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The purpose of this paper is to study evolution inclusions involving time dependent subdifferential operators which are non-monotone. More precisely, we study existence of solutions for the following evolution equation in a real Hilbert space X : u ′ (t) + ∂f t (u(t)) -∂ϕ t (u(t)) ∋ w(t), u(0) = u 0 , where f t and ϕ t are closed convex proper functions on X.

Introduction

Let T > 0 be a real. In this work, we consider a non-convex evolution equation governed by the difference of two subdifferentials. Our interest is the existence of solutions of the following inclusion in a real Hilbert space X:

u ′ (t) + ∂f t (u(t)) -∂ϕ t (u(t)) ∋ w(t) , t ∈ [0, T ], (1) 
(f t ) t∈[0,T ] and (ϕ t ) t∈[0,T ] being families of lower semi-continuous convex proper functions and w belonging to L 2 (0, T ; X). For any t ∈ [0, T ], ∂f t and ∂ϕ t denote the subdifferential of f t and those of ϕ t in the sense of convex analysis. The interest of a such problem is explained by the fact that the class of functions which are written as the difference of two convex functions is large. There is a significant literature on the class of functions which are the difference of two continuous convex functions (called DC functions). The difficult is these functions are in general not convex functions.

The existence of solution u to problem [START_REF] Akagi | Evolution inclusions governed by the subdifferential of two subdifferentials in reflexive Banach spaces[END_REF] was investigated in the case where f t and ϕ t are not dependent on t, in Otani [START_REF] Otani | On existence of strong solutions for du dt (t)+∂ψ 1 (u(t))-∂ψ 2 (u(t)) ∋ f (t)[END_REF] or Koi and Watanabe [START_REF] Koi | On nonlinear evolution equations with a difference term of subdifferentials[END_REF] when X is a real Hilbert space, and in Akagi and Otani [START_REF] Akagi | Evolution inclusions governed by the subdifferential of two subdifferentials in reflexive Banach spaces[END_REF] when X is a reflexive Banach space. In our case, domf s = domf t and domϕ s = domϕ t as soon as s = t. The domain of f t and those EJQTDE, 2012 No. 92, p. 1 of ϕ t will depend on t in a suitable way. By using the Moreau Yosida approximation of f t , and of ϕ t , we shall construct some solution of [START_REF] Akagi | Evolution inclusions governed by the subdifferential of two subdifferentials in reflexive Banach spaces[END_REF].

When X is a real separable Hilbert space, many authors deals with the existence of solutions to more general evolution inclusions:

u ′ (t) + ∂f t (u(t)) + B(t, u(t)) ∋ 0 , t ∈ [0, T ] (2) 
(B(t, .)) t∈[0,T ] being a family of multivalued operators on X, see [START_REF] Hu | Time-dependent subdifferential evolution inclusions and optimal control[END_REF] and references therein. For each t, the operator B(t, .) : X → → X is a multivalued perturbation of ∂f t , dependent on the time t. When the perturbation B(t, .) is single valued and monotone, many existence, uniqueness and regularity results have been established, see Brezis [START_REF] Brezis | Opérateurs maximaux et semi-groupes de contractions dans les espaces de Hilbert[END_REF] (if f t is independent of t), Attouch-Damlamian [START_REF] Attouch | Problèmes d'évolution dans les Hilbert et applications[END_REF] and Yamada [START_REF] Yamada | On evolution equations generated by subdifferential operators[END_REF]. The study of case B(t, .) nonmonotone and upper-semicontinuous with convex closed values has been developed under some boundedness conditions. For example, Attouch-Damlamian [START_REF] Attouch | On multivalued evolution equations in Hilbert spaces[END_REF] have studied the case f independent of time. Otani [START_REF] Otani | Nonmonotone perturbations for nonlinear parabolic equations associated with subdifferential operators, Cauchy problems[END_REF] has extended this result with more general assumptions (the convex function f t depends on time t). This type of inclusion has been studied when the values of B(t, .) are not necessary convex by Cellina and Staicu [START_REF] Cellina | On evolution equations having monotonicities of opposite sign[END_REF] (if f t and B(t, .) are independent of t, see also [START_REF] Cardinali | An existence theorem for evolution inclusions involving opposite monotonicities[END_REF] for extended results) and in more general case in [START_REF] Guillaume | On a time-dependent subdifferential evolution inclusion with a nonconvex upper-semicontinuous perturbation[END_REF]. The authors then assume -B(t, .) ⊂ ∂g, g : X → R being a convex lsc function.

In this paper we deal with the case where -B(t, .) = ∂ϕ t .

Lastly, the existence result could be applied to some non linear parabolic differential equations in domain with moving boundaries for example. Definition 1. A continuous function u : [0, T ] → X is said to be a solution of (1) on [0, T ] if the following conditions are satisfied:

1. u is an absolutely continuous function on [0, T ];

2. u(t) ∈ domf t ∩ domϕ t for all t ∈ [0, T ];

3. there exists a section α(t) ∈ ∂ϕ t (u(t)) satisfying for a.e. t ∈ [0, T ] u ′ (t) + ∂f t (u(t)) ∋ α(t) + w(t).

We shall prove two existence theorems under the following assumptions by using the method of Kenmochi [START_REF] Kenmochi | Solvability of nonlinear evolution equations with time-dependent constraints and applications[END_REF] :

(H f ) For each r 0, there are absolutely continuous real-valued functions h r , k r on [0, T ] such that:

(i) h ′ r ∈ L 2 (0, T ) and k ′ r ∈ L 1 (0, T ); (ii) for each s, t ∈ [0, T ] with s t and each x s ∈ domf s with x s r there exists x t ∈ domf t satisfying

x t -x s |h r (t) -h r (s)| 1 + |f s (x s )| 1/2 f t (x t ) f s (x s ) + |k r (t) -k r (s)| (1 + |f s (x s )|) ,
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(i) a ′ r ∈ L 2 (0, T ) and b ′ r ∈ L 1 (0, T ); (ii) for each s, t ∈ [0, T ] and each x s ∈ domϕ s with x s r there exists x t ∈ domϕ t satisfying

x t -x s |a r (t) -a r (s)| 1 + |ϕ s (x s )| 1/2 ϕ t (x t ) ϕ s (x s ) + |b r (t) -b r (s)| (1 + |ϕ s (x s )|) ,

Preliminaries

Let X be a real Hilbert space with the inner product ., . and the associated norm . . Let h be a lower semi-continuous convex proper function on X. Set domh = {x ∈ X | h(x) < ∞} the effective domain of h.

The set ∂h(x), x ∈ X, is the ordinary subdifferential at x of convex analysis, that is

∂h(x) = {y ∈ X | ∀z ∈ X h(z) h(x) + y, z -x }.
For any x ∈ X, ∂ o h(x) stands for its element of minimal norm (that is the minimal section of ∂h(x));

if ∂h(x) = ∅, then ∂ o h(x) = ∞. Set Dom∂h = {x ∈ X | ∂h(x) = ∅}.
Let λ > 0. The function h λ denotes the Moreau-Yosida proximal function of index λ of h which is defined by

h λ (x) = min y∈X {h(y) + 1 2λ x -y 2 }.
The operator J h λ = (I + λ∂h) -1 denotes the resolvent of the index λ of ∂h:

h λ (x) = h(J h λ x) + 1 2λ x -J h λ x 2 .
The function h λ is convex, Fréchet-differentiable on X and (h λ ) λ>0 converges increasingly to h when λ decreases to 0. The Yosida approximation of index λ of ∂h, is

∇h λ = 1 λ (I -J h λ ). It is known that ∀x, y ∈ X, J h λ x -J h λ y x -y
and ∇h λ is a 1/λ-Lipschitz continuous function, see Attouch [START_REF] Attouch | Variational convergence for functions and operators[END_REF] and Brezis [START_REF] Brezis | Opérateurs maximaux et semi-groupes de contractions dans les espaces de Hilbert[END_REF] for more details. Just recall that we have:

∀x, y ∈ X , 0 h λ (y) -h λ (x) -∇h λ (x), y -x 1 λ y -x 2 . (3) 
and: ∀x ∈ X , ∇h λ (x) ∈ ∂h(J h λ x) and ∇h λ (x)

∂ 0 h(x) .
As usual, the Hilbert space L 2 (0, T ; X) denotes the space of X-valued measurable functions on [0, T ] which are 2 nd power integrable, in which . L 2 (0,T ;X) and ., . L 2 (0,T ;X) are the norm and the scalar product. The set of the continuous functions from [0, T ] to X is denoted by

C([0, T ], X). A function is of class C 1 if it is continuously differentiable, it is of class C 1,1 if, moreover, its Jacobian is Lipschitz continuous.
First, by considering the case where (ϕ t ) t∈[0,T ] is a family of convex C 1,1 -functions on X, we give sufficient conditions to ensure existence and uniqueness of global solutions. In this section, (f t ) t∈[0,T ] denotes a family of lower semi-continuous convex proper functions and (ϕ t ) t∈[0,T ] denotes a family of convex C 1,1 -functions on X such that t → ∇ϕ t (x 0 ) is bounded on [0, T ] for some x 0 ∈ X and (∇ϕ t ) t∈[0,T ] is equi-Lipschitz on X.

Estimations on the Moreau-Yosida approximate

Let λ > 0. To study the evolution equation ( 1) we consider the approximate problems:

u ′ λ (t) + ∇f t λ (u λ (t)) -∇ϕ t (u λ (t)) = w(t) , u λ (0) = u 0 .
The functions f t λ denote, for any t ∈ [0, T ], the Moreau-Yosida proximal function of index λ of f t , and

J t λ = (I + λ∂f t ) -1 , ∇f t λ = λ -1 (I -J t λ ).
Lemma 1. Under the assumption (H f ), we can find a set {z t : t ∈ [0, T ]} and a real ρ 0 > 0 such that z t ρ 0 and f t (z t ) ρ 0 for every t ∈ [0, T ].

