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Lyapunov exponents for conservative twisting dynamics:

a survey

M.-C. ARNAUD ∗†‡

October 7, 2014

Abstract

Finding special orbits (as periodic orbits) of dynamical systems by variational methods
and especially by minimization methods is an old method (just think to the geodesic
flow). More recently, new results concerning the existence of minimizing sets and
minimizing measures were proved in the setting of conservative twisting dynamics.
These twisting dynamics include geodesic flows as well as the dynamics close to a
completely elliptic periodic point of a symplectic diffeomorphism where the torsion is
positive definite (this implies the existence of a normal form (θ, r) 7→ (θ+βr+o(r), r+
o(r)) with β positive definite). Two aspects of this theory are called the Aubry-Mather
theory and the weak KAM theory. They were built by Aubry & Mather in the ’80s in
the 2-dimensional case and by Mather, Mañé and Fathi in the ’90s in higher dimension.

We will explain what are the conservative twisting dynamics and summarize the
existence results of minimizing measures. Then we will explain more recent results
concerning the link between different notions for minimizing measures for twisting
dynamics:

• their Lyapunov exponents;

• their Oseledets splitting;

• the shape of the support of the measure.

The main question in which we are interested is: given some minimizing measure of
a conservative twisting dynamics, is there a link between the geometric shape of its
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support and its Lyapunov exponents? Or : can we deduce the Lyapunov exponents of
the measure from the “shape” of the support of this measure?
Some proofs but not all of them will be provided. Some questions are raised in the last
section.

Key words: Twist maps, Hamiltonian dynamics, Tonelli Hamiltonians, Lagrangian
functions, Lyapunov exponents, Minimizing orbits and measures, Green bundles, weak
KAM theory, contingent and paratangent cones.
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1 Twisting conservative dynamics

All the dynamics we study here are defined on the cotangent bundle T ∗M of some
closed manifold M , endowed with its usual symplectic form ω. More precisely, if q =
(q1, . . . , qn) are some coordinates on M , we complete them with their dual coordinates
p = (p1, . . . , pn) to obtain some coordinates on T ∗M : if λ ∈ T ∗M is a 1-form onM , then

its coordinates p1, . . . , pn are given by λ =

n∑

i=1

pidqi. The expression of the symplectic

form in these coordinates is ω = dq ∧ dp =
n∑

i=1

dqi ∧ dpi. A change of coordinates of

M doesn’t change the symplectic form ω and then the definition is correct. We will
generally use the notation (q, p) for such coordinates.
When M = T

n, we will identify T ∗M with the 2n-dimensional annulus An = T
n ×R

n.
Let us recall that a diffeomorphism f of T ∗M is symplectic if it preserves the symplectic
form: f∗ω = ω.

1.1 A local notion: the twist condition

Notations. We denote by π : T ∗M →M the canonical projection (q, p) 7→ q.
At every x = (q, p) ∈ T ∗M , we define the vertical subspace V (x) = kerDπ(x) ⊂
Tx(T

∗M) as being the tangent subspace at x to the fiber T ∗
qM .

Example 1. A symplectic C1 diffeomorphism f : A1 → A1 of the 2-dimensional
annulus is a positive symplectic twist map if

• it is homotopic to identity;

• it twists the vertical to the positive side: ∀x ∈ A1, D(π ◦ f)(x).

(
0
1

)
> 0.

Dπ(f(x))

Df(x)

There exists of course a notion of negative symplectic twist map.
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The notion of twist map that we introduce is local, but the (local) twist condition implies
a global property: when we unfold the cylinder (i.e. we are in the universal covering
R
2 of A1 and we consider a lift of the twist map), the image of a fiber {q} × R by the

lift of a symplectic twist map is then a graph above a part of of R× {0}:

f

For example, the map f0 : (q, p) 7→ (q + p, p) is a symplectic twist map of A1.

When thinking to a possible extension of the notion of twisting dynamics to higher
dimension, the first possibility is to ask that the image of any vertical V (x) by the
tangent dynamics Df is transverse to the vertical V (f(x)). If we express Df in two
charts of coordinates (q, p):

Df =

(
a b
c d

)

this is equivalent to ask that ∀x, det b(x) 6= 0. When M = T
n, such diffeomorphims

were introduced and studied by M. Herman in [15], where he called them monotone.
When dimM ≥ 2, the monotony condition doesn’t imply that the image of a fiber is
a graph above the zero section, even if M = T

n and if we unfold the 2n-dimensional
annulus. For example, the map f : A2 → A2 defined for (q, p) ∈ T

2 × R
2 = C/(Z +

iZ)× R
2 by f(q, p) = (q + ep1−ip2 , p) is monotone but the projection of the restriction

of its lift to any fiber is not injective.
If f is a twist map of the 2-dimensional annulus, f2 is not necessarily a twist map:

the twist condition is just valuable for “small times” (here time 1).
Hence for Hamiltonians, we will translate the twist condition for small times. In

coordinates (q, p), the Hamilton equations for H ∈ C2(T ∗M,R) are:

q̇ =
∂H

∂p
(q, p); ṗ = −

∂H

∂q
(q, p).

Let us denote the Hamiltonian flow of H by (ϕH
t ) and let (δq, δp) be an infinitesimal

solution, i.e.

(
δq(t)
δp(t)

)
= Dϕt(q(0), p(0)).

(
δq(0)
δp(0)

)
. By differentiating the Hamilton
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equations, we obtain δq̇ = ∂2H
∂q∂p

δq + ∂2H
∂p2

δp and then

D(π ◦ ϕt)(q(0), p(0)).

(
0
δp

)
= t

∂2H

∂p2
(q(0), p(0))δp+ o(t).

We will say that the Hamiltonian H satisfies the twist condition if at every point
∂2H
∂p2

is non-degenerate. In this case, even for small times, the Hamiltonian flow is not

necessarily a twist map; indeed, the o(t) above is not uniform in (q, p).

1.2 Global notions: globally positive diffeomorphisms and

Tonelli Hamiltonians

Unfortunately, we are able to do nothing with the local definition of twisting dynamics
that we gave in the above subsection.

There are two problems:

1. we need to find some special invariant subsets for the dynamics;

2. we want to say something about the Lyapunov exponents along these invariant
subsets.

In general there are two main ways to find invariant subsets for those dynamics: pertur-
bative methods and variational methods. Perturbative methods, as K.A.M. theorems
are, are valuable close to completely integrable dynamics (see [15] for the definition in
the case of the 2n-dimensional annulus). C. Golé gives in [14], section 27.B a similar
condition, that he calls “asymptotic linearity”, that makes possible the use of varia-
tional methods in this perturbative case. But we won’t explain the perturbative case
in this survey. We will only work in the so-called coercive case (see section 27.B of [14]
for example).

