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Hyperbolicity for conservative twist maps of the 2-dimensional annulus

These are notes for a minicourse given at Regional Norte UdelaR in Salto, Uruguay for the conference CIMPA Research School -Hamiltonian and Lagrangian Dynamics. We will present Birkhoff and Aubry-Mather theory for the conservative twist maps of the 2-dimensional annulus and focus on what happens close to the Aubry-Mather sets: definition of the Green bundles, link between hyperbolicity and shape of the Aubry-Mather sets, behaviour close to the boundaries of the instability zones. We will also give some open questions. This course is the second part of a minicourse that was begun by R. Potrie. Some topics of the part of R. Potrie will be useful for this part.

Many thanks to E. Maderna and L.

1 Introduction to conservative twist maps Notations 1.1.

• T = R/Z is the circle; A = T × R is the annulus and (θ, r) ∈ A refers to a point of A;

• A is endowed with its symplectic form ω = dr ∧ dθ = dλ where λ = rdθ is the Liouville 1-form;

• p : R 2 → A is the universal covering;

• π : A → T is the first projection: π(θ, r) = θ and π : R 2 → R is its lift, which is also a projection: π(θ, r) = θ;

• for every point x = (θ, r), the vertical line at x is V(x) = {θ}×R ⊂ R 2 or V(x) = {θ}×R ⊂ A; • the vertical subspace is the tangent subspace to the vertical line: V (x) = T x V(x);

• all the measures we will deal with are assumed to be Borel probabilities. The support of µ is denoted by suppµ.

If x ∈ M is an elliptic periodic point of a Hamiltonian flow that is defined on a 4-dimensional symplectic manifold M , using symplectic polar coordinates in an annular Poincaré section contained in the energy level of x, we obtain in general a first return map T : A → A that is defined on some bounded sub-annulus A of A by T (θ, r) = (θ + α + βr, r) + o(r) with β = 0. This is locally a conservative twist map. Definition 1.2. A positive (resp. negative) twist map is a C 1 -diffeomorphism f : A → A such that 1. f is isotopic to the identity map Id A (i.e. f preserve the orientation and the two boundaries of the annulus);

2. f satisfies the twist condition i.e. there exists ε > 0 such that for any x ∈ A, we have:

1 ε > D(π • f )(x)(0, 1) > ε (resp. -1 ε < D(π • f )(x)(0, 1) < -ε).
In the first case the twist is positive, in the second case it is negative.

Images of vertical lines :

The twist map is conservative (or exact symplectic) is f * λ -λ is an exact 1-form.

Remarks 1.3.

1. Saying that the diffeomorphism f is isotopic to identity means that:

• f preserves the orientation;

• f fixes the two ends T × {-∞} and T × {+∞} of the annulus.

2. The reader can ask why we don't just ask that f preserves the area form (symplectic form) ω, i.e. 0 = f * ω -ω = d(f * λ -λ). We ask not only that f * λ -λ is closed, we ask that it is exact. Indeed, we want to avoid symplectic twist maps as (θ, r) → (θ + r, r + 1): all the orbits come from T × {-∞} and go to T × {+∞} and there is no non-empty compact invariant set for such a map. We will see in section 3 that this never happens for exact symplectic twist maps;

3. Note that f is a positive conservative twist map if and only if f -1 is a negative conservative twist map. Hence from now we will assume that all the considered conservative twist maps are positive.

Exercise 1.4. Let f : A → A be a conservative twist map. Using Stokes formula, prove that if γ : T → A is a C 1 -embedding, then the (algebraic) area of the domain that is between γ and f (γ) is zero.

Example 1.5. Consider the map we introduced by using polar coordinates for a first return map T (θ, r) = (θ+α+βr, r) and assume that β > 0 (or replace T by T -1 ). Then D(π•T ) 0 1 = β > 0 hence T is a (positive) twist map. Moreover, T * (rdθ) -rdθ = βrdr = d β 2 r 2 hence T is a conservative twist map.

We can characterize the conservative twist maps by their generating functions.

Proposition 1.8. Let F : R 2 → R 2 be a C 1 map. Then F is a lift of a conservative twist map f : A → A if and only if there exists a C 2 function such that • ∀θ, Θ ∈ R, S(θ + 1, Θ + 1) = S(θ, Θ);

• there exists ε > 0 so that for all θ, Θ ∈ R, we have

ε < - ∂ 2 S ∂θ∂Θ (θ, Θ) < 1 ε ;
• F (θ, r) = (Θ, R) ⇐⇒ R = ∂S ∂Θ (θ, Θ) and r = -∂S ∂θ (θ, Θ). In this case, we say that S is a generating function for F (or f ). The proof of Proposition 1.8 is given in subsection 5.1.

Exercise 1.9. Check that a generating function of the standard map f λ is S λ (θ, Θ) = 1 2 (Θθ) 2 -λ 2π cos 2πθ. Remark 1.10. Generating functions are very useful to construct new examples or perturbations of known examples of conservative twist maps. Indeed, we only need a function to define a 2dimensional conservative twist map. Using generating functions, we can for example prove that for every k ∈ [1, ∞], there is a dense G δ subset G of the set of C k conservative twist maps such that at every periodic point x of f ∈ G with period n, Df n (x) has two distinct eigenvalues (and then these eigenvalues are different from ±1). A similar dense G δ subset G exists such that the intersections of the stable and unstable submanifolds of every pair of periodic hyperbolic points transversely intersect (when they intersect).

The invariant curves 2.1 Invariant continuous graphs and first Birkhoff theorem

In the '20s, G. D. Birkhoff proved (see [START_REF] Birkhoff | Surface transformations and their dynamical application[END_REF]) that the invariant continuous graphs by a twist map are locally uniformly Lipschitz.

Theorem 1. (G. D. Birkhoff ) Let f : A → A be a conservative twist map and x ∈ A. Then there exists a C 1 -neighborhood U of f , a neighborhood U of x in A and a constant C > 0 such that if the graph of a continuous map ψ : T → R meets U and is invariant by a g ∈ U, then ψ is C-Lipschitz.

Theorem 1 is a consequence of a result that concerns all the Aubry-Mather sets and that we will prove later: Proposition 3.24.

Corollary 2.1. Let f : A → A be a conservative twist map and let K ⊂ A be a compact subset of A. Then there exists a C 1 -neighborhood U of f and a constant C > 0 such that if the graph of a continuous map ψ : T → R meets K and is invariant by a g ∈ U, then ψ is C-Lipschitz.

Exercise 2.2. Prove Corollary 2.1.

From Theorem 1 and Ascoli theorem, we deduce Corollary 2.3. Let f be a conservative twist map of A. The the union I(f ) of all its invariant continuous graphs is a closed invariant subset of f . Exercise 2.4. Prove Corollary 2.3.

Remarks 2.5.

1. The set I(f ) can be empty: this is the case for the standard map f λ with λ > 2 3π . 2. Using the connecting lemma that was proved by S. Hayashi in 2006 (see [START_REF] Hayashi | Connecting invariant manifolds and the solution of the C 1 stability and Ωstability conjectures for flows[END_REF]) and more specifically some related results that are contained in [START_REF] Arnaud | Dynamiques symplectiques génériques[END_REF], Marie Girard proved (in her non-published PhD thesis) that there is dense G δ subset G of the set of C 1 conservative twist maps such that every f ∈ G has no continuous invariant graph. 3. Don't deduce that having an invariant graph rarely happens for the conservative twist maps: it depends on their regularity (C 1 , C 3 , . . . , C ∞ ). Indeed, the famous theorems K.A.M. (for Kolmogorov-Arnol'd-Moser, see [START_REF] V Arnol | Proof of a theorem of A. N. Kolmogorov on the preservation of conditionally periodic motions under a small perturbation of the Hamiltonian, (Russian) Uspehi Mat. Nauk[END_REF], [START_REF] Kolmogorov | On conservation of conditionally periodic motions for a small change in Hamilton's function[END_REF], [START_REF] Rüssman | On the existence of invariant curves of twist mappings of an annulus, Geometric dynamics[END_REF]) tell us that if a C ∞ conservative twist map f has a C ∞ invariant graph C such that the restriction f |C is C ∞ conjugated to a Diophantine rotation θ → θ + α (i.e. α is Diophantine: there exist γ, δ > 0 so that for every p ∈ Z and q ∈ N * , we have |α -

p q | ≥ γ q 1+δ ), there exists a neighborhood U of f in C ∞ -topology such that every g ∈ U has a C ∞ invariant graph Γ such that g |Γ is C ∞ -conjugated to f |C .
As the completely integrable standard map f 0 has a lot of such invariant graphs, we deduce that for λ small enough, f λ has many C ∞ invariant graphs.

Remark 2.6. We will see that even when a conservative twist map has no continuous invariant graph, it has a lot of compact invariant subsets: periodic orbits, and even invariant Cantor sets (these are the Aubry-Mather sets, see section 3).

Circle homeomorphisms and dynamics on I(f )

Now let us explain how is the dynamics restricted to I(f ). The dynamics restricted to every invariant graph is Lipschitz conjugated (via π) to an orientation preserving bi-Lipschitz homeomorphism of T. The classification of the orientation preserving homeomorphisms of the circle is due to H. Poincaré and given in [START_REF] Katok | Introduction to the modern theory of dynamical systems[END_REF] (see [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF] for more results). Let us recall quickly the main results. We assume that h : T → T is an orientation preserving homeomorphism and that H 1 , H 2 : R → R are some lifts of h (then H 2 -H 1 = k is an integer). Then

• the sequence

H n i -Id n n∈N
uniformly converge to a real number ρ(H i ) that is called the

rotation number of H i ; note that ρ(H 2 ) -ρ(H 1 ) = k; then the class of ρ(H i ) modulo Z defines a unique number ρ(h) ∈ T and is called the rotation number of h; • ρ(H i ) = m
n ∈ Q (with m and n relatively prime) if and only if there exists a point t ∈ R so that H n i (t) = t + m; in this case a point t of T is either periodic for h or such that there exist two periodic points t -, t + with period n for h such that

lim →+∞ d(h -t, h -t -) = lim →+∞ d(h t, h t + ) = 0.
In this last case, t is negatively heteroclinic to t -and positively heteroclinic to t + .

• when ρ(h) / ∈ Q/Z, h has no periodic points and either the dynamics is minimal and C 0conjugated to the rotation t → t+ρ(h) or the non wandering set of h is a Cantor subset (i.e. non-empty compact totally disconnected with no isolated point) Ω, h |Ω is minimal and all the orbits in T\Ω are wandering and homoclinic to Ω (this means that lim →±∞ d(h t, Ω) = 0).

Moreover, f has a unique invariant measure, and its support is Ω.

Moreover, if q ∈ Z * , p ∈ Z are such that ρ(H i ) < p q (resp. ρ(H i ) > p q
), then we have

H q i (t) -t -p < 0 (resp. H q i (t) -t -p > 0). We deduce that ∀k ∈ Z, |H k i (t) -t -kρ(H i )| ≤ 1.
Definition 2.7. When an invariant graph has an irrational (resp. rational) rotation number, we will say that the graph is irrational (resp. rational).

When the rotation number is irrational and the dynamics is not minimal, we have a Denjoy counter-example.

Lyapunov exponents of the invariant curves

Definition 2.8. Let C ⊂ A be a set that is invariant by a map f : A → A. Then its stable and unstable sets are defined by

W s (C, f ) = {x ∈ A; lim k→+∞ d(f k x, C) = 0} and W u (C, f ) = {x ∈ A; lim k→+∞ d(f -k x, C) = 0}.
One of these two sets is trivial if it is equal to C.