Proof. Let z 0 ∈ domf 0 and r > 0 such that r z 0 . For all t ∈ [0, T ], there exists

z t ∈ domf t satisfying z t -z 0 |h r (t) -h r (0)|(1 + |f 0 (z 0 )| 1/2 ) f t (z t ) f 0 (z 0 ) + |k r (t) -k r (0)|(1 + |f 0 (z 0 )|).
The lemma holds with

ρ 0 = ( r + h ′ r L 1 (1+|f 0 (z 0 )| 1/2 ) )∨( f 0 (z 0 )+ k ′ r L 1 (1+|f 0 (z 0 )|) ).
From Kenmochi [START_REF] Kenmochi | Solvability of nonlinear evolution equations with time-dependent constraints and applications[END_REF]26,Chapter 1,Section 1.5, Lemma 1.5.1], there exists some positive number α f such that for all t ∈ [0, T ] and x ∈ X we have

f t (x) -α f (1 + x ).
Lemma 2. There exists M 1 > 0 such that

J t λ x x + M 1 for any t ∈ [0, T ], x ∈ X and λ ∈]0, 1]. If (H f ) holds, there exists M 2 > 0 such that -M 2 ( x + 1) f t (J t λ x) f t λ (x) 1 λ (M 2 + x 2 )
for any t ∈ [0, T ], x ∈ X and λ ∈]0, 1].

Proof. Let x 0 be fixed in X. Let x ∈ X. We have for any t ∈ [0, T ] and λ ∈]0, 1]

J t λ x J t λ x -J t λ x 0 + J t λ x 0 x -x 0 + J t λ x 0 EJQTDE, 2012 No. 92, p. 4 with J t λ x 0 J t λ x 0 -J t 1 x 0 + J t 1 x 0 J t λ x 0 -J t λ (λx 0 + (1 -λ)J t 1 x 0 ) + J t 1 x 0 (1 -λ) x 0 -J t 1 x 0 + J t 1 x 0 2 x 0 -J t 1 x 0 + x 0 . Since f t 1 (x 0 ) = f t (J t 1 x 0 ) + 1 2 x 0 -J t 1 x 0 2 -α f ( J t 1 x 0 + 1) + 1 2 x 0 -J t 1 x 0 2
, we obtain

f t 1 (x 0 ) 1 2 ( x 0 -J t 1 x 0 -α f ) 2 - α 2 f 2 -α f (1 + x 0 ), which assures x 0 -J t 1 x 0 α f + 2f t 1 (x 0 ) + α 2 f + α f (1 + x 0 ). Let us add that 2f t 1 (x 0 ) 2f t (z t ) + z t -x 0 2 2ρ 0 + (ρ 0 + x 0 ) 2
, and we can conclude

J t λ x 0 2α f + 2 2ρ 0 + (ρ 0 + x 0 ) 2 + α 2 f + α f (1 + x 0 ) + x 0 .
Consequently,

J t λ x x + M 1
where

M 1 = x 0 + 2α f + 2 2ρ 0 + (ρ 0 + x 0 ) 2 + α 2 f + α f (1 + x 0 ) + x 0 . Next, f t λ (x) f t (J t λ x) -α f ( x + M 1 + 1) and 2λf t λ (x) 2λf t (z t ) + z t -x 2 2λρ 0 + (ρ 0 + x ) 2 .
Let us set now :

∀r > 0 , ρ = r + M 1 .
Then, for any x ∈ X such that x r, we have J t λ (x) ∨ x ρ for any λ > 0 and t ∈ [0, T ].

Proposition 1. Assume that (H f ) holds. Let x ∈ X and λ ∈]0, 1]. Then, t -→ f t λ (x) is of bounded variation on [0, T ] and for any r x

d ds f s λ (x) ∇f s λ (x) |h ′ ρ (s)|(1 + |f s (J s λ x)| 1/2 ) + |k ′ ρ (s)|(1 + |f s (J s λ x)|). (4) 
almost everywhere.

Proof. For all t s, there exists w ∈ domf t such that

J s λ x -w |h ρ (t) -h ρ (s)|(1 + |f s (x s )| 1/2 ) f t (w) f s (J s λ x) + |k ρ (t) -k ρ (s)|(1 + |f s (x s )|). Hence, f t λ (x) -f s λ (x) 1 2λ w -x 2 + f t (w) - 1 2λ x -J s λ x 2 -f s (J s λ x) 1 2λ w -x 2 -x -J s λ x 2 + |k ρ (t) -k ρ (s)|(1 + |f s (J s λ x)|).
From wx 2 = x -J s λ x 2 + J s λ xw 2 + 2 x -J s λ x, J s λ xw , we deduce

f t λ (x) -f s λ (x) 1 2λ |h ρ (t) -h ρ (s)| 2 (1 + |f s (J s λ x)| 1/2 ) 2 + ∇f s λ (x) |h ρ (t) -h ρ (s)|(1 + |f s (J s λ x)| 1/2 ) +|k ρ (t) -k ρ (s)|(1 + |f s (J s λ x)|).
Since s → ∇f s λ (x) and s → |f s (J s λ x)| are bounded on [0, T ], the function t -→ f t λ (x) is of bounded variation on [0, T ] and it is differentiable almost everywhere on [0, T ]. Its derivative is integrable on [0, T ] and satisfies for any s t in [0, T ]

f t λ (x) -f s λ (x) t s d dτ f τ λ (x) dτ.
Furthermore, we obtain the inequality (4) for a.e. s ∈ [0, T ].

Corollary 1. Assume (H f ) holds. Let x : [0, T ] → X be an absolutely continuous function with x ′ ∈ L 1 (0, T ; X). Set r x(t) for any t ∈ [0, T ]. Then, t → f t λ (x(t)) is of bounded variation and for any t s in [0, T ]

f t λ (x(t)) -f s λ (x(s)) t s d dτ f τ λ (x(τ )) dτ. ( 5 
)
Its derivative is integrable on [0, T ] and satisfies for a.e. s ∈ [0, T ]

d ds f s λ (x(s)) -∇f s λ (x(s)), x ′ (s) ∇f s λ (x(s)) |h ′ ρ (s)|(1 + |f s (J s λ x(s))| 1/2 ) + |k ′ ρ (s)|(1 + |f s (J s λ x(s))|). (6) 
Proof. Applying the inequality (3) to f t , we obtain for all t s in [0, T ]

f t λ (x(t)) -f s λ (x(s)) -∇f s λ (x(s)), x(t) -x(s) f t λ (x(t)) -f s λ (x(t)) + f s λ (x(t)) -f s λ (x(s)) -∇f s λ (x(s)), x(t) -x(s) 1 2λ |h ρ (t) -h ρ (s)| 2 (1 + |f s (J s λ x(t))| 1/2 ) 2 + ∇f s λ (x(t)) |h ρ (t) -h ρ (s)|(1 + |f s (J s λ x(t))| 1/2 ) +|k ρ (t) -k ρ (s)|(1 + |f s (J s λ x(t))|) + 1 λ x(t) -x(s) 2 . Since (s, t) → ∇f s λ (x(t)) and (s, t) → |f s (J s λ x(t))| are bounded on [0, T ] 2 , the function t → f t λ (x(t)
) is of bounded variation on [0, T ] and it is differentiable almost everywhere on [0, T ]. Its derivative t → d dt f t λ (x(t)) is integrable on [0, T ] and we get [START_REF] Brezis | Opérateurs maximaux et semi-groupes de contractions dans les espaces de Hilbert[END_REF]. Observe that for a.e. s ∈ [0, T ] lim

t→s + 1 t -s |h ρ (t) -h ρ (s)| 2 (1 + |f s (J s λ x(t))| 1/2 ) 2 = 0 and lim t→s + 1 t -s x(t) -x(s) 2 = 0. EJQTDE, 2012 No. 92, p. 6 Add that the map x → f s (J s λ x) = f s λ (x) -1 2λ x -J s λ x 2 is continuous on X and lim t→s + 1 t -s [ ∇f s λ (x(t)) |h ρ (t) -h ρ (s)|(1 + |f s (J s λ x(t))| 1/2 ) + |k ρ (t) -k ρ (s)|(1 + |f s (J s λ x(t))|)] = ∇f s λ (x(s)) |h ′ ρ (s)|(1 + |f s (J s λ x(s))| 1/2 ) + |k ′ ρ (s)|(1 + |f s (J s λ x(s))|).
We then obtain (6) almost everywhere.

Applying [11, lemma 1.2.2.], under (H f ), the maps t → f t λ (v(t)) and t → f t (v(t)) are measurable on t ∈ [0, T ] for each λ > 0 and v ∈ L 1 (0, T ; X).

Let us consider the function

f : L 2 (0, T ; X) → R defined by f (v) = T 0 f t (v(t)) dt and, for each λ > 0, the function ψ λ : L 2 (0, T ; X) → R defined by ψ λ (v) = T 0 f t λ (v(t)) dt.
Then, f is proper lower semi-continuous and convex and ψ λ is finite, continuous and convex on L 2 (0, T ; X). Furthermore, by [11, Lemma 1.2.3 and Lemma 1.2.4.], for each λ > 0 and

v ∈ L 1 (0, T ; X), t → ∇f t λ (v(t)) is measurable on [0, T ] and ∇f t λ (v(t)) = ∇[ψ λ (v)](t) for a.e. t ∈ [0, T ]
since ψ λ coincides with the Moreau-Yosida approximation of f. So we obtain:

Corollary 2. Assume that (H f ) holds. For all v ∈ L 2 (0, T ; X) and λ > 0, we have fλ (v) = T 0 f t λ (v(t)) dt. Furthermore, J f λ (v)(t) = J t λ v(t) and ∇ fλ (v)(t) = ∇f t λ (v(t)) for a.e. t ∈ [0, T ].