More precisely, we will make some assumptions such that

• we can associate a function F to the dynamics, such that the critical points of F
are in some sense the orbits for the dynamics;

• the function F admits some minima, and then some “minimizing orbits”. For the
symplectic twist maps of the 2-dimensional annulus, these minimizing orbits are
the heart of the theory that S. Aubry and J. Mather independently developped
at the beginning of the ’80s (see [6] and [21]).

That is why we introduce the following definitions. The first one comes from [18]
and [14], the second one is very classical.
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1.2.1 Globally positive diffeomorphisms

Definition. A globally positive diffeomorphism of An is a symplectic C1 diffeomor-
phism f : An → An that is homotopic to IdAn

and that has a lift F : Rn×R
n → R

n×R
n

that admits a C2 generating function S : Rn × R
n → R such that:

• ∀k ∈ Z
n, S(q + k,Q+ k) = S(q,Q);

• there exists α > 0 such that: ∂2S
∂q∂Q

(q,Q)(v, v) ≤ −α‖v‖2;

• F is implicitly given by:

F (q, p) = (Q,P ) ⇐⇒

{
p = −∂S

∂q
(q,Q)

P = ∂S
∂Q

(q,Q)

Example 2. The diffeomorphism F0 : (q, p) ∈ R
n × R

n 7→ (q + p, p) ∈ R
n × R

n is the
lift of a globally positive diffeomorphism f0 of An and a generating function associated
to F0 is defined by S0(q,Q) = 1

2‖q −Q‖2.

If f , F satisfy the above hypotheses, the restriction to any fiber {q} × R
n of π ◦ F

and π ◦ F−1 are diffeomorphisms (a proof is given in [14]). In particular, this implies
that f is (locally) monotone.

Moreover, for every k ≥ 2, q0, qk ∈ R
n, the function F : (Rn)k−1 → R defined by

F(q1, . . . , qk−1) =
k∑

j=1

S(qj−1, qj) has a minimum, and at every critical point for F , the

following sequence is a piece of orbit for F :

(q0,−
∂S

∂q
(q0, q1)), (q1,

∂S

∂Q
(q0, q1)), (q2,

∂S

∂Q
(q1, q2)), . . . , (qk,

∂S

∂Q
(qk−1, qk)).

For the map F0 defined in example 2, the function F0 defined by

F0(q1, . . . , qk−1) =
1

2

k∑

j=1

‖qj−1 − qj‖
2 attains its minimum at its unique critical point

(q1, . . . , qk−1) = (q0 +
qk−q0

k
, q0 + 2 qk−q0

k
, . . . , q0 + (k − 1) qk−q0

k
) and the corresponding

piece of orbit is:

(q0,
qk − q0
k

), (q1,
qk − q0
k

), . . . , (qk,
qk − q0
k

).

Let us discuss a little the condition on ∂2S
∂q∂Q

. If the matrix of Df in coordinates

(q, p) is Df =

(
a b
c d

)
, we have

(b(q, p))−1 = −
∂2S

∂q∂Q
(q,Q).
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Hence the condition that we gave for the partial derivatives of S can be rewritten in
terms of matrices: b−1+ tb−1 ≥ α1 where 1 is the identity matrix and we use the usual
order for the symmetric matrices.

The reader could think to some other possible notions of global twist, for which
tb−1 + b−1 is indefinite. But in this case, very pathologocal phenomena can occur;
M. Herman showed very strange phenomena in the case of a “normal indefinite torsion”
in [16] (the torsion is tb+b and it has the same signature as tb−1+b−1 = tb−1(tb+b)b−1).

1.2.2 Tonelli Hamiltonians

A C2 function H : T∗M → R is a Tonelli Hamiltonian if it is:

• superlinear in the fiber, i.e. ∀A ∈ R, ∃B ∈ R, ∀(q, p) ∈ T ∗M, ‖p‖ ≥ B ⇒
H(q, p) ≥ A‖p‖;

• C2-convex in the fiber i.e. for every (q, p) ∈ T ∗M , the Hessian ∂2H
∂p2

of H in the
fiber direction is positive definite as a quadratic form.

We denote the Hamiltonian flow of H by (ϕH
t ) and the Hamiltonian vector-field by XH .

Note that the flow of a Tonelli Hamiltonian defined on An is not necessarily a globally
positive diffeomorphism. A geodesic flow is an example of a Tonelli flow. For example,
the flat metric on T

n corresponds to the Tonelli Hamiltonian H0(q, p) =
1
2‖p‖

2 and its
time-one flow is nothing but the map f0 that we defined in example 2.

At the end of the ’80s, J. Mather extended Aubry-Mather theory to the Tonelli
Hamiltonians, introducing the concept of globally minimizing orbits and minimizing
measures (see [22] and [20]).
To explain that, we associate to any Tonelli Hamiltonian H : T ∗M → R its Lagrangian
L : TM → R that is dual to H via the formula:

∀(q, v) ∈ TM,L(q, v) = sup
p∈T ∗

q M

(p.v −H(q, p)).

Then L is as regular as H is and is superlinear and C2-convex in the fiber direction
(see for example [11]). Moreover, we have:

L(q, v) +H(q, p) = p.v ⇐⇒ v =
∂H

∂p
(q, p) ⇐⇒ p =

∂L

∂v
(q, v).

If γ : [α, β] →M is an absolutely continuous arc, its Lagrangian action is then:

AL(γ) =

∫ β

α

L(γ(t), γ̇(t))dt.
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1.3 Minimizing measures

1.3.1 Case of the globally positive diffeomorphisms of the 2-dimensional

annulus

We use the notations that were introduced in subsection 1.2.1. In the 2-dimensional
case, J. Mather and Aubry & Le Daeron proved in [6] and [21] the existence of orbits
(qi, pi)i∈Z for F that are globally minimizing. This means that for every ℓ ∈ Z and
every k ≥ 2, (qℓ+1, . . . , qℓ+k−1) is minimizing the function F defined by:

F(qℓ+1, . . . , qℓ+k−1) =
k∑

i=ℓ+1

S(qi−1, qi).

Then each of these orbits (qi, pi)i∈Z is supported in the graph of a Lipschitz map
defined on a closed subset of T, and there exists a bi-Lipschitz orientation preserving
homeomorphisms h : T → T such that (qi)i∈Z = (hi(q0))i∈Z. Hence each of these orbits
has a rotation number.
Moreover, for each rotation number ρ ∈ R, there exists a minimizing orbit that has
this rotation number and there even exists a minimizing measure, i.e. an invariant
measure the support of whose is filled by globally minimizing orbit, such that all the
orbits contained in the support have the same rotation number ρ. These supports are
sometimes called Aubry-Mather set.
In the following picture that concerns the so-called standard twist map, you can observe
some invariant curves, some Cantor subsets and some periodic islands that must contain
one periodic point.
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Different kinds of Aubry-Mather sets can occur in this setting:

1. some of them are invariant loops that are the graphs of some Lipschitz maps
η : T → R;

2. some other ones are just periodic orbits;

3. some of these Aubry-Mather sets are Cantor sets.