Example 2.9. We consider the Hamiltonian flow of the pendulum. In other words, we define H : A → R by H(θ, r) = 1 2 r 2 + cos 2πθ and its Hamiltonian flow (ϕ t ) is determined by the Hamilton equations: θ = ∂H ∂r = r and ṙ = -∂H ∂θ = 2π sin 2πθ. For t > 0 small enough, the time t map f = ϕ t is a conservative twist map, and as H is constant along the orbits we can find a lot of invariant curves.

Note on this picture that there exists two Lipschitz but non C 1 invariant graphs, that are the separatrices of the hyperbolic fixed point. Such a separatrix carries only one invariant ergodic measure, the Dirac mass at the hyperbolic fixed point, and then the Lyapunov exponents of this measure are non zero, and there are nontrivial stable and unstable sets for this separatrix (that is the union of the two separatrices). Hence this is an example of a rational invariant graph that carries an hyperbolic invariant measure. What happens in the irrational case? It is not hard to prove that if the graph of a C 1 -map is invariant by a conservative twist map and irrational, then the unique ergodic measure supported in the curve has zero Lyapunov exponents. When the invariant curve is just assumed to be Lipschitz, this is less easy to prove but also true as we will see in Theorem 2.

Remark 2.10.

There exist examples of C 2 conservative twist maps that have an irrational invariant Lipschitz graph that is not C 1 . Such an example is built in [START_REF] Arnaud | A non-differentiable essential irrational invariant curve for a C 1 symplectic twist map[END_REF]. We don't know if such an example exists when the twist map in C ∞ or when the dynamics restricted to the graph is not Denjoy (i.e. has a dense orbit).

Question 2.11. Does there exist a C ∞ conservative twist map that has an invariant continuous graph on which the dynamics is Denjoy? Question 2.12. Does there exist a C ∞ conservative twist map that has an invariant irrational continuous graph that is not C 1 ? Question 2.13. If a conservative twist map has an invariant irrational continuous graph on which the restricted dynamics has a dense orbit, is the invariant curve necessarily C 1 ? Remarks 2.14.

1. From Theorem 2 and Theorem 9 that we will prove later, it is not hard to deduce that if a conservative twist map has an invariant irrational graph γ that carries the invariant probability measure µ, then γ is C 1 -regular µ-almost everywhere (see Definition 4.16).

2. In fact, I proved in [START_REF] Arnaud | Three results on the regularity of the curves that are invariant by an exact symplectic twist map[END_REF] that any graph that is invariant by a conservative twist map is C 1 above a G δ subset of T that has full Lebesgue measure.

With P. Berger, we proved the following result (see [START_REF] Arnaud | The non-hyperbolicity of irrational invariant curves for twist maps and all that follows[END_REF]). The convergence to an irrational invariant curve is slower than exponential. We will explain in subsection 2.4 that a lot of conservative twist maps have an irrational invariant curve with a non trivial stable set.

Proof We begin by proving the first part of the theorem.

Assume that γ is an invariant continuous graph by a C 1+α conservative twist map f and that some ergodic invariant probability µ with support in γ is hyperbolic, i.e. has two Lyapunov exponents such that λ 1 < 0 < λ 2 . As f is symplectic, then λ 2 = -λ 1 = λ.

We use Pesin theory and Lyapunov charts (rectangles R(f k x)) along a generic orbit (f k x) for µ: in such a chart, the dynamics is almost linear and hyperbolic

x R(x) fx R(fx) f f(R(x))
We will prove that µ-almost x is periodic. The curve γ is endowed with some orientation. Note that f |γ is orientation preserving.

We decompose the boundary ∂R of the domain of a chart R into

∂ s R = {-ρ, ρ} × [-ρ, ρ] and ∂ u R = [-ρ, ρ] × {-ρ, ρ} W s s (x) W u (x) x Ɣ ∂R s ∂R u ∂R u ∂R s
Let γ x be the connected components of γ ∩ R(x) that contains x and let η x be the set of the points of γ x that are after x (for the orientation of γ x ).

We will prove that µ-almost x is periodic and η x ⊂ W s (x) or η x ⊂ W u (x).

Lemma 2.15. We have either for µ almost every x, η x (1) ∈ ∂R s (x) or for µ almost every x, η x (1) / ∈ ∂R s (x).

x

η x ∂R s (x) ∂R u (x) ∂R u (x) ∂R s (x) fx ∂R s (fx) ∂R u (fx) ∂R s (fx) η fx f Proof If η x (1) ∈ ∂R s (x)
, then for all n ≥ 1, we have η f n x (1) ∈ ∂R s (f n x). Then the map I defined by I(x) = 1 if η x (1) ∈ ∂R s (x) and I(x) = 0 if not is non-decreasing along the orbits and then constant almost everywhere.

We have indeed (I • f -I)dµ = 0 and I • f ≥ I. Hence I • f = I µ-a.e. and then as µ is ergodic I is constant µ-almost everywhere.

Assume for example that we have almost everywhere η x (1) ∈ ∂ s R(x). Hence we have

η f x ⊂ f (η x ).
The local unstable manifold at x is the graph of a continuous function g u x . If η x = (η 1

x , η 2 x ) we introduce the notation:

δ(x) = max t∈[0,1] |η 2 x (t) -g u x (η 1 x (t))|. W s s (x) W u (x) x Ɣ ∂R s ∂R u ∂R u ∂R s δ(x)
Using hyperbolicity, we obtain δ(f x) ≤ e -λ 2 δ(x), and then δdµ ≤ e -λ 2 δdµ and then δ = 0 µ almost everywhere.

We deduce that the corresponding branch of W u (x) is contained in γ for µ-almost every x.

Assume that γ is irrational. Then f |γ has to be Denjoy (because for some points we have lim

n→+∞ d(f -n x, f -n y) = 0).
In this case, the only points x ∈ suppµ such that W u (x) = {x} are the endpoints of the wandering intervals and there are only countably many such points: their set has µ-measure 0.

Finally, γ cannot be irrational.

The second part of Theorem 2 is a consequence of the following theorem that we will prove.

Theorem 3. Let f : M → M be a C 1 -diffeomorphism of a manifold M . Let K ⊂ M be a compact set that is invariant by f . We assume that f |K is uniquely ergodic and we denote the unique Borel invariant probability with support in K by µ. We assume that all the Lyapunov exponents of µ are zero. Let x 0 ∈ W s (K, f )\K. Then we have:

∀ε > 0, lim n→+∞ e εn d(f n (x 0 ), K) = +∞.
Let us now prove this theorem.

Proof. By hypothesis, we have for µ-almost every point :

lim n→±∞ 1 n log Df n (x) = 0.
We can use a refinement Kingman's subadditive ergodic theorem that is due to A. Furman (see Theorem 12 of subsection 5.5) that implies that we have lim sup

n→±∞ max x∈K 1 n log Df n (x) ≤ 0.
In particular, for any ε > 0, there exists N ≥ 1 such that:

∀x ∈ K, ∀n ≥ N, 1 n log Df -n (x) ≤ ε 8 . (1) 
Observe that the following norm with k ≥ N large:

u x = k n=0 e -nε/4 Df -n (x)u x ,
satisfies uniformly on x for u = 0:

Df -1 (x)u f -1 (x) u x = e ε/4 + e -kε/4 Df -k-1 (x)u x -e ε/4 u u x ≤ e ε/4 + e -kε/4 Df -k-1 (x)u x u x ≤ e ε/4 + e -kε/8
Hence by changing the Riemannian metric by the latter one, we can assume that the norm of D x f -1 is smaller than e ε/3 for every x ∈ K. Consequently, on a η-neighborhood N η of K, it holds for every x ∈ N η that:

D x f -1 ≤ e ε/2
Let x 0 ∈ M be such that x n := f n (x 0 ) → K, we want to show that lim inf 1 n log d(x n , K) ≥ -ε.

We suppose that lim inf 1 n log d(x n , K) < -ε for the sake of a contradiction. Hence there exists n arbitrarily large so that x n belongs to the e -nε η-neighborhood of K. Let γ be a C 1 -curve connecting x n to K and of length at most e -nε η. By induction on k ≤ n, we notice that f -k (γ) is a curve that connects x n-k to K, and has length at most e -nε+kε/2 η, and so is included in N η . Thus the point x 0 is at most e -nε/2 η-distant from K. Taking n large, we obtain that x 0 belongs to K. A contradiction.

Instability zones and the second Birkhoff theorem

As now we know how the dynamics restricted to I(f ) is, we will look to the complement U(f ) of I(f ). Definition 2.16. An essential curve is a C 0 -embedded circle in A that is not homotopic to a point, i.e. a loop that winds around the annulus. An essential subannulus of A is a subset of A that is homeomorphic to A and that contains an essential curve of A.

Proposition 2.17. Let f be a conservative twist map. Every connected components of U(f ) is either a bounded disc or an essential sub-annulus of A.

• When such a component is a disc D , then this disc is periodic i.e. there exists N ≥ 1 such that f N (D) = D. Moreover, the boundary of D is the union of parts of two invariant continuous graphs that have the same rational rotation number.

• When such a component is an essential sub-annulus, then it is invariant by f , and each of the two components of its boundary is either T × {±∞} or an invariant continuous graph.

Proof Let U be a connected component of U(f ). Then there is a partition of the set of the invariant continuous graphs in two parts: the set S + of such curves that are above U and the set S -of those that are under U . Let us differentiate which cases can occur

1. if S -= S + = ∅, then U = A is an essential annulus;
2. if S -= ∅ and S + = ∅ (resp. S + = ∅ and S -= ∅ ), let us denote by γ + (resp. γ -) the smallest element in S + (resp. the largest element in S -). Then U is the component under γ + (resp. above γ -), that is an essential sub-anulus, and its boundary is γ + (resp. γ -);

3. if S -= ∅ and S + = ∅, let us denote by γ + (resp. γ -) the smallest element in S + (resp. the largest element in S -). Then U is a connected component of the points that are between γ -and γ

+ . If γ -∩ γ + = ∅, it is a disc D such that ∂D ⊂ γ -∪ γ + ;
moreover, as γ -meets γ + , this two curve have the same rotation number and γ -∩ γ + contains exactly two points of ∂D and they are periodic: the rotation number is rational . If γ -∩ γ + = ∅, then U is an essential sub annulus with boundary γ -∪ γ + .

From the fact that the invariant curves are invariant, we deduce that the the annular components of U(f ) are invariant. The components U that are homeomorphic to a disc are between two invariant curves, hence contained in an invariant domain with finite Lebesgue measure. This implies that for some N ≥ 1, we have f N (U ) ∩ U = ∅ and then f N (U ) = U .

Definition 2.18. If f is a conservative twist map, an annular component of U(f ) is called an instability zone.

The following result, which was proved independently by J. Mather (see [START_REF] Mather | Variational construction of orbits of twist diffeomorphisms[END_REF] where the author uses variational methods) and P. Le Calvez (see [START_REF] Calvez | Propriétés dynamiques des régions d'instabilité, (French) [Dynamical properties of regions of instability[END_REF] where the author uses topological methods), explains why these regions are called instability zones.

Theorem 4. (P. Le Calvez; J. N. Mather) Let A be an instability zone of a conservative twist map f of the annulus. We choose boundaries C -, C + of A. Then there exists x ∈ A so that lim

k→±∞ d(f k x, C ± ) = 0. Remarks 2.19.
1. Note that we can choose C -= C + .

