® with B >
2

5
ma'X( 4a’ min(1,ap) )

Note that if Assumption AL2M(i) is fulfilled with p > 2, the condition 5 >
max( 45;, m> may be reduced to g > max(f;, g) Finally to simplify the
study of our estimators, we add an assumption of boundedness and derive the

following result for the coefficients ax—j;, j = 2,...,k.

Proposition 5.2. Under the hypotheses of Proposition[5 1], we suppose in addition
that || X|| < C and that functions a, b and M; are bounded. Then, for j =2,....k
and €, > 0 such that gpen, — 00

P([ar—; — ar—j| > e,) = O(ng;, ™) + O(exp(—nee},)), ¢ > 0.

5.3.2. The special case of k = 2 and conclusion. Collecting the previous results,
we obtain that ay_; ——— ay_; for each j = 1,...,k. Now the problem con-

n— o0
sists in solving the equation Z?:o ak,jynzj = 0 (with @, = 1) to recover the
roots IE (Ay(j)), j = 1,...,k. For k = 2, the resolution is straightforward and

gives the solutiondl: 50(1),, = 1 §+ V82— 413 and 30(2),1 = %(g — /82— 413)

WlthS -G = 121 1‘X zl’n) _Xi( zln—l ‘+‘X z?‘n)/\_Xi(%)’ and

Pm Gy = T () - X (B () — X (B We casily
derive the strong consistency of these estimators Wlth the help of the propositions
BT and The cases k = 3 and k = 4 are again rather easy to handle but for
k > 4, the use of numerically approximated solutions should be considered. Simu-
lations should be carried out to see how estimation is involved in the accuracy of

this approximation.

Acknowledgments. We want to thank the Reviewers and the Managing Guest
Editor for improving the first version of this paper.

APPENDIX A. AUXILIARY PROOFS

The proofs of Lemmas and 3.3 being similar, we only give the derivation of
the latter one.

Proof of Lemma[Z.3.
1) Suppose that the conditions given in AB2L(i) are fulfilled. Similarly to the
proof of Theorem 1 p. 388-389 in [Shiryaev (1996), we get that

’_ZYW’>77 24,77>0 n>1, (A1)

for independent and centered random variables Y; ,,, i = 1,...,n such that E (Y;2) <
¢ with some finite constant ¢ not depending on n. Next, as ’Xl(tj) - X1 (t]_)‘ =
’Zl(tj) - Zl(tj_) , J = 1,...,k, the variables |X;(t,(;)) — Xi(t;(j))| — [ Xi(to(ny) —
Xi(t;(j,))| are independent with finite fourth moment thanks to the condition AB.2}

(i). For the term ]P(Kn > 77‘170{)7 we apply the Markov’s inequality and get for n
large enough that this term is a O(g,, ).

INote that concerning the continuous framework, this case appears in|Blanke and Bosd (2014)
with a slight misstatement since it is necessary to assume independence between the two jumps
for K = 2.
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2) If the conditions AB2}H(ii) are fulfilled, exponential moments do exist and we
have a(X1) < a0, S0 we may use Bernstein inequality to get the claimed exponential
bound. Concerning the term involving A,: we first bound it with

n

P(Zb(Zi) > gnqz‘ —
i=1

n

em T = pll + <))

n

2 (em 1T = ol + acc)).

+IP(ZMZ- > anf{ —
i=1

Next, since the b(Z;) and M, are independent random variables with exponen-
tial moment, we obtain by Markov’s inequality that these two terms are of order
O(e":"qs) for some ¢ > 0. (|

Proof of Theorem [3.2.
We start from the relation (3.10) with three terms to study. The first one, P(k # k),

is controlled in Theorem B.Il For the second term, we set n = % and 1 = %, SO
forj=1,...,k
~ 1 « l lj—1
P(1A; *E(Aj)‘ >e1) < IP(’EZ ‘Xi(q_) - Xi( . )| 7E(AJ‘)‘ >e1)
i=1 n n

+P(0; # £5).

The term IP(ZJ # (;) is also controlled with Theorem B.Jl Next, from a similar
bound as in ([B7), the first probability is bounded by

P[5~ B4 > 5) + PR > ) (42

with again A = ax + b, + 2M + ¢, [T — pl| -

Following the beginning of the proof of Lemma B3] the condition AB.2H(i) gives
the bounds O(n~2e7*) + O (7 'q;; ) prevailing those obtained in (32)) for ]P(lz #
¢;) and P(k # k) as soon as e1u;' — 0. On the other hand, under AB2H(ii) and
following the second part of Lemma [B3] the obtained bounds are (’)(e_c"gf) +

O(e":"qzsl) for some ¢ > 0. Again, the bound obtained in the relation (B3] is
negligible when ¢; — 0.