In the case 1, it can happen that the dynamics restricted to the curve is bi-Lipschitz
conjugate to a rotation; in this case the Lyapunov exponents of the invariant measure
supported in the curve are zero. This is the case for the KAM curves. But P. Le
Calvez proved in [17] that in general (i.e. for a dense and Gδ subset of the set of the
symplectic twist maps), there exists an open and dense subset U of R such that any
Aubry-Mather set that has its rotation number in U is uniformly hyperbolic.

1.3.2 Case of the globally positive diffeomorphisms in higher dimen-

sion

For globally positive diffeomorphism in higher dimension, Garibaldi & Thieullen prove
the existence of globally minimizing orbits and measures in [13]. The results that
they obtain are very similar to the ones that we recall in subsection 1.3.3 for Tonelli
Hamiltonians.
Remarks. There exists too an Aubry-Mather theory for time-one maps of time-
dependent Tonelli Hamiltonians (see for example [7]). Even when the manifoldM is Tn,
the time-one map is not necessarily a globally positive diffeomorphism of An. Moreover,
except for the 2-dimensional annulus (see [23]), it is unknown if a globally positive
diffeomorphism is always the time-one map of a time-dependent Tonelli Hamiltonian
(see theorem 41.1 in [14] for some partial results). In this survey, we won’t speak about
these time-one maps.

1.3.3 Case of the Tonelli Hamiltonians

It can be proved that is qb, qe ∈ M are two points of M and β > α two real numbers,
if Γ(qb, qe;α, β) is the set of the C2-arcs γ : [α, β] → M that join qb to qe endowed
with the C2-topology, then γ is a critical point of the restriction of AL to Γ(qb, qe;α, β)
if and only if γ is the projection of an arc of orbit for H. This arc of orbit is then
(γ(t), ∂L

∂v
(γ(t), γ̇(t)))t∈[α,β].

In [22], J. Mather proves the existence of complete orbits (ϕH
t (q, p))t∈R = (q(t), p(t))t∈R

that are globally minimizing, i.e. such that every arc (π ◦ ϕH
t (x))t∈[α,β] = (q(t))t∈[α,β]

is minimizing for the restriction of AL to Γ(q(α), q(β);α, β). He proves too the exis-
tence of minimizing measures, i.e. invariant measures the support of whose is filled by
globally minimizing orbit.
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When replacing L by L+λ where λ is any closed 1-form on M , we obtain the same
critical points for the Lagrangian action AL+λ as for the Lagrangian action AL. But the
minima for those two functions are not the same. Hence, adding different closed 1-form
λ to L is a way to find other invariant measures supported in graphs, these measures
being minimizing for L + λ. The supports of these measures are the generalization
of the Aubry-Mather sets. A rotation number can be associated to any minimizing
measure (see [22]) and it can be proved that there exists a minimizing measure for
any rotation number. But this doesn’t give the existence of minimizing orbits of any
rotation number (indeed the considered measures have not to be ergodic).

2 Lyapunov exponents for the minimizing mea-

sures and angle of the Oseledets splitting

Here we are interested in the Lyapunov exponents of the minimizing measures for glob-
ally positive diffeomorphisms or Tonelli Hamiltonian flows. In the case of symplectic
twist maps, we noticed at the end of subsection 1.3.1 that these exponents may be
non-zero or zero.

2.1 Some simple remarks for Dirac masses

Before looking at the Lyapunov exponents of any invariant measure, let us have a look
to what happens for a Dirac mass in dimension 2.
More precisely, let us assume that x is a fixed point of a 2-dimensional diffeomorphism.
We assume that sup{‖Df(x)‖, ‖(Df(x))−1‖} ≤ C where C is some constant. Let λ1,
λ2 be the two (complex) eigenvalues for Df(x); then the Lyapunov exponents for the
Dirac mass δx are log(|λ1|) and log(|λ2|). Let us assume that λ1 and λ2 are real and
let us denote by E1, E2 the corresponding eigenspaces.

2.1.1 What happens when the stable and unstable subspaces are

close together

We have

Simple principle: if the eigenspaces E1 and E2 are close together, then the two
eigenvalues λ1 and λ2 have to be close together too.
More precisely, if ei is a unitary vector on Ei, we have:

|λ1 − λ2| ≤ 2C sup{
‖e2 − e1‖

‖e1 + e2‖
,
‖e1 + e2‖

‖e1 − e2‖
}.
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Proof of the simple principle. We just compute

Df(x).
e2 − e1
‖e2 − e1‖

=
λ2 + λ1

2
.
e2 − e1

‖e2 − e1‖
+
λ2 − λ1

2

e2 + e1
‖e2 − e1‖

.

As e2 − e1 and e1 + e2 are orthogonal, we deduce

|λ2 − λ1|

2

‖e2 + e1‖

‖e2 − e1‖
≤

∥∥∥∥Df(x).
e2 − e1

‖e2 − e1‖

∥∥∥∥ ≤ ‖Df(x)‖ ≤ C.

Changing e1 into −e1, we obtain the second inequality.

If f is symplectic, we have λ2 = 1
λ1
. In this case, if the eigenspaces are close

together, the two eigenvalues have to be close to 1 and then the Lyapunov exponents
are close to 0.

This simple remark for fixed point can be generalized to any dimension and any
invariant measure in the following way. For a proof, see [4].

Proposition 1. Let K be a compact subset of a manifold N , let C > 0 be a real
number. Then, for any f ∈ Diff1(M) so that max{‖Df|K‖, ‖Df−1

|K ‖} ≤ C, if f has
an invariant ergodic measure µ with support in K such that the Oseledets stable and
unstable bundles Es and Eu of µ have the same dimension d , if we denote by Λu the
sum of the positive Lyapunov exponents and by Λs the sum of the negative Lyapunov
exponents, then:

0 < Λu − Λs ≤ d log

(
1 + (C2 + 1)

∫
dist(Eu, Es)dµ

)

where dist is the distance.

If for example f is a symplectic diffeomorphism of T ∗M , then Eu and Es have
same dimension (see for example [9]). We deduce from the above proposition that if
the stable and unstable Oseledets bundles are close together, then all the Lyapunov
exponents are close to 0. This result is not very surprising and not specific to the
twisting dynamics. What is more surprising and specific to the twisting dynamics will
come in the next section.