Theorem 4 tells us that

W u (C -) ∩ W s (C + ) ∩ A = ∅ f f f f
Ideas of proof Let us explain in a few words what are the ideas to prove a weaker but related result due to Birkhoff: assume

C -= C + , fix a neighborhood U -of C -and U + of C + in Ā, then there exists x ∈ U -and N ≥ 0 so that f N x ∈ U + .
The main argument is a theorem due to Birkhoff.

Theorem 5. (G. D. Birkhoff ) Let A ⊂ A be an essential sub-annulus that is invariant by a conservative twist map of the annulus and that is equal to the interior of its closure. Then every bounded connected component of ∂A is the graph of a Lipschitz map.

A complete proof of Theorem 5 can be found in the appendix of the first chapter of [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF] (in French). Then assume that U -is annular and that the result we want to prove is false. For every n ∈ N, let V be the connected component of the complement in Ā of n∈N f n (U -) that contains C + . One can check that the interior of V satisfies the hypothesis of Theorem 5, hence we find an invariant continuous graph that is in A (the boundary of V ), that is incompatible with the definition of an instability zone.

Note an important corollary of theorem 5.

Corollary 2.20. Let γ be an essential curve that is invariant by a conservative twist map. Then γ is the graph of a Lipschitz map.

Example 2.21. This example was introduced by Birkhoff in [START_REF] Birkhoff | Sur l'existence de régions d'instabilité en Dynamique[END_REF]. We consider the Hamiltonian flow f of the pendulum for a small enough time. Using a perturbation of the generating function of f , we can create a transverse intersection between the lower stable branch and the lower unstable branch of the hyperbolic fixed point:

Then the remaining separatrix is the upper boundary of an instability zone.

Exercise 2.22. Prove the last assertion in Example 2.21.

Michel Herman proved in [START_REF] Herman | Sur les courbes invariantes par les difféomorphismes de l'anneau[END_REF] that for a general conservative twist map, there is no essential invariant curve that contains a periodic point. More precisely: Let k ∈ [1, +∞] be a positive integer or ∞. There exists a dense G δ -subset G of the set of the C k PSTM such that every f ∈ G has no invariant essential curve that contains a periodic point. The proof of this result is proposed in Exercice 4.10.

Question 2.23. For which parameters λ does the standard map f λ satisfy this property? Question 2.24. How is a "general" boundary of an instability zone? Is it the boundary of one or two intability zone(s)? Is it smooth? How is its rotation number: Diophantine, Liouville? Remark 2.25. This result of Michel Herman joined to the fact that there exist open sets of C ∞ conservative twist maps that have a lot of (Diophantine) invariant graphs, allows us to state : Proposition 2.26. There exists a dense G δ -subset G (for the C ∞ -topology) in a non-empty open set of conservative C ∞ twist map such that every f ∈ G has a bounded instability zone with irrational boundaries.

Then the stable set of such an irrational boundary is not empty (because of Theorem 4) but the convergence to such a boundary is slower than exponential (because of Theorem 2). 

F(θ 0 , . . . , θ k ) = k j=1 S(θ j-1 , θ j ).
For every k ≥ 2 and every θ b , θ e ∈ R n , the function F k+1 (or F) restricted to the set E(k + 1, θ b , θ e ) of (k + 1)-uples (θ 0 , . . . , θ k ) beginning at θ b and ending at θ e , i.e. such that θ 0 = θ e and θ k = θ e , has a minimimum and at every critical point for F k+1|E(k+1,θ b ,θe) , the following sequence is a piece of orbit for F :

(θ 0 , - ∂S ∂θ (θ 0 , θ 1 )), (θ 1 , ∂S ∂Θ (θ 0 , θ 1 )), (θ 2 , ∂S ∂Θ (θ 1 , θ 2 )), . . . , (θ k , ∂S ∂Θ (θ k-1 , θ k )).
Observe that for such a critical point, we have ∂S ∂Θ (θ i-1 , θ i )+ ∂S ∂θ (θ i , θ i+1 ) = 0 for every 0 < i < k.

Example 3.2. To illustrate the notion of generating function, let us introduce a very classical example of twist map that is due to G.D. Birkhoff: the so-called Birkhoff billiard. Play billiard on a planar billiard table with a C 2 and convex boundary with non-vanishing curvature. Then we can choose symplectic coordinates (angular coordinate for the point of bounce and radial coordinate that is the sinus of the angle of reflection) in such a way that the dynamical system becomes a conservative twist map (see [START_REF] Siburg | The principle of least action in geometry and dynamics[END_REF] for details).

In these coordinates, if θ 0 , . . . , θ n ∈ R n+1 , then F(θ 0 , . . . , θ n ) is just the length of the polygonal line that joins the successive points with angular coordinates θ 0 , . . . , θ n .

Definition 3.3. A finite or infinite sequence of real numbers (θ n ) n∈J is a minimizer if for every segment [ , k] ⊂ J, (θ n ) ≤n≤k is a global minimizer of F k-+1|E(k-+1,θ ,θ k ) .
When J = Z, we say that (θ n ) is a minimizing sequence; we denote the set of minimizing sequences by M ⊂ R Z .

An orbit (θ n , r n ) of F (and by extension its projection on A) is minimizing if its projection (θ n ) is a minimizing sequence. Remark 3.4. Observe that a minimizer is always the projection of a piece of orbit. From Lemma 3.15, we can deduce

• in every E = E(k + 1, θ b , θ e ), there exists a minimizer of F |E ; such a minimizer is a segment of the projection of an (non necessarily minimizing) orbit;

• if (q, p) ∈ Z * × Z, the restriction of F q+1 to the set {(θ k ); θ k+q = θ k + p} has a global minimizer. Any such minimizer is the projection of an orbit and we will even see in Proposition 3.10 that it is a minimizing sequence.

The following theorem is due to J. Mather and proved in subsection 5.2.

Theorem 6. (J. N. Mather) Assume that the graph of a continuous map ψ : T → R is invariant by a conservative twist map f . Then for any generating function associated to f , all the orbits contained in the graph of ψ are minimizing. Now we will give some properties of the minimizers and prove the existence of some periodic minimizers. Proof Let us use the notation A t = A + t(B -A) and a t = a + t(b -a). We have:

S(a, A) + S(b, B) -S(a, B) -S(b, A) = (S(b, B) -S(b, A)) -(S(a, B) -S(a, A)) = (B -A) 1 0 ∂S ∂Θ (b, A t ) -∂S ∂Θ (a, A t ) dt = (b -a)(B -A) 1 0 1 0 ∂ 2 S ∂θ∂Θ (a s , A t )ds.dt. From ∂ 2 S
∂θ∂Θ < 0, we deduce the wanted result. Remark 3.7. They are two types of crossing: at an integer or at a non-integer:

a k =b k a k-1 b k-1 a k+1 b k+1 b j a j a j+1 b j+1
Note that if two distinct minimizers are such that for a k we have a k = b k , then we have a k-1 = b k-1 and a k+1 = b k+1 ; indeed, if two successive terms coincide, then they correspond to a same orbit and then to the same minimizer.

Proposition 3.8. (Aubry fundamental lemma) Two distinct minimizers cross at most once.

Proof Assume that the minimizers (a k ) and (b k ) cross at two different times t 1 and t 2 . Let us introduce the notation k i = [t i ]. We consider the the following finite segments:

• A = (a k ) k1≤k≤k2+1 ; • B = (b k ) k1≤k≤k2+1 ; • α = (a k1 , b k1+1 , . . . , b k2 , a k2+1 ); • β = (b k1 , a k1+1 , . . . , a k2 , b k2+1 ).
If t 1 or t 2 is not an integer, we deduce from Proposition 3.5 that

F(A) + F(B) -F(α) -F(β) = 2 i=1 (S(a ki , a ki+1 ) + S(b ki , b ki+1 ) -S(a ki , b ki+1 ) -S(b ki , a ki+1 )) > 0.
As A and α (resp. B and β) have same endpoints, we deduce that A or B is not minimizing, and this is a contradicton. If t i = k i are both integers, then we obtain F(A)+F(B)-F(α)-F(β) = 0. As F(A) ≤ F(α) and F(B) ≤ F(β), we deduce that α and β are also minimizers. But α and A coincides for integers k 2 and k 2 + 1, hence α = A and then A = B. Definition 3.9.

If (q, p) ∈ N * × Z, a sequence (θ n ) n∈Z is a (q, p)-minimizer if 1. ∀n, θ n+q = θ n + p; 2. (θ n ) 0≤n≤q-1 is a minimizer of the function (α n ) 0≤n≤q-1 → q n=0 S(α n , α n+1 ) (with the con- vention α q = α 0 + p).
Observe that (q, p)-minimizer is the projection of an orbit (θ n , r n ) for F such that (θ n+q , r n+q ) = (θ n , r n ) + (p, 0). Hence it corresponds to a q-periodic orbit for f . Proposition 3.10. Any (q, p)-minimizer is a minimizing sequence.

Exercise 3.11. The goal of the exercise is to prove Proposition 3.10. (a) Using Proposition 3.8, prove that for every (q, p) ∈ N * × Z and k ≥ 1, two distinct (q, p)minimizers cannot cross. Hint: prove that if they cross, they cross two times within a period. (b) Deduce that for every (q, p) ∈ N * × Z and k ≥ 1, every (kq, kp)-minimizer is in fact a (q, p)-minimizer. (c) Deduce that being a (q, p)-minimizer is equivalent to be a (kq, kp)-minimizer. (d) Deduce Proposition 3.10. Notation 3.12. If (q, p) ∈ Z 2 , we denote by T q,p : R Z → R Z the map defined by T q,p ((

x k ) k∈Z ) = (x k-q + p) k∈Z . Note that if (θ k ) k∈Z is a (q, p) minimizer, then T q,p ((θ k ) k∈Z ) = (θ k ) k∈Z .
Corollary 3.13. If (θ k ) k∈Z and (α k ) k∈Z are two (q, p)-minimizers, then they don't cross. In particular, (θ k ) k∈Z and T a,b ((θ k ) k∈Z ) do not cross. Proposition 3.14. For every q ∈ N * , p ∈ Z, there exists at least one (q, p)-minimizer.

Proof We assume that S is a generating function of a lift F of the conservative twist map f . Lemma 3.15. We have lim

|Θ-θ|→+∞ S(θ, Θ) |Θ -θ| = +∞.
Proof Using the notation θ t = θ + t(Θ -θ), we have

S(θ, Θ) = S(θ, θ) + 1 0 ∂S ∂Θ (θ, θ t )(Θ -θ)dt = S(θ, θ) + 1 0 ∂S ∂Θ (θ t , θ t )(Θ -θ)dt - 1 0 t 0 ∂ 2 S ∂θ∂Θ (θ s , θ t )(Θ -θ) 2 dsdt ≥ m -M |Θ -θ| + ε 2 (Θ -θ) 2
where m = min

θ∈[0,1]
S(θ, θ) and M = max

θ∈[0,1] ∂S ∂Θ (θ, θ) .
We know consider the set

E(q, p) = {(θ k ) k∈Z ; ∀k ∈ Z, θ k+q = θ k + p} and define W : E(q, p) → R by W((θ k ) k∈Z ) = q-1 k=0 S(x k , x k+1 ). Note that if ∈ Z, then W((θ k ) k∈Z ) = W((θ k + ) k∈Z ).
Hence we can define W on the quotient of E(q, p) by the diagonal action of Z. On this space, W is coercive and has then a global minimimum. Then this global minimum is attained at a (q, p)-minimizer.

