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Lyapunov exponents of minimizing measures for globally

positive diffeomorphisms in all dimensions

M.-C. ARNAUD ∗†‡

September 17, 2014

Abstract

The globally positive diffeomorphisms of the 2n-dimensional annulus are important

because they represent what happens close to a completely elliptic periodic point of a

symplectic diffeomorphism where the torsion is positive definite.

For these globally positive diffeomorphisms, an Aubry-Mather theory was developed

by Garibaldi & Thieullen that provides the existence of some minimizing measures.

Using the two Green bundles G− and G+ that can be defined along the support of

these minimizing measures, we will prove that there is a deep link between:

• the angle between G− and G+ along the support of the considered measure µ;

• the size of the smallest positive Lyapunov exponent of µ;

• the tangent cone to the support of µ.
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Introduction

At the end of the 19th century, motivated by the restricted 3-body problem, H. Poincare
introduced the study of the area preserving diffeomorphisms near an elliptic fixed point.
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Then, in the ’30s, Birkhoff began the study of the exact symplectic twist maps : after
a symplectic change of coordinates (action-angle), these maps represent what happens
near an elliptic fixed point of a generic area preserving diffeomorphism (see [10]).
In the ’80s, S. Aubry & P. Le Daeron and J. Mather proved the existence of invariant
minimizing measures for these twist maps (see [7] and [20]). As proved by P. Le Calvez,
these minimizing measures are in general hyperbolic (see [18]). For such minimizing
measures, I proved in [3] that there is a link between the fact that they are hyperbolic
and the regularity in some sense of their support and I proved in [5] that there is a
link between the size of the Lyapunov exponents and the mean angle of the Oseledet’s
splitting when the minimizing measure is hyperbolic. A fundamental tool to obtain
such results is the pair of Green bundles, that are two bundles in lines that are defined
along the support of the minimizing measures.

A natural question is then: what happens in higher dimension?
Let us explain what is a twist map in this setting (see for example [16] or [6]).
Notations. The 2n-dimensional annulus is An = T

n × R
n endowed with its usual

symplectic form ω. More precisely, if q = (q1, . . . , qn) ∈ T
n and p = (p1, . . . , pn) ∈ R

n

then ω = dq ∧ dp =

n∑

i=1

dqi ∧ dpi. .

Let us recall that a diffeomorphism f of An is symplectic if it preserves the symplectic
form: f∗ω = ω.
We denote by π : An → T

n the projection (q, p) 7→ q.
At every x = (q, p) ∈ An, we define the vertical subspace V (x) = kerDπ(x) ⊂ TxAn as
being the tangent subspace at x to the fiber {q} × R

n.

Definition. A globally positive diffeomorphism of An is a symplectic C1-diffeomorphism
f : An → An that is homotopic to IdAn

and that has a lift F : Rn × R
n → R

n × R
n

that admits a C2 generating function S : Rn × R
n → R such that:

• there exists α > 0 such that: ∂2S
∂q∂Q

(q,Q)(v, v) ≤ −α‖v‖2;

• F is implicitly given by:

F (q, p) = (Q,P ) ⇐⇒

{
p = −∂S

∂q
(q,Q)

P = ∂S
∂Q

(q,Q)

where ‖.‖ is the usual Euclidean norm in R
n.

When we use a symplectic change of basis near a completely elliptic periodic point
of a generic symplectic diffeomorphism in any dimension, we obtain a Birkhoff normal
form defined on a subset on An by (q, p) 7→ (q+b.p+o(‖p‖), p+o(‖p‖) where the torsion
b is a symmetric non-degenerate matrix. When b is positive definite, this normal form
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is a a globally positive diffeomorphims on some bounded subannulus Tn × [a, b]n (see
for example [21] or [1]).
Remarks. If f , F satisfy the above hypotheses, the restriction to any fiber {q} ×R

n

of π ◦ F and π ◦ F−1 are diffeomorphisms. Moreover, for every k ≥ 2, q0, qk ∈ R
n, the

function F̂ : (Rn)k−1 → R defined by F̂(q1, . . . , qk−1) = F(q0, . . . , qk) =

k∑

j=1

S(qj−1, qj)

has a minimum, and at every critical point for F̂ , the following sequence is a piece of
orbit for F :

(q0,−
∂S

∂q
(q0, q1)), (q1,

∂S

∂Q
(q0, q1)), (q2,

∂S

∂Q
(q1, q2)), . . . , (qk,

∂S

∂Q
(qk−1, qk)).

In the 2-dimensional case (n = 1), J. Mather and Aubry & Le Daeron proved in
[7] and [20] the existence of orbits (qi, pi)i∈Z for F that are globally minimizing. This
means that for every ℓ ∈ Z and every k ≥ 2, (qℓ+1, . . . , qℓ+k−1) is minimizing the
function F̂ defined by:

F̂(qℓ+1, . . . , qℓ+k−1) =

k∑

i=ℓ+1

S(qi−1, qi).

Then each of these orbits (qi, pi)i∈Z is supported in the graph of a Lipschitz map de-
fined on a closed subset of T, and there exists a bi-Lipschitz orientation preserving
homeomorphisms h : T → T such that (qi)i∈Z = (hi(q0))i∈Z. Hence each of these orbits
has a rotation number. Moreover, for each rotation number ρ, there exists a minimizing
orbit that has this rotation number and there even exist a minimizing measure, i.e. an
invariant measure the support of whose is filled by globally minimizing orbits, such
that all the orbits contained in the support have the same rotation number ρ. These
supports are sometimes called Aubry-Mather sets.

For the globally positive diffeomorphisms in higher dimension, a discrete weak KAM
and an Aubry-Mather theories were developped by E. Garibaldi & P. Thieullen in [15].
They prove that there exist some globally minimizing orbits and measures (the support
of whose is compact and a Lipschitz graph) in An for all n ≥ 1.
Two Lagrangian subbundles of TAn can be defined along the support of the minimizing
measures of any globally positive diffeomorphism. They are called Green bundles,
denoted by G− and G+

1 and their existence is proved in [9] and [5]. We will prove that
for any ergodic minimizing measure, the almost eveywhere dimension of the intersection
of the two Green bundles gives the number of zero Lyapunov exponents of this measure:

1Their definition is recalled in section 1
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Theorem 1. Let µ be an ergodic minimizing measure of a globally positive diffeomor-
phism of An. Let p be the almost everywhere dimension of the intersection G−∩G+ of
the two Green bundles. Then µ has exactly 2p zero Lyapunov exponents, n− p positive
Lyapunov exponents and n− p negative Lyapunov exponents.

Then we will explain that there is a link between the angle between the two Green
bundles and the size of the positive Lyapunov exponents. To do that, let us introduce
some notations.

Notations. We associate an almost complex structure J and then a Riemannian
metric (., .)x defined by: (v, u)x = ω(x)(v, Ju) to the symplectic form ω of An; from
now on, we work with this fixed Riemannian metric of An.
We choose on G+(x) an orthonormal basis and complete it in a symplectic basis whose
last vectors are in V (x).
In these coordinates, G+ is the graph of the zero-matrix and G− is the graphs of a
negative semi-definite symmetric matrix that is denoted by −∆S.
In these coordinates, along the support of a minimizing measure, the image Df.V
of the vertical (resp. Df−1V ) is transverse to the vertical and then the graph of a
symmetric matrix S1 (resp. S−1).
For a positive semi-definite symmetric matrix S that is not the zero matrix, we decide
to denote by q+(S) its smallest positive eigenvalue.

Theorem 2. Let µ be an ergodic minimizing measure of a globally positive diffeo-
morphism of An that has at least one non-zero Lyapunov exponent. We denote the
smallest positive Lyapunov exponent of µ by λ(µ) and an upper bound for ‖S1 − S−1‖
above suppµ by C. Then we have:

λ(µ) ≥
1

2

∫
log

(
1 +

1

C
q+(∆S(x))

)
dµ(x).

In fact, Garibaldi and Thieullen prove the existence of measures that have a stronger
property than being minimizing: they are strongly minimizing2. They prove that
the supports of these strongly minimizing measures are Lipschitz graphs M above a
compact subset of Tn. In general, these graphs are not contained in a smooth graph.
But we can define at every point m ∈ M its limit contingent cone C̃mM that is an
extension of the notion of tangent space to a manifold 3.
Let us recall that we defined in [2] an order ≤ between the Lagrangian subspaces of
TxAn that are transverse to the vertical. If L−, L+ are two such subspaces such that
L− ≤ L+, we say that a vector v ∈ TxAn is between L− and L+ if there exists a third

2see subsection 3.1 for the definition
3see section 3.4 for the exact definition

4



Lagrangian subspace L such that v ∈ L and L− ≤ L ≤ L+.
We will prove that the limit contingent cone to the support of every strongly minimizing
measure is between some modified Green bundles G̃− and G̃+

4.

Theorem 3. Let µ be a strongly minimizing measure of a globally positive diffeomor-
phism of An et let suppµ be its support. Then

∀x ∈ suppµ, G̃−(x) ≤ C̃x(suppµ) ≤ G̃+(x).

Hence, the more irregular suppµ is, i.e. the bigger the limit contingent cone is, the
more distant G̃− and G̃+ (and thus G− and G+ too) are from each other and the larger
the positive Lyapunov exponents are.

We define too a notion of C1-isotropic graph (see subsection 3.4) that generalized
the notion of C1 isotropic manifold (for the symplectic form). Then we deduce from
theorem 3:

Corollary 1. Let µ be an ergodic strongly minimizing measure of a globally positive
diffeomorphism of An all exponents of whose are zero. Then suppµ is C1-isotropic
almost everywhere.

Some related results

Theorem 1 is an extension of a result that we proved for the autonomous Tonelli Hamil-
tonians in [5]. The ideas of the proof are more or less the same ones as in [5], but some
adaptions are needed because we cannot use any continuous dependence in time.
A particular case of theorem 2 was proved in [5]: the weak hyperbolic case, where the
two Green bundles are almost everywhere transverse. Here we fill the gap by using the
reduced Green bundles.
The inequality given in theorem 3 is completely new, even if an analogue to corollary
1 was given in [4] for Tonelli Hamiltonians.