2.1.2 What happens when the stable and unstable subspaces are far

from each other

For general symplectic dynamics, we can have simultaneously two eigenvalues that are
close together and two eigenspaces that are not close together. See for example the
linear isomorphism of R2 with matrix in the usual basis:

M =

(
1 + ε 0
0 1

1+ε

)
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with ε > 0 small enough.
As noticed by J.-C. Yoccoz, this cannot happen for the minimizing Dirac masses of

a twist map of the 2-dimensional annulus. It can be proved that at the fixed point x
corresponding to such a minimizing Dirac mass δx, the eigenvalues of Df(x) are real.
We denote them by λ1, λ2 and by E1, E2 the two corresponding eigenspaces and by

M =

(
a b
c d

)
the matrix of Df(x) in coordinates (q, p). Then we have

Simple result If the torsion b is bounded from below by a positive number, if E1 and
E2 are far from each other, then |λ2 − λ1| cannot be to small.
More precisely, if α is the angle between E1 and E2, then we have

|b| ≤ sup{1, (cotan(α))2}|λ2 − λ1|.

Proof of the simple result. The angle between E1 and E2 being α, there exists

a matrix R of rotation such that if P := R

(
1 cotanα
0 1

)
, then P

(
1
0

)
= e1 and

P

(
0
1

)
= e2. As R is a matrix of rotation, the modulus of all the coefficients of

P =

(
α β
δ γ

)
is less that sup{1, |cotanα|}. Moreover, we have:

M =

(
γ −β
−δ α

)
.

(
λ1 0
0 λ2

)
.

(
α β
δ γ

)
=

(
∗ δ.γ(λ1 − λ2)
∗ ∗

)
.

We deduce that b = δβ(λ1 − λ2) and the wanted result.

2.2 Number of non-zero Lyapunov exponents

Before giving an estimation of the non-zero Lyapunov exponents, we will try to find
how many they are. As the dynamics is symplectic, we know that the number of
negative Lyapunov exponents is equal to the number of positive Lyapunov exponents
and then the number of zero Lyapunov exponents is even (see [9] for a proof).

2.2.1 The two Green bundles

The Green bundles are two Lagrangian bundles that are defined along the minimizing
orbits. In general, they are measurable but not continuous. Let us recall that a
subspace H of the symplectic space Tx(T

∗M) is Lagrangian if its dimension is n and
if the restriction of the symplectic form to H vanishes: ω|H×H = 0.

The Green bundles were introduced in the ’50s by L. W. Green to give a proof of the
2-dimensional version of Hopf conjecture: a Riemannian metric of Tn with no conjugate
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points is flat. Then P. Foulon extended the construction to the Finsler metrics in [12]
and G. Contreras & R. Iturriaga built them for any Tonelli Hamiltonian in [10]. The
construction for the twist maps of the annulus, and more generally for the twist maps
of Tn × R

n is due to M. Bialy & R. MacKay (see [8]).
We will recall here their precise definition and we will give their main properties. Be-

fore this, let us recall that there exists a way to compare different Lagrangian subspaces
of Tx(T

∗M) that are transverse to the vertical V (x). We choose some coordinates (q, p)
as explained at the beginning of section 1 and we denote the linearized coordinates by
(δq, δp) of Tx(T

∗M). If H1, H2 are two Lagrangian subspaces of Tx(T
∗M) that are

transverse to the vertical V (x), we can write them in coordinates (δq, δp) as the graph
of some symmetric matrices S1, S2. We say that L1 is under L2 and write L1 ≤ L2

when S2 − S1 is a positive semi-definite matrix. We say that L1 is strictly under L2

and write L1 < L2 if L1 ≤ L2 and L1 and L2 are transverse. This is equivalent to say
that S2 − S1 is positive definite. It can be proved that this definition doesn’t depend
on the chart that we choose. For an equivalent but more intrinsic definition, see [1].
We begin by recalling some properties of the Green bundles.

Along every minimizing orbit of a globally positive diffeomorphism F : Tn ×R
n →

T
n × R

n or a Tonelli Hamiltonian flow H : T ∗M → R that we will denote by (Dt)
(with t in Z or R), we can defined two Lagrangian bundles G− and G+ that satisfy the
following properties.

• they are transverse to the vertical and G− ≤ G+;

• G− and G+ are invariant by the linearized dynamics, i.e. DDt.G± = G± ◦ Dt;

• for every compact K such that the orbit of every point of K is minimizing, the
two Green bundles restricted to K are uniformly far from the vertical;

• (dynamical criterion) if the orbit of x is minimizing and relatively compact in
T ∗M , if lim inf

t→+∞
‖D(π ◦ Dt)(x)v‖ ≤ +∞ then v ∈ G−(x).

If lim inf
t→+∞

‖D(π ◦ D−t)(x)v‖ ≤ +∞ then v ∈ G+(x).

The bundles G− and G+ are the Green bundles. The proof of the results that we
mentioned before can be found in [1] for the Tonelli Hamiltonians and in [4] for the
globally positive diffeomorphisms.
An easy consequence of the dynamical criterion and the fact that the Green bundles
are Lagrangian is that when there is a splitting of Tx(T

∗M) into the sum of a stable,
a center and a unstable bundles Tx(T

∗M) = Es(x) ⊕ Ec(x) ⊕ Eu(x), for example an
Oseledets splitting or a partially hyperbolic splitting, then we have

Es ⊂ G− ⊂ Es ⊕ Ec and Eu ⊂ G+ ⊂ Eu ⊕ Ec.
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Let us give the argument of the proof. Because of the dynamical criterion, we have
Es ⊂ G−. Because the dynamical system is symplectic, the symplectic orthogonal
subspace to Es isi (Es)⊥ = Es ⊕Ec (see e.g. [9]). Because G− is Lagrangian, we have
G⊥

− = G−. We obtain then G⊥
− = G− ⊂ Es⊥ = Es ⊕ Ec.

Let us note the following straightforward consequence: for a minimizing measure, the
whole information concerning the positive (resp. negative) Lyapunov exponents is
contained in the restricted linearized dynamics DDt|G+

(resp. DDt|G−
). In particular,

when the measure is weakly hyperbolic, we have almost everywhere G+ = Eu and
G− = Es.

We now give the precise definition of the two Green bundles.