Exercise 3.16. Write the details in the proof of Proposition 3.14.

F -ordered sets

Definition 3.17. We say that a subset E ⊂ R 2 is F -ordered if it is invariant by F and every integer translations (θ, r)

→ (θ + k, r) with k ∈ Z and if ∀x, x ∈ E, π(x) < π(x ) ⇒ π • F (x) < π • F (x ).
Remark 3.18. We deduce from Corollary 3.13 that if q ∈ Z * and p ∈ Z, the union of the (q, p)-minimizing orbits is an F -ordered set.

Exercise 3.19. Let ψ : T → R be a continuous map such that the graph of ψ is invariant by a conservative twist map f . Prove for any lift F of f , the graph of ψ is F -ordered.

The following proposition explains how we can construct other F -ordered sets.

Proposition 3.20. Let F be a lift of a conservative twist map.

1. The closure of every F -ordered set is F -ordered;

2. Let (E n ) n∈N be a sequence of F -ordered sets. Let E ∈ R 2 be the set of points x ∈ R 2 so that there exist

(x n ) ∈ R 2 satisfying x n ∈ E n and lim n→∞ x n = x.
Then E is F -ordered.

Remark 3.21. The main remark that is useful to prove Proposition 3.20 is the following one.

Assume that E ⊂ R 2 is invariant by F and all maps (θ, r)

→ (θ + k, r) with k ∈ Z. Then E is F -ordered if and only if ∀x, x ∈ E, π(x) < π(x ) ⇒ π • F (x) ≤ π • F (x ) and π • F 2 (x) ≤ π • F 2 (x ).
To prove that, observe that if

π • F (x) = π • F (x ) for some x = x in R 2 , then (π • F -1 (x), π • F -1 (x )) and (π • F (x), π • F (x ))
are not in the same order.

Proposition 3.22. Let F be a lift of a conservative twist map and let E ⊂ R 2 be a non-empty and closed F -ordered set. Then π maps E homeomorphically onto a closed subset of R that is invariant by the map t ∈ R → t + 1.

Proof The map π is continuous and open. Assume that there exist two points x = y of E such that π(x) = π(y). Because of the twist condition, we have

x -= π • F -1 (x) = π • F -1 (y) = y -
and this contradicts the fact that E is F -ordered.

We just have to prove that π(E) is closed. Assume that (x n ) is a sequence of points of E such that (π(x n )) converges to some θ ∈ R. Then there exists a, b ∈ Z so that ∀n ∈ N,

π(x 0 ) + a < π(x n ) < π(x 0 ) + b. Because E is F -ordered, we have then ∀n ∈ N, π • F (x 0 ) + a < π • F (x n ) < π • F (x 0 ) + b. Hence x n ∈ π -1 ([π(x 0 ) + a, π(x 0 ) + b]) ∩ F -1 (π -1 ([π • F (x 0 ) + a, π • F (x 0 ) + b])) = K.

K

Because of the twist condition, K is compact. Hence we can extract a convergent subsequence from (x n ). Because E is closed, x = lim x n ∈ E and then θ = π(x) ∈ π(E).

We deduce the following statement. Proposition 3.23. Let F be the lift of a conservative twist map and let E ⊂ R 2 be a non-empty and closed F -ordered set. Then there exists an increasing homeomophism H : R → R such that

• ∀t ∈ R, H(t + 1) = H(t) + 1; • ∀x ∈ E, H • π(x) = π • F (x).
Hence the dynamics F restricted to E is conjugated (via π) to the one of a lift of a circle homeomorphism. We even deduce from Proposition 3.24 that H is bi-Lipschitz. We can then associate to every F -ordered set a rotation number. Proposition 3.24. Let f : A → A be a conservative twist map and x ∈ A. Then there exists a

C 1 -neighborhood U of f , a neighborhood U of x in A and a constant C > 0 such that if E ⊂ R 2 is a G-ordered set for a lift G of some g ∈ U that meets U + Z × {0}, then E is the graph of some C-Lipschitz map ψ : π(E) → R.
Note that this proposition is similar to Theorem 1 (in fact, we can deduce Theorem 1 from Proposition 3.24).

Proof Let F be a lift of the conservative twist map f = (f 1 , f 2 ), let ε > 0 be so that ∂f1 ∂r ∈ (ε, 1 ε ) and let x = (θ, r) be a point of R 2 . Let us choose a compact neighbourhood B of x. Then for every y = (α, ρ) ∈ B, if we use the notation y -= F -1 (y) = (α -, ρ -) and y + = F (y) = (α + , ρ + ), the curves

F -1 ({α + } × [r + -1 ε , r + + 1 ε ]) and F ({α -} × [r --1 ε , r -+ 1 ε ]) are graphs of some C 1 functions v y,-, v y,+ whose domains contain [α -1, α + 1]. y - y + y E v y,- v y,+ Because F (F -1 (B) + {0} × [-1 ε , 1 ε ]) and F -1 (F (B) + {0} × [-1 ε , 1 ε ]
) are compact, there exists K > 0 such that R × [-K, K] contains these two sets.

We define now U as being the set of conservative twist maps g = (g 1 , g 2 ) with a lift G such that

• ∀x ∈ G -1 (B) + {0} × [-1 ε , 1 ε ] ∪ G -1 G(B) + {0} × [-1 ε , 1 ε ] , ∂g1 ∂r (x) ∈ (ε, 1 ε ); • G(G -1 (B) + {0} × [-1 ε , 1 ε ]) ∪ G -1 (G(B) + {0} × [-1 ε , 1 ε ]) ⊂ R × [-K, K]. Assume that G is such a lift of g ∈ U.
Let E be a G-ordered set that meets B at some y. We deduce from Proposition 3.22 that E is the graph of a map ψ : π(E) → R and then

y = (α, ψ(α)) for some α ∈ π(E) ⊂ R. Because g ∈ U, we know that G(G -1 (y) + {0} × [-1 ε , 1 ε ]) and G -1 (G(y) + {0} × [-1 ε , 1 ε ]) are some subsets of R × [-K, K] and are graphs of some C 1 maps v -, v + whose domains contain [α -1, α + 1]. We can even extend these functions to R by asking that v -(resp. v + ) is the graph of G -1 (V(G(y))) (resp. G(V(G -1 (y)))). Because E is G-ordered, we have G -1 ({z ∈ E, π(z) ≤ π • G(y)}) = {z ∈ E; π(z) ≤ α}. Hence {z ∈ E; π(z) < α} is in the connected component of R 2 \G -1 (V(G(y))
) that is under v -. Using some similar arguments, we finally obtain

∀t ∈ (-∞, α) ∩ π(E), v + (t) < ψ(t) < v -(t) and ∀t ∈ (α, +∞) ∩ π(E), v -(t) < ψ(t) < v + (t).
Using the invariance by integer translation of E (i.e. E + (1, 0) = E) and the fact that the graphs of v -and v

+ restricted to [α -1, α + 1] are contained in R × [-K, K], we deduce that E ⊂ R × [-K, K].
We will now add a condition to define U. Let L > 1 ε be a real number such that

∀x ∈ F -1 (R × [-K - 1 ε , K + 1 ε ]) ∪ (R × [-K - 1 ε , K + 1 ε ]), max{ ∂f 2 ∂r (x) , ∂f 1 ∂θ (x) } < L.
Then we ask that every lift G of an element g = (g 1 , g 2 ) of U (in addition to the other conditions we gave before that) satisfies

• we have ∀x ∈ G -1 (R × [-K - 1 ε , K + 1 ε ]) ∪ (R × [-K - 1 ε , K + 1 ε ]), max{ ∂g 2 ∂r (x) , ∂g 1 ∂θ (x) } < L; • and ∀x ∈ G -1 (R × [-K - 1 ε , K + 1 ε ]) ∪ (R × [-K - 1 ε , K + 1 ε ]), ∂g 1 ∂r (x) > ε.
Let us now consider y = (α, ψ(α)) ∈ E. Repeating the same argument than before, we know that ∀t ∈ π(E), min{v

-(t), v + (t)} ≤ ψ(t) ≤ max{v -(t), v + (t)}. Note that v -(t) = -∂g1 ∂θ (t, v -(t)) ∂g1 ∂r (t, v -(t)) -1
and then for every t

∈ [α-1, α+1], |v -(t)| < L ε . Moreover, we have v + (t) = ∂g2 ∂r (G -1 (t, v + (t))) ∂g1 ∂r (G -1 (t, v + (t))) -1
and then for every t ∈

[α -1, α + 1], |v + (t)| < L ε . We introduce the notation C = L ε . We have then: ∀t ∈ [α-1, α+1], |ψ(t)-ψ(α)| ≤ max{|v -(t)- ψ(α)|, |v + (t) -ψ(α)|} ≤ C|t -α|.
This implies that ψ is C-Lipschitz.

Aubry-Mather sets

Definition 3.25. Let F be a lift of a conservative twist map f . An Aubry Mather set for F is a closed F -ordered set. The Aubry-Mather set is minimizing if every orbit contained in it is minimizing.

We noticed that any F -ordered set has a rotation number. Notation 3.26. If E is an Aubry-Mather set, we denote by ρ(E) its rotation number. The Aubry-Mather set E is said to be rational (resp. irrational) if ρ(E) is rational (resp. irrational). Proposition 3.27. Let E be an Aubry-Mather set. For every ε > 0, there exists a neighborhood U of E that is invariant by the integer translations (θ, r) → (θ + k, r) for k ∈ Z and such that every Aubry-Mather set E that meets U satisfies: |ρ(E) -ρ(E)| < ε.

Proof We deduce from Proposition 3.24 that E is contained in some strip

K = R × [-K, K].
On such a strip, every DF k is uniformly bounded.

Let E be an Aubry-Mather set that meets the same strip K. Let (θ k , r k ) be an orbit in E and (α k , β k ) be an orbit in E. We deduce from proposition 3.23 that for every k ∈ Z, we have:

|θ k -θ 0 + kρ(E)| ≤ 1 and |α k -α 0 -kρ(E)| ≤ 1.
We deduce

|ρ(E) -ρ(E)| ≤ 2 k + |θ k -α k | k + |θ 0 -α 0 | k .
Fixing k > 4 ε large enough, we choose a neighborhood U of E that is invariant by the integer translations (θ, r) → (θ + k, r) for k ∈ Z and such that for every y = (α, β) ∈ U , there exists x = (θ, r) ∈ E that satisfies |θ -α| < ε 4 and F k (x)-F k (y) < ε 4 . Then for every Aubry-Mather set E that meets U , we have |ρ(E) -ρ(E)| < ε. Proposition 3.28. Let F be a lift of a conservative twist map f . Then for every α ∈ R, there exists at least one minimizing Aubry-Mather set with rotation number α.