Remarks. 1) A discrete weak KAM theory is given in [17] too by D. Gomes, but the
condition used by the author there is the convexity of a Lagrangian function that is
not the generating function, and this condition is different from the one we use. But
Garibaldi & Thieullen results can be used.

2) There exists too an Aubry-Mather theory for time-one maps of time-dependent
Tonelli Hamiltonians (see for example [8]). Even when the manifold M is T

n, the
time-one map is not necessarily a globally positive diffeomorphism of An. Moreover,
except for the 2-dimensional annulus (see [22]), it is unknown if a globally positive
diffeomorphism is always the time-one map of a time-dependent Tonelli Hamiltonian

4see section 3.4 for the precise definition
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(see theorem 41.1 in [16] for some partial results). In this article, we won’t speak about
these time-one maps and will focus on the globally positive diffeomorphisms.

Structure of the article

In section 1, after explaining the construction of the classical Green bundles and the
restricted Green bundles, we will prove theorem 1.
We will then explain in section 2 that the mean angle between the two Green bundles
gives the size of the smallest positive Lyapunov exponent.
Section 3 is devoted to some reminders in discrete weak KAM theory and to the proofs
of theorem 3 and corollary 1.
There are two parts in the appendix. The first one is used in subsection 1.2 and the
second one is used in subsection 3.4.
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1 Green bundles

1.1 Classical Green bundles

We recall some classical results that are in [5]. For the definition of the order between
Lagrangian subspaces that are transverse to the vertical, see subsection 4.1 of the
appendix. Let f : An → An be a globally positive diffeomorphism.

Notations. If k ∈ Z and x ∈ An, we denote by Gk(x) the Lagrangian subspace
Gk(x) = (Dfk).V (f−kx).

Definition. Let x ∈ An be a point the orbit of whose is minimizing. Then the
sequence (Gk(x))k≥1 is a strictly decreasing sequence of Lagrangian subspaces of Tx(An)
that are transverse to V (x) and (G−k(x))k≥1 is an increasing sequence of Lagrangian
subspaces of Tx(An) that are transverse to V (x). The two Green bundles are x are the
Lagrangian subspaces

G−(x) = lim
k→+∞

G−k(x) and G+(x) = lim
k→+∞

Gk(x).

It is proved in [5] that the two Green bundles are transverse to the vertical and
verify:

∀k ≥ 1, G−k < G−(k+1) < G− ≤ G+ < Gk+1 < Gk.

In general these two bundles are not continuous, but they depend in a measurable way
to x. Moreover, they are semicontinuous is some sense. Let us recall some properties
that are proved in [5].

Proposition 1. Assume that the orbit of x is minimizing. Then

• G− and G+ are invariant by the linearized dynamics, i.e. Df.G± = G± ◦ f ;

• for every compact K such that the orbit of every point of K is minimizing, the
two Green bundles restricted to K are uniformly far from the vertical;

• (dynamical criterion) if the orbit of x is minimizing and relatively compact in An,
if lim inf

k→+∞
‖D(π ◦ fk)(x)v‖ ≤ +∞ then v ∈ G−(x),

if lim inf
k→+∞

‖D(π ◦ f−k)(x)v‖ ≤ +∞ then v ∈ G+(x).

An easy consequence of the dynamical criterion and the fact that the Green bundles
are Lagrangian is that when there is a splitting of Tx(T

∗M) into the sum of a stable,
a center and a unstable bundle Tx(T

∗M) = Es(x) ⊕ Ec(x) ⊕ Eu(x), for example an
Oseledets splitting, then we have

Es ⊂ G− ⊂ Es ⊕ Ec and Eu ⊂ G+ ⊂ Eu ⊕ Ec.
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Let us give the argument of the proof. Because of the dynamical criterion, we have
Es ⊂ G−. Because the dynamical system is symplectic, the symplectic orthogonal
subspace to Es is (Es)⊥ = Es⊕Ec (see e.g. [11]). Because G− is Lagrangian, we have
G⊥

− = G−. We obtain then G⊥
− = G− ⊂ Es⊥ = Es ⊕ Ec.

Let us note the following straightforward consequence: for a minimizing measure, the
whole information concerning the positive (resp. negative) Lyapunov exponents is
contained in the restricted linearized dynamics Df|G+

(resp. Df|G−
).

From Es ⊂ G− ⊂ Es⊕Ec and Eu ⊂ G+ ⊂ Eu⊕Ec, we deduce that G−∩G+ ⊂ Ec.
Hence G−∩G+ is an isotropic subspace (for ω) of the symplectic space Ec. We deduce
that dim(Ec) ≥ 2 dim(G−∩G+). When Es⊕Ec⊕Eu designates the Oseledet splitting
of some minimizing measure, what is proved in [4] is that this inequality is an equality
for the Tonelli Hamiltonian flows and we will prove here the same result for the globally
positive diffeomorphisms of An.

1.2 Reduced Green bundles

The reduced Green bundles were introduced in [4] for the Tonelli Hamiltonian flows.
We will give a similar construction.

We assume that µ is a minimizing ergodic measure and that p ∈ [0, n] is so that
at µ-almost every point x, the intersection of the Green bundles G+(x) and G−(x) is
p-dimensional. We deduce from the above comments that for µ almost every x ∈ An:
G+(x) ∩ G−(x) ⊂ Ec(x) and Es(x) ⊕ Eu(x) = (Ec(x))⊥ ⊂ G+(x)

⊥ + G−(x)⊥ =
G−(x) +G+(x).

Notations. We introduce the two notations: E(x) = G−(x) + G+(x) and R(x) =
G−(x) ∩ G+(x). We denote the reduced space: F (x) = E(x)/R(x) by F (x) and we
denote the canonical projection p : E → F by p. As G− and G+ are invariant by the
linearized dynamics Df , we may define a reduced cocycle M : F → F . But M is not
continuous, because G− and G+ don’t vary continuously.
Moreover, we introduce the notation: V(x) = V (x)∩E(x) is the trace of the linearized
vertical on E(x) and v(x) = p(V(x)) is the projection of V(x) on F (x). We introduce
a notation for the images of the reduced vertical v(x) by Mk: gk(x) = Mkv(f−kx).
Of course, we define an order on the set of the Lagrangian subspaces of F (x) that are
transverse to v(x) exactly as this was done in the non-reduced case.

The subspace E(x) of TxAn is co-isotropic with E(x)⊥ = R(x). Hence F (x) is
nothing else than the symplectic space that is obtained by symplectic reduction of E(x).
We denote its symplectic form by Ω. Then we have: ∀(v,w) ∈ E(x)2,Ω(p(v), p(w)) =
ω(v,w). Moreover, M is a symplectic cocycle.
We can notice, too, that dimE(x) = dim(G−(x)+G+(x)) = dimG−(x)+dimG+(x)−
dim(G−(x) ∩ G+(x)) = 2n − p and deduce that dimF (x) = dimE(x) − dim(G−(x) ∩
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G+(x)) = 2(n− p).

Notations. If L is any Lagrangian subspace of TxAn, we denote (L ∩ E(x)) + R(x)
by L̃ and p(L̃) by l.

Lemma 1. If L ⊂ TxAn is Lagrangian, then L̃ is also Lagrangian and l = p(L̃) =
p(L ∩ E(x)) is a Lagrangian subspace of F (x). Moreover, p−1(l) = L̃ . In particular,
v(x) is a Lagrangian subspace of F (x) and p−1(v(x)) = V(x) +R(x).

The proof is given in [4].

Lemma 2. The subspace v(x) is a Lagrangian subspace of F (x). Moreover, for every
k 6= 0, gk(f

kx) = Mkv(x) is transverse to v(fk(x))

Proof The first result is contained in lemma 1.
Let us consider k 6= 0 and let us assume that Mkv(x)∩ v(fkx) 6= {0}. We may assume
that k > 0 (or we replace x by fk(x) and k by −k).

Then there exists v ∈ V(x)\{0} such that Dfk(x)v ∈ V(fkx) + (G−(fkx) ∩
G+(f

kx)). Let us write Dfk(x)v = w + g with w ∈ V(fkx) and g ∈ R(fkx). We
know that the orbit has no conjugate vectors (because the measure is minimizing);
hence g 6= 0.

Moreover, we know that DfkV (x) is strictly above G−(fkx), i.e. that:

∀h ∈ G−(f
kx),∀h′ ∈ V (fkx), h+ h′ ∈ (DfkV (x))\{0} ⇒ ω(h, h+ h′) > 0.

We deduce that: ω(g,w + g) > 0.

This contradicts: Dfkv ∈ E(fkx) =
(
G+(f

kx) ∩G−(fkx)
)⊥

⊂ (Rg)⊥.

Lemma 3. Let L1, L2 be two Lagrangian subspaces of TxAn transverse to V (x) such
that at least one of them is contained in E(x). Then, if L1 < L2 (resp. L1 ≤ L2),
we have: l1 and l2 are transverse to v(x) and l1 < l2 (resp. l1 ≤ l2). We deduce that
p(G−) < p(G+).

The proof is given in [4].

Lemma 4. If µ is a minimizing measure, for every x ∈ suppµ, for all 0 < k < m, we
have:

g−k(x) < g−m(x) < p(G−) < p(G+) < gm(x) < gk(x).

Proof We cannot use the proof given in [4] that use in a crucial way the continuous
dependence on time. Let us prove by iteration on k ≥ 1 that p(G+) < gk+1 < gk, i.e.
that gk+1 ∈ P(p(G+), gk) with the notations of the appendix.
Because G+ < G1 and because of lemma 3, we have p(G+) < g1 i.e. g1 ∈ P(p(G+), v).
Taking the image by M , we deduce: g2 ∈ P(p(G+), g1). We deduce from proposition
9 (see the appendix) that p(G+) < g2 < g1. The result for gk with k ≥ 1 is just an
iteration, and the result for k ≤ −1 is very similar.
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Lemma 5. We have: lim
k→+∞

gk = p(G+) and lim
k→+∞

g−k = p(G−)

Proof From lemma 4, we deduce that the (gk)k≥1 converges to g+ ≥ p(G+) and that
(g−k)k≥1 converges to g− ≤ p(G−).
Let us assume for example that g+ 6= p(G+). Then W = p−1(g+) is transverse to V
and invariant by Df .
Moreover, for every w ∈ W and v ∈ G+, we have: ω(w, v) = Ω(p(w), p(v)). We deduce
that G+ ≤ W . We choose a Lagrangian subspace L of Tx(An) such that W < L and
G1 < L.
Because G1 < L, we have L ∈ P(G1, V ) and then for every k ≥ 1: Dfk(L ◦ f−k) ∈
P(Gk+1, Gk), hence, by proposition 9, Gk+1 < DfkL < Gk. Note that this implies
that G+ < DfkL.
Because G+ ≤ W < L, we have W ∈ P(G+, L) by proposition 10 and then W =

DfkW ◦ f−k ∈ P(G+,DfkL ◦ f−k), and then G+ ≤ W ≤ DfkL ◦ f−k by proposition
9.
We have finally proved

∀k ≥ 1, G+ ≤ W ≤ DfkL ◦ f−k < Gk.

Taking the limit, we obtain: W = G+.

Definition. The two Lagrangian subbundles g− = p(G−) and g+ = p(G+) are the
two reduced Green bundles.

1.3 Weak hyperbolicity of the reduced cocycle

With the notations of subsection 1.2, we will now explain why the reduced cocycle is
weakly hyperbolic and why µ has exactly 2p zero Lyapunov exponents. The proof is
very similar to the one given in [4] for the Tonelli Hamiltonian flows, we just translate
it to the discrete case.

We choose at every point x ∈ suppµ some (linear) symplectic coordinates (Q,P ) of
F (x) such that v(x) has for equation: Q = 0 and g+(x) has for equation P = 0. We will
be more precise on this choice later. Then the matrix of Mk(x) = M(fk−1(x)) . . .M(x)

in these coordinates is a symplectic matrix: Mk(x) =

(
ak(x) bk(x)
0 dk(x)

)
. AsMk(x)v(x) =

gk(f
kx) is a Lagrangian subspace of E(fkx) that is transverse to the vertical, then

det bk(x) 6= 0 and there exists a symmetric matrix s+k (f
kx) whose graph is gk(f

kx),
i.e: dk(x) = s+k (f

k(x))bk(x). Moreover, the family (s+k (x))k>0 being decreasing and
tending to zero (because by hypothesis the horizontal is g+), the symmetric matrix

10



s+k (f
kx) is positive definite. Moreover, the matrix Mk(x) being symplectic, we have:

(
Mk(x)

)−1
=

(
tdk(x) −tbk(x)

0 tak(x)

)

and by definition of g−k(x), if it is the graph of the matrix s−k (x) (that is negative
definite), then: tak(x) = −s−k (x)

tbk(x) and finally:

Mk(x) =

(
−bk(x)s

−
k (x) bk(x)

0 s+k (f
kx)bk(x)

)

Let us be now more precise in the way we choose our coordinates; as explained at the
end of the introduction, we may associate an almost complex structure J and then a
Riemannian metric (., .)x defined by: (v, u)x = ω(x)(v, Ju) with the symplectic form ω
of An; from now on, we work with this fixed Riemannian metric of An. We choose on
G+(x) = p−1(g+(x)) an orthonormal basis whose last vectors are in R(x) and complete
it in a symplectic basis whose last vectors are in V (x). We denote the associated
coordinates of TxAn by (q1, . . . , qn, p1, . . . , pn). These (linear) coordinates don’t depend
in a continuous way on the point x (because G+ doesn’t), but in a bounded way. Then
G−(x) = p−1(g−(x)) is the graph of a symmetric matrix whose kernel is R(x) and then
on G−(x), we have: pn−p+1 = · · · = pn = 0. An element of E(x) has coordinates such
that pn−p+1 = · · · = pn = 0, and an element of F (x) = E(x)/R(x) may be identified
with an element with coordinates (q1, . . . , qn−p, 0, . . . , 0, p1, . . . , pn−p, 0, . . . , 0). We then

use on F (x) the norm

n−p∑

i=1

(q2i + p2i ), which is the norm for the Riemannian metric of

the considered element of F (x). Then this norm depends in a measurable way on x.

Lemma 6. For every ε > 0, there exists a measurable subset Jε of suppµ such that:

• µ(Jε) ≥ 1− ε;

• on Jε, (s
+
k ) and (s−k ) converge uniformly ;

• there exists two constants β = β(ε) > α = α(ε) > 0 such that: ∀x ∈ Jε, β1 ≥
−s−(x) ≥ α1 where g− is the graph of s−.

Proof This is a consequence of Egorov theorem and of the fact that µ-almost every-
where on suppµ, g+ and g− are transverse and then −s− is positive definite.

We deduce:

Lemma 7. Let Jε be as in the previous lemma. On the set {(k, x) ∈ N × Jε, f
k(x) ∈

Jε}, the sequence of conorms (m(bk(x))) converge uniformly to +∞, where m(bk) =
‖b−1

k ‖−1.

11



Proof Let k, x be as in the lemma.

The matrix Mk(x) =

(
−bk(x)s

−
k (x) bk(x)

0 s+k (f
kx)bk(x)

)
being symplectic, we have:

−s−k (x)
tbk(x)s

+
k (f

kx)bk(x) = 1 and thus −bk(x)s
−
k (x)

tbk(x)s
+
k (f

kx) = 1 and:

bk(x)s
−
k (x)

tbk(x) = −
(
s+k (f

kx)
)−1

.
We know that on Jε, (s

+
k ) converges uniformly to zero. Hence, for every δ > 0, there

exists N = N(δ) such that: k ≥ N ⇒ ‖s+k (f
kx)‖ ≤ δ. Moreover, we know that

‖s−k (x)‖ ≤ β. Hence, if we choose δ′ = δ2

β
, for every k ≥ N = N(δ′) and x ∈ Jε such

that fkx ∈ Jε, we obtain:

∀v ∈ R
p, β‖tbk(x)v‖

2 = tvbk(x)(β1)
tbk(x)v ≥ −tvbk(x)s

−
k (x)

tbk(x)v = tv
(
s+k (f

kx)
)−1

v

and we have: tv
(
s+k (f

kx)
)−1

v ≥ β
δ2
‖v‖2 because s+k (f

kx) is a positive definite matrix

that is less than δ2

β
1. We finally obtain: ‖tbk(x)v‖ ≥ 1

δ
‖v‖ and then the result that we

wanted.

From now we fix a small constant ε > 0, associate a set Jε with ε via lemma 6 and
two constants 0 < α < β; then there exists N ≥ 0 such that

∀x ∈ Jε,∀k ≥ N, fk(x) ∈ Jε ⇒ m(bk(x)) ≥
2

α
.

Lemma 8. Let Jε be as in lemma 6. For µ-almost point x in Jε, there exists a sequence
of integers (jk) = (jk(x)) tending to +∞ such that:

∀k ∈ N,m(bjk(x)s
−
jk
(x)) ≥

(
2

1−ε

2N

)jk
.

Proof As µ is ergodic for f , we deduce from Birkhoff ergodic theorem that for almost
every point x ∈ Jε, we have:

lim
ℓ→+∞

1

ℓ
♯{0 ≤ k ≤ ℓ− 1; fk(x) ∈ Jε} = µ(Jε) ≥ 1− ε.

We introduce the notation: N(ℓ) = ♯{0 ≤ k ≤ ℓ− 1; fk(x) ∈ Jε}.
For such an x and every ℓ ∈ N, we find a number n(ℓ) of integers:

0 = k1 ≤ k1 +N ≤ k2 ≤ k2 +N ≤ k3 ≤ k3 +N ≤ · · · ≤ kn(ℓ) ≤ ℓ

such that fki(x) ∈ Jε and n(ℓ) ≥ [N(ℓ)
N

] ≥ N(ℓ)
N

− 1. In particular, we have: n(ℓ)
ℓ

≥
1
N
(N(ℓ)

ℓ
− N

ℓ
), the right term converging to µ(Jε)

N
≥ 1−ε

N
when ℓ tends to +∞. Hence,

for ℓ large enough, we find: n(ℓ) ≥ 1 + ℓ1−ε
2N .

12



As fki(x) ∈ Jε and ki+1 − ki ≥ N , we have: m(bki+1−ki(f
ki(x))) ≥ 2

α
. Moreover, we

have: m(s−ki+1−ki
(fkix)) ≥ α; hence:

m(bki+1−ki(f
kix)s−ki+1−ki

(fkix)) ≥ 2.

But the matrix −bkn(ℓ)
(x)s−

k(n(ℓ))(x) is the product of n(ℓ)− 1 such matrix. Hence:

m(bkn(ℓ)
(x)s−

k(n(ℓ))(x)) ≥ 2n(ℓ)−1 ≥ 2ℓ
1−ε

2N ≥
(
2

1−ε

2N

)kn(ℓ)

.

Let us now come back to the whole tangent space TxAn with a slight change in the
coordinates that we use. We defined the symplectic coordinates (q1, . . . , qn, p1, . . . , qn)
and now we use the non symplectic ones:
(Q1, . . . , Qn, P1, . . . , Pn) = (qn−p+1, . . . , qn, q1, . . . , qn−p, p1, . . . , pn). Then:

• (Q1, . . . , Qp) are coordinates in R(x);

• (Q1, . . . , Qn) are coordinates in G+(x);

• (Q1, . . . , Qn, P1, . . . , Pn−p) are coordinates of E(x) = G+(x) +G−(x).

We write then the matrix of Dfk(x) in these coordinates (Q1, . . . , Qn, P1, . . . , Pn)
(which are not symplectic):




A1
k(x) A2

k(x) A3
k(x) A4

k(x)
0 bk(x)s

−
k (x) bk(x) A5

k(x)
0 0 s+k (f

kx)bk(x) A6
k(x)

0 0 0 A7
k(x)




where the blocks correspond to the decomposition TxAn = E1(x) ⊕ E2(x) ⊕ E3(x) ⊕
E4(x) with dimE1(x) = dimE4(x) = p and dimE2(x) = dimE3(x) = n− p.
We have noticed that E1(x) = E(x) ⊂ Ec(x) and that G+(x) = E1(x)⊕ E2(x).
If x ∈ Jε, we have found a sequence (jk) of integers tending to +∞ so that:

∀k ∈ N,m(bjk(x)s
−
jk
(x)) ≥

(
2

1−ε

2N

)jk
.

We deduce:

∀v ∈ E2(x)\{0},
1

jk
log
(
‖bjk(x)s

−
jk
(x)v‖

)
≥

1− ε

2N
log 2 +

‖v‖

jk
;

and because E1(x) ⊂ Ec(x):

∀v ∈ G+(x)\E1(x), lim inf
k→+∞

1

k
log ‖Dfk(x)v‖ ≥

1− ε

2N
log 2.
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Hence there are at least n−p Lyapunov exponents bigger than 1−ε
2N log 2 and then bigger

than 0 for the linearized dynamics. Because this dynamics is symplectic, we deduce
that it has at least n− p negative Lyapunov exponents (see [11] ). As we noticed that
the linearized flow has at least 2p zero Lyapunov exponents, we deduce that µ has
exactly n−p positive Lyapunov exponents, exactly n−p negative Lyapunov exponents
and exactly 2p zero Lyapunov exponents.
This finishes the proof of theorem 1.
Remarks. Let us notice that we proved too that for µ almost every x ∈ suppµ, we
have: Eu(x) ⊂ G+(x), and then G+(x) = Eu(x)⊕R(x).

2 Size of the Lyapunov exponents and angle be-

tween the two Green bundles

The idea to prove theorem 2 is to use the reduced Green bundles that we introduced
just before and to adapt the proof that we gave in [5] in the case of weak hyperbolicity.
We use the same notations as in section 1.

The Lagrangian bundles g− and g+ being transverse to the vertical at every point
of suppµ, there exist two symmetric matrices S and U such that g− (resp. g+) is the
graph of S (resp. U) in the coordinates(q1, . . . , qn−p, p1, . . . , pn−p) that we defined at the
beginning of subsection 1.3. We denote by (e1, . . . , e2(n−p)) the associated symplectic
basis. As g− and g+ are transverse µ-almost everywhere, we know that there exists ε >
0 such that Aε = {x ∈ suppµ;U−S ≥ ε1} has positive µ-measure. We use the notation
xk = fk(x).We may then assume that x0 ∈ Aε and that {k ≥ 0;U(xk) − S(xk) > ε1}
is infinite. Let us notice that in this case, g− and g+ are transverse along the whole
orbit of x0 (but U− S can be very small at some points of this orbit). Let us note too
that in fact U = 0.
Hence, for every k ∈ N, there exists a unique positive definite matrix S0(xk) such that:

S0(xk)
2 = U(xk) − S(xk). Let us recall that a matrix M =

(
a b
c d

)
of dimension

2(n− p) is symplectic if and only if its entries satisfy the following equalities:

tac = tca; tbd = tdb; tda− tbc = 1.

We define along the orbit of x0 the following change of basis: P =

(
S−1
0 S−1

0

SS−1
0 US−1

0

)
.

Then it defines a symplectic change of coordinates, whose inverse is:

Q = P−1 =

(
0 1

−1 0

)
tP

(
0 −1

1 0

)
=

(
S−1
0 U −S−1

0

−S−1
0 S S−1

0

)
.
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We use this symplectic change of coordinates along the whole orbit of x0. More pre-
cisely, if we denote the matrix of Mk in the usual canonical basis e = (ei) by Mk,
then the matrix of Mk in the basis Pe = (Pei) is denoted by M̃k; we have then:
M̃k(xh) = P−1(xh+k)Mk(xh)P (xh). Note that the image of the horizontal (resp. ver-
tical) Lagrangian plane by P is g− (resp. g+). As the bundles g− and g+ are invariant

by M , we deduce that M̃k =

(
ãk 0

0 d̃k

)
; we have tãkd̃k = 1 because this matrix is

symplectic.

Moreover, we know that: Mk(xh) =

(
−bk(xh)s−k(xh) bk(xh)

ck(xh) sk(xk+h)bk(xh)

)
where gk(xh) =

Mk.v(xh−k) is the graph of sk(xh).

Writing that M̃k(xh) =

(
ãk(xh) 0

0 d̃k(xh)

)
= P−1(xh+k)Mk(xh)P (xh), we obtain

firstly:

S0(xh+k)
−1 tbk(xh)S0(xh)

−1 =
S0(xh+k)

−1(S(xh+k)− sk(xh+k))bk(xh)(s−k(xh)− S(xh))S0(xh)
−1;

−S0(xh+k)
−1 tbk(xh)S0(xh)

−1

= S0(xh+k)
−1(U(xh+k)− sk(xh+k))bk(xh)(U(xh)− s−k(xh))S0(xh)

−1.

We deduce that: ãk(xh) = S0(xh+k)bk(xh)(S(xh)− s−k(xh))S0(xh)
−1 and:

d̃k(xh) = S0(xh+k)bk(xh)(U(xh)− s−k(xh))S0(xh)
−1.

Because of the changes of basis that we used, (ãk(xh))k represents the linearized
dynamics (Mk

|g−(xh)
)k restricted to g− and (d̃k(xh))k the linearized dynamics restricted

to g+. Hence we need to study (d̃k(xh)) to obtain some information about the positive
Lyapunov exponents of µ. Let us compute:
td̃k(xh) = ãk(xh)

−1 = S0(xh)(S(xh)− s−k(xh))
−1bk(xh)

−1S0(xh+k)
−1; we deduce:

td̃k(xh)d̃k(xh) = S0(xh)(S(xh)− s−k(xh))
−1(U(xh)− s−k(xh))S0(xh)

−1

= S0(xh)(S(xh)− s−k(xh))
−1(U(xh)− S(xh) + S(xh)− s−k(xh))S0(xh)

−1

= 1+ S0(xh)(S(xh)− s−k(xh))
−1S0(xh)

= 1+ (U(xh)− S(xh))
1
2 (S(xh)− s−k(xh))

−1(U(xh)− S(xh))
1
2 .

Let us denote the conorm of a (for the usual Euclidean norm of Rn−p) by: m(a) =
‖a−1‖−1. Then we have:

m(d̃k(xh))
2 = m(td̃k(xh)d̃k(xh));

Let us recall that on suppµ, G+ is uniformly far from the vertical. This implies that
S1−S−1 is uniformly bounded on the (compact) support of µ (see the notations before

15



theorem 2 for the definition of S1 and S−1). Then their restriction to qn−p+1 = · · · =
qn = 0 is uniformly bounded too (by the same constant); let C designate sup ‖s1−s−1‖
above the support of µ. We have then: m(d̃k(xh))

2 ≥ 1 + 1
C
m((U − S)(xh)); indeed,

we know that: s1 − s−1 ≥ S− s−k > 0.
The entry d̃k being multiplicative, we deduce that:

m(d̃k(x0))
2 ≥

k−1∏

n=0

(1 +
1

C
m(U(xh)− S(xh)))

and:

1

k
logm(d̃k(x0)) ≥

1

2k

k−1∑

n=0

log(1 +
1

C
m(U(xh)− S(xh))).

When k tends to +∞, we deduce from Birkhoff’s ergodic theorem that:

(∗) lim inf
k→∞

1

k
logm(d̃k(x0)) ≥

1

2

∫
log

(
1 +

1

C
m(U(x)− S(x))

)
dµ(x).

Let us recall that (d̃k(x0)) represents the dynamics along g+, but the change of basis
that we have done is not necessarily bounded. To obtain a true information about
the Lyapunov positive exponents of (Mk) , we need to have a result for the matrix
Dk of (Mk

|g+(x0)
) in the basis (e1, . . . , en−p) of g+ whose matrix in the usual coordi-

nates is:

(
1

U

)
=

(
1

0

)
. Since (d̃k) is the matrix of Mk in the basis whose matrix is

(
S−1
0

US−1
0

)
=

(
S−1
0

0

)
, we deduce that: Dk(x0) = S0(xk)d̃k(x0)S0(x0)

−1 and:

m(Dk(x0)) ≥ m(S0(xk))m(d̃k(x0))m(S0(x0)
−1) = (m(U(xk)− S(xk)))

1
2 m(d̃k(x0))m(S(x0)

−1).
We have (∗) and we know that: lim inf

k→∞
m(U(xk)− S(xk)) ≥ ε. We deduce:

λ(µ) ≥ lim inf
k→∞

1

k
logm(Dk(x0)) ≥

1

2

∫
log

(
1 +

1

C
m(U(x)− S(x))

)
dµ(x).

Because ∆S is a symmetric positive semi-definite matrix, we have: q+(∆S) =
q+(∆S|(ker∆S)⊥). If we look at the definition of the coordinates (qi, pi), we note that:
∆S|(ker∆S)⊥ = −S = U− S. Hence we have proved theorem 2.
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3 Shape of the support of the minimizing mea-

sures and Lyapunov exponents

3.1 Some reminders about discrete weak KAM theory

The general reference for what is contained in this section is the article of Garibaldi &
Thieullen [15] and the results that they obtain are very similar to the ones obtained
by A. Fathi in the setting of the time-continuous weak K.A.M. theory (see [14]). The
dynamics that we study here are contained in the ones that they study and that are
called “ferromagnetic”. In [15], a big part of the article deals with a Lagrangian
function L : Rn ×R

n → R that is defined by L(x, v) = S(x, x+ v) (let us recall that S
is a generating function for F ) and the action F is denoted by L by them. They prove
the existence of a unique L ∈ R such that there exists two Z

n-periodic continuous
functions u−, u+ : Rn → R such that:

∀x ∈ R
n, u−(y) = inf

x∈Rn
u−(x) + S(x, y)− L and u+(x) = sup

y∈Rn

u+(y)− S(x, y) + L

and that the infimum (resp. supremum) is attained at some point.

Proposition. (Garibaldi-Thieullen)
With the above notations and assumptions:

L̄ = inf
µ

∫

Rn×Rn

S(x, y)dµ̃(x, y);

where the infimum is taken on the set of the Borel probability measures that are invari-
ant by f and µ̃ is any lift of µ to a fundamental domain of Rn ×R

n for the projection
(x, y) 7→ (x,−∂S

∂x
(x, y)) onto T

n × R
n. Moreover the infimum is attained for some

invariant µ.

Then such a measure µ where the infimum is attained is a minimizing measure, but
all the minimizing measures are not like that. We define:

Definition. A configuration (xk)k∈Z of points of Rn is strongly minimizing if for any
pairs m < ℓ et m′ < ℓ′ and any configuration (yk)k∈Z satisfying ym′ − xm ∈ Z

n and
yℓ′ − xℓ ∈ Z

n, we have:

F̄(xm, xm+1, . . . , xℓ) ≤ F̄(ym′ , . . . , yℓ′).

The corresponding orbit for f is then strongly minimizing.
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It is not hard to see that if µ is a Borel probability measure invariant by f then
it satisfies the equality in the proposition above if and only if its support is filled by
strongly minimizing orbits.

Notations. The union of the supports of all the measures µ̃ where µ is strongly
minimizing is called the Mather set and is denoted by M(S).

Notations. We introduce the notations S̄(x, y) = S(x, y) − L̄ and

F̄(x1, . . . xm) = F(x1, . . . , xm)− (m− 1)L̄ =

m−1∑

i=1

S̄(xi, xi+1).

From now on, we will call F̄ the action and we will consider minimizing orbits for
this action (in fact minimizing orbits are the same for the two actions).

Definition. Let u : Rn → R be a Z
n-periodic and continuous function. Then

1. u is a subaction with respect to S if:

∀x, y ∈ R
n, u(y)− u(x) ≤ S̄(x, y);

2. u is backward calibrated if it is a subaction and

∀y ∈ R
n, u(y) = inf

x∈Rn
(u(x) + S̄(x, y));

3. u is forward calibrated if it is a subaction and

∀x ∈ R
n, u(x) = sup

y∈Rn

(u(y)− S̄(x, y)).

Definition. Let K ≥ 0 be a constant. A function u : Rn → R is K-semiconcave if
for every x0 ∈ R

N , there exists px0 ∈ R
n (that is non-necessarily unique) such that:

∀x ∈ R
n, ‖x− x0‖ ≤ 1 ⇒ u(x) ≤ u(x0) + px0(x− x0) +K‖x− x0‖

2.

Then px0 is a superdifferential for u at x0. The function u is K-semiconvex if −u is
semiconcave.
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Let us recall some well-known properties of semiconcave functions (see for example
[13]); we assume that u is K-semiconcave.

• if x0 is a local minimizer for u, then u is differentiable at x0;

• a infimum of K-semiconcave functions is K-semiconcave;

• every semiconcave function is Lipschitz.

A consequence of these properties is that any backward calibrated subaction is semi-
concave and any forward calibrated subaction is semiconvex.

Notations. If u : Rn × R
n → R is a subaction, then:

N (u) = {(x, y) ∈ R
n × R

n;u(y) = u(x) + S̄(x, y) = u(x) + S(x, y)− L̄}.

Remarks. Note that for every (x, y) ∈ N (u), then u is differentiable at x and
du(x) = −∂S

∂x
(x, y). Indeed, the map (z 7→ u(z) + S̄(z, y)) is semiconcave and x is a

minimizer. Hence u is differentiable a x and du(x) + ∂S
∂x

(x, y) = 0.

Let us give a result that is very similar to a one given in [8] in the time-continuous
case.

Notations. If u− : Rn → R is a backward calibrated subaction, then for every
y ∈ R

n, we denote by Σ(y) the set of the x ∈ R
n where:

u−(y) = u−(x) + S̄(x, y).

Proposition 2. Let u− : Rn → R be a backward calibrated subaction. Then, if y ∈ R
n

and x ∈ Σ(y), ∂S
∂y

(x, y) is a superdifferential for u− at y.
Moreover, u− is differentiable at y if and only if Σ(y) = {x} has exactly one element.
Then in this case du−(x) = −∂S

∂x
(x, y) and du−(y) =

∂S
∂y

(x, y).

There is of course a similar statement for the forward calibrated subactions.

Proof. Assume that x ∈ Σ(y). Then if z ∈ R
n satisfies ‖z − x‖ ≤ 1, we have:

u−(z) ≤ u−(x) + S(x, z) ≤ u−(x) + S(x, y) + (S(x, z) − S(x, y))

≤ u−(y) + S(x, z) − S(x, y) ≤ u−(y) +
∂S
∂y

(x, y)(z − y) +K‖z − y‖2.

Hence ∂S
∂y

(x, y) is a superderivative for u− at y.

Assume that Σ(y) has at least two elements x1 and x2. Then
∂S
∂y

(x1, y) and
∂S
∂y

(x2, y) are
two superderivatives for u− at y. Because of the twist condition and because x1 6= x2,
we have ∂S

∂y
(x1, y) 6= ∂S

∂y
(x2, y). The function u− has then two superderivatives at y
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and then is not differentiable at y.
Assume now hat Σ(y) = {x} has exactly one element. Let y′ be close to y. Then every
element x′ of Σ(y′) is close to x and we have:

u−(y′) = u(x′) + S(x′, y′) = u(x′) + S(x′, y) + (S(x′, y′)− S(x′, y))
≥ u−(y) +

∂S
∂y

(x′, y)(y′ − y) + o(‖y′ − y‖)

≥ u−(y) +
∂S
∂y

(x, y)(y′ − y) + o(‖y′ − y‖).
.

This proves that u is differentiable at y and that du(y) = ∂S
∂y

(x, y). The fact that

du(x) = −∂S
∂x

(x, y) is a consequence of the remarks that we made previously.

Remarks. We deduce from proposition 2 that if a backward calibrated subac-
tion u− : R

n → R is differentiable at x0, if we use the notation Σ(xi) = {xi+1},
then u is differentiable at every xi and du(xi) = −∂S

∂x
(xi, xi−1) = ∂S

∂y
(xi+1, xi), i.e.

(xi, du(xi))i∈N = (xi,
∂S
∂y

(xi+1, xi))i∈N is a backward orbit for F . Moreover, the config-
uration (xi)i≥0 is strongly minimizing.

Proposition. (Garibaldi-Thieullen) For any subaction u, we have: ∅ 6= M(S) ⊂
N (u).

Moreover they prove:

Proposition. (Garibaldi-Thieullen) For any backward calibrated subaction u−, there
exists a forward calibrated subaction u+ such that:

1. u− ≤ u+;

2. u−|M(S) = u+|M(S).

Such a pair (u−, u+) will be called a pair of conjugate calibrated subactions and we
introduce the notation

Notations. If (u−, u+) is a pair of conjugate calibrated subactions, we denote by
I(u−, u+) the set:

I(u−, u+) = {x ∈ R
n;u−(x) = u+(x)}.

Note that M(S) ⊂ I(u−, u+). Note too that u− and u+ are differentiable above
I(u−, u+) with the same derivative. We use the following notation

Ĩ(u−, u+) = {(x, du−(x));x ∈ I(u−, u+)}.
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3.2 Mañé potential and images of the vertical fiber

In the discrete case, an action potential can be defined that is an analogue of the one
given by R. Mañé in [19]:

Definition. Let m ≥ 1 be an integer. The action potential Am : Rn × R
n → R is

defined by:

∀x, y ∈ R
n,Am(x, y) = inf{

m∑

i=1

S̄(xi−1, xi);x0 = x, xm = y}.

Let us give a result that is very similar to a statement given by P. Bernard in [8].
We use a notation:

Notations. If m ≥ 1 is an integer and x, y ∈ R
n, then Σm(x, y) ⊂ (Rn)m+1 is the

set of the (x0, x1, . . . , xm) such that x0 = x, xm = y and

Am(x, y) =

m∑

i=1

S̄(xi−1, xi).

Proposition 3. Let m ≥ 1 be an integer. Then Am is semiconcave. Let x, y ∈ R
n be

two points. Then Σ(x, y) 6= ∅ and if (x0, . . . , xm) ∈ Σm(x, y), it is the projection of a
unique orbit for F that is:

(x0,−
∂S

∂x
(x0, x1)), (x1,−

∂S

∂x
(x1, x2) =

∂S

∂y
(x0, x1)), . . . , (xm,

∂S

∂y
(xm−1, xm));

and (∂S
∂x

(x0, x1),
∂S
∂y

(xm−1, xm)) is a superdifferential for Am at (x, y). Moreover,the
following assertions are equivalent:

(i) Am is differentiable with respect to x at (x, y);

(ii) Am is differentiable with respect to y at (x, y);

(iii) Σ(y) = {(x0, . . . , xm)} has exactly one element.

Proof. The function Am is the infimum of a uniformly semiconcave, bounded from
below and coercive familiy. Hence it is semiconcave and the infimum is attained.
If (x0, . . . , xm) ∈ Σm(x, y), we have an infimum and then the partial derivatives vanish
and:

∂S

∂y
(x0, x1) +

∂S

∂x
(x1, x2) = 0, . . . ,

∂S

∂y
(xm−2, xm−1) +

∂S

∂x
(xm−1, xm) = 0.
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This implies that (x0, . . . , xm) is the projection of a unique orbit, that is:

(x0,−
∂S

∂x
(x0, x1)), (x1,−

∂S

∂x
(x1, x2) =

∂S

∂y
(x0, x1)), . . . , (xm,

∂S

∂y
(xm−1, xm)).

Moreover,

Am(x′, y′) ≤ S̄(x′, x1) + · · · + S̄(xm−1, y
′)

≤ Am(x, y) + (S̄(x′, x1)− S̄(x, x1)) + (S̄(xm−1, y
′)− S̄(xm−1, x))

≤ Am(x, y) + ∂S
∂x

(x, x1)(x
′ − x) + ∂S

∂y
(xm−1, y)(y

′ − y)

+K(‖x− x′‖2 + ‖y − y′‖2)

hence (∂S
∂x

(x0, x1),
∂S
∂y

(xm−1, xm)) is a superdifferential for Am at (x, y).

Let us now assume that Σm(x, y) contains at least two distinct elements (x0, . . . , xm)
and (y0, . . . , ym). We know that they are the projections of two distinct orbits, one
joining (x,−∂S

∂x
(x0, x1)) to (y, ∂S

∂y
(xm−1, xm)) and the other one joining (x,−∂S

∂x
(y0, y1))

to (y, ∂S
∂y

(ym−1, ym)). Because the orbits are distinct, the points are not the same and

then ∂S
∂x

(x0, x1) 6= ∂S
∂x

(y0, y1) and ∂S
∂y

(xm−1, xm) 6= ∂S
∂y

(ym−1, ym). Hence Am has two
distinct superderivatives with respect to x and two distinct superderivatives with re-
spect to y at (x, y).

Let us assume that Σm(x, y) contains exactly one element (x0, . . . , xm). Let (x′, y′)
be close to (x, y). Then every element (x′0, . . . , x

′
m) of Σm(x′, y′) is close to (x0, . . . , xm)

and we have:

Am(x′, y′) =

m∑

i=1

S̄(x′i−1, x
′
i) = S̄(x, x′1) +

m−1∑

i=2

S̄(x′i−1, x
′
i)+

+S̄(x′m−1, y) + S̄(x′, x′1)− S̄(x, x′1) + S̄(x′m−1, y
′)− S̄(x′m−1, y)

≥ Am(x, y) + S̄(x′, x′1)− S̄(x, x′1) + S̄(x′m−1, y
′)− S̄(x′m−1, y)

≥ Am(x, y) + ∂S̄
∂x

(x, x′1)(x
′ − x) + ∂S̄

∂y
(x′m−1, y)(y

′ − y) + o(‖x− x′‖) + o(‖y′ − y‖)

≥ Am(x, y) + ∂S̄
∂x

(x, x1)(x
′ − x) + ∂S̄

∂y
(xm−1, y)(y

′ − y) + o(‖x− x′‖) + o(‖y′ − y‖).

.

This proves that Am is differentiable at (x, y).

Notations. At every x ∈ R
n we denote by V(x) the fiber {x} ×R

n of Rn × R
n.

Proposition 4. Let (x, y) be a point of differentiability of Am. Then (y, ∂Am

∂y
(x, y)) ∈

Fm(V(x)) and (x,−∂Am

∂x
(x, y)) ∈ F−m(V(y)).
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Proof We use proposition 3. As (x, y) is a point of differentiability of Am, Σm(x, y) =
{(x0, . . . , xm)} has only one element and this is the projection of the F -orbit

(x0,−
∂S

∂x
(x0, x1)), (x1,−

∂S

∂x
(x1, x2) =

∂S

∂y
(x0, x1)), . . . , (xm,

∂S

∂y
(xm−1, xm)).

Moerover, we have ∂Am

∂x
(x, y) = ∂S

∂x
(x, x1) and ∂Am

∂y
(x, y) = ∂S

∂y
(xm−1, y). We deduce

that Fm(x,−∂Am

∂x
(x, y)) = (y, ∂Am

∂y
(x, y)) and then proposition 4.

Corollary 2. We assume that a piece of orbit (xi, yi)i∈[0,m+1] for F is minimizing.
Then Am is as regular as F is in a neighbourhood of (x0, xm) and in a neighborhood
of (x1, xm+1).

Proof We prove the first assertion.
Let us prove that DFm(V (x0)) is transverse to V (xm). We use the results that are
contained in section 2.3. of [5] (especially proposition 6). Let us use the notation:

F̄(y0, . . . , ym+1) =

m∑

i=0

S̄(yi, yi+1)

and (x0, . . . , xm+1) is a minimizer of F̄ among the (y0, . . . , ym+1) such that y0 = x0 and
ym+1 = xm+1. We denote by H = H(x0, . . . , xm+1) the Hessian of F with fixed ends
at (x0, . . . , xm+1). Then it is positive semidefinite. The kernel of H is the set of pro-
jections (δxi)1≤i≤m of infinitesimal orbits (δxi, δyi)1≤i≤m along the orbit (xi, yi)1≤i≤m

such that their extension (δxi, δyi)i∈Z satisfies δx0 = 0 and δxm+1 = 0.
Let us assume that DFm(V (x0)) is not transverse to V (xm). Then there exists an
infinitesimal orbit (δxi, δyi)0≤i≤m that is not the (0, 0) orbit and that satisfies δx0 =
δxm = 0. Then (0, δx1, . . . , δxm−1, 0, 0) is in the isotropic cone for H(x0, . . . , xm+1)
and because H(x0, . . . , xm+1) is positive semi-definite, (0, δx1, . . . , δxm−1, 0, 0) is in the
kernel of (0, δx1, . . . , δxm−1, 0, 0). This implies that it is an infinitesimal orbit and then
the 0-orbit.

We have then proved that DFm(V (x0)) is transverse to V (xm) and this implies
that DF−m(V (xm)) is transverse to V (x0). Hence Fm(V(x0)) (resp. F−m(V(xm)))
is a manifold that is a graph as smooth as F is in a neighborhood of (xm, ym) (resp.
(x0, y0)).
If (x′0, x

′
m) is closed to (x0, xm), we have noticed that every element of Σ(x′0, x

′
m) is

closed to the unique element of Σ(x0, xm). Hence it corresponds to an orbit (x′i, y
′
i)0≤i≤m

that is closed to (xi, yi)0≤i≤m. Moreover, Fm(V(x′0)) (resp. F−m(V(x′m))) is a mani-
fold that is a graph as smooth as F is in a neighborhood of (x′m, y′m) (resp. (x′0, y

′
0))

because it is close to Fm(V(x0)) (resp. F−m(V(xm))). Hence there is only one choice
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for (x′0, y
′
0) above x′0 close to x0 on F−m(V(x′m)) and it smoothly depends on (x′0, x

′
m)

and we have the same result for the choice of y′m. This means that Σm(x′0, x
′
m) has

only one element, hence Am is differentiable at (x′0, x
′
m). Morever, ∂Am

∂x
(x′0, x

′
m) = −y′0

and ∂Am

∂y
(x′0, x′m) = y′m smoothly depend on (x′0, x

′
m).

3.3 Comparison between Mañé’s potential and subactions

A consequence of the definition of a subaction is that if u : Rn → R is a subaction,
then: ∀x, y ∈ R

n, u(y)− u(x) ≤ Am(x, y).

Proposition 5. Let u− : Rn → R be a backward calibrated subaction and let u+ :
R
n → R be a forward calibrated subaction. Let x0 be a point of differentiability for

u− (resp. u+). Then the backward (resp. forward) orbit of (x0, du−(x0)) (resp.
(x0, du+(x0))) is on the graph of du− (resp. du+) and is denoted by (xi, du−(xi))i∈N
(resp. (xi, du+(xi))i∈N). Then (xi) is strongly minimizing, Am is differentiable at every
(xm, x0) (resp. (x0, xm)) with m ≥ 1 and for every x ∈ R

n

u−(x)− u−(x0)− du−(x0)(x− x0) ≤ Am(xm, x)−Am(xm, x0)−
∂Am

∂y
(xm, x0)(x− x0)

(resp.

u+(x)−u+(x0)−du+(x0)(x−x0) ≥ Am(x0, xm)−Am(x, xm)+
∂Am

∂x
(x0, xm)(x−x0)).

Proof We prove the result for u−. We assume that x0 is a point of differentiability
for u−.
We deduce from the remark after proposition 2 that the backward orbit of (x0, du−(x0))
is on the graph of du− and we denote it by (xi, du−(xi))i∈N . We deduce from the same
remark that (xi) is strongly minimizing. We deduce from proposition 2 that Σ(xi) has
only one element. Hence Σ(xm, x0) has only one element and then Am is differentiable
at (xm, x0).
As u− is a subaction, we have

∀x ∈ R
n, u−(x)−u−(x0) = u−(x)−u−(xm)+u−(xm)−u−(x0) ≤ Am(xm, x)−Am(xm, x0)

because u−(xm)− u−(x0) = Am(xm, x0). As the two functions vanish for x = x0 and
are differentiable with respect to x, we deduce u′−(x0) = ∂Am

∂y
(xm, x0) and then the

wanted inequality.
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Proposition 6. We assume that (u−, u+) is a pair of conjugate calibrated subaction.
Let x ∈ I(u−, u+) be a point, (yn) be a sequence of points of Rn converging to x, and
(λn) be a sequence of positive real numbers so that the two limits (written in charts)

lim
n→∞

yn − x

λn
= X and Y = lim

n→∞
du−(yn)− du−(x)

λn
(resp. lim

n→∞
du+(yn)− du+(x)

λn
) ex-

ist. Then we have: ∀k ∈ R
n,

Y.k ≤
1

2

(
∂2Am

∂y2
(x−m, x)(k, k)+

∂2Am

∂y2
(x−m, x)(X,X)+

∂2Am

∂x2
(x, xm)(X−k,X −k)

)

where (xi, du−(xi))i∈Z is the orbit of (x, du−(x)) (resp: ∀k ∈ R
n,

1

2

(
−
∂2Am

∂x2
(x, xm)(k, k)−

∂2Am

∂x2
(x, xm)(X,X)−

∂2Am

∂y2
(x−m, x)(k−X, k−X)

)
≤ Y.k)

Proof The proof is an adapted version of the proof of proposition 18 in [4]. We just
prove the first inequality.
Let x ∈ I(u−, u+) and let z be a point of differentiability of u−. We denote the negative
orbit of (z, du−(z)) by (z−i, du−(z−i)i∈N.Then we have:

• u−(z + h)− u−(z)− du−(z)h ≤ Am(z−m, z + h)−Am(z−m, z) − ∂Am

∂y
(z−m, z)h;

• u−(z)−u−(x)−du−(x)(z−x) ≤ Am(x−m, z)−Am(x−m, x)− ∂Am

∂y
(x−m, x)(z−x));

• Am(x, xm) − Am(z + h, xm) + ∂Am

∂x
(x, xm)(z + h − x) ≤ u+(z + h) − u+(x) −

du+(x)(z + h− x).

Hence, by adding these three inequalities and using that u−(x) = u+(x), du−(x) =
du+(x) and u+ ≤ u−:

(du−(x)− du−(z))h
≤ Am(z−m, z + h)−Am(z−m, z)− ∂Am

∂y
(z−m, z)h +Am(x−m, z)−Am(x−m, x)

−∂Am

∂y
(x−m, x)(z−x))−Am(x, xm)+Am(z+h, xm)− ∂Am

∂x
(x, xm)(z+h−x).

We now consider a sequence (yk) of points of differentiability of u− that converges
to x such that ∀k, yk 6= x, a vector K with fixed norm ‖K‖ = µ > 0 and the sequence
(hk) = (λkK) where (λk) is a sequence of positive numbers tending to zero. we denote
by (zk−i, du−(z

k
−i)) the backward orbit of (yk, du−(yk)) for F . We have proved that:

(du−(x)− du−(yk))h
≤ Am(zk−m, yk+hk)−Am(zk−m, yk)−

∂Am

∂y
(zk−m, yk)hk+Am(x−m, yk)−Am(x−m, x)

−∂Am

∂y
(x−m, x)(yk−x))−Am(x, xm)+Am(yk+hk, xm)− ∂Am

∂x
(x, xm)(yk+hk−x).

We assume that lim
k→+∞

yk − x

λk
= X and lim

k→+∞
du−(yk)− du−(x)

λk
= Y . We have proved

25



in corollary 2 that Am is as regular as F is in a neighborhood of (x−m, x), (zk−m, yk)
and (x, xm). Moreover, we have the following lemma that is lemma 18 in [4]:

Lemma 9. There exists a constant K > 0 such that, for every q ∈ I(u−, u+) and every
q′ ∈ M where u− (resp. u+) is differentiable, then ‖du−(q) − du−(q′)‖ ≤ K‖q − q′‖
(resp. ‖du+(q) − du+(q

′)‖ ≤ K‖q − q′‖ ). In particular, du− and du+ are continuous
at every point of I(u−, u+).

This lemma implies that (yk, du−(yk)) is closed to (x, du−(x)) and then that zk−m

is close to x−m. Hence we obtain:

(du−(x)− du−(yk))hk ≤ 1
2(

∂2Am

∂y2
(zk−m, yk)(hk, hk) +

∂2Am

∂y2
(x−m, x)(yk − x, yk − x)

+∂2Am

∂x2 (x, xm)(yk + hk − x, yk + hk − x) + o(‖hk‖
2 + ‖yk + hk − x‖2)).

We multiply by 1
λ2
n

and take the limit and obtain

−Y.K ≤
1

2
(
∂2Am

∂y2
(x−m, x)(K,K)+

∂2Am

∂y2
(x−m, x)(X,X)+

∂2Am

∂x2
(x, xm)(X+K,X+K)).

Changing K into −K, we obtain the wanted inequality.

3.4 Links between the tangent cone to the support of a

strongly minimizing measure and the Green bundles

The notion of contingent cone was introduced by G. Bouligand in [12].

Definition. Let A ⊂ Rn × Rn be a subset of Rn × Rn and let a ∈ A be a point
of A. Then the contingent cone to A at a is defined as being the set of all the limit
points of the sequences tk(ak − a) where (tk) is a sequence of real numbers and (ak) is
a sequence of elements of A that converges to a. This cone is denoted by CaA and it
is a subset of Ta(R

n × R
n).

We introduce an extension to this definition that is

Definition. Let A ⊂ R
n × R

n be a subset of Rn × R
n and let a ∈ A be a point of

A. Then the limit contingent cone to A at a is the set of the limit points of sequences
vk ∈ CakA where (ak) is any sequence of points of A that converges to a. It is denoted

by C̃aA.
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In general , these tangent cones are not Lagrangian subspaces. Because we need to
compare them to Lagrangian subspaces, we give a definition:

Definition. Let L− ≤ L+ be two Lagrangian subspaces of Tx(R
n × R

n) that are
transverse to the vertical. If v ∈ Tx(R

n × R
n) is a vector, we say that v is between

L− and L+ and write L− ≤ v ≤ L+ if there exists a third Lagrangian subspace in
Tx(R

n × R
n) such that:

• v ∈ L;

• L− ≤ L ≤ L+.

A part B of Tx(R
n × R

n) is between L− and L+ if ∀v ∈ B,L− ≤ v ≤ L+. Then we
write L− ≤ B ≤ L+.

We introduce the two modified Green bundles. We use the constant c0 =
√
13
3 − 5

6 .

Definition. We denote by S±(x) : Rn → R
n the linear operator such that G±(x) is

the graph of S±(x): G±(x) = {(v, S±(x)v); v ∈ R
n}. Then the modified Green bundles

G± are defined by:

G̃−(x) = {(v, (S−(x)− c0(S+(x)− S−(x)))v); v ∈ R
n}

and
G̃+(x) = {(v, (S+(x) + c0(S+(x)− S−(x)))v); v ∈ R

n}.

Proposition 7. Let (u−, u+) be a pair of conjugate calibrated subactions. Then

∀x ∈ I(u−, u+), G̃−(x, du−(x)) ≤ C̃(x,du−(x))Ĩ(u−, u+) ≤ G̃+(x, du−(x)).

Proof A consequence of proposition 6 and proposition 11 is that:

∀x ∈ I(u−, u+), G̃−(x, du−(x)) ≤ C(x,du−(x))Ĩ(u−, u+) ≤ G̃+(x, du−(x)).

Then the conclusion of the proposition comes from the definition of the limit contingent
cone and the semicontinuity property of the Green bundles (see for example [2]) and
then of the modified Green bundles.

As M(S) ⊂ Ĩ(u−, u+), we deduce the following corollary and then theorem 3.

Corollary 3. We have: ∀x ∈ M(S), G̃−(x) ≤ C̃xM(S) ≤ G̃+(x, du−(x)).

Definition. A subset A of Rn × R
n is C1-isotropic at some point a ∈ A if C̃aA is

contained in some Lagrangian subspace.
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For example, a C1 submanifold is C1-isotropic if it isotropic.

Corollary 1 that is given in the introduction is just a consequence of theorem 3 and
theorem 1.

4 Appendix

4.1 Comparison of Lagrangian subspaces

Let us assume that (E,ω) is a symplectic 2n-dimensional space. Let L1, L2 be two
transverse Lagrangian subspaces of E. Then the set the Lagrangian subspaces of E
that are transverse to L1 and L2 is open in the Grassmann space L of the Lagrangian
subspaces of E. Moreover it has exactly n + 1 connected component. Let us be more
precise.

Notations. If L ∈ L is transverse to L2, then it is the graph of a linear map
ℓ : L1 → L2. We then define a quadratic form q(L1, L2, ;L) on L1 by:

∀v ∈ L1, q(L1, L2;L)(v) = ω(v, ℓ(v)).

Then L is transverse to both L1 and L2 if and only if q(L1, L2;L) is non-degenerate and
the connected components of the set the Lagrangian subspaces of E that are transverse
to L1 and L2 correspond to the signature of this quadratic form.
We will denote by P(L1, L2) the set of the L ∈ L that correspond to a positive definite
quadratic form.

Proposition 8. Let L1, L2 ∈ L be two transverse Lagrangian subspaces of E. Then

1. if M : E → E is a symplectic isomorphism, we have: M(P(L1, L2)) = P(M(L1),M(L2));

2. if L ∈ P(L1, L2), then P(L1, L) ∪ P(L,L2) ⊂ P(L1, L2).

Proof The proof of the first assertion is elementary.
For the second one, let us begin by proving that P(L1, L) ⊂ P(L1, L2). Let W ∈
P(L1, L). For w ∈ W\{0}, we write w = ℓ1 + ℓ with ℓ1 ∈ L1, ℓ ∈ L. Then we have:
ω(ℓ1, ℓ) > 0. As ℓ ∈ L\{0} and L ∈ P(L1, L2), we can write ℓ = ℓ′1 + ℓ′2 with ℓ′i ∈ Li

and we have ω(ℓ′1, ℓ
′
2) > 0.

Finally we have proved that w = (ℓ1 + ℓ′1) + ℓ′2 with ℓ1 + ℓ′1 ∈ L1 and ℓ′2 ∈ L2 and
ω(ℓ1 + ℓ′1, ℓ

′
2) = ω(ℓ1, ℓ

′
2) + ω(ℓ′1, ℓ

′
2) = ω(ℓ1, ℓ

′
1 + ℓ′2) + ω(ℓ′1, ℓ

′
2) > 0.

the proof of the second inclusion is very similar.
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In the particular case where E = TxAn = R
n × R

n, we define an order relation on
the set H of Lagrangian subspaces that are transverse to V (x) in the following way.

Definition. If L1, L2 ∈ H,

1. we say that L1 is stricly under L2 and write L1 < L2 if L2 ∈ P(L1, V (x));

2. we say that L1 is under L2 and write L1 ≤ L2 if L2 is in the closure of P(L1, V (x)).

Note that L1 ≤ L2 if and only if q(L1, V (x);L2) is positive semi-definite. A conse-
quence of proposition 8 is that < and ≤ are transitive.
We can then define what is a decreasing or increasing sequence of elements of H.

Proposition 9. If L1, L2, L3 ∈ H, if L1 < L2 and L3 ∈ P(L1, L2), then L1 < L3 and
L3 < L2.

Proof Let us prove the first inequality. We assume that L1 < L2, i.e. L2 ∈
P(L1, V (x)). We know by proposition 8 that P(L1, L2) ∪ P(L2, V (x)) ⊂ P(L1, V (x)).
We deduce that L3 ∈ P(L1, V (x)) i.e. L1 < L3.
We explain how to prove the second inequality. We choose a basis (e1, . . . , en) of L3

and complete it with f1, . . . , fn ∈ V (x) in such a way that the basis is symplectic.
Then there exist two symmetric matrices S1 and S2 such that Li is the graph of the
linear map φi : L3 → V (x) with matrix Si in the bases (e1, . . . , en), (f1, . . . , fn). Be-
cause L1 < L3, we know that S1 is negative definite. We want to prove that S2 is
positive definite.
Let us write that L3 ∈ P(L1, L2). This means that for all v ∈ R

n\{0}, if (v, 0) =
(v1, S1v1) + (v2, S2v2), then

tv1S2v2 −
tv2S1v1 > 0. This can be reformulated in the

following way.
∀w ∈ R

n,−twS2S
−1
1 S2w + twS2w > 0.

Let s be the positive definite matrix such that s2 = −S1. If s2 = s−1S2s
−1, we obtain

∀u ∈ R
n, tus22u+ tus2u > 0.

If λ1, . . . , λn are the eigenvalues of s2, we deduce that λ2
i + λi > 0 i.e. λi < −1 or

λi > 0. Moreover, we know that L1 < L2, hence 0 < −S1 + S2, i.e. 0 < 1n + s2 and
λi > −1. We deduce that λi > 0 and S2 is positive definite.

Proposition 10. If L1, L2, L3 ∈ H, if L1 < L3 < L2 then L3 ∈ P(L1, L2).
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Proof As in the proof of proposition 9, we choose a basis (e1, . . . , en) of L3 and
complete it with f1, . . . , fn ∈ V (x) in such a way that the basis is symplectic. Then
there exist two symmetric matrices S1 and S2 such that Li is the graph of the linear
map φi : L3 → V (x) with matrix Si in the bases (e1, . . . , en), (f1, . . . , fn). We know
that S1 is negative definite and S2 is positive definite.
We want to prove that L3 ∈ P(L1, L2). This means that for all v ∈ Rn\{0}, if
(v, 0) = (v1, S1v1) + (v2, S2v2), then

tv1S2v2 −
tv2S1v1 > 0. As S2 is positive definite

and S1 is negative definite, the conclusion is straightforward.

4.2 A result in bilinear algebra

Proposition 11. Let Q−, Q+ be two quadratic forms on R
n such that Q− ≤ Q+ and

let (X,Y ) ∈ R
n × R

n be such that:

∀K ∈ R
n, Y.K ≤

1

2

(
Q+(K,K) +Q+(X,X) −Q−(X −K,X −K)

)

and

∀K ∈ R
n,

1

2

(
Q−(K,K) +Q−(X,X) −Q+(K −X,K −X)

)
≤ Y.K.

Then there exists a quadratic form σ such that:

• Q− − (
√
13
3 − 5

6)(Q+ −Q−) ≤ σ ≤ Q+ + (
√
13
3 − 5

6)(Q+ −Q−);

• Y = tσ(X, .).

Remarks. 1) Note that
√
13
3 − 5

6 < 1
2 , hence we obtain the same inequalities by

replacing
√
13
3 − 5

6 by 1
2 .

2) We gave in [4] an example in dimension n = 2 that proves that in general, we cannot
improve the first point into Q− ≤ σ ≤ Q+.

Notations. ∆Q = Q+ −Q−; ∆Y+ = Y − tQ+(X, .) and ∆Y− = Y − tQ−(X, .).

We use the constant: c0 =
√
13
3 − 5

6 .

Note that ∆Y− −∆Y+ = t∆Q(X, .).

Proof Using the above notations, we rewrite the two inequalities:

∀K ∈ R
n,∆Y+.K ≤

1

2
∆Q(X −K,X −K) and ∆Y−.K ≥ −

1

2
∆Q(X −K,X −K).

We deduce that ∆Y+,∆Y− ∈ Imt∆Q = (ker∆Q)⊥. We then use the restriction of ∆Q
to Imt∆Q = R

d, hence ∆Q is positive definite and we want to prove that there exists
a quadratic form σ on R

d such that −(1 + c0)∆Q ≤ σ ≤ c0∆Q and ∆Y+ = tσ(X, ).
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As ∆Q is positive definite, there exists a symmetric automorphism L : Rd → R
d

such that ∆Q(L(X)) = ‖X‖2 (‖.‖ is the usual Euclidean norm). We introduce the
notations x = L−1X, y+ = tL∆Y+ and y− = tL∆Y−. Note that y− − y+ = x. The
inequalities are rewritten as:

∀k ∈ R
d, y+.k ≤

1

2
‖k − x‖2 and y−.k ≥ −‖x− k‖2.

We now want to find η = σ ◦L such that y+ = tη(x, .) and −(1+ c0)‖.‖
2 ≤ η ≤ c0‖.‖

2.
Using an orthogonal change of basis, we can assume that x = (µ, 0, . . . , 0) and we
can multiply all the inequalities by µ2 and assume that µ = 1. We use the notations
y+ = (yi)1≤i≤d, and k = (ki)1≤i≤d. We have x = (1, 0, . . . , 0). Then the inequalities
become:

d∑

i=1

yi.ki ≤
1

2
(k1 − 1)2 +

1

2

d∑

i=2

k2i and k1 +

d∑

i=1

yi.ki ≥ −
1

2
(k1 − 1)2 −

1

2

d∑

i=2

k2i .

They can be rewritten as follows

(k1 − 1− y1)
2 + 1 +

d∑

i=2

(ki − y1)
2 ≥ (y1 + 1)2 +

d∑

i=2

y2i

and
d∑

i=1

(ki + yi)
2 + 1 ≥

d∑

i=1

y2i .

As (ki)1≤i≤d can be any element of Rd, this is equivalent to:

(y1 + 1)2 +

d∑

i=2

y2i ≤ 1 and 1 ≥
d∑

i=1

y2i .

Then we choose the quadratic form η. Its matrix in the canonical basis is

S =




y1 y2 y3 . . . yd−1 yd
y2 −1

2 0 . . . 0 0
. . . . . . . .
yd 0 0 . . . 0 −1

2




i.e. the only entries that may be non-zero are on the first line, on the first column
and on the diagonal. If 1 is the identity matrix, we have to prove that c01 − S and
(1 + c0)1+ S are positive semidefinite. We have

c01− S =




c0 − y1 −y2 −y3 . . . −yd−1 −yd
−y2 c0 +

1
2 0 . . . 0 0

. . . . . . . .
−yd 0 0 . . . 0 c0 +

1
2
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The restriction of c0‖.‖
2 − η to {0} × R

d−1 is positive definite. Hence to prove that
this quadratic form is positive, we only have to prove that the determinant of c01− S
is non-negative. We then compute it. Note that when d = 1, we have: δ(1) = c0 − y1.
Moreover, if d ≥ 2, we have

δ(d) = det(c01− S) = (c0 +
1

2
)δ(d− 1) + (−1)dyd det



−y2 c0 +

1
2 0 . . . 0

. . . . . . c0 +
1
2

−yd 0 0 . . . 0




and thus

δ(d) = (c0+
1

2
)δ(d−1)+(−1)d(−1)d−1y2d(c0+

1

2
)d−2 = (c0+

1

2
)δ(d−1)−y2d(c0+

1

2
)d−2.

We finally deduce:

δ(d) = (c0 +
1

2
)d−1

(
(c0 +

1

2
)(c0 − y1)−

d∑

i=2

y2i

)
.

We have proved that (y1 + 1)2 +

d∑

i=2

y2i ≤ 1, hence we have:

δ(d) ≥ (c0 +
1
2)

d−1
(
(c0 +

1
2)(c0 − y1) + (1 + y1)

2 − 1
)

≥ (c0 +
1
2)

d−1
(
(y1 +

3
4 − c0

2 )
2 + 3

4c
2
0 +

5
4c0 −

9
16

)
.

As 3
4c

2
0 +

5
4c0 −

9
16 = 0, we conclude that c0‖.‖

2 − η is positive semidefinite.

Let us now prove that (1 + c0)1+ S is positive semidefinite. We compute

(1 + c0)1+ S =




1 + c0 + y1 y2 y3 . . . yd−1 yd
y2

1
2 + c0 0 . . . 0 0

. . . . . . . .
yd 0 0 . . . 0 1

2 + c0




Then the restriction of η + (1 + c0)‖.‖
2 to {0} × R

d−1 is positive definite and we just
have to prove that det((1+ c0)1+S) is non negative. Using the computations that we
did for δ(d) (we replace yi by −yi and y1 by −(1 + y1)), we obtain:

det((1 + c0)1+ S) = (c0 +
1

2
)d−1

(
(c0 +

1

2
)(c0 + 1 + y1)−

d∑

i=2

y2i

)
.
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We have proved that 1 ≥
d∑

i=1

y2i hence we deduce

det((1 + c0)1+ S) ≥ (c0 +
1
2)

d−1
(
(c0 +

1
2)(c0 + 1 + y1) + y21 − 1

)

≥ (c0 +
1
2)

d−1
(
(y1 +

c0
2 + 1

4 )
2 + 3

4c
2
0 +

5
4c0 −

9
16

)

≥ (c0 +
1
2)

d−1(y1 +
c0
2 + 1

4)
2.

Then the quadratic form (1 + c0)
2 + η is positive semidefinite.
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[3] M.-C. Arnaud, The link between the shape of the Aubry-Mather sets and their
Lyapunov exponents, Annals of Mathematics, 174-3 (2011), p 1571-1601

[4] M.-C. Arnaud, Green bundles, Lyapunov exponents and regularity along the sup-
ports of the minimizing measures. Ann. Inst. H. Poincaré Anal. Non Linéaire 29
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