Definition. If the orbit of x is minimizing, then the familly (DDt.V (D−tx))t>0 is
a decreasing family of Lagrangian subspaces that converges to G+(x) and the familly
(DD−t.V (Dtx))t>0 is an increasing family of Lagrangian subspaces that converges to
G−(x)

2.2.2 Link between the central dimension and the dimension of G− ∩
G+

From Es ⊂ G− ⊂ Es ⊕ Ec and Eu ⊂ G+ ⊂ Eu ⊕ Ec, we deduce that G− ∩G+ ⊂ Ec.
Hence G−∩G+ is an isotropic subspace (for ω) of the symplectic space Ec. We deduce
that dim(Ec) ≥ 2 dim(G−∩G+). When Es⊕Ec⊕Eu designates the Oseledets splitting
of some minimizing measure µ , what is proved in [3] is that this inequality is an equality
µ almost everywhere for the Tonelli Hamiltonian flows and the same result is proved
for the globally positive diffeomorphisms in [5].

Theorem 1. Let (Dt) (with t in Z or R) be a globally positive diffeomorphism or a
Tonelli Hamiltonian flow. Let µ be a minimizing measure and let us denote by p the
µ-almost everywhere dimension of G− ∩ G+. Then µ has exactly 2p zero Lyapunov
exponents, n− p positive Lyapunov exponents and n− p negative Lyapunov exponents.

The idea is the following one. Firstly, let us notice that we have nothing to prove
when dim(G− ∩G+) = n because we know that dim(Ec) ≥ 2 dim(G− ∩G+) = 2n; in
this case, dim(Ec) = 2n and all the Lyapunov exponents are zero.

In the other case, we consider the following restricted-reduced linearized dynamics.
Let µ be an ergodic minimizing measure. Then the quantity dim(G−∩G+) is µ-almost
everywhere constant. We denote this dimension by p and we assume that p < n.
Notations. We introduce the following linear spaces (see [3]): E = G− + G+,

R = G− ∩ G+, F is the reduced space F = E/R. As E is coisotropic for ω with
E⊥ω = R, then F is the symplectic reduction of E. As E and R are invariant by the
linearized dynamics, then we can define a cocycle Mt on F as the reduced linearized
dynamics. This cocycle is then symplectic for the reduced symplectic form Ω.
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In [3] and [5], we define for the cocycle (Mt) a vertical subspace, some reduced Green
bundles g− and g+ that has properties similar to the ones of G±, and we prove that g−
and g+ are transverse µ-almost everywhere. As we will explain in next subsection, the
transversality of the Green bundles implies the (weak) hyperbolicity of the measure.
Here we have only the transversality of the reduced Green bundles, but this imply that
the cocycle (Mt) is (weakly) hyperbolic and then that the linearized dynamics has at
least 2(n− p) non-zero Lyapunov exponents. This gives the conclusion.

2.2.3 The transversality of the two Green bundles implies some hy-

perbolicity

We will explain here why a minimizing measure µ is weakly hyperbolic when the
Green bundles are transverse almost everywhere. We will deal with the discrete case
(i.e. globally positive diffeomorphisms of An). The diffeomorphism is denoted by f
and we assume that µ-almost everywhere we have: TxAn = G−(x)⊕G+(x). We want
to prove that f has at least n positive Lyapunov exponents; in this case, because f is
symplectic, µ has also n negative Lyapunov exponents (see [9]).

The idea is to use a bounded (but non continuous) symplectic change of linearized
coordinates along the minimizing orbits where TxAn = G−(x) ⊕ G+(x) such that G+

becomes the horizontal. Because G+ is invariant by Df , the symplectic matrix of Dfk

is: Mk(x) =

(
ak(x) bk(x)
0 dk(x)

)
.

Notations. For k ∈ Z, we use the notation Gk(x) = DfkV (f−kx). Then we know
that (Gk(x))k≥1 is a decreasing sequence of Lagrangian subspaces that converges to
G+(x) and that (G−k(x))k≥1 is an increasing sequence of Lagrangian subspaces that
converges to G−(x).
In the symplectic coordinates that we choose, Gk is the graph of a symmetric matrix
sk.

Because Gk is transverse to the vertical, we have det bk 6= 0. Because of the defini-
tion of Gk, we have then dk(x) = sk(f

kx)bk(x). As sk(x))k≥1 is decreasing and tends
to 0 (because the horizontal is G+), the symmetric matrix sk(f

kx) is positive definite.
Moreover, because the matrix Mk(x) is symplectic, we have:

(
Mk(x)

)−1
=

(
tdk(x) −tbk(x)

0 tak(x)

)

and by definition of g−k(x):
tak(x) = −s−k(x)

tbk(x) and finally:

Mk(x) =

(
−bk(x)s−k(x) bk(x)

0 sk(f
kx)bk(x)

)
.
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The proof is then made of several lemmata. The first one is a consequence of Egorov
theorem and of the fact that µ-almost everywhere on suppµ, G+ and G− are transverse
and then −s− is positive definite.

Lemma 1. For every ε > 0, there exists a measurable subset Jε of suppµ such that:

• µ(Jε) ≥ 1− ε;

• on Jε, (sk)k≥1 and (s−k)k≥1 converge uniformly ;

• there exists two constants β = β(ε) > α = α(ε) > 0 such that: ∀x ∈ Jε, β1 ≥
−s−(x) ≥ α1 where g− is the graph of s−.

We deduce:

Lemma 2. Let Jε be as in the previous lemma. On the set {(k, x) ∈ N×Jε, f
k(x) ∈ Jε},

the sequence of conorms (m(bk(x)) converge uniformly to +∞, where m(bk) = ‖b−1
k ‖−1.

Proof Let k, x be as in the lemma.

The matrix Mk(x) =

(
−bk(x)s−k(x) bk(x)

0 sk(f
kx)bk(x)

)
being symplectic, we have:

−s−k(x)
tbk(x)sk(f

kx)bk(x) = 1 and thus −bk(x)s−k(x)
tbk(x)sk(f

kx) = 1 and:

bk(x)s−k(x)
tbk(x) = −

(
sk(f

kx)
)−1

.
We know that on Jε, (sk) converges uniformly to zero. Hence, for every δ > 0, there
exists N = N(δ) such that: k ≥ N ⇒ ‖sk(f

kx)‖ ≤ δ. Moreover, we know that

‖s−k(x)‖ ≤ β. Hence, if we choose δ′ = δ2

β
, for every k ≥ N = N(δ′) and x ∈ Jε such

that fkx ∈ Jε, we obtain:

∀v ∈ R
p, β‖tbk(x)v‖

2 = tvbk(x)(β1)
tbk(x)v ≥ −tvbk(x)s−k(x)

tbk(x)v = tv
(
sk(f

kx)
)−1

v

and we have: tv
(
sk(f

kx)
)−1

v ≥ β
δ2
‖v‖2 because sk(f

kx) is a positive definite matrix

that is less than δ2

β
1. We finally obtain: ‖tbk(x)v‖ ≥ 1

δ
‖v‖ and then the result that we

wanted.