Proof If α = p q ∈ Q is rational, we have proved in Proposition 3.14 the existence of a (q, p)minimizer (θ k ). Then the corresponding F -orbit (θ k , r k ) is minimizing and we deduce from Corollary 3.13 that E = {(θ k , r k )} + Z × {0} is a minimizing Aubry-Mather set with rotation number p q . If α ∈ R\Q is irrational, we consider a sequence ( pn qn ) of rational numbers that converge to α and for every n a (q n , p n )-minimizing orbit (θ n k , r n k ) k∈Z . As θ n qn = θ n 0 + p n , there exists

k n ∈ [0, p n -1] such that θ n kn+1 -θ n kn ∈ [0, pn qn ]. Replacing (θ n k , r n k ) k∈Z by (α n k , β n k ) = (θ n k+kn - [θ n
kn ], r n k ) k∈Z that is also a (q n , p n )-minimizer, we obtain a sequence of minimizers so that:

• α n 0 ∈ [0, 1]; • (α n 1 -α n 0 )
n∈N is bounded and then (α n 0 , β n 0 ) n∈N is also bounded; • the rotation number of the (q n , p n )-minimizer (α n k , β n k ) k∈Z is pn qn . We then extract a subsequence so that (α n 0 , β n 0 ) n∈N converges to some (θ, r). Then the orbit of (θ, r) is also minimizing. If E = Closure {F k (θ, r) + (j, 0); k, j ∈ Z} , then we deduce from Proposition 3.20 that E is F ordered and then E is a minimizing Aubry-Mather set. We deduce from Proposition 3.27 that ρ(E) = α.

Further results on Aubry-Mather sets

In [START_REF] Golé | Symplectic twist maps, Global variational techniques[END_REF], it is proved that the closure of the union of the Z×{0}-translated sets of every minimizing orbit is an Aubry-Mather set (hence every minimizing orbit has a rotation number).

In [START_REF] Bangert | Mather sets for twist maps and geodesics on tori[END_REF], more precise results concerning the minimizing Aubry-Mather sets are proved. Let us explain them.

We denote the set of points (θ, r) ∈ R 2 having a minimizing orbit by M(F ). Then it is closed and p(M(F )) ⊂ A is closed too. The rotation number ρ : M(F ) → R is continuous and for every α ∈ R, the set M α (F ) = {x ∈ M(F ), ρ(x) = α} is non-empty.

If α is irrational, then K α = p(M α (F )) ⊂ A is the graph of a Lipschitz map above a compact subset of T. Moreover, there exists a bi-Lipschitz orientation preserving homeomorphims h :

T → T such that ∀x ∈ K α , h(π(x)) = π(f (x)).
Hence K α is:

-either not contained in an invariant loop and then is the union of a Cantor set C α on which the dynamics is minimal and some homoclinic orbits to C α ;

-or is an invariant loop. In this case the dynamics restricted to K α can be minimal or Denjoy.

If α = p q is rational, then M α (F ) is the disjoint union of 3 invariant sets:

• M per α (F ) = {x ∈ M α (F ), π • F q (x) = π(x) + p}; • M + α (F ) = {x ∈ M α (F ), π • F q (x) > π(x) + p}; • M - α (F ) = {x ∈ M α (F ), π • F q (x) < π(x) + p}. The two sets K + α = p(M per α (F ) ∪ M + α (F )) and K - α = p(M per α (F ) ∪ M - α (F )
) are then invariant Lipschitz graphs above a compact part of T. The points of p(M + α (F ) ∪ M - α (F )) are heteroclinic orbits to some periodic points contained in p(M per α (F )).

4 Ergodic theory for minimizing measures

Green bundles

We fix a lift F of a conservative twist map. As before M(F ) is the set of points whose orbit is minimizing. We use some new notations.

Notations 4.1.

• V (x) = T x V(x) = {0} × R ⊂ T x R 2 and for k = 0, we have G k (x) = Df k (f -k x)V (f -k x); • the slope of G k (when defined) is denoted by s k : G k (x) = {(δθ, s k (x)δθ); δθ ∈ R}; • if γ is a real Lipschitz function defined on T or R, then γ + (x) = lim sup y,z→x,y =z γ(y) -γ(z) y -z and γ -(t) = lim inf y,z→x,y =z γ(y) -γ(z) y -z .
We introduce now a set, called Green(f ). We will see very soon that we can define two natural invariant sub bundles in tangent lines at every point of Green(f ), that will be very useful in our further study. An important result (see Corollary 4.7) is that all the minimizing Aubry-Mather sets are contained in Green(f ). Notation 4.2. We denote by Green(f ) the set of the points of A such that along the whole orbit of these points, we have

∀n ≥ 1, s -n (x) < s -n-1 (x) < s n+1 (x) < s n (x).
Proof • Assume that x is an accumulation point of an invariant Aubry-Mather set E. We look at the action of DF on the half-lines R + v that are in the tangent space to R 2 along the orbit of x. As E is the graph of a Lipschitz map γ : F → R and x is an accumulation point of E, we have for every k ∈ Z:

γ + (π(F k x)) = lim sup y,z→π(F k x),y,z∈E,y =z γ(y) -γ(z) y -z .
This bundle Γ + = R + (1, γ + ) in half-lines is transverse to the vertical bundle and invariant by DF . We use the characterization (4) of Theorem 7 to conclude.

• The second point of the corollary is a direct consequence of the characterization (1) of Green(f ).

An interesting consequence of the characterization (1) of Green(f ) is

Corollary 4.8. The set Green(f ) is closed.

When x is a generic point in the support of some hyperbolic measure, G -is the stable bundle and G + is the unstable one: Proposition 4.9. (Dynamical criterion) Assume that x ∈ Green(F ) has its orbit contained in some strip R × [-K, K] (for example x ∈ M(F ) or x is in some Aubry-Mather set) and that v ∈ T x A. Then

• if lim inf n→+∞ |D(π • F n )(x)v| < +∞, then v ∈ G -(x); • if lim inf n→+∞ |D(π • F -n )(x)v| < +∞, then v ∈ G + (x).
Proof We use a symplectic change of linear coordinates along the orbit of x in such a way that the horizontal subspace is now G -and the vertical subspace doesn't change.

As the orbit of x is contained in some strip R × [-K, K], the slopes s -1 and s 1 of

G -1 = DF -1 (V • F ) and G 1 = DF (V • F -1
) are uniformly bounded along the orbit of x. Hence s -∈ [s -1 , s 1 ] is also uniformly bounded and so the changes of basis P = 1 0 s -1 as

P -1 = 1 0 -s -1
are also uniformly bounded. Then the matrix of DF n (x) in this new basis is

b n (x)(s -(x) -s -n (x)) b n (x) 0 (s n (F n x) -s -(F n x))b n (x) We know that the determinant is 1 = (b n (x)) 2 (s -(x) -s -n (x))(s n (F n x) -s -(F n x)), that |s n (F n x)-s -(F n x)| ≤ (s 1 (F n x)-s -1 (F n x)) is uniformly bounded and that lim n→+∞ (s -(x) -s -n (x)) = 0; hence lim n→+∞ |b n (x)| = +∞.
Let now v be a vector in T x A. We denote by (v 1 , v 2 ) its coordinates in the new base we defined just before. Then we have:

|D(π • F n )(x)v| = |b n (x)|.|(s -(x) -s -n (x))v 1 + v 2 |. As lim n→+∞ (s -(x) -s -n (x)) = 0 and lim n→+∞ |b n (x)| = +∞, we deduce that if v 2 = 0 (i.e. if v / ∈ G -(x)), then lim n→+∞ |D(π • F n )(x)v| = +∞. Exercise 4.10. Let k ∈ [1, ∞].
Let us admit that there exists a dense G δ subset G of the set of the C k conservative twist maps such that for every f ∈ G, for every periodic point x for f , if we denote by N the period of x, then we have:

• the eigenvalues of Df N (x) are distinct;

• every heteroclinic intersection of two hyperbolic periodic orbits is transverse.

Prove that every f ∈ G has no rational invariant graph.

Hint: using the invariance of the Green bundle G -, prove that every periodic point contained in such a rational invariant graph has to be hyperbolic.

Lyapunov exponents and Green bundles

We have noticed that if a measure µ with support contained in Green(f )

∩ (R × [-K, K]
) is hyperbolic, then we have µ-almost everywhere: E s = G -and E u = G + . In this case, we have G -= G + µ-almost everywhere. We will prove the reverse implication.

Theorem 8. (M.-C. Arnaud) Let f be a conservative twist map and let µ be a measure that is ergodic for f , with compact support and such that suppµ ⊂ Green(f ).

Then d = dim(G -∩ G + )
is constant µ-almost everywhere and

• if d = 0, the measure µ is hyperbolic with Lyapunov exponents -λ(µ) < λ(µ) given by:

λ(µ) = 1 2 log s+-s-1 s--s-1 dµ = 1 2 log 1 + s+-s- s--s-1 dµ; • if d = 1
, the Lyapunov exponents of µ are zero. Remark 4.11. Observe that the first part of Theorem 8 says to us that the more distant the Green bundles are, the greater the positive Lyapunov exponent is. A general result for hyperbolic measures of smooth dynamics is that when the stable and unstable bundles are close together, the Lyapunov exponents are close to zero (see for example [START_REF] Arnaud | Lower and upper bounds for the Lyapunov exponents of twisting dynamics: a relationship between the exponents and the angle of the Oseledet's splitting[END_REF]). The reverse result is not true in general and what we prove is then specific to the case of the twist maps. Consider for example the Dirac measure at (0, 0) that is invariant by the linear map of R 2 with matrix e ε 0 0 e -ε . Then the unstable and stable bundles are R × {0} and {0} × R that are far from each other. But the Lyapunov exponents ε, -ε, can be very close to 0.

Proof As the dynamics is symplectic, the sum of the Lyapunov exponents is log(det(Df ))dµ = 0, hence there are two Lyapunov exponents -λ(µ) ≤ λ(µ). Either these two Lyapunov exponents are zero or the measure is hyperbolic. We have noticed that when µ is hyperbolic, then G -= E s = G + = E u µ-almost everywhere. Hence when d = 1, the Lyapunov exponents are zero. Assume now that d = 0. Using a bounded change of basis along a generic point for µ as in the proof of the dynamical criterion, we obtain that Df

(x) |G-(x) is represented by b 1 (x)(s -(x) -s -1 (x)) and that Df (x) |G+(x) is represented by b 1 (x)(s + (x) -s -1 (x)). Hence if v ± is a base of G ± , we have: λ(v ± ) = lim n→+∞ 1 n log ( Df n (x)v ± ) = lim n→+∞ 1 n n-1 j=0 log b 1 (f j x)(s ± (f j x) -s -1 (f j x))
and then by Birkhoff ergodic theorem

λ(v + ) -λ(v -) = lim n→+∞ 1 n n-1 j=0 log s + (f j x) -s -1 (f j x) s -(f j x) -s -1 (f j x) = log s + -s -1 s --s -1 dµ.
As s + > s -µ-almost everywhere, we have then λ(v + ) > λ(v -). Hence we are in the case of an hyperbolic measure. Then G + = E u and G -= E s and λ(v

+ ) = λ(µ), λ(v -) = -λ(µ) and thus 2λ(µ) = log s+-s-1 s--s-1 dµ.
We have seen in subsection 2.3 that the Lyapunov exponents of the measures that are on the irrational invariant curves are zero. But Patrice Le Calvez proved that for general conservative twist maps, many Aubry-Mather sets are (uniformly) hyperbolic, and then are not curves. Proposition 4.12. (P. Le Calvez, [START_REF] Calvez | Les ensembles d'Aubry-Mather d'un difféomorphisme conservatif de l'anneau déviant la verticale sont en général hyperboliques[END_REF])

Let k ∈ [1, ∞].
There exists a dense G δ subset G k of the set of the C k conservative twist maps such that for any f ∈ G k , there exists an open and dense subset U (f ) ⊂ R such that the minimizing Aubry-Mather sets having their rotation number in U (f ) are uniformly hyperbolic.