Other technical results

Let k denote the uniform Lipschitz constant of (∇ϕ t ) t∈[0,T ] . Lemma 3. There exists M 3 > 0 such that ∇ϕ t (x) M 3 ( x + 1) for any t ∈ [0, T ] and x ∈ X. If (H ϕ ) holds, there exists M 4 > 0 such that -M 4 ( x + 1) ϕ t (x) M 4 ( x 2 + 1) for any t ∈ [0, T ] and x ∈ X.

Proof. Let x ∈ X. We have

∇ϕ t (x) ∇ϕ t (x) -∇ϕ t (x 0 ) + ∇ϕ t (x 0 ) k x -x 0 + ∇ϕ t (x 0 ) k x + k x 0 + ∇ϕ t (x 0 ) .
We can conclude thanks to the assumption t → ∇ϕ t (x 0 ) bounded. Next, from Kenmochi [11, Lemma 1.5.1], there is a nonnegative constant α ϕ such that ϕ t (x) -α ′ ( x + 1) for all x ∈ X and t ∈ [0, T ].

In the same way as lemma 1, for any t ∈ [0, T ], there exists x t ∈ X satisfying

x t -x 0 |a r (t) -a r (0)| 1 + |ϕ 0 (x 0 )| 1/2 ϕ t (x t ) ϕ 0 (x 0 ) + |b r (t) -b r (0)| (1 + |ϕ 0 (x 0 )|) ,
where r x 0 . And, ϕ t (x) ϕ t (x t ) -∇ϕ t (x), x tx for any x ∈ X.

Lemma 4. Under (H ϕ ), for any x ∈ X, the map t -→ ∇ϕ t (x) is continuous on [0, T ].

Proof. Let x ∈ X and r M 3 ( x + 1). By assumption (H ϕ ), for each s, t ∈ [0, T ] there exists x s ∈ X satisfying

∇ϕ t (x) -x s |a r (t) -a r (s)|(1 + |ϕ t (∇ϕ t (x))| 1/2 ) ϕ s (x s ) ϕ t (∇ϕ t (x)) + |b r (t) -b r (s)|(1 + |ϕ t (∇ϕ t (x))|).
Since ϕ s is convex, we have

ϕ s (∇ϕ s (x))+ ∇ϕ s (x), x s -∇ϕ s (x) ϕ s (x s ) ϕ t (∇ϕ t (x))+|b r (t)-b r (s)|(1+|ϕ t (∇ϕ t (x))|).
Hence, for any s, t, we have

∇ϕ s (x), ∇ϕ t (x) -∇ϕ s (x) ∇ϕ s (x), ∇ϕ t (x) -x s + ϕ t (∇ϕ t (x)) -ϕ s (∇ϕ s (x)) + |b r (t) -b r (s)|(1 + |ϕ t (∇ϕ t (x))|) ∇ϕ s (x) |a r (t) -a r (s)|(1 + |ϕ t (∇ϕ t (x))| 1/2 ) + ϕ t (∇ϕ t (x)) -ϕ s (∇ϕ s (x)) +|b r (t) -b r (s)|(1 + |ϕ t (∇ϕ t (x))|).
By symmetry, we have for any t, s in [0, T ]

∇ϕ t (x), ∇ϕ s (x) -∇ϕ t (x) ∇ϕ t (x) |a r (t) -a r (s)|(1 + |ϕ s (∇ϕ s (x))| 1/2 ) + ϕ s (∇ϕ s (x)) -ϕ t (∇ϕ t (x)) +|b r (t) -b r (s)|(1 + |ϕ s (∇ϕ s (x))|).
Adding these two inequalities we obtain

∇ϕ t (x) -∇ϕ s (x) 2 [ ∇ϕ t (x) + ∇ϕ s (x) ] |a r (t) -a r (s)|(1 + |ϕ s (∇ϕ s (x))| 1/2 ∨ |ϕ t (∇ϕ t (x))| 1/2 ) +2|b r (t) -b r (s)|(1 + |ϕ s (∇ϕ s (x))| ∨ |ϕ t (∇ϕ t (x))|). Since both t → ∇ϕ t (x) and t → |ϕ t (∇ϕ s (x))| are bounded on [0, T ], t → ∇ϕ t (x) is continuous on [0, T ]. Proposition 2. Under (H ϕ ), for any x ∈ X, the map t -→ ϕ t (x) is absolutely continuous on [0, T ] and |ϕ t (x) -ϕ s (x)| ( ∇ϕ t (x) ∨ ∇ϕ s (x) ) |a r (t) -a r (s)|(1 + |ϕ t (x)| 1/2 ∨ |ϕ s (x)| 1/2 ) +|b r (t) -b r (s)|(1 + |ϕ t (x)| ∨ |ϕ s (x)|)
for any r x and 0 s, t T Proof. Let s, t ∈ [0, T ] and x ∈ X with x r. There exists x t ∈ X satisfying

x t -x |a r (t) -a r (s)| 1 + |ϕ s (x)| 1/2 ϕ t (x t ) ϕ s (x) + |b r (t) -b r (s)| (1 + |ϕ s (x)|) , EJQTDE, 2012 No. 92, p. 8
We have

ϕ t (x) -ϕ s (x) = ϕ t (x) -ϕ t (x t ) + ϕ t (x t ) -ϕ s (x) ∇ϕ t (x), x -x t + |b r (t) -b r (s)|(1 + |ϕ s (x)|) ∇ϕ t (x) |a r (t) -a r (s)|(1 + |ϕ t (x)| 1/2 ) + |b r (t) -b r (s)|(1 + |ϕ t (x)|).
If s and t are exchanged the above inequality still holds. 

∇ϕ t (x(t)), x ′ (t) - d dt ϕ t (x(t)) ∇ϕ t (x(t)) |a ′ r (t)|(1+|ϕ t (x(t))| 1/2 )+|b ′ r (t)|(1+|ϕ t (x(t))|). Proof. Since ∇ϕ t : X → X is k-Lipschitz continuous, it's easy to see that ∀x, y ∈ X, 0 ϕ t (y) -ϕ t (x) -∇ϕ t (x), y -x k y -x 2 .
For all t, s in [0, T ]

| ∇ϕ s (x(s)), x(t) -x(s) -ϕ t (x(t)) + ϕ s (x(s))| | ∇ϕ s (x(s)), x(t) -x(s) + ϕ s (x(s)) -ϕ s (x(t))| + |ϕ s (x(t)) -ϕ t (x(t))| k x(s) -x(t) 2 + +|b r (t) -b r (s)|(1 + |ϕ s (x(t))| ∨ |ϕ t (x(t))|) ( ∇ϕ s (x(t)) ∨ ∇ϕ t (x(t)) ) |a r (t) -a r (s)|(1 + |ϕ s (x(t))| 1/2 ∨ |ϕ t (x(t))| 1/2 ).
Dividing by ts > 0 and letting t → s + , we obtain

| ∇ϕ s (x(s)), x ′ (s) - d ds ϕ s (x(s))| ∇ϕ s (x(s)) |a ′ r (s)|(1 + |ϕ s (x(s))| 1/2 ) + |b ′ r (s)|(1 + |ϕ s (x(s))|).
Let us consider the function φ :

L 2 (0, T ; X) → R defined by φ(v) = T 0 ϕ t (v(t)) dt. The function φ are proper convex of class C 1,1 with ∇ φ(v)(t) = ∇ϕ t (v(t)) for all v ∈ L 2 (0, T ; X) and for a.e. t ∈ [0, T ].

Existence results

Let λ > 0 be fixed. By applying [START_REF] Brezis | Opérateurs maximaux et semi-groupes de contractions dans les espaces de Hilbert[END_REF]Theorem 1.4] we obtain the existence of u λ : [0, T ] → X, the unique solution to the problem

u ′ λ (t) + ∇(f t λ -ϕ t )(u λ (t)) = w(t) a.e. t ∈ [0, T ] , u λ (0) = u 0 .
The curve u λ is absolutely continuous on [0, T ] and u ′ λ ∈ L 2 (0, T ; X). We now study the approximate solution u λ . Lemma 5. Under (H f ) the following estimates hold

r := sup{ u λ (t) | t ∈ [0, T ], λ ∈]0, 1]} < ∞, sup{ J t λ u λ (s) | s, t ∈ [0, T ], λ ∈]0, 1]} < ∞, sup{λ|f t λ (u λ (s))| | t, s ∈ [0, T ], λ ∈]0, 1]} < ∞, sup{ T 0 |f s λ (u λ (s))| ds | λ ∈]0, 1]} < ∞.
Proof. According to the results in [11, Chap. 1], for each λ > 0, there exists a unique absolutely continuous function

v λ : [0, T ] → X such that v λ (0) = u 0 and v ′ λ (t)+∇f t λ (v λ (t)) ∋ w(t) for a.e. t ∈ [0, T ]. Furthermore (v λ ) λ uniformly converges to v on [0, T ], v being the unique solution of v ′ (t) + ∂f t (v(t)) ∋ w(t) a.e. t ∈ [0, T ], v(0) = u 0 .
We have for a.e. t ∈ [0, T ]:

d dt 1 2 u λ (t) -v λ (t) 2 = u ′ λ (t) -v ′ λ (t), u λ (t) -v λ (t) = -∇f t λ (u λ (t)) -∇f t λ (v λ (t)), u λ (t) -v λ (t) + ∇ϕ t (u λ (t)), u λ (t) -v λ (t) ∇ϕ t (u λ (t)), u λ (t) -v λ (t) k u λ (t) -v λ (t) 2 + ∇ϕ t (v λ (t)), u λ (t) -v λ (t) k u λ (t) -v λ (t) 2 + +M 3 ( v λ (t) + 1) u λ (t) -v λ (t) .
We thus obtain for a.e. t ∈ [0, T ]

d dt u λ (t) -v λ (t) 2 2(k + 1) u λ (t) -v λ (t) 2 + M 2 3 2 ( v λ (t) + 1) 2 .
Gronwall's lemma yields for any t ∈ [0, T ]

u λ (t) -v λ (t) 2 M 2 3 2 t 0 ( v λ (s) + 1) 2 exp[2(t -s)(k + 1)] ds. (v λ ) λ∈]0,1] being uniformly bounded on [0, T ], (u λ ) λ∈]0,1] is uniformly bounded on [0, T ].
Thanks to lemma 2, we have