From now we fix a small constant ε > 0, associate a set Jε with ε via lemma 1 and
two constants 0 < α < β; then there exists N ≥ 0 such that

∀x ∈ Jε, ∀k ≥ N, fk(x) ∈ Jε ⇒ m(bk(x)) ≥
2

α
.

Lemma 3. Let Jε be as in lemma 1. For µ-almost point x in Jε, there exists a sequence
of integers (jk) = (jk(x)) tending to +∞ such that:

∀k ∈ N,m(bjk(x)s−jk(x)) ≥
(
2

1−ε
2N

)jk
.
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Proof As µ is ergodic for f , we deduce from Birkhoff ergodic theorem that for almost
every point x ∈ Jε, we have:

lim
ℓ→+∞

1

ℓ
♯{0 ≤ k ≤ ℓ− 1; fk(x) ∈ Jε} = µ(Jε) ≥ 1− ε.

We introduce the notation: N(ℓ) = ♯{0 ≤ k ≤ ℓ− 1; fk(x) ∈ Jε}.
For such an x and every ℓ ∈ N, we find a number n(ℓ) of integers:

0 = k1 ≤ k1 +N ≤ k2 ≤ k2 +N ≤ k3 ≤ k3 +N ≤ · · · ≤ kn(ℓ) ≤ ℓ

such that fki(x) ∈ Jε and n(ℓ) ≥ [N(ℓ)
N

] ≥ N(ℓ)
N

− 1. In particular, we have: n(ℓ)
ℓ

≥
1
N
(N(ℓ)

ℓ
− N

ℓ
), the right term converging to µ(Jε)

N
≥ 1−ε

N
when ℓ tends to +∞. Hence,

for ℓ large enough, we find: n(ℓ) ≥ 1 + ℓ1−ε
2N .

As fki(x) ∈ Jε and ki+1 − ki ≥ N , we have: m(bki+1−ki(f
ki(x))) ≥ 2

α
. Moreover, we

have: m(s−(ki+1−ki)(f
kix)) ≥ α; hence:

m(bki+1−ki(f
kix)s−(ki+1−ki)(f

kix)) ≥ 2.

But the matrix −bkn(ℓ)
(x)s−k(n(ℓ))(x) is the product of n(ℓ)− 1 such matrix. Hence:

m(bkn(ℓ)
(x)s−k(n(ℓ))(x)) ≥ 2n(ℓ)−1 ≥ 2ℓ

1−ε
2N ≥

(
2

1−ε
2N

)kn(ℓ)

.

This implies that all the Lyapunov exponents of the restriction of Df to G+ are

greater than log
(
2

1−ε
2N

)
> 0.

2.3 Lower bounds for the positive Lyapunov exponents

Using a Riemannian metric onM , we define the horizontal subspace H as the kernel of
the connection map. Then, for every Lagrangian subspace G of Tx(T

∗M), there exists
a linear map G : H(x) → V (x) whose graph is G. That is the meaning of graph in what
follows. When M = T

n, we choose of course H = R
n × {0}.

Notations. We denote by U (resp. S) the linear map H → V with graph G+ (resp.
G−). When we use symplectic coordinates, their matrices are symmetric.
Along a minimizing orbit in the case of a globally positive diffeomorphism, Gk =
Dfk(V ◦ f−k) (resp. G−k = Df−k1(V ◦ fk)) is the graph of Sk (resp. S−k).
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Let (Dt) (with t in Z or R) be a globally positive dynamics or a Tonelli Hamiltonian
flow. Let µ be an ergodic minimizing measure. A general fact for ergodic measures and
C1-bounded dynamics is that the closer the stable and unstable bundles are, the closer
to zero the Lyapunov exponents are (see proposition 1 for a more precise statement
and [4] for a proof). But in general, the converse assertion is false. We will see that it
is true in the case of a twisting dynamics. Let us introduce some notations:

Notations. For a positive semi-definite symmetric matrix S that is not the zero
matrix, we denote by q+(S) its smallest positive eigenvalue.

Theorem 2. Let µ be an ergodic minimizing measure of a globally positive diffeomor-
phism of An that has at least one non-zero Lyapunov exponent.We denote the smallest
positive Lyapunov exponent of µ by λ(µ) and an upper bound for ‖S1 − S−1‖ above
suppµ by C. Then we have:

λ(µ) ≥
1

2

∫
log

(
1 +

1

C
q+((U− S)(x))

)
dµ(x).

The proof of this result is given in [5]. There is a similar result for Tonelli Hamil-
tonians:

Theorem 3. Let µ be an ergodic measure minimizing for a Tonelli Hamiltonian H :
T ∗M → R and with at least one non zero Lyapunov exponent; then its smallest positive
Lyapunov exponent λ(µ) satisfies: λ(µ) ≥ 1

2

∫
m(∂

2H
∂p2

).q+(U− S)dµ.

The proof of theorem 2 is a little long and involves some technical changes of basis.
We prefer to give the proof of theorem 3, that is simpler and shorter. The first point
is an easy-to-prove lemma:

Lemma 4. Let H : T ∗M → R be a Tonelli Hamiltonian. Let (xt) be a minimizing orbit
and let U and S be two Lagrangian bundles along this orbit that are invariant by the
linearized Hamilton flow and transverse to the vertical. Let δxU ∈ U be an infinitesimal
orbit contained in the bundle U and let us denote by δxS the unique vector of S such
that δxU − δxS ∈ V (hence δxS is not an infinitesimal orbit). Then:

d

dt
(ω(xt)(δxS(t), δxU (t)) = (δxU (t)− δxS(t))Hpp(xt)(δxU (t)− δxS(t)) ≥ 0.

Let µ be an ergodic Borel probability measure minimizing for a Tonelli Hamiltonian
H : T ∗M → R and with at least one non zero Lyapunov exponent; its support K is
compact and then, there exists a constant C > 0 such that U and S are bounded by C
above K. We choose a point (q, p) that is generic for µ and (δq,Uδq) in the Oseledets
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bundle corresponding to the smallest positive Lyapunov exponent λ(µ) of µ. Using the
linearized Hamilton equations (see lemma 4), we obtain:

d

dt
((δq(U− S)δq) = δq(U− S)

∂2H

∂p2
(qt, pt)(U− S)δq.

Let us notice that (U − S)
1
2 δq is contained in the orthogonal space to the kernel of

U− S. Hence:

d

dt
((δq(U− S)δq) ≥ m(

∂2H

∂p2
)q+(U− S)δq(U− S)δq.