It may even happen that all the minimizing Aubry-Mather sets are hyperbolic (see [START_REF] Goroff | Hyperbolic sets for twist maps, Ergodic Theory Dynam[END_REF]). , the union of the minimizing Aubry-Mather sets for the standard map f λ is uniformly hyperbolic.

Proof We assume that |λ| > √ 1+π 2 π
. The standard map with parameter λ is defined by f λ (θ, r) = (θ + r + λ sin 2πθ, r + λ sin 2πθ) and has the generating function S λ (θ, Θ) = 1 2 (Θ -θ) 2 -λ 2π cos 2πθ. Let E be a minimizing Aubry-Mather set for f λ . Observe that F λ (θ, r + 1) = F λ (θ, r) + (1, 1). Hence we can assume that the rotation number of E is in (-1, +1). Then by the inequalities that we recalled in subsection 2.2 for circle homeomorphisms, we have for every orbit (θ n , r n ) in E: θ n -θ n+1 ∈ (-1, 1) and θ n -θ n-1 ∈ (-1, 1) have opposite signs.

As 0 = ∂S λ ∂θ (θ n , θ n+1 ) + ∂S λ ∂Θ (θ n-1 , θ n ) = θ n -θ n-1 + λ sin 2πθ n + θ n -θ n-1 , we deduce that λ sin 2πθ n ∈ (-1, 1) i.e. | sin 2πθ n | < 1 |λ| . This implies that | cos 2πθ n | > 1 -1 λ 2 . Moreover, as the orbit is minimizing, we have 0 ≤ ∂ 2 S λ ∂θ 2 (θ n , θ n+1 ) + ∂ 2 S λ ∂Θ 2 (θ n-1 , θ n ) = 2 + 2πλ cos 2πθ n and then 2 ≥ -2πλ cos 2πθ n . As 2π|λ|| cos 2πθ n | ≥ 2π|λ| 1 -1 λ 2 = 2π √ λ 2 -1 > 2π π = 2
, we have 2πλ cos 2πθ n > 0 and then 2πλ cos 2πθ n > 2.

We can now compute Df (θ, r) = 1 + 2πλ cos 2πθ 1 2πλ cos 2πθ 1 . Observe that 1 + 2πλ cos 2πθ n > 3 and 2πλ cos 2πθ n > 2. Hence if

C = {(v 1 , v 2 ) ∈ R 2 ; v 1 .v 2 ≥ 0}, we have Df (C) ⊂ C and ∀v ∈ C, Df (v) ≥ √ 2 v along the orbit (θ n , r n ).
We have too (Df (θ, r)

) -1 = 1 -2πλ cos 2πθ -1 1 + 2πλ cos 2πθ . Hence if C = {(v 1 , v 2 ) ∈ R 2 ; v 1 .v 2 ≤ 0},
we have along the orbit (θ n , r n ):

Df -1 (C ) ⊂ C and ∀v ∈ C , Df -1 (v) ≥ √ 2 v
. This implies the wanted result.

A. Katok proved that the union of the hyperbolic Aubry-Mather sets has zero Lebesgue measure (see [START_REF] Katok | Some remarks of Birkhoff and Mather twist map theorems[END_REF]). This can be compared to K.A.M. theory that gives in general a union of invariant circles with positive Lebesgue measure.

Theorem 8 can be more precise in the case of uniform hyperbolicity. 

Lyapunov exponents and shape on the Aubry-Mather sets

In the previous subsection, we compared the size of the Lyapunov exponents for the ergodic measures with support in Green(f ) with the distance between the two Green bundles. We ask now if we can see a link between the shape of the support of such a measure and the Lyapunov exponents. where (x n ) and (y n ) are sequences of elements of M converging to x, (τ n ) is a sequence of elements of R * + converging to 0, and x n -y n ∈ R 2 , refers to the unique lift of this element of A that belongs to [- 1 2 , 1 2 [ 2 . Here we draw the paratangent cone to a curve at a corner:

Let us explain how we deduce the wanted result. As M is an Aubry-Mather set, it is the graph of a Lipschitz map γ : π(M ) → R. We consider the projected-restricted dynamics to M , which is h : π(M ) → π(M ) that is defined by h(θ) = π • f (θ, γ(θ)). We denote again by µ the projected measure π * µ of µ, that is the unique invariant measure by h. We extend h linearly in its gaps in such a way we obtain a bi-Lipschitz homeomorphism h of T. Because µ is C 1 -regular µ-almost everywhere, h is also C 1 -regular µ-almost everywhere and we deduce from Proposition 4.20 that uniformly in θ ∈ T, we have

lim n→+∞ 1 n log (h n ) + = lim n→+∞ 1 n log (h n ) -= 0. Observe that Df n (θ, γ(θ)).(1, γ + (θ)) = log (h n ) + (θ) (1, γ + (h n θ)).
We deduce that the Lyapunov exponent associated to the vector (1, γ + (θ)) is zero, which is impossible if the measure is hyperbolic.

Theorem 10. Let M be an irrational Aubry-Mather set of a conservative twist map f of A.

Then M is uniformly hyperbolic if and only if at every x ∈ M , M is C 1 -irregular.

Proof As s -≤ p M ≤ s + , if M is C 1 -irregular everywhere, then G -= G + at every point of M and by Proposition 4.14, M is uniformly hyperbolic.

Assume now that M is uniformly hyperbolic. At first, let us notice that such a M cannot be a curve because of Theorem 2.

Hence M is a Cantor and the dynamics on M is Lipschitz conjugate to the one of a Denjoy counter-example on its minimal invariant set. Then we consider two points x = y of M such that there exists an open interval I ⊂ T whose ends are π(x) and π(y) and which doesn't meet π(M ): I ∩ π(M ) = ∅. We deduce from the dynamics of the Denjoy counter-examples (see [START_REF] Herman | Sur la conjugaison différentiable des difféomorphismes du cercle à des rotations[END_REF]) that:

• the positive and negative orbits of x and y under f are dense in M ;

• lim n→+∞ d(f n x, f n y) = lim n→+∞ d(f -n x, f -n y) = 0.
As M is uniformly hyperbolic, we can define a local stable and unstable laminations containing M , W s loc and W u loc . Then for large enough n, f n x and f n y belong to the same local stable leaf, and f -n x and f -n y belong to the same local unstable leaf. Hence, because

lim n→+∞ d(f n x, f n y) = lim n→+∞ d(f -n x, f -n y) = 0,
for large enough n, the vector joining f n x to f n y (resp. f -n x to f -n y) is close the stable bundle E s (resp. the unstable bundle E u ).

Let now z ∈ M be any point. Then there exist two sequences (i n ) and (j n ) of integers which tends to +∞ and are such that:

lim n→+∞ f in x = lim n→+∞ f in y = lim n→+∞ f -jn x = lim n→+∞ f -jn y = z.
The direction of the "vector" joining f in x to f in y tends to E s (z) and the direction of the vector joining f -jn x to f -jn y tends to E u (z). Hence: E u (z) ∪ E s (z) ⊂ P M (z) and M is C 1 -irregular at z.

When drawing irrational Aubry-Mather sets that are Cantor sets with the help of a computer, we never observe some angles on these sets. That is why we raise the question: Question 4.21. Is it possible to draw (with a computer) some irrational Aubry-Mather sets that have some "corners"? Remark 4.22. There is a difficulty in 'seing' these corners. On the K.A.M. invariant graphs, the two Green bundles coincide. As s + -s -is non-negative and upper-semicontinuous, we deduce that close to the KAM curves, the paratangent cones are very thin, and thus very hard to detect.

Complements

Proof of the equivalent definition of a conservative twist map via a generating function

We recall the statement.

Proposition. Let F : R 2 → R 2 be a C 1 map. Then F is a lift of a conservative twist map f : A → A if and only if there exists a C 2 function such that • ∀θ, Θ ∈ R, S(θ + 1, Θ + 1) = S(θ, Θ);

• there exists ε > 0 so that for all θ, Θ ∈ R, we have

ε < - ∂ 2 S ∂θ∂Θ (θ, Θ) < 1 ε ;
• F (θ, r) = (Θ, R) ⇐⇒ R = ∂S ∂Θ (θ, Θ) and r = -∂S ∂θ (θ, Θ).

Proof (⇒) Assume that F : R 2 → R 2 is the lift of a conservative twist map f such that ∀x ∈ A, 1 ε > D(π • f )(x)(0, 1) > ε. Then for every θ ∈ R, the map F θ : R → R defined by

F θ (r) = π • F (θ, r) satisfies 1 ε > F θ > ε. Hence every map F θ is a C 1 -diffeomorphism of R and G : R 2 → R 2 defined by G(θ, Θ) = (θ, F -1 θ (Θ)
) is a C 1 diffeomorphism. We introduce the notation F (θ, r) = (Θ(θ, r), R(θ, r)). Note that G(θ, Θ(θ, r)) = (θ, r) i.e. F θ (r) = Θ(θ, r). As f is an exact symplectic twist map, we have:

G * (f * λ -λ) is exact. Hence there exists a function S : R 2 → R such that DS(θ, Θ) = R • G(θ, Θ)dΘ -F -1 θ (Θ)dθ. This means exactly that ∂S ∂Θ (θ, Θ) = R • G(θ, Θ) and - ∂S ∂θ = F -1 θ (Θ);
and implies that S is C 2 . Thus we have proved the third point of Proposition 1.8. Let us fix (θ, r) ∈ A. We denote by γ the loop of A defined by γ(t) = (θ + t, r) and by Γ its lift Γ(t) = (θ + t, r). As f is exact symplectic, we have γ f * λ = γ λ. Let us use the notation

F • Γ(t) = (Θ t , R t ). As f is isotopic to identity, we have Θ 1 = Θ 0 + 1. Moreover: 0 = γ (f * λ -λ) = G•γ G * (f * λ -λ) = G•γ dS = (θ+t,Θt) dS = S(θ + 1, Θ 0 + 1) -S(θ, Θ 0 );
this gives the first point of Proposition 1.8.

From ∂S ∂θ (θ, Θ(θ, r)) = -r we deduce that ∂ 2 S ∂Θ∂θ (θ, Θ(θ, r)). ∂Θ ∂r (θ, r) = -1. As 1 ε > ∂Θ ∂r (θ, r) = D(π • f )(x)(0, 1) > ε, we deduce the second point of Proposition 1.8.

(⇐) Assume that S satisfies the conclusions of Proposition 1.8. Because of the second point, the maps ∂S ∂θ (θ, .) and ∂S ∂Θ (., Θ) are C 1 -diffeomorphisms of R. Hence the third point allows us to define a diffeomorphism F : R 2 → R 2 . From the first point we deduce that

F (θ + 1, r) = F (θ, r) + (1, 0) hence F is the lift of a C 1 -diffeomorphism f : A → A.
Let us prove that f is a conservative twist map. We use as before the notation F (θ, r) = (Θ(θ, r), R(θ, r)).

From ∂S ∂θ (θ, Θ(θ, r)) = -r we deduce that ∂ 2 S ∂Θ∂θ (θ, Θ(θ, r)). ∂Θ ∂r (θ, r) = -1 and then we have the twist condition ε < ∂Θ ∂r (θ, r) < 1 ε . Because S(θ + 1, Θ + 1) = S(θ, Θ), we can define a C 2 -function s : A → R such that for any lift θ ∈ R of θ, we have: s(θ, r) = S( θ, Θ( θ, r)). Then f * λ -λ = ds is exact. In particular, f preserves the orientation. As moreover F (θ + 1, r) = F (θ, r) + (1, 0), we deduce that f is isotopic to identity. Finally, f is conservative.