J t λ u λ (s) u λ (s) + M 1 and -M 2 ( u λ (s) + 1) f t (J t λ u λ (s)) f t λ (u λ (s)) 1 λ (M 2 + u λ (s) 2 ) for any t ∈ [0, T ], x ∈ X and λ ∈]0, 1]. To conclude, f t λ (u λ (t)) f t λ (v(t)) + ∇f t λ (u λ (t)), u λ (t) -v(t) f t (v(t)) + k u λ (t) -v(t) 2 + ∇f t λ (v(t)), u λ (t) -v(t) f t (v(t)) + k u λ (t) -v(t) 2 + v ′ (t) -w(t) u λ (t) -v(t) . Notice that t → f t (v(t)) is bounded on [0, T ] and v ′ ∈ L 2 (0, T ; X). Furthermore, f t λ (u λ (t)) -M 2 ( u λ (t) + 1) for any t ∈ [0, T ]. Thus, sup{ T 0 |f s λ (u λ (s))| ds | λ ∈]0, 1]} < ∞.
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For r > 0 chosen as in Lemma 5, we always set ρ = r + M 1 . Then,

ρ u λ (t) ∨ J t λ u λ (s)
for any t, s ∈ [0, T ] and λ ∈]0, 1].

Proposition 3. Under (H f ) and (H ϕ ), t → f t λ (u λ (t)
) is of bounded variation on [0, T ], t → ϕ t (u λ (t)) is absolutely continuous on [0, T ] and the following inequality holds for a.e.

t ∈ [0, T ] d dt f t λ (u λ (t)) + 1 2 u ′ λ (t) 2 + 1 2 u ′ λ (t) -w(t) 2 d dt ϕ t (u λ (t)) + 1 2 w(t) 2 + ∇f t λ (u λ (t)) |h ′ ρ (t)|(1 + |f t (J t λ u λ (t))| 1/2 ) +|k ′ ρ (t)| 1 + |f t (J t λ u λ (t))| + ∇ϕ t (u λ (t)) |a ′ ρ (t)|(1 + |ϕ t (u λ (t))| 1/2 ) + |b ′ ρ (t)| 1 + |ϕ t (u λ (t))| . Proof. Let λ > 0. From Corollary 1, t → f t λ (u λ (t)
) is of bounded variation on [0, T ]. Its derivative is integrable on [0, T ] and satisfies for a.e. t ∈ [0, T ]

d ds f s λ (u λ (s)) -∇f s λ (u λ (s)), u ′ λ (s) ∇f s λ (u λ (s)) |h ′ ρ (s)|(1 + |f s (J s λ u λ (s))| 1/2 ) + |k ′ ρ (s)|(1 + |f s (J s λ u λ (s))|). But u ′ λ (s) + ∇f s λ (u λ (s)) -∇ϕ s (u λ (s)) = w(s), so d ds f s λ (u λ (s)) + u ′ λ (s) -w(s), u ′ λ (s) ∇ϕ s (u λ (s)), u ′ λ (s) + ∇f s λ (u λ (s)) |h ′ ρ (s)|(1 + |f s (J s λ u λ (s))| 1/2 ) +|k ′ ρ (s)|(1 + |f s (J s λ u λ (s))|). with u ′ λ (s) -w(s), u ′ λ (s) = 1 2 u ′ λ (s) 2 + 1 2 u ′ λ (s) -w(s) 2 - 1 2 w(s) 2 .
We conclude thanks to Corollary 3.

Corollary 4. Under (H f ) and (H ϕ ),

sup 0<λ 1,t∈[0,T ] |f t λ (u λ (t))| < ∞, M 5 := sup 0<λ 1 T 0 u ′ λ (t) 2 dt < ∞, and 
sup λ∈[0,1[ T 0 ∇f t λ (u λ (t)) 2 dt < ∞ , sup λ∈[0,1[,t∈[0,T ] √ λ ∇f t λ (u λ (t)) < ∞. (7) 
Hence,

u λ (t) -u λ (s) M 5 (t -s) (8) 
for any λ ∈]0, 1] and 0 s t T . 

d dt f t λ (u λ (t)) + 1 2 u ′ λ (t) 2 + 1 2 u ′ λ (t) -w(t) 2 d dt ϕ t (u λ (t)) + 1 2 w(t) 2 + u ′ λ (t) -∇ϕ t (u λ (t)) -w(t) |h ′ ρ (t)|(1 + |f t (J t λ u λ (t))| 1/2 ) +|k ′ ρ (t)| 1 + |f t (J t λ u λ (t))| + ∇ϕ t (u λ (t)) |a ′ ρ (t)|(1 + |ϕ t (u λ (t))| 1/2 ) +|b ′ ρ (t)| 1 + |ϕ t (u λ (t))| d dt ϕ t (u λ (t)) + 1 2 w(t) 2 + [ u ′ λ (t) -w(t) + C] |h ′ ρ (t)|(1 + |f t (J t λ u λ (t))| 1/2 ) +|k ′ ρ (t)| 1 + |f t (J t λ u λ (t))| + C |a ′ ρ (t)| + |b ′ ρ (t)| .
where C is a suitable nonnegative constant. Thus,

d dt f t λ (u λ (t)) + 1 2 u ′ λ (t) 2 d dt ϕ t (u λ (t)) + 1 2 w(t) 2 + 1 2 |h ′ ρ (t)| 2 (1 + |f t (J t λ u λ (t))| 1/2 ) 2 +C|h ′ ρ (t)|(1 + |f t (J t λ u λ (t))| 1/2 ) + |k ′ ρ (t)| 1 + |f t (J t λ u λ (t))| + C |a ′ ρ (t)| + |b ′ ρ (t)| .
By integrating we obtain for all t ∈ [0, T ]

f t λ (u λ (t)) -f 0 (u 0 ) + 1 2 t 0 u ′ λ (s) 2 ds ϕ t (u λ (t)) -ϕ 0 (u 0 ) + 1 2 w 2 L 2 + (1 + CT 1/2 ) h ′ ρ L 2 + 1 2 C 2 T + k ′ ρ L 1 + C a ′ ρ L 1 +C b ′ ρ L 1 + t 0 3 2 |h ′ ρ (s)| 2 + |k ′ ρ (s)| |f s (J s λ u λ (s))| ds.
By Lemma 2, since f t λ (u λ (t)) f t (J t λ u λ (t)) -M 2 ( u λ (t) + 1), there exists a suitable nonnegative constant K which satisfies :

|f t (J t λ u λ (t))| + 1 2 t 0 u ′ λ (s) 2 ds K + t 0 3 2 |h ′ ρ (s)| 2 + |k ′ ρ (s)| |f s (J s λ u λ (s))| ds.
By Gronwall's lemma it follows:

|f t (J t λ u λ (t))| K exp t 0 3 2 |h ′ ρ (τ )| 2 + |k ′ ρ (τ )| dτ K exp 3 2 h ′ ρ 2 L 2 + k ′ ρ L 1 , which implies C 1 := sup 0<λ 1,t∈[0,T ] |f t (J t λ u λ (t))| < ∞.
It ensures that 

f t λ (u λ (t)) + 1 2 t 0 u ′ λ (s) 2 ds K + C 1 3 2 h ′ ρ 2 L 2 + k ′ ρ L 1
|f t λ (u λ (t))| < ∞, sup 0<λ 1 T 0 u ′ λ (t) 2 dt < ∞. Since u ′ λ (t) + ∇f t λ (u λ (t)) -∇ϕ t (u λ (t)) = w(t), we obtain sup 0<λ 1 T 0 ∇f t λ (u λ (t)) 2 dt < ∞.
We then obtain the convergence of approximate problems :

Proposition 4. Under (H f ) and (H ϕ ), there exists an absolutely continuous curve u : [0, T ] → X such that (u λ ) λ converges uniformly to u on [0, T ] in X and (u ′ λ ) λ converges strongly to u ′ in L 2 (0, T ; X) as λ goes to 0 + . Furthermore, u(0) = u 0 and u(t) ∈ domf t for any t ∈ [0, T ].