Moreover δq /∈ ker(U− S) because (δq,Uδq) corresponds to a positive Lyapunov expo-
nent and then (δq,Uδq) /∈ G− ∩G+. Then :

2
T
log(‖δq(T )‖)+ log 2C

T
≥ 1

T
log(δq(T )(U− S)(qT , pT )δq(T )) ≥

1
T
log(δq(0)(U− S)(q, p)δq(0)) + 1

T

∫ T

0 m(∂
2H
∂p2

(qt, pt))q+((U− S)(qt, pt))dt.

Using Birkhoff’s ergodic theorem, we obtain:

lim
T→+∞

1

T
log(‖δq(T )‖) = λ(µ) ≥

1

2

∫
m(

∂2H

∂p2
)q+(U− S)dµ.

3 Shape of the support of the minimizing mea-

sures and Lyapunov exponents

3.1 Some notations and definitions

For any subset A 6= ∅ of a manifoldM and any point a ∈ A, different kinds of subsets of
TaM can be defined, that are cones and also a generalizations of the notion of tangent
space to a submanifold. We introduce them here when M = R

n, but by using some
charts, the definition can be extended to any manifold.

Definition. Let A ⊂ R
n a non-empty subset of Rn and let a ∈ A be a point of A.

Then

• the contingent cone to A at a is defined as being the set of all the limit points
of the sequences tk(ak − a) where (tk) is a sequence of real numbers and (ak) is a
sequence of elements of A that converges to a. This cone is denoted by CaA and
it is a subset of TaR

n;

• the limit contingent cone to A at a is the set of the limit points of sequences
vk ∈ CakA where (ak) is any sequence of points of A that converges to a. It is

denoted by C̃aA and it is a subset of TaR
n;
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• the paratangent cone to A at a is the set of the limit points of the sequences

lim
k→∞

tk(xk − yk)

where (xk) and (yy) are sequences of elements of A converging to a and (tk) is a
sequence of elements of R. It is denoted by PaA and it is a subset of TaR

n.

The following inclusions are always satisfied

CaA ⊂ C̃aA ⊂ PaA.

Let us give an example of a contingent and paratangent cone at a point where A has
an angle.

In the three last subsections of this survey, we will try to explain some relations between
the Green bundles and these tangent cones. Unfortunately, in some cases, we need to
use some modified Green bundles. Let us explain this. We use the constant c0 =√

13
3 − 5

6 . We identify Tx(T
∗M) to R

n ×R
n in such a way that {0} ×R

n = V (x) is the
vertical subspace and R

n × {0} is the horizontal subspace H.

Definition. We denote by S±(x) : Rn → R
n the linear operator such that G±(x) is

the graph of S±(x): G±(x) = {(v, S±(x)v); v ∈ R
n}. Then the modified Green bundles

G± are defined by:

G̃−(x) = {(v, (S−(x)− c0(S+(x)− S−(x)))v); v ∈ R
n}

and
G̃+(x) = {(v, (S+(x) + c0(S+(x)− S−(x)))v); v ∈ R

n}.
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Remarks. We have:
G̃− ≤ G− ≤ G+ ≤ G̃+.

Moreover, only the two following cases are possible

• either G̃−(x), G−(x), G+(x), G̃+(x) are all distinct;

• or G̃− = G− = G+ = G̃+.

In general, the tangent cones are not Lagrangian subspaces (they are not subspaces
and not isotropic). Because we need to compare them to Lagrangian subspaces, we
give a definition:

Definition. Let L− ≤ L+ be two Lagrangian subspaces of Tx(T
∗M) that are

transverse to the vertical. If v ∈ Tx(T
∗M) is a vector, we say that v is between L− and

L+ and write L− ≤ v ≤ L+ if there exists a third Lagrangian subspace in Tx(T
∗M)

such that:

• v ∈ L;

• L− ≤ L ≤ L+.

A subset B of Tx(T
∗M) is between L− and L+ if ∀v ∈ B,L− ≤ v ≤ L+. Then we

write L− ≤ B ≤ L+.

Remarks. In the 2-dimensional case, v is between L− and L+ if and only if the slope
of the line generated by v is between the slopes of L− and L+. In higher dimension, it
is more complicated.

Definition.

• A subset A of Rn × R
n is C1-isotropic at some point a ∈ A if C̃aA is contained

in some Lagrangian subspace;

• a subset A of Rn × R
n is C1-regular at some point a ∈ A if PaA is contained in

some Lagrangian subspace.

Of course, the C1-regularity of A at a point a implies the C1-isotropy at the same
point. But the converse implication is not true.
Observe that a C1 Lagrangian submanifold is always C1-regular.

3.2 Case I: 2-dimensional symplectic twist maps

The results that we explain now for the symplectic twist maps of the 2-dimensional
annulus are proved in [2].
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Theorem 4. Let A be an Aubry-Mather set of a symplectic twist map of the 2-
dimensional annulus A1. Then we have

∀a ∈ A,G−(a) ≤ PaA ≤ G+(a).

G
−
(x) G+(x) G

−
(fx)

G+(fx)

G
−
(f−1x)

G+(f−1x)

Corollary 1. Let µ be a minimizing ergodic measure of a symplectic twist map of
the 2-dimensional annulus. If the Lyapunov exponents of µ are zero, then the support
supp(µ) of µ is C1-regular µ-almost everywhere.

Question 1. We don’t know any example of such an invariant measure with zero
Lyapunov exponents such that suppµ is not C1 at every point of suppµ.

Question 2. We don’t know any example of such an invariant measure with non-zero
Lyapunov exponents such that suppµ is not uniformly hyperbolic.

Moreover, the following result is also true.

Proposition 2. Let µ be a minimizing ergodic measure of a symplectic twist map of
the 2-dimensional annulus that has an irrational rotation number. If the Lyapunov
exponents of µ are non-zero, then the support supp(µ) of µ is C1-irregular µ-almost
everywhere.

We have even

Proposition 3. Let µ be a minimizing ergodic measure of a symplectic twist map of the
2-dimensional annulus that has an irrational rotation number. If the support supp(µ)
of µ is C1-irregular everywhere, then suppµ is uniformly hyperbolic.