Proof that every invariant continuous graph is minimizing

Let us recall the result due to J. Mather.

Theorem. Assume that the graph of a continuous map ψ : T → R is invariant by a conservative twist map f . Then for any generating function associated to f , all the orbits contained in the graph of ψ are minimizing. 

Proof

∂W ∂θ (θ, Θ) = ∂S ∂θ (θ, Θ) + c + η (θ) = ∂S ∂θ (θ, Θ) + ψ(θ); ∂W ∂Θ (θ, Θ) = ∂S ∂Θ (θ, Θ) -c -η (Θ) = ∂S ∂θ (θ, Θ) -ψ(Θ).
Hence (θ, Θ) is a critical point if and only Θ = π • F (θ, ψ(θ)). The set of the critical points of W is then a 1-dimensional connected submanifold of R 2 that corresponds to the graph of ψ. We deduce that the minimum µ of W is attained exactly on this set.

Let now (θ k , r k ) k∈Z be the orbit of a point (θ, ψ(θ)) that is on the invariant graph of ψ. Assume that (α n ) ≤n≤k is a sequence of real numbers so that α = θ and α k = θ k . Then

(k -+ 1)µ = k n= +1 W (θ n-1 , θ n ) = k n= +1 (S(θ n-1 , θ n ) + c(θ n -θ n-1 ) + η(θ n-1 ) -η(θ n )) is less or equal than k n= +1 W (α n-1 , α n ) = k n= +1 (S(α n-1 , α n ) + c(α n -α n-1 ) + η(α n-1 ) -η(α n )); i.e. k n= +1 S(θ n-1 , θ n ) +c(θ k -θ )+η(θ )-η(θ k ) ≤ k n= +1 S(α n-1 , α n ) +c(α k -α )+η(α )-η(α k ). As α = θ and θ k = α k , we obtain k n= +1 S(θ n-1 , θ n ) ≤ k n= +1 S(α n-1 , α n ) i.e. the orbit of (θ, ψ(θ)) is minimizing.

Proof of the equivalence of different definitions of Green(f )

The result that we will prove is Theorem. Let f : A → A be a conservative twist map and let (x n ) n∈Z be the orbit of a point x = x 0 . The following assertions are equivalent: (0) x ∈ Green(f );

(1) the projection of every finite segment of the orbit of x is locally minimizing among the segments of points (of R) that have same length and same endpoints;

(2) along the orbit of x, we have for every k ≥ 1, s k > s -1 ;

(3) along the orbit of x, we have for every k ≥ 1, s -k < s 1 ;

(4) there exists a field of half-lines δ + ⊂ T A along the orbit of x such that:

• δ + is invariant by Df : Df (δ + ) = δ + • f ; • Dπ • δ + = R + (δ + is oriented to the right).
We will use the following notations.

Notations 5.1.

• F being a lift of f , we note:

DF k (y) = a k (y) b k (y) c k (y) d k (y) ; • an infinitesimal orbit along (x n ) is (δθ n , δr n ) = (Df n (x)(δθ, δr)) n∈Z ;
• a Jacobi field is then the projection (δθ n ) n∈N of an infinitesimal orbit;

• if x k = (θ k , r k ), we use the notation

β k = ∂ 2 S ∂θ∂Θ (θ k , θ k+1 ), α k = ∂ 2 S ∂θ 2 (θ k , θ k+1 ) + ∂ 2 S ∂Θ 2 (θ k-1 , θ k ).
Remark 5.2. A Jacobi field with two successive zeroes is the zero field.

Let us begin the proof of the theorem.

(1)=⇒( 2) We deduce from the definition of the generating functions that

Df (x k ) = -1 β k ∂ 2 S ∂θ 2 (θ k , θ k+1 ) -1 β k β k -1 β k ∂ 2 S ∂θ 2 (θ k , θ k+1 ) ∂ 2 S ∂Θ 2 (θ k , θ k+1 ) -1 β k ∂ 2 S ∂Θ 2 (θ k , θ k+1 )
.

Observe too that (δθ k ) is a Jacobi field if and only if for every k, we have

( * )β k-1 δθ k-1 + α k δθ k + β k δθ k+1 = 0.
As we assume that the orbit is locally minimizing, every matrix H n,m is positive semi-definite if: Proof Let us assume that (δθ k ) k∈[n+1,m-1] is in the kernel of H n,m . Using ( * ) and the fact that β k = 0 (that is the twist condition), we extend (δθ k ) in a Jacobi field such that δθ n = δθ m = 0. Then, δQ = (0, 0, δθ n+1 , δθ n+2 , . . . , δθ m-2 , δθ m-1 , 0, 0) is in the isotropic cone of H n-2,m+2 , and then in its kernel because the matrix is positive semi-definite. Hence we have a Jacobi field with two successive zeroes, it is the zero field. Proof Let (∆ j ) j∈[n-k+1,n] be the image by the matrix H n-k,n+1 of the Jacobi field (δθ j ) j∈[n-k+1,n] that corresponds to an infinitesimal orbit (δx j ) j∈[n-k+1,n] of a vector δx n-k ∈ V (x n-k ). Then we have

H n,m =         α n+1 β n+1 0 . . . 0 β n+1 α n+2 β n+2 . . . 0 
• ∆ n-k+1 = 0 because δθ n-k = 0;

• for every j ∈ [n -k + 2, n -2], we have ∆ j = 0 because we have a Jacobi field;

Proof We assume that k, n ≥ 2. As in the proof of Lemma 5.6, we work in the projective space. We know that G -1 , G n+k , G n+k-1 and G k-1 are in the direct sense. Hence their image by Df 1-k that are G -k , G n+1 , G n and V are in the direct sense too, and then s -k < s n .

(0)=⇒(1) We fix a point along the orbit of x (that is denoted by x too) and we go along its orbit until it becomes non strictly minimizing. The matrix H 0,n is then positive definite but the matrix H 0,n+1 is not positive definite: A vector (η 1 , . . . , η n ) is in the orthogonal subspace to R n-1 × {0} for H 0,n+1 if and only if we have α 1 η 1 + β 1 η 2 = 0 and for every j ∈ [2, n -1]: β j-1 η j-1 + α j η j + β j η j+1 = 0, i.e. if (η j ) is the projection of an orbit of V (x).

H 0,n+1 =       α 1 β 1 0 . . . . 0 
Hence if H 0,n+1 is not positive definite, there exists η 0 , . . . , η n that is the projection of the orbit of a point of V (x)\{0} such that:

0 ≥ η n (β n-1 η n-1 + α n η n ) = -β n η n η n+1 . Note that Df (x n ) = -b n s -1 b n * * hence η n+1 = D(π • f )(x n ) η n s n (x n )η n = b n (s n (x n ) - s -1 (x n ))η n = -β -1
n (s n (x n ) -s -1 (x -n))η n . We obtain finally (s n -s -1 )(x n )η 2 n ≤ 0. As x ∈ Green(f ), we know that η n = 0. We deduce that s n ≤ s -1 , a contradiction with the fact that x ∈ Green(f ). We deduce that all the matrices H n,m are positive definite and then (1).

(4)=⇒(0) Now we work on the set of half-lines. We denote by V + = R + × {0} the upper vertical and V -= -V + , δ -= -δ + . This set is a circle and V -, δ + , V + and δ -are in the direct sense. Because Df preserves the orientation, their images are in the direct sense too, i.e. δ + , R + (1, s 1 ), δ -and R + (-1, -s 1 ) are in the direct sense too. This implies that δ + , R + (1, s 1 ), V + , δ -, R + (-1, -s 1 ) and V -are in the direct sense. Taking the images by Df , we find that δ + , R + (1, s 2 ), R + (1, s 1 ), δ -, R + (-1, -s 1 ) and R + (-1, -s 2 ) are in the direct sense and so δ + < s 2 < s 1 . Iterating the method, we obtain: δ + < s n+1 < s n . Replacing f by f -1 we obtain too s -n < s -n-1 < δ + .

(0)=⇒(4) The idea is to use δ + = R + (1, s + ).

Proof of a criterion for uniform hyperbolicity

We want to prove Proposition 4.14:

Proposition. (M.-C. Arnaud) Let M be a compact invariant set by a conservative twist map that is contained in Green(f ). Then M is uniformly hyperbolic if and only if at every point of M , the two Green bundles G -and G + are transverse.

Let us now prove the two lemmata. Proof of lemma 5.9: We will only prove the result for E s .

Let us assume that we know that:

( * ) ∀C > 1, ∃N C ≥ 1, ∀v ∈ E s , ∀n ≥ N C , F n v ≤ sup{ F k v ; k ≥ 0} C .
We 

F nNc+j v ≤ 1 C sup{ F (n-1)N C +j+k v ; k ≥ 0} ≤ 1 C 2 sup{ F (n-2)N C +j+k v ; k ≥ 0} • • • ≤ 1 C n sup{ F j+k v ; k ≥ 0} ≤ 1 C n sup{ F k v ; k ≥ 0} ≤ M C n v .
This prove exponential contraction.

Let us now prove ( * ). If ( * ) is not true, there exists C > 1, a sequence (k n ) in N tending to +∞ and v n ∈ E s with v n = 1 such that:

∀n ∈ N, F kn v n ≥ sup{ F k v n ; k ≥ 0} C .
We define: w n = F kn (vn)

F kn (vn) . Taking a subsequence, we can assume that the sequence (w n ) converges to a limit w ∈ E. Then we have:

∀n ∈ N, ∀k ∈ [-k n , +∞[, F k w n = F k+kn (v n ) F kn v n ≤ sup{ F j v n ; j ≥ 0} F kn v n ≤ C.
Hence, ∀k ∈ Z, F k w ≤ C. This is impossible because w = 1 and the cocycle is quasihyperbolic.

Proof of lemma 5.10: With the notation of this lemma, we choose a linear subspace V ⊂ E x such that V is transverse to E s (x). We want to prove that dim E u (y) ≥ dim V . We choose V n ⊂ E xn such that lim n→∞ V n = V . Extracting a subsequence, we have: lim

n→∞ F kn (V n ) = V ⊂ E y .
Then we will prove that V ⊂ E u (y).

Let us assume that we have proved that there exists C > 0 such that ( * ) ∀n, ∀0 ≤ k ≤ k n , F -k|F kn (Vn) ≤ C.

Then, ∀w ∈ V , ∀k ∈ Z -, F k w ≤ C w and w ∈ E u (y).

Let us now assume that ( * ) is not true. Replacing (k n ) by a subsequence, we find for all n ∈ N an integer i n between 0 and k n such that F -in|F kn (Vn) ≥ n. We choose w n ∈ F kn (V n ) such that w n = 1 and F -in (w n ) = F -in|F kn (Vn) . We may even assume that:

F -in (w n ) = sup{ F k (w n ) ; -k n ≤ k ≤ 0} ≥ n. Then lim n→+∞ i n = +∞. If v n = F-i n (wn)
F-i n (wn) , we may extract a subsequence and assume that:

Theorem 2 .

 2 (M.-C. Arnaud & P. Berger) Let γ be an irrational invariant graph by a C 1+α conservative twist map. Then the Lyapunov exponents of the unique invariant probability with support in γ are zero. Hence ∀ε > 0, ∀x ∈ W s (γ, f )\γ, lim n→+∞ e nε d(f n x, γ) = +∞.

Exercise 2 . 27 .