Finally, for the two last terms of (3.10), the choice = & gives that P(|p; — p;| >
%) is negligible with respect to P(|p; — p;| > ﬁ}])) as soon as €1 — 0. This latter
term is bounded with

1 il
P ;H{lxi<§—i>fxi<"f1>l>un} 2 B,

an J

) + P # (). (A.3)

From the relation T4 =1 4+ Tanpe — lacnp, Wwe may write that

H{|xi(j—j‘l)—xi("’g;1>|>un} - H{szl} +H{|Xi(f—f;>—xi("{,;1>|>un,m:0}
Ejfl

i —x e v}
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Then, the left probability of (A3]) is bounded with

€1
|_;H{Yﬂ‘” Pil> 5B,

€1
P(— I
+ Z {1%: GO =X () > un .| Zi(8) - 2: (1) =0} ~ 3k ]1])>

I L BT
Z {|X( J) X 7)|<’U‘n| -L | II]} S]E Il_]

The first term is a O(exp(—2nggr72 ( ]) 5)) by Hoeffding’s inequality. For the others,
we have for A; = a(X;-1) + b( 1_1) +2M; + e I = pl| 2

_ a 0 0 —1 _ o
|Zi(t;) — Zi(t; )| = Aig,,* < ’Xi(q_]) - Xi( ]q )| <|Zit;) - Zi(t; )| + Mgy,

{{|Xi(%) —Xi(g t;)] = 0}} = {Ai > ungy}
{{|Xi(%) - xil il :[ij}}

= {A > g (Lij —un)} ={Ai > g5 (61 —un)}

since P(I;; > 1) = 1. Under the condition AB.2}(i), we arrive at a bound of
order O(u; gy %er ")) + O(exp(—cne?)) + O(u; tq;®) + O(n~2) for the term given
in (A3). Finally, collecting all the results, the predominant bounds are of order
O(uilq;a Y+ O(n2e7*). Next setting &1 = (logn)n=4, ¢ > 1, and ¢, = n”
with 8 > 1=, u, = (log n) 1 we may apply Borel-Cantelli’s lemma to derive the
claimed result If the condition AB2}(ii) is fulfilled, the predominant bound is now
transformed in O(exp(—cne?), so we may derive the rate of convergence with the

logn

choice €1 = €9 for a sufficiently large enough ¢y and all ¢, — oo (since

ne? = o(ngey)).
O

Proof of Proposition [5.1.
1) To get the strong consistency, we notice that a.s. for n large enough

k
ap—1 = *%ZZQLW = *ZEL
=1

i=1 j=1

as all possible summations in j are considered. From Lemma and Lemma 3.1
(whose proof is exactly the same for random instants of jumps), we obtain the same
bound for each j =1,...,k:

[Cen ~BA| = [B; - BA|| < 2Ragy® (A4)
with again A, = 2M + @x + b, + ¢ || — pl| .. We conclude with the law of large

numbers (applying Markov’s inequality to control @x in the case where a(-) is not
bounded.
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2) We have

P([ak-1 — ar—1| > &) = P([Ar—1 — ar—1| > ¢, ﬂ {Lin = Lin})

i=1

P([ar-1—ar-1| > &, | J{Lin # Lin}) (AD)

i=1
that can be bounded by

P3¢, S EA) > +IP(Q

Jj=1 Jj=1

N C§
3

k
U {Clén > ClL]n})
j=1

First, the second term does not depend on ¢ and it is a O(ng,“?) + O(ng, ') by
Theorem 511 Next from (A.4]), we may derive analogously to the equation (A.2):

k k b X
PQZZLM?ZEAHZE)SZ]P“ZJ”*EA 2€k) P(A, > q_z €).

The first term is handled with the help of the relation ([A)), it yields to a O(n=2e7%).
For the second term, Markov s inequality and the condition ALT}(i) applied with
p = 1 give the bound O(g, “c~!). Finally, we obtain a bound of order O(n=2e4)+
O(e71q,®) + O(ngn min(T, ap)). The rate is obtained for e, = (logn)°n~1, ¢ > 1,
¢n =n~ P with g > max(%, m) and Borel Cantelli’s lemma. O
Proof of Proposition[2.3. First, we state the following property.

Property A.1. Let (uj,j =1,...,p) and (vj, j = 1,...,p) be positive numbers
such that max (u; Vv;) <d, then

Jj=1,....,p
p p
‘ H uj — H — |, p>2.
j=1 j=1 -
Proof of Property[A 1l If p =
|U1U2 — ’lJ1’lJ2| = |U1(U2 — ’Ug) + ’Ug(ul — ’U1)| < d[ |’LL1 — ’U1| + |U2 — ’U2|]. (AG)

Now, set ap—1 = uy -+ up—1 and Bp—1 = v1 - -+ Vp—1, then from (A.G) and by induc-
tion

lap—1tp — Bp_10p| < ap1|up — vp| +vp lap_1 — Bp_1]

p—1
< dPH fuy — vp| + d(dP” 2Z|UJ_UJ| ) < dP” 1Z|UJ_UJ|
j=1 j=1
Hence the result. O

Next for proving PropositionIB:ZL we begin as in the proof of Proposition [5.1}H(2).
Setting (ijn = |Xi ( ”") - XZ(%)‘ and since || X|| is bounded, we obtain by
Lemma m

H Czo'l(f n T H E AU(Z ) 20 it Z ‘Cza'l(ﬂp)n E AU(Zp)|

p=1
The proof is concluded with the classical approximations of X; by Z; and L;q, (jyn/qn
by Ti,,(j)- Here, all the quantities are a.s. bounded so we may make use of the
Hoeffding’s inequality to derive the claimed exponential bounds. Details are left to
the reader. (|
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