Hence the size of the Lyapunov exponents can be read on the shape of supp(µ). But
how can we see in practice this irregularity? For example, if we want to “draw” (with
a computer) our irregular (and hyperbolic) Aubry-Mather sets, we can use some se-
quences of minimizing periodic orbits. But if we look at the pictures of Aubry-Mather
sets that exist, we see Cantor sets or curves, but we never see angles of the tangent
spaces. That’s why the following question was raised by X. Buff :

Question 3. (X. Buff) Is it possible (for example by using minimizing periodic orbits)
to draw some Aubry-Mather sets with “corners”?
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3.3 Case II: invariant Lagrangian graphs of Tonelli Hamil-

tonians

The proofs of the result we present in this section are given in [1]. We obtain a statement
similar to theorem 4 and corollary 1 but no analogue to proposition 2. Indeed, let us
consider the following example: (ψt) is a geodesic Anosov flow defined on the cotangent
bundle T ∗S of a closed surface S. Let N = T ∗

1 S be its unitary cotangent bundle,
which is a 3-manifold invariant by (ψt). Then a method due to Mañé (see [19]) allows
us to define a Tonelli Hamiltonian H on T ∗N such that the restriction of its flow
(ϕt) to the zero section N is (ψt): the Lagrangian L associated with H is defined by:
L(q, v) = 1

2‖ψ̇(q) − v‖2 where ‖.‖ is any Riemannian metric on N . In this case, the
zero section is very regular (even C∞), but the Lyapunov exponents of every invariant
measure with support in N are non zero (except two, the one corresponding to the flow
direction and the one corresponding to the energy direction). Hence, it may happen
that some exponents are non zero and the support of the measure is very regular.

Theorem 5. Let G be a Lipschitz Lagrangian graph that is invariant by the flow of a
Tonelli Hamiltonian H : T ∗M → R. Then we have:

∀x ∈ G, G−(x) ≤ PxG ≤ G+(x).

The following corollary is not proved in [1] but is an easy consequence of theorems
5 and 1.

Corollary 2. Let µ be a minimizing ergodic measure for a Tonelli Hamiltonian of
T ∗M . If the Lyapunov exponents of µ are zero and if the support of µ is a graph
above the whole manifold M , then the support supp(µ) of µ is C1-regular µ-almost
everywhere.

Question 4. We don’t know any example where such a µ has zero Lyapunov and its
support is not C1 at at least one point.

With the hypotheses of corollary 2, if we can be more precise for the restricted
dynamics to supp(µ), we can improve the result in the following way.

Proposition 4. Let G be a Lipschitz Lagrangian graph that is invariant by the flow of
a Tonelli Hamiltonian H : T ∗

T
n → R. We assume that for some T > 0, the restricted

time-T map ϕT |G is Lipschitz conjugated to some rotation of Tn. Then G is the graph
of a C1 function.

When µ is a minimizing measure with a support smaller that a Lagrangian graph,
we don’t obtain such a result (even if we have the sentiment that it could be true).
A fundamental tool to prove the previous results is the following proposition (that is
proved in [1]).
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Proposition 5. Assume that the orbit of x ∈ T ∗M is globally minimizing for the
Tonelli Hamiltonian H : T ∗M → R and that L : R → T (T ∗M) is such that

• every L(t) is a Lagrangian subspace of TϕH
t (x)(T

∗M) that is transverse to the
vertical subbundle;

• ∀s, t ∈ R, DϕH
t−sL(s) = L(t).

Then we have ∀t ∈ R, G−(ϕH
t (x)) ≤ L(t) ≤ G+(ϕ

H
t (x)).

Using proposition 5 at any point where the invariant Lagrangian graph G is differ-
entiable, we deduce a similar inequality for L being the tangent subspace at such a
point. Then using a limit (and the notion of Clarke subdifferential), we deduce theorem
5.

If we could obtain a result similar to proposition 5 for vectors (instead of Lagrangian
subspaces), we could deduce a similar statement for all minimizing measures. Hence
we raise the question

Question 5. Let (Dt) (with t in Z or R) be a globally positive diffeomorphism or a
Tonelli Hamiltonian flow. Assume that the orbit of x ∈ T ∗M is globally minimizing
and that the vector v ∈ Tx(T

∗M) is such that: ∀t,Dϕt(v) /∈ V (Dtx). Is it true that:

G−(x) ≤ v ≤ G+(x)?

Remarks. Without a lot of change, all the results of this subsection could be
proved for any Lipschitz Lagrangian graph that is invariant by a globally positive
diffeomorphism of Tn × R

n.

3.4 Case III: Tonelli Hamiltonians and globally positive

diffeomorphisms

The results contained in this subsection come from [3] and [5]. They use in a fundamen-
tal way a recent theory called the weak KAM theory that was developped by A. Fathi
in [11] in the case of the Tonelli Hamiltonians and by E. Garibaldi & P. Thieullen in
[13] in the case of the globally positive diffeomorphisms.

Theorem 6. Let µ be a minimizing measure for a Tonelli Hamiltonian of T ∗M . Then

∀x ∈ suppµ, G̃−(x) ≤ C̃x(suppµ) ≤ G̃+(x).

Hence, the more irregular suppµ is, i.e. the bigger the limit contingent cone is, the
more distant G̃− and G̃+ (and thus G− and G+ too) are from each other and the larger
the positive Lyapunov exponents are.
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Corollary 3. Let H : T ∗M → R be a Tonelli Hamiltonian and let µ be an ergodic
minimizing probability all of whose Lyapunov exponents are zero. Then, at µ-almost
every point of the support supp(µ) of µ, the set supp(µ) is C1-isotropic.

There are two naturel questions, that are related to question 5 and that concern
also the globally positive diffeomorphims.

Question 6. Can we replace C̃x(suppµ) by Px(suppµ) in theorem 6 and theorem 7?

Question 7. Can we replace G̃±(x) by G±(x) in theorem 6 and theorem 7?

If the answer to question 6 is positive, we can replace “C1-isotropic” by “C1-regular”
in corollary 3 and corollary 4.

For the globally positive diffeomorphisms, we obtain a result only for the so-called
strongly minimizing measures (the point is that for Tonelli Hamiltonians, miniminizing
measures are also strongly minimizing).

Definition. Let F be a lift of a globally positive diffeomorphism f with generating
function S : Rn × R

n → R. A invariant Borel probability ν on T
n × T

n is strongly
minimizing if ν is a minimizer in the following formula

inf
µ

∫

Rn×Rn

S(x, y)dµ̃(x, y);

where the infimum is taken on the set of the Borel probability measures that are
invariant by f and µ̃ is any lift of µ to a fundamental domain of R

n × R
n for the

projection (x, y) 7→ (x,−∂S
∂x

(x, y)) onto T
n × R

n.

E. Garibaldi & P. Thieullen proved in [13] that such strongly minimizing measures
exist. Moreover, they are minimizing.

Theorem 7. Let µ be a strongly minimizing measure of a globally positive diffeomor-
phism of An et let suppµ be its support. Then

∀x ∈ suppµ, G̃−(x) ≤ C̃x(suppµ) ≤ G̃+(x).

Corollary 4. Let µ be an ergodic strongly minimizing measure of a globally positive
diffeomorphism of An all exponents of whose are zero. Then suppµ is C1-isotropic
almost everywhere.
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[12] P. Foulon, Estimation de l’entropie des systèmes lagrangiens sans points conjugués
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