 227 Prove Proposition 2.26.Question 2.28. For which parameters λ has the standard map f λ an irrational boundary of instability zone?3 Aubry-Mather theory3.1 Action functional and minimizing orbitsIn this section, we assume that S : R 2 → R is a generating function of a lift F : R 2 → R 2 of a conservative twist map f : A → A. Definition 3.1. If k ≥ 1, one defines the action functional F k+1 : R k+1 → R by

Proposition 3 .

 3 5. (Aubry & Le Daeron non-crossing lemma) Assume (b-a)(B -A) ≤ 0. Then S(a, A) + S(b, B) -S(a, B) -S(b, A) ≥ 0 and equality occurs if and only if (b -a)(B -A) = 0.

Definition 3 . 6 .

 36 If (θ k ) is a finite or infinite sequence of real numbers, its Aubry diagram is the graph of the function obtained when interpolating linearly the sequence (k, θ k ).Two sequences (a k ) k∈I and (b k ) k∈I cross if for some k, j: (a k -b k )(a j -b j ) < 0.

Proposition 4 .

 4 13. (D. L. Goroff ) For |λ| > √ 1+π 2 π

Definition 4 . 16 .

 416 Let M ⊂ A be a subset of A and x ∈ M a point of M . The paratangent cone to M at x is the cone of T x A denoted by P M (x) whose elements are the limits v = lim n→∞ x n -y n τ n

1 0

 1 Let us introduce the constant c = ψ(t)dt and let us define the Z-periodic C 1 -function η by η(θ) = θ 0 ψ(t)dt -cθ. If S is a generating function of the lift F of f such that ∂ 2 S ∂θ∂Θ < -ε, then we define W (θ, Θ) = S(θ, Θ) + c(θ -Θ) + η(θ) -η(Θ). Observe that W (θ + 1, Θ + 1) = W (θ, Θ). Moreover, we have proved in Lemma 3.15 that: lim |Θ-θ|→+∞ S(θ, Θ) |Θ -θ| = +∞. Hence lim |Θ-θ|→+∞ W (θ, Θ) |Θ -θ| = +∞ and hence W has a global minimimum µ. The minimizers of W being critical points, let us look after the critical points of W . We have

Lemma 5 . 3 .

 53 Every matrix H n,m is positive defnite.

Lemma 5 . 4 .

 54 If k ≥ 1, we have along the orbit of x: s k > s -1 .

choose C > 1 .

 1 Then sup{ F k v ; k ≥ 0} = sup{ F k v ; k ∈ |[0, N C ]|}. We define: M = sup{ F k (x) ; x ∈ K, k ∈ |[0, N C ]|}. Then, if j ∈ |[0, N C -1]| and n ∈ N:

  Proposition 4.14. (M.-C. Arnaud) Let M be an compact invariant set by a conservative twist map that is contained in Green(f ). Then E is uniformly hyperbolic if and only if at every point of M , the two Green bundles G -and G + are transverse.We postpone the proof of Proposition 4.14 to subsection 5.4. We don't know if there exist examples of Aubry-Mather sets that are non-uniformly hyperbolic. Question 4.15. Does there exist a conservative twist map that has a non-uniformly hyperbolic Aubry-Mather set?

Rifford for the invitation to give the miniPotrie for accepting to share the course with

The two Green bundles satisfy the following properties Proposition 4.4. Let f be a conservative twist map.

• Then the two Green bundles defined on Green(f ) are invariant under Df : Df (G ± ) = G ± • f ;

• we have s + ≥ s -;

• the map s -: M → R is lower semi-continuous and the map s + : M → R is upper semi-continuous;

• hence {G -= G + } is a G δ subset of Green(f ) and s -= s + is continuous at every point of this set.

Exercise 4.5. Prove Proposition 4.4.

Theorem 7. Let f : A → A be a conservative twist map and let (x n ) n∈Z be the orbit of a point x = x 0 . The following assertions are equivalent:

(0) x ∈ Green(f );

(1) the projection of every finite segment of the orbit of x is locally minimizing among the segments of points (of R) that have same length and same endpoints;

(2) along the orbit of x, we have for every k ≥ 1, s k > s -1 ;

(3) along the orbit of x, we have for every k ≥ 1, s -k < s 1 ;

(4) there exists a field of half-lines δ + ⊂ T A along the orbit of x such that:

Remarks 4.6.

1. Observe that in the point (4), you cannot replace 'field of half-lines' by 'field of lines'. Indeed, along the orbit of every point that is not periodic you can find an invariant field of lines that is transverse to the vertical.

2. in fact, in the proof, we will see that if we denote by d + the slope of δ + , we necessarily have

We postpone the proof of Theorem 7 to subsection 5.3.

Corollary 4.7. Let f be a conservative twist map. Then

• every accumulation point of an Aubry-Mather set is in Green(f );

• every minimizing orbit is in Green(f ).

We will say that M is C 1 -regular at x if there exists a line 

Assume that the Lyapunov exponents of µ are zero. Then, by theorem 8, we have µ-almost everywhere G -= G + i.e. s -= s + and then P M (x) is contained in a line. This exactly means that supp(µ) is C 1 -regular µ-almost everywhere. Now we assume that the Lyapunov exponents of µ are non zero: -λ(µ) < λ(µ). The set where supp(µ) is C 1 -regular is measurable and invariant by f . Hence either µ is C 1 -regular µ-almost everywhere or µ is C 1 -irregular µ-almost everywhere. Assume that µ is C 1 -regular µ-almost everywhere.

We will prove the following result (we use for h ± the notations 4.1) in subsection 5.5.

Proposition 4.20. (M.-C. Arnaud) Let h : T → T be a bi-Lipschitz orientation preserving homeomorphism with irrational rotation number. We denote by µ its unique invariant measure and assume that h is C 1 -regular µ-almost everywhere. Then uniformly in θ ∈ T, we have

, we have

Finally, we obtain

(2)=⇒(3) Lemma 5.5. Assume that we have along the orbit of x and for all k ≥ 1: s k > s -1 . Then we have too along the orbit of x: s k > s k+1 > s -1 .

Proof We have

Substracting what happens for s k from what happens for s k+1 we obtain:

and by recurrence the fact that (s k ) is strictly decreasing.

Lemma 5.6. If along the orbit of x we have s k > s k+1 > s -1 for every k, then we have too for every k: s 1 > s -k .

Proof We assume that k ≥ 2. We work on the projective space of R 2 that is nothing else than a circle. On this circle, the lines

are ordered in the direct sense. As Df 1-k is symplectic, its projective action preserves the orientation on the circle and then G -k , G 2 , G 1 and V are oriented in the direct sense. This means that s -k < s 2 < s 1 .

(3)=⇒(0) Applying results that are analogous to Lemmata 5.5 and 5.6, we deduce that if (3) is satisfied, then we have along the orbit of x for every k ≥ 1:

Lemma 5.7. Assume that we have s 1 > s -k for every k along the orbit of x. Then for every n, k ≥ 1, we have: s -k < s n .

We have noticed that when M is uniformly hyperbolic, we have G -= E s and G + = E u on M . Hence G -and G + are transverse at every point of M . Now we assume that G -and G + are transverse at every point of M .

Definition 5.8. Let (F k ) k∈Z be a continuous cocycle on a linear normed bundle P : E → K above a compact metric space K. We say that the cocycle is quasi-hyperbolic if

A consequence of the dynamical criterion (Proposition 4.9) is that if K ⊂ Green(f ) is a compact invariant subset of Green(f ) such that for every x ∈ K, G + (x) and G -(x) are transverse, then (Df k |K ) k∈Z is a quasi-hyperbolic cocycle. Hence, we only have to prove the following statement to deduce Proposition 4.14.

Theorem 11. Let (F k ) be a continuous, symplectic and quasi-hyperbolic cocycle on a linear and symplectic (finite dimensional) bundle P : E → K above a compact metric space K. Then (F k ) k∈Z is hyperbolic.

We will deduce Theorem 11 from two lemmata that we will now state and prove. The ideas of the two lemmata and their proofs are similar to the ideas contained in [START_REF] Mañé | Quasi-Anosov diffeomorphisms and hyperbolic manifolds[END_REF] in the setting of the so-called "quasi-Anosov diffeomorphisms". Lemma 5.9. Let (F k ) k∈Z be a continuous and quasi-hyperbolic cocycle on a linear normed bundle P : E → K above a compact metric space K. Let us define

Then (F n|E s ) n≥0 and (F -n|E u ) n≥0 are uniformly contracting.

Lemma 5.10. Let (F k ) k∈Z be a continuous and quasi-hyperbolic cocycle on a linear normed bundle P : E → K above a compact metric space K. We denote by f k : K → K the underlying dynamics such that f k

Let us explain how to deduce Theorem 11 from these lemmata: Proof of theorem 11: If the dimension of E is 2d, we only have to prove that:

By lemma 5.9, (F n|E s ) n≥0 and (F -n|E u ) n≥0 are uniformly contracting. As the cocycle is symplectic, we deduce that every E s (x) and E u (x) is isotropic for the symplectic form and then dim E s (x) ≤ d and dim E u (x) ≤ d. Let us now consider x ∈ K. As K is compact, we can find a sequence (k n ) n∈N of integers tending to +∞ such that the sequence (f kn (x)) n∈N converges to a point y ∈ K. Then, by Lemma 5.10, we have: dim

Then we have ∀k ∈ |[0, i n ]|, F k v n ≤ v n for all k = 0, . . . , i n , and therefore F k v ≤ v for all k ∈ N and v ∈ E s . Now, we have two cases:

• either (k n -i n ) doesn't tend to +∞; we may extract a subsequence and assume that lim

. We have:

V is transverse to E s x , we obtain a contradiction.

for all k ∈ Z. This implies v ∈ E s ∩ E u . This contradicts v = 1 and the fact that the cocycle is quasi-hyperbolic.

Proof of Proposition 4.20

We will prove Proposition. (M.-C. Arnaud) Let h : T → T be a bi-Lipschitz orientation preserving homeomorphism with irrational rotation number. We denote by µ its unique invariant measure and assume that h is C 1 -regular µ-almost everywhere. Then uniformly in θ ∈ T, we have

Proof A fundamental argument of the proof is a result proved by A. Furman in [START_REF] Furman | On the multiplicative ergodic theorem for uniquely ergodic systems[END_REF] that is an improvement of Kingman subadditive theorem in the case of a unique ergodic measure.

Theorem 12. (A. Furman) Let (X, µ) be a Borel probability space, T be a continuous measure preserving transformation of (X, µ) such that µ is uniquely ergodic for T and llet

be the constant associated to f via the sub-additive ergodic theorem. Then:

We apply Theorem 12 for (X, µ) = (T, µ), T = h (resp. T = h -1 ) and

Fixing ε > 0, we find N ≥ 0 such that for every n ≥ N and every θ ∈ T, we have
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We denote by dθ the Lebesgue measure on T. Because of Jensen inequality for the convex function -log, we have

Moreover, if H is a lift of h,

We deduce Λ((f k )) + ε ≥ -1 n log (h n ) -dθ ≥ -log 1 = 0 and then Λ((f k )) ≥ 0. Finally, we obtain in particular: Λ -log((h n ) -) ≥ 0 and Λ -log((h

Because h is C 1 -regular µ-almost everywhere we have µ-almost everywhere

Because (h n ) -and (h n ) + are between these two numbers, we deduce that we have µ-almost everywhere (h n ) -(θ) = (h n ) + (θ) and then

We deduce then from Theorem 12 that for every ε > 0, there exists N ≥ 0 such that for every n ≥ N and every θ ∈ T, we have