Semi-classical limit for Klein-Gordon equation toward relativistic Euler equations via an adapted modulated energy method - Centre de mathématiques Laurent Schwartz (CMLS)
Pré-Publication, Document De Travail Année : 2024

Semi-classical limit for Klein-Gordon equation toward relativistic Euler equations via an adapted modulated energy method

Limite semi-classique pour l'équation de Klein-Gordon vers les équations d'Euler relativistes via une méthode d'énergie modulée adaptée

Résumé

We show the convergence of the solutions to the massive nonlinear Klein-Gordon equation toward solutions to a relativistic Euler with potential type system in the semi-classical limit. In particular, the momentum and the density of Klein-Gordon converge to the the momentum and the density of the relativistic Euler system in Lebesgue norms. The relativistic Euler with potential is equivalent to the usual relativistic Euler with pressure up to a rescaling. The proof relies on the modulated energy method adapted to the wave equation and the relativistic setting.
Fichier principal
Vignette du fichier
salviNLKGsctoREP2407.08066v1.pdf (397.49 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04708425 , version 1 (24-09-2024)

Identifiants

Citer

Tony Salvi. Semi-classical limit for Klein-Gordon equation toward relativistic Euler equations via an adapted modulated energy method. 2024. ⟨hal-04708425⟩
40 Consultations
8 Téléchargements

Altmetric

Partager

More