Proof. Let λ, µ > 0 and t ∈ [0, T ], then

d dt 1 2 u λ (t) -u µ (t) 2 = u ′ λ (t) -u ′ µ (t), u λ (t) -u µ (t) = -∇f t λ (u λ (t)) -∇f t µ (u µ (t)), u λ (t) -u µ (t) + ∇ϕ t (u λ (t)) -∇ϕ t (u µ (t)), u λ (t) -u µ (t) .
Since u λ (t) = J t λ u λ (t) + λ∇f t λ (u λ (t)) and also for µ, by monotonicity of ∂f t , it follows

d dt 1 2 u λ (t) -u µ (t) 2 -∇f t λ (u λ (t)) -∇f t µ (u µ (t)), λ∇f t λ (u λ (t)) -µ∇f t µ (u µ (t)) + k u λ (t) -u µ (t) 2
k being the ratio of the Lipschitz continuous function ∇ϕ t . Let us set

θ λ,µ (t) = -(λ+µ) ∇f t λ (u λ (t))-∇f t µ (u µ (t)) 2 -(λ-µ) ∇f t λ (u λ (t)) 2 -∇f t µ (u µ (t)) 2 .
Notice θ λ,µ ∈ L 1 (0, T ; R) and:

-2 ∇f t λ (u λ (t)) -∇f t µ (u µ (t)), λ∇f t λ (u λ (t)) -µ∇f t µ (u µ (t)) = θ λ,µ (t).
By Gronwall's lemma, we obtain

u λ (t) -u µ (t) 2 t 0 θ λ,µ (s) exp(2k(t -s)) ds, which ensures 0 u λ (t) -u µ (t) 2 + (λ + µ) t 0 ∇f s λ (u λ (s)) -∇f s µ (u µ (s)) 2 exp(2k(t -s)) ds (9) -(λ -µ) t 0 ∇f s λ (u λ (s)) 2 -∇f s µ (u µ (s)) 2 exp(2k(t -s)) ds. (10) 
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Therefore, the sequence ( t 0 ∇f s λ (u λ (s)) 2 exp(2k(ts)) ds) λ is nondecreasing as λ ↓ 0 and bounded from above, thus converges. Furthermore,

t 0 ∇f s λ (u λ (s)) -∇f s µ (u µ (s)) 2 ds t 0 ∇f s λ (u λ (s)) -∇f s µ (u µ (s)) 2 e 2k(t-s) ds - λ -µ λ + µ t 0 [ ∇f s λ (u λ (s)) 2 -∇f s µ (u µ (s)) 2 ] e 2k(t-s) ds t 0 [ ∇f s λ (u λ (s)) 2 -∇f s µ (u µ (s)) 2 ] e 2k(t-s) ds .
Consequently, (s → ∇f s λ (u λ (s))) λ>0 is a Cauchy sequence with respect to the norm . L 2 and it converges to some ξ in L 2 (0, T ; X) when λ goes to 0 + . We also deduce that (u λ ) λ converges uniformly to some continuous curve u on [0, T ]. It is clear that u(0) = u 0 . By using Corollary 4, u(t)u(s) M 5 √ ts for any 0 s t T and sup t∈[0,T ] f t (u(t)) < +∞. So, u is an absolutely continuous function from [0, T ] to X and u(t) ∈ domf t . The sequence (u ′ λ ) λ converges weakly in L 2 to u ′ as λ ↓ 0. We have in L 2 (0, T ; X) u ′ λ = -∇ fλ (u λ ) + ∇ φ(u λ ) + w, which converges in L 2 . Thus, (u ′ λ ) λ converges to u ′ in L 2 (0, T ; X) as λ goes to 0 + .

We now prove the uniqueness and existence theorem:

Theorem 1. Let (f t ) t∈[0,T ] be a family of lower semi-continuous convex proper functions and (ϕ t ) t∈[0,T ] be a family of convex C 1,1 -functions on X. Assume that t → ∇ϕ t (x 0 ) is bounded on [0, T ] for some x 0 ∈ X and (∇ϕ t ) t∈[0,T ] is equi-Lipschitz on X.

If (H f ) and (H ϕ ) hold, for any u 0 ∈ domf 0 , the problem (1) has a unique solution u : [0, T ] → X such that u(0) = u 0 .

Proof. For uniqueness result, we consider u 1 , u 2 : [0, T ] → X two solutions of [START_REF] Akagi | Evolution inclusions governed by the subdifferential of two subdifferentials in reflexive Banach spaces[END_REF]. By monotonicity of ∂f t , we obtain for a.e. s ∈ [0, T ]:

d ds 1 2 u 1 (s) -u 2 (s) 2 = u ′ 1 (t) -u ′ 2 (t), u 1 (t) -u 2 (t) ∇ϕ t (u 1 (t)) -∇ϕ t (u 2 (t)), u 1 (t) -u 2 (t) k u 1 (s) -u 2 (s) 2 ,
k being the Lipschitz constant of ∇ϕ t . By Gronwall's lemma, it follows for any t ∈ [0, T ]

u 1 (t) -u 2 (t) 2 u 1 (0) -u 2 (0) 2 exp(2kt). So, u 1 (0) = u 2 (0) = u 0 yields u 1 (t) = u 2 (t) for every t ∈ [0, T ].
For existence result, we use above propositions. Since ∇ fλ (u λ ) ∈ ∂ f (J f λ (u λ )) and ∂ f is a maximal monotone set-valued map, by letting λ to 0 + , ξ belongs to ∂ f (u). Lastly, the equality u ′ +ξ-∇ φ(u) = w holds in L 2 (0, T ; X). We deduce u ′ (t)+ξ(t)-∇ϕ t (u(t)) = w(t) with ξ(t) ∈ ∂f t (u(t) for a.e. t ∈ [0, T ].

Examples: Let us consider

ϕ t (x) = ε(t) 2 x 2 .
Assume that ε : [0, T ] → R is an absolutely continuous function such that ε ′ ∈ L 1 (0, T ). According to Theorem 1, for any u 0 ∈ domf 0 , the problem

u ′ (t) + ∂f t (u(t)) ∋ ε(t)u(t) + w(t)
has a unique solution u : [0, T ] → X such that u(0) = u 0 . More generally we can consider

ϕ t (x) = 1 2 A t x, x
where A t : X → X is a linear positive symmetric continuous operator. Assume that there exists b : [0, T ] → R an absolutely continuous function such that b ′ ∈ L 1 (0, T ) and

A t -A s |b(t)-b(s)| for any t, s ∈ [0, T ]. According to Theorem 1, for any u 0 ∈ domf 0 , the problem u ′ (t) + ∂f t (u(t)) ∋ A(t)u(t) + w(t)
has a unique solution u : [0, T ] → X such that u(0) = u 0 .

Properties of evolution curve

Lemma 6. Under the assumptions of Theorem 1, we have for any t ∈ [0, T ]:

lim λ→0 + 1 λ u λ (t) -u(t) 2 = 0 and f t (u(t)) = lim λ→0 + f t λ (u λ (t)).
Proof. Let t ∈ [0, T ] and λ ∈]0, 1]. By the proof of Proposition 4 and letting µ to 0 + in (9) we obtain

u λ (t) -u(t) 2 + λ t 0 ∇f s λ (u λ (s)) -ξ(s) 2 exp(2k(t -s)) ds -λ t 0 [ ∇f s λ (u λ (s)) 2 -ξ(s) 2 ] exp(2k(t -s)) ds. So, 1 λ u λ (t) -u(t) 2 - t 0 ∇f s λ (u λ (s)) 2 -ξ(s) 2 exp(2k(t -s)) ds,
which converges to 0 as λ goes to 0 + . Furthermore,

| ∇f t λ (u λ (t)), u(t) -u λ (t) | √ λ ∇f t λ (u λ (t)) × 1 √ λ u(t) -u λ (t) ,
which ensures that lim

λ→0 + ∇f t λ (u λ (t)), u(t) -u λ (t) = 0.
We also can establish following inequalities by convexity of f t λ :

f t λ (u λ (t)) + ∇f t λ (u λ (t)), u(t) -u λ (t) f t λ (u(t)) f t (u(t)).
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We know that lim

λ→0 + f t λ (u(t)) = f t (u(t))
. By epiconvergency of (f t λ ) λ→0 + to f t , we have f t (u(t)) lim inf

λ→0 + f t λ (u λ (t)), hence f t (u(t)) = lim λ→0 + f t λ (u λ (t))
for any t ∈ [0, T ].

Theorem 2. Under the assumptions of Theorem 1, the function t → f t (u(t)) is of bounded variation on [0, T ] and we have the inequality for t, s ∈ [0, T ], t s:

f t (u(t)) -f s (u(s)) + 1 2 t s u ′ (τ ) 2 dτ + 1 2 t s u ′ (τ ) -w(τ ) 2 dτ ϕ t (u(t)) -ϕ s (u(s)) + 1 2 t s w(τ ) 2 dτ + t s c ρ (τ ) dτ.
where we set

c ρ (t) = ξ(t) |h ′ ρ (t)|(1 + |f t (u(t))| 1/2 ) + |k ′ ρ (t)| 1 + |f t (u(t))| + ∇ϕ t (u(t)) |a ′ ρ (t)|(1 + |ϕ t (u(t))| 1/2 ) + |b ′ ρ (t)| 1 + |ϕ t (u(t))| . Proof. Following Proposition 3, we have for a.e. s ∈ [0, T ] d dt f t λ (u λ (t)) + 1 2 u ′ λ (t) 2 + 1 2 u ′ λ (t) -w(t) 2 d dt ϕ t (u λ (t)) + 1 2 w(t) 2 + ∇f t λ (u λ (t)) |h ′ ρ (t)|(1 + |f t (J t λ u λ (t))| 1/2 ) +|k ′ ρ (t)| 1 + |f t (J t λ u λ (t))| + ∇ϕ t (u λ (t)) |a ′ ρ (t)|(1 + |ϕ t (u λ (t))| 1/2 ) + |b ′ ρ (t)| 1 + |ϕ t (u λ (t))|
. By integrating, we obtain for any t s

f t λ (u λ (t)) -f s λ (u λ (s)) + 1 2 t s u ′ λ (τ ) 2 dτ + 1 2 t s u ′ λ (τ ) -w(τ ) 2 dτ ϕ t (u λ (t)) -ϕ s (u λ (s)) + 1 2 t s w(τ ) 2 dτ + t s ∇f τ λ (u λ (τ )) |h ′ ρ (τ )|(1 + |f τ (J τ λ u λ (τ ))| 1/2 ) + |k ′ ρ (τ )|(1 + |f τ (J τ λ u λ (τ ))|) dτ + t s ∇ϕ τ (u λ (τ )) |a ′ ρ (τ )|(1 + |ϕ τ (u λ (τ ))| 1/2 ) + |b ′ ρ (τ )|(1 + |ϕ τ (u λ (τ ))|) dτ.
Letting λ to 0 + it follows

f t (u(t)) -f s (u(s)) + 1 2 t s u ′ (τ ) 2 dτ + 1 2 t s u ′ (τ ) -w(τ ) 2 dτ ϕ t (u(t)) -ϕ s (u(s)) + 1 2 t s w(τ ) 2 dτ + t s c ρ (τ ) dτ.
We now consider the general case. In this section, (f t ) t∈[0,T ] and (ϕ t ) t∈[0,T ] denote families of lower semi-continuous convex proper functions on X. By adding a compactness assumption, we shall obtain a local existence result.

