Density of automorphic points in deformation rings of polarized global Galois representations - Centre de mathématiques Laurent Schwartz (CMLS)
Article Dans Une Revue Duke Mathematical Journal Année : 2022

Density of automorphic points in deformation rings of polarized global Galois representations

Résumé

Conjecturally, the Galois representations that are attached to essentially self-dual regular algebraic cuspidal automorphic representations are Zariski-dense in a polarized Galois deformation ring. We prove new results in this direction in the context of automorphic forms on definite unitary groups over totally real fields. This generalizes the infinite fern argument of Gouvêa–Mazur and Chenevier and relies on the construction of nonclassical p-adic automorphic forms and the computation of the tangent space of the space of trianguline Galois representations. This boils down to a surprising statement about the linear envelope of intersections of Borel subalgebras.
Fichier principal
Vignette du fichier
1811.09116.pdf (480.04 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

hal-04455776 , version 1 (18-03-2024)

Identifiants

Citer

Eugen Hellmann, Christophe Margerin, Benjamin Schraen. Density of automorphic points in deformation rings of polarized global Galois representations. Duke Mathematical Journal, 2022, 171 (13), pp.2699--2752. ⟨10.1215/00127094-2021-0080⟩. ⟨hal-04455776⟩
109 Consultations
25 Téléchargements

Altmetric

Partager

More