Communication Dans Un Congrès Année : 2025

Weak coloring numbers of minor-closed graph classes

Résumé

We study the growth rate of weak coloring numbers of graphs excluding a fixed graph as a minor. Van den Heuvel et al. (European J. of Combinatorics, 2017) showed that for a fixed graph X, the maximum r-th weak coloring number of X-minor-free graphs is polynomial in r. We determine this polynomial up to a factor of O(rlogr). Moreover, we tie the exponent of the polynomial to a structural property of X, namely, 2-treedepth. As a result, for a fixed graph X and an X-minor-free graph G, we show that wcolr(G)=O(rtd(X)1log r), which improves on the bound wcolr(G)=O(rg(td(X))) given by Dujmović et al. (SODA, 2024), where g is an exponential function. In the case of planar graphs of bounded treewidth, we show that the maximum r-th weak coloring number is in O(r2log r), which is best possible.
Fichier principal
Vignette du fichier
2407.04588v1.pdf (1) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04819269 , version 1 (04-12-2024)

Licence

Identifiants

Citer

Jędrzej Hodor, Xuan Hoang La, Piotr Micek, Clément Rambaud. Weak coloring numbers of minor-closed graph classes. ACM-SIAM Symposium on Discrete Algorithms (SODA25), Jan 2025, New Orleans, United States. pp.3325-3334, ⟨10.1137/1.9781611978322.107⟩. ⟨hal-04819269⟩
83 Consultations
19 Téléchargements

Altmetric

Partager

More