Approximate problems

To solve the evolution equation ( 1), we regularize the convex function ϕ t by considering the C 1,1 -function ϕ t λ which denotes the Moreau-Yosida approximate of index λ > 0 of ϕ t . We then obtain the nonconvex evolution equation

u ′ λ (t) + ∂f t (u λ (t)) -∇ϕ t λ (u λ (t)) ∋ w(t) , t ∈ [0, T ] (11) 
We use the notations:

J t λ = (I + λ∂ϕ t ) -1 , ∇ϕ t λ = λ -1 (I -J t λ ).
According to Lemma 2, under the assumption (H ϕ ), there exist non negative constants N 1 and N 2 such that

J t λ x x + N 1 -N 2 ( x + 1) ϕ t (J t λ x) ϕ t λ (x) 1 λ (N 2 + x 2 )
for any t ∈ [0, T ], x ∈ X and λ ∈]0, 1]. Let us set now :

∀r > 0 , ρ = r + max(M 1 , N 1 ).
Then, for any x ∈ X such that x r, we have J t λ x ∨ x ρ for any λ > 0 and t ∈ [0, T ]. Lemma 7. [15, Proposition 3.1]. Assume (H ϕ ) holds. Let x ∈ X and λ > 0. The maps t -→ J t λ x and t -→ ∇ϕ t λ (x) are continuous on [0, T ]. Proof. Let x ∈ X with x r and λ ∈]0, 1]. By assumption (H ϕ ), for each s, t ∈ [0, T ] there exists x s ∈ domϕ s satisfying

J t λ x -x s |a ρ (t) -a ρ (s)|(1 + |ϕ t (J t λ x)| 1/2 ) ϕ s (x s ) ϕ t (J t λ x) + |b ρ (t) -b ρ (s)|(1 + |ϕ t (J t λ x)|). Since λ -1 (x -J s λ x) ∈ ∂ϕ s (J s λ x), we have ϕ s (J s λ x) + 1 λ x -J s λ x, x s -J s λ x ϕ s (x s ) ϕ t (J t λ x) + |b ρ (t) -b ρ (s)|(1 + |ϕ t (J t λ x)|).
Hence, for any s, t, we have

1 λ x -J s λ x, J t λ x -J s λ x 1 λ x -J s λ x, J t λ x -x s + ϕ t (J t λ x) -ϕ s (J s λ x) + |b ρ (t) -b ρ (s)|(1 + |ϕ t (J t λ x)|) ∇ϕ s λ (x) |a ρ (t) -a ρ (s)|(1 + |ϕ t (J t λ x)| 1/2 ) + ϕ t (J t λ x) -ϕ s (J s λ x) +|b ρ (t) -b ρ (s)|(1 + |ϕ t (J t λ x)|).
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By symmetry, we have for any t, s in [0, T ]

1 λ x -J t λ x, J s λ x -J t λ x ∇ϕ t λ (x) |a ρ (t) -a ρ (s)|(1 + |ϕ s (J s λ x)| 1/2 ) + ϕ s (J s λ x) -ϕ t (J t λ x) +|b ρ (t) -b ρ (s)|(1 + |ϕ s (J s λ x)|).
Adding these two inequalities we obtain

1 λ J s λ x -J t λ x 2 [ ∇ϕ t λ (x) + ∇ϕ s λ (x) ] |a ρ (t) -a ρ (s)|(1 + |ϕ s (J s λ x)| 1/2 ∨ |ϕ t (J t λ x)| 1/2 ) +2|b ρ (t) -b ρ (s)|(1 + |ϕ s (J s λ x)| ∨ |ϕ t (J t λ x)|). Since both t → ∇ϕ t λ (x) and t → |ϕ t (J t λ x)| are bounded on [0, T ], t → J t λ x is continuous on [0, T ].
In the same way of Proposition 1, we obtain: Lemma 8. Assume (H ϕ ) holds. Let x ∈ X and λ > 0. The function t -→ ϕ t λ (x) is absolutely continuous on [0, T ] and for any r x

d ds ϕ s λ (x) ∇ϕ s λ (x) |a ′ ρ (s)|(1 + |ϕ s (J s λ x)| 1/2 ) + |b ′ ρ (s)|(1 + |ϕ s (J s λ x)|). (12) 
almost everywhere. If x : [0, T ] → X is an absolutely continuous function and r x(t) for any t ∈ [0, T ], then t → ϕ t λ (x(t)) is absolutely continuous and we have for a.e. t ∈ [0, T ]

∇ϕ t λ (x(t)), x ′ (t) - d dt ϕ t λ (x(t)) ∇ϕ t λ (x(t)) |a ′ ρ (t)|(1 + |ϕ t (J t λ x(t))| 1/2 ) + |b ′ ρ (t)|(1 + |ϕ t (J t λ x(t))|).
Proof. Let x ∈ X and λ > 0. For all t, s, there exists w ∈ domϕ t such that

J s λ x -w |a ρ (t) -a ρ (s)|(1 + |ϕ s (x s )| 1/2 ) ϕ t (w) ϕ s (J s λ x) + |b ρ (t) -b ρ (s)|(1 + |ϕ s (x s )|).
Hence,

ϕ t λ (x) -ϕ s λ (x) 1 2λ w -x 2 + ϕ t (w) - 1 2λ x -J s λ x 2 -ϕ s (J s λ x) 1 2λ w -x 2 -x -J s λ x 2 + |b ρ (t) -b ρ (s)|(1 + |ϕ s (J s λ x)|). From w -x 2 = x -J s λ x 2 + J s λ x -w 2 + 2 x -J s λ x, J s λ x -w , we deduce ϕ t λ (x) -ϕ s λ (x) 1 2λ |a ρ (t) -a ρ (s)| 2 (1 + |ϕ s (J s λ x)| 1/2 ) 2 + ∇ϕ s λ (x) |a ρ (t) -a ρ (s)|(1 + |ϕ s (J s λ x)| 1/2 ) +|b ρ (t) -b ρ (s)|(1 + |ϕ s (J s λ x)|).
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If s and t are exchanged the above inequality still holds. Since s → ∇ϕ s λ (x) is bounded on [0, T ] according to Lemma 7, the function t -→ ϕ t λ (x) is absolutely continuous on [0, T ]. By the inequality (3) applied to ϕ t we have for all t, s in [0, T ]

| ∇ϕ s λ (x(s)), x(t) -x(s) -ϕ t λ (x(t)) + ϕ s λ (x(s))| | ∇ϕ s λ (x(s)), x(t) -x(s) + ϕ s λ (x(s)) -ϕ s λ (x(t))| + |ϕ s λ (x(t)) -ϕ t λ (x(t))| 1 λ x(s) -x(t) 2 + 1 2λ |a ρ (t) -a ρ (s)| 2 (1 + |ϕ s (J s λ x)| 1/2 ) 2 + max[ ∇ϕ t λ (x(t)) , ∇ϕ s λ (x(s)) ]|a ρ (t) -a ρ (s)|(1 + max[|ϕ t (J t λ x(t))|, |ϕ s (J s λ x(s))|] 1/2 ) +|b ρ (t) -b ρ (s)|(1 + max[|ϕ t (J t λ x(t))|, |ϕ s (J s λ x(s))|]).
Dividing by ts > 0 and letting t → s + , we obtain

| ∇ϕ s λ (x(s)), x ′ (s) - d ds ϕ s λ (x(s))| ∇ϕ s λ (x(s)) |a ′ r (s)|(1 + |ϕ s (J s λ x(s))| 1/2 ) + |b ′ r (s)|(1 + |ϕ s (J s λ x(s))|).
As in the above section we can prove that equation ( 11) has a unique solution u λ : [0, T ] → X satisfying u λ (0) = u 0 . Yet, there exists ξ λ ∈ L 2 (0, T ; X) such that for a.e. t ∈ [0, T ]

ξ λ (t) ∈ ∂f t (u λ (t)) , u ′ λ (t) + ξ λ (t) -∇ϕ t λ (u λ (t)) = w(t).
The curve u λ is absolutely continuous on [0, T ] and u ′ λ ∈ L 2 (0, T ; X).

Convergence of approximate problems

We now study the approximate solution u λ : [0, T ] → X. This curve is absolutely continuous on [0, T ] and u ′ λ ∈ L 2 (0, T ; X). Let r > 0. Let us set for any λ ∈]0, 1]

T λ = sup{t ∈ [0, T ] | ∀s ∈ [0, t], u λ (s) -u 0 r}.
Let λ ∈]0, 1]. According to Theorem 2, the function t → f t • u λ (t) is of bounded variation on [0, T ] and the following inequality holds for any t ∈ [0, T λ ]:

f t (u λ (t)) -f 0 (u 0 ) + 1 2 t 0 u ′ λ (τ ) 2 dτ + 1 2 t 0 u ′ λ (τ ) -w(τ ) 2 dτ ϕ t λ (u λ (t)) -ϕ 0 λ (u 0 ) + 1 2 t 0 w(τ ) 2 dτ + t 0 c λ,ρ (τ ) dτ where ρ r + u 0 + M 1 ∨ N 1 and c λ,ρ (t) = ξ λ (t) |h ′ ρ (t)|(1 + |f t (u λ (t))| 1/2 ) + |k ′ ρ (t)| 1 + |f t (u λ (t))| + ∇ϕ t λ (u λ (t)) |a ′ ρ (t)|(1 + |ϕ t λ (u λ (t))| 1/2 ) + |b ′ ρ (t)| 1 + |ϕ t λ (u λ (t))| .
Let us prove that inf λ∈]0,1] T λ > 0.

Lemma 9. Assume there exist c 2 ∈ [0, 1[, η ∈ R + and σ ∈ L 2 (0, T ; R + ) such that

∂ o ϕ t (x) c 2 ∂ o f t (x) + η|f t (x)| 1/2 + σ(t)
for all x ∈ Dom∂f t , xu 0 r and t ∈ [0, T ]. Let λ ∈]0, 1]. For a.e. t ∈ [0, T λ ], we have c λ,ρ (t) cλ,ρ (t) where we set

cλ,ρ (t) = 1 1 -c 2 u ′ λ (t) -w(t) |h ′ ρ (t)|(1 + |f t (u λ (t))| 1/2 ) + c 2 |a ′ ρ (t)|(1 + |ϕ t λ (u λ (t))| 1/2 ) + 1 1 -c 2 (η|f t (u λ (t))| 1/2 + σ(t)) |h ′ ρ (t)|(1 + |f t (u λ (t))| 1/2 ) + |a ′ ρ (t)|(1 + |ϕ t λ (u λ (t))| 1/2 ) +|k ′ ρ (t)| 1 + |f t (u λ (t))| + |b ′ ρ (t)| 1 + |ϕ t λ (u λ (t))| .
Proof. Since u ′ λ (t) + ξ λ (t) -∇ϕ t λ (u λ (t)) = w(t), it follows :

ξ λ (t) ∇ϕ t λ (u λ (t)) + u ′ λ (t) -w(t) .
From this

c λ,ρ (t) u ′ λ (t) -w(t) |h ′ ρ (t)|(1 + |f t (u λ (t))| 1/2 ) + |k ′ ρ (t)| 1 + |f t (u λ (t))| + ∇ϕ t λ (u λ (t)) |h ′ ρ (t)|(1 + |f t (u λ (t))| 1/2 ) + |a ′ ρ (t)|(1 + |ϕ t λ (u λ (t))| 1/2 ) +|b ′ ρ (t)| 1 + |ϕ t λ (u λ (t))| .
On the other hand, we have for t ∈ [0, T λ ]

∇ϕ t λ (u λ (t)) ∂ o ϕ t (u λ (t)) c 2 ξ λ (t) + η|f t (u λ (t))| 1/2 + σ(t) c 2 ∇ϕ t λ (u λ (t)) + c 2 u ′ λ (t) -w(t) + η|f t (u λ (t))| 1/2 + σ(t).
Thus,

∇ϕ t λ (u λ (t)) c 2 1 -c 2 u ′ λ (t) -w(t) + 1 1 -c 2 (η|f t (u λ (t))| 1/2 + σ(t)). (13) 
Consequently, c λ,ρ (t) cλ,ρ (t) .

Lemma 10. Assume that:

1. there exist

c 1 ∈ [0, 1[ and c 0 ∈ R such that ϕ t (x) c 1 |f t (x)| + c 0 for all x ∈ domf t , x -u 0 r and t ∈ [0, T ]; 2. there exist c 2 ∈ [0, 1[, η ∈ R + and σ ∈ L 2 (0, T ; R + ) such that ∂ o ϕ t (x) c 2 ∂ o f t (x) + η|f t (x)| 1/2 + σ(t)
for all x ∈ Dom∂f t , xu 0 r and t ∈ [0, T ].

Under (H f ) and (H ϕ ), we have:

sup 0<λ 1,t∈[0,T λ ] |f t (u λ (t))| < ∞,
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M 6 := sup 0<λ 1 T λ 0 u ′ λ (t) 2 dt < ∞, and 
sup 0<λ 1 T λ 0 ξ λ (t) 2 dt < ∞. (14) 
Hence, u λ (t)u λ (s) M 6 (ts)

for any λ ∈]0, 1] and 0 s t T λ .

Proof. Let λ ∈]0, 1]. We have for all t ∈ [0, T λ ]

f t (u λ (t)) + 1 2 t 0 u ′ λ (τ ) 2 dτ + 1 2 t 0 u ′ λ (τ ) -w(τ ) 2 dτ f 0 (u 0 ) + ϕ t λ (u λ (t)) -ϕ 0 1 (u 0 ) + 1 2 T 0 w(τ ) 2 dτ + t 0 cλ,ρ (τ ) dτ.
So, there exists a suitable real constant K which satisfies :

f t (u λ (t)) + 1 2 t 0 u ′ λ (τ ) 2 dτ K + ϕ t λ (u λ (t)) + t 0 d λ,ρ (τ ) dτ where d λ,ρ (t) = 1 2(1 -c 2 ) 2 |h ′ ρ (t)|(1 + |f t (u λ (t))| 1/2 ) + c 2 |a ′ ρ (t)|(1 + |ϕ t λ (u λ (t))| 1/2 ) 2 + 1 1 -c 2 η|f t (u λ (t) | 1/2 + σ(t)) |h ′ ρ (t)|(1 + |f t (u λ (t))| 1/2 ) + |a ′ ρ (t)|(1 + |ϕ t λ (u λ (t))| 1/2 ) +|k ′ ρ (t)| 1 + |f t (u λ (t))| + |b ′ ρ (t)| 1 + |ϕ t λ (u λ (t))| .
By assumption,

ϕ t λ (u λ (t)) c 1 |f t (u λ (t))| + c 0 for any t ∈ [0, T λ ], which ensures (1 -c 1 )f t (u λ (t)) + 1 2 t 0 u ′ λ (τ ) 2 dτ K + c 0 + t 0 d λ,ρ (τ ) dτ. Since ϕ t λ (u λ (t)) -N 2 (r + u 0 + 1) for any t ∈ [0, T λ ], we can find c0 > 0 such that |ϕ t λ (u λ (t))| c 1 |f t (u λ (t))| + c0 for any t ∈ [0, T λ ]. It follows: d λ,ρ (t) 2 (1 -c 2 ) 2 |h ′ ρ (t)| 2 + c 2 2 |a ′ ρ (t)| 2 (1 + c0 ) + (|h ′ ρ (t)| 2 + c 1 c 2 2 |a ′ ρ (t)| 2 )|f t λ (u λ (t))| + 1 1 -c 2 σ(t) |h ′ ρ (t)| + |a ′ ρ (t)|(1 + c0 1/2 ) + |f t (u λ (t))| |h ′ ρ (t)| + |a ′ ρ (t)|c 1/2 1 + 1 1 -c 2 |f t (u λ (t))| 1/2 σ(t)(|h ′ ρ (t)| + |a ′ ρ (t)|c 1/2 1 ) + η|h ′ ρ (t)| + η|a ′ ρ (t)|(1 + c0 1/2 ) +|k ′ ρ (t)| + |b ′ ρ (t)|(1 + c0 ) + |f t (u λ (t))| |k ′ ρ (t)| + |b ′ ρ (t)|c 1 EJQTDE, 2012 No. 92, p. 21 Setting ψ 1 (t) = 2 (1 -c 2 ) 2 (|h ′ ρ (t)| 2 + c 1 c 2 2 |a ′ ρ (t)| 2 ) + 1 1 -c 2 (|h ′ ρ (t)| + |a ′ ρ (t)|c 1/2 1 ) + |k ′ ρ (t)| + |b ′ ρ (t)|c 1 we obtain d λ,ρ (t) 2 (1 -c 2 ) 2 |h ′ ρ (t)| 2 + c 2 2 |a ′ ρ (t)| 2 (1 + c0 ) + 1 1 -c 2 σ(t) |h ′ ρ (t)| + |a ′ ρ (t)|(1 + c0 1/2 ) + 1 1 -c 2 1 2 |f t (u λ (t))|(η + σ(t) 2 ) + |h ′ ρ (t)| 2 + |a ′ ρ (t)| 2 c 1 + η|h ′ ρ (t)| 2 + η|a ′ ρ (t)| 2 (1 + c0 1/2 ) 2 +|k ′ ρ (t)| + |b ′ ρ (t)|(1 + c0 ) + |f t λ (u λ (t))| × ψ 1 (t)
which ensures:

d λ,ρ (t) 2 (1 -c 2 ) 2 |h ′ ρ (t)| 2 + c 2 2 |a ′ ρ (t)| 2 (1 + c0 ) + 1 1 -c 2 σ(t) |h ′ ρ (t)| + |a ′ ρ (t)|(1 + c0 1/2 ) + 1 1 -c 2 (1 + η)|h ′ ρ (t)| 2 + |a ′ ρ (t)| 2 (c 1 + η(1 + c0 1/2 ) 2 ) + |k ′ ρ (t)| +|b ′ ρ (t)|(1 + c0 ) + |f t λ (u λ (t))| × ψ 2 (t)
where

ψ 2 (t) = ψ 1 (t) + η + σ(t) 2 2(1 -c 2 ) . Integrating on [0, t], we obtain t 0 d λ,ρ (τ ) dτ 2 (1 -c 2 ) 2 h ′ ρ 2 L 2 + c 2 2 a ′ ρ L 2 (1 + c0 ) + 1 1 -c 2 σ L 2 h ′ ρ L 2 + a ′ ρ L 2 (1 + c0 1/2 ) + 1 1 -c 2 (1 + η) h ′ ρ 2 L 2 + a ′ ρ 2 L 2 (c 1 + η(1 + c0 1/2 ) 2 ) + k ′ ρ L 1 + b ′ ρ L 1 (1 + c0 ) + t 0 |f s λ (u λ (s))|ψ 2 (s) ds.
We notice that there exists a positive constant K 1 such that for any

λ ∈]0, 1] ∀t ∈ [0, T λ ] , (1 -c 1 )f t (u λ (t)) + 1 2 t 0 u ′ λ (τ ) 2 dτ K 1 + t 0 |f s λ (u λ (s))|ψ 2 (s) ds. Since f t (u λ (t)) -α f (r + u 0 + 1)
, we obtain for some positive constant K 2 and some function

Ψ ∈ L 1 (0, T ) ∀t ∈ [0, T λ ] , |f t (u λ (t))| K 2 1 + t 0 |f s λ (u λ (s))|Ψ(s) ds . Gronwall's lemma assures ∀t ∈ [0, T λ ] , |f t (u λ (t))| K 2 exp t 0 Ψ(s) ds K 2 exp Ψ L 1 . Thus: sup 0<λ 1,t∈[0,T λ ] |f t (u λ (t))| < ∞, sup 0<λ 1,t∈[0,T λ ] |ϕ t λ (u λ (t))| < ∞, EJQTDE, 2012 No. 92, p. 22 which implies sup 0<λ 1 T λ 0 u ′ λ (t) 2 dt < ∞, sup 0<λ 1 T λ 0 ∇ϕ t λ (u λ (t)) 2 dt < ∞. Since u ′ λ (t) + ξ λ (t) -∇ϕ t λ (u λ (t)) = w(t), we obtain sup λ∈[0,1[ T λ 0 ξ λ (t) 2 dt < ∞.
Proposition 5. Under the assumptions of the above lemma, there exists some T ′ > 0 such that T ′ T λ for any λ ∈]0, 1].

Proof. Let T ′ belong to [0, inf λ∈]0,1]

T λ ]. Assume that T ′ = 0. There exists Λ ∈]0, 1] such that 0 < T λ r 2 4M 6 for any λ ∈]0, Λ[. It follows for such λ:

∀t, s ∈ [0, T λ ] , u λ (t) -u λ (s) M 6 (t -s) M 6 T λ r 2 .
Particularly, for s = 0 and t = T λ , we obtain u λ (T λ )u 0 r 2 which contradicts the definition of T λ since we could find some T ′ λ > T λ such that u λ (t)u 0 r, t ∈ [0, T ′ λ ], by continuity of u λ . Consequently, T ′ > 0 and T ′ T λ for any λ ∈]0, 1]. Proposition 6. Assume the assumptions of the above lemma holds and add the compactness asumption: for each t ∈ [0, T ], the function f t is of compact type around u 0 , that is the set {x ∈ X | xu 0 r, |f t (x)| c} is compact at each level c.

If (H f ) and (H ϕ ) hold, there exists an absolutely continuous curve u : [0, T ′ ] → X such that a subsequence (u λn ) n converges uniformly to u on [0, T ′ ] and (u ′ λn ) n converges weakly to u ′ in L 2 (0, T ′ ; X) as λ goes to 0 + . Furthermore, u(0) = u 0 and u(t) ∈ domf t for any t ∈ [0, T ′ ].

Proof. Under the compactness assumption on each f t , {u λ (t) | λ ∈]0, 1]} is relatively compact in X for each t ∈ [0, T ′ ]. Furthermore, u λ (t)u λ (s) M 6 |t -s| for any λ ∈]0, 1] and 0 s, t < T ′ . By Ascoli's theorem {u λ | λ ∈]0, 1]} is relatively compact in C([0, T ′ ], X) and (u λ ) λ admits a subsequence which converges uniformly to some u ∈ C([0, T ′ ], X) on [0, T ′ ]. From Lemma 10 there exist subsequences (u ′ λn ) n , (ξ λn ) n and (∇ φλn (u λn )) n which weakly converge in L 2 (0, T ′ , X) respectively to u ′ , ξ and β.

We are now ready to prove the following local existence result: Theorem 3. Let (f t ) t∈[0,T ] and (ϕ t ) t∈[0,T ] be families of lower semi-continuous convex proper functions. Let u 0 ∈ domf 0 ∩ domϕ 0 . Assume the existence of r > 0 satisfying: 1. there exist c 1 ∈ [0, 1[ and c 0 ∈ R such that ϕ t (x) c 1 |f t (x)| + c 0 for all x ∈ domf t , xu 0 r and t ∈ [0, T ];

2. there exist c 2 ∈ [0, 1[, η ∈ R + and σ ∈ L 2 (0, T ; R + ) such that

∂ o ϕ t (x) c 2 ∂ o f t (x) + η|f t (x)| 1/2 + σ(t)
for all x ∈ Dom∂f t , xu 0 r and t ∈ [0, T ];

3. each t ∈ [0, T ], the function f t is of compact type around u 0 , that is the set

{x ∈ X | x -u 0 r, |f t (x)| c}
is compact at each level c.

If (H f ) and (H ϕ ) hold, there exists some T ′ ∈]0, T ] such that the problem (1) has a solution u : [0, T ′ ] → X satisfying u(0) = u 0 .

Proof. We have u ′ + ξ λ = ∇ φλ (u λ ) + w in L 2 (0, T ′ ; X). By weak convergency, we have ξ ∈ ∂ f (u), that is ξ(t) ∈ ∂f t (u(t)) for a.e. Notice under assumption 1., if x ∈ domf t and xu 0 r, then x ∈ domϕ t . And, under assumption 2., if x ∈ Dom∂f t and xu 0 r, then x ∈ Dom∂ϕ t . Furthermore by Lemma 3, the assumptions 1 and 2 of Theorem 3 are trivially satisfied when (ϕ t ) t∈[0,T ] is a family of convex C 1,1 -functions on X.

Example

Let Ω be a regular (C 1 ) bounded open subset of R n and w ∈ L 2 (0, T × Ω). We denote by Γ the smooth boundary of Ω. For each t ∈ [0, T ], let β t : Ω × R → R be a Carathéodory function such that β t (x, .) is (continuous) increasing function from R to R. Let (γ t ) t∈(0,T ] be a family of maximal monotone operators from R into R such that γ t (0) ∋ 0. We apply the results of the above section to a problem of parabolic type :    ∂u ∂t (x, t) = ∆u(x, t) + β t (x, u(x, t)) + w(x, t) , (x, t) ∈ Ω×]0, T [ -∂u ∂η (x, t) ∈ γ t (u(x, t)) , (x, t) ∈ Γ×]0, T [ u(x, 0) = u 0 (x) ,

x ∈ Ω where ∂u ∂η denotes the outward normal derivative.

  Corollary 3. Assume (H ϕ ) holds. Let x : [0, T ] → X be an absolutely continuous function and r x(t) for any t ∈ [0, T ]. Then, t → ϕ t (x(t)) is absolutely continuous and we have for a.e. t ∈ [0, T ]

We define proper lower semi-continuous convex functions ℓ t (x, .) : R → R and j t : R → R + by ℓ t (x, s) = s 0 β t (x, τ ) dτ and ∂j t = γ t . Then, ℓ t (x, .) is a continuously differentiable convex function, and j t (s) 0 for any s ∈ R. We then define f t , ϕ t : L 2 (Ω) → R ∪ {+∞} by

The function ϕ t is proper lower semi-continuous and convex on L 2 (Ω). The function f t is proper and convex on L 2 (Ω). Introducing a slight modification, the functional f t becomes lower semi-continuous on some

a.e. on Γ}. So, the above problem can be written in the form of (1). We shall consider the following assumptions : (H j ) There is an absolutely continuous real-valued function k on [0, T ] such that k ′ ∈ L 1 (0, T ) and for each s, t ∈ [0, T ] with s t we have

There is an absolutely continuous real-valued function b on [0, T ] such that b ′ ∈ L 1 (0, T ) and for each s, t ∈ [0, T ] and a.e. x ∈ Ω we have

We obtain the local existence result:

If (H j ) and (H ℓ ) hold, there exists T ′ ∈]0, T ] such that the above problem of parabolic form has a solution u : [0, T ′ ] → X satisfying u(0) = u 0 .

Proof. We want to apply Theorem 3 with X the Hilbert space L 2 (Ω) endowed with the usual scalar product. The families (f t ) t∈[0,T ] and (ϕ 

The condition 1. of Theorem 3 is satisfied with c 1 = 0. In the same way, the minimal section of ∂ϕ t (u) at u being β t (., u(.)) almost everywhere on Ω we have ∂ 0 ϕ t (u) L 2 K 2 u 2 L 2 + K 3 L 2 . The condition 2. of Theorem 3 is satisfied with c 2 = 0. The condition 3. is satisfied thanks to Rellich theorem. Theorem 3 ensures existence